Ginsenoside Compound K Induces Ros-Mediated Apoptosis and Autophagic Inhibition in Human Neuroblastoma Cells In Vitro and In Vivo
Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identif...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 17; p. 4279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.09.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms20174279 |
Cover
Abstract | Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma. |
---|---|
AbstractList | Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from
Panax ginseng
C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma. Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma. Whether autophagy increases or inhibits cell death in response to cellular stress remains questionable [17]. [...]to balance cell survival and death, it is necessary to understand the complexity of the relationship between cancer cell apoptosis and autophagy. [...]its mechanism of action in neuroblastoma cells is unknown. [...]in the present study, we aimed to investigate the anticancer effects of CK and its underlying mechanisms on crosstalk between apoptosis and autophagy in neuroblastoma cell lines. 2. [...]the number of colonies was decreased in a dose-dependent manner after treatment with CK in both SK-N-BE(2) and SH-SY5Y cells (Figure 1D). The results showed that CK significantly induced accumulation of the sub-G1population (apoptotic cells) in a dose-dependent manner (Figure 2A,B). [...]CK treatment increased the level of P21 protein, a potent inhibitor of cell cycle progression in SK-N-BE(2) and SH-SY5Y cells (Figure 2C). Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma. Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma. |
Author | Kim, Eunhee Chun, Sungkun Oh, Jung-Mi |
AuthorAffiliation | 1 Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea 2 School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea |
AuthorAffiliation_xml | – name: 2 School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea – name: 1 Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea |
Author_xml | – sequence: 1 givenname: Jung-Mi orcidid: 0009-0002-7034-7168 surname: Oh fullname: Oh, Jung-Mi – sequence: 2 givenname: Eunhee surname: Kim fullname: Kim, Eunhee – sequence: 3 givenname: Sungkun orcidid: 0000-0001-9837-2299 surname: Chun fullname: Chun, Sungkun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31480534$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0ctrFTEUB-AgFfvQnWsJuHHhaJ6TmY1wudS22CqIug2ZJNOby0wy5lHo0v_c9GG5La6SkC-Hc_I7BHs-eAvAa4w-UNqjj247J4KwYET0z8ABZoQ0CLVib2e_Dw5T2iJEKOH9C7BPMesQp-wA_DlxPlkfkjMWrsO8hOIN_ALPvCnaJvg9pObCGqeyNXC1hCVXmqCqaFVyWDbq0umqN25w2QUPnYenZVYefrUlhmFSKYdZwbWdplQd_OVyDLfvbw9X4SV4Pqop2Vf36xH4-fn4x_q0Of92crZenTeaYZKbjraUc4XJiAeLuWA96rRRRoxoVBRT0_LecNENmnJGEOKmxYQrNbTCCjMM9Ah8uqu7lGG2Rlufo5rkEt2s4rUMysnHN95t5GW4kq1gov5VLfDuvkAMv4tNWc4u6TqX8jaUJAnpGOe8RV2lb5_QbSjR1_EkoZTQtkMYV_Vmt6OHVv6lU8H7O6BjSCna8YFgJG_Cl7vhV06ecO2yukmlzuOm_z_6C0lOs4A |
CitedBy_id | crossref_primary_10_1038_s41598_024_71123_w crossref_primary_10_3390_antiox11101890 crossref_primary_10_1016_j_biopha_2025_117838 crossref_primary_10_3390_cimb46030148 crossref_primary_10_1016_j_biopha_2020_110812 crossref_primary_10_1016_j_lfs_2020_117793 crossref_primary_10_3390_ijms21249704 crossref_primary_10_1016_j_biopha_2022_113696 crossref_primary_10_3390_molecules25092262 crossref_primary_10_1016_j_biopha_2020_110378 crossref_primary_10_1016_j_phymed_2022_154584 crossref_primary_10_1039_D1FO00348H crossref_primary_10_1002_ptr_7395 crossref_primary_10_1016_j_phrs_2021_105428 crossref_primary_10_1080_87559129_2020_1817065 crossref_primary_10_3389_fphar_2023_1215020 crossref_primary_10_1007_s10735_021_09990_0 crossref_primary_10_3390_cells12010168 crossref_primary_10_1002_ptr_8229 crossref_primary_10_3390_biomedicines10061265 crossref_primary_10_3390_biom10071028 crossref_primary_10_1016_j_jdsct_2025_100072 crossref_primary_10_3390_biomedicines8110517 crossref_primary_10_3390_pharmaceutics15112539 crossref_primary_10_1155_2020_8886955 crossref_primary_10_1038_s41419_020_2234_5 crossref_primary_10_3390_cancers15010024 crossref_primary_10_3390_molecules26010092 crossref_primary_10_1186_s12943_022_01524_w crossref_primary_10_1016_j_xphs_2020_12_034 crossref_primary_10_1111_cbdd_13983 crossref_primary_10_1016_j_biopha_2022_114139 crossref_primary_10_1016_j_jgr_2020_12_004 crossref_primary_10_1186_s13019_022_01846_2 crossref_primary_10_3390_nu16172835 crossref_primary_10_1136_wjps_2020_000121 crossref_primary_10_1177_15347354221101203 crossref_primary_10_1016_j_bcp_2022_115101 crossref_primary_10_3389_fphar_2024_1403285 crossref_primary_10_1016_j_bcp_2024_116111 crossref_primary_10_1038_s41392_021_00869_w crossref_primary_10_1039_C9FO02602A crossref_primary_10_1155_2021_9140191 crossref_primary_10_3390_ijms21176430 crossref_primary_10_3389_fphar_2023_1218803 crossref_primary_10_3390_biom10030484 |
Cites_doi | 10.1158/0008-5472.CAN-06-4217 10.1055/s-2006-957938 10.1128/MCB.25.3.1025-1040.2005 10.1016/j.molonc.2009.05.007 10.1016/j.neuropharm.2006.10.001 10.1016/j.canlet.2015.07.008 10.1021/jf070354a 10.1038/cddis.2014.467 10.1056/NEJMra1205406 10.1080/15548627.2016.1192751 10.3390/ijms11124916 10.15252/embj.201490784 10.1038/srep10027 10.1016/j.molcel.2011.07.039 10.1002/ijc.31965 10.1016/j.neuroscience.2009.08.014 10.1056/NEJMra0804577 10.1007/BF02975208 10.1371/journal.pone.0087707 10.18632/oncotarget.19887 10.3390/ijms18020367 10.1038/cddis.2013.273 10.1039/C4AY00288A 10.1126/science.281.5381.1312 10.1074/jbc.M702824200 10.4161/auto.4600 10.3390/ijms18091865 10.1038/onc.2015.455 10.3892/ijo.2017.3866 10.1038/sj.cdd.4401359 10.1016/j.redox.2014.12.003 10.1016/S0304-3835(99)00188-3 10.4161/auto.19496 10.1016/j.clinre.2018.01.005 10.18632/oncotarget.17732 10.1080/15548627.2016.1239676 10.1016/j.etap.2010.04.008 10.4161/15548627.2014.973338 10.1038/nrc1738 10.1016/j.canlet.2003.09.037 10.1096/fj.00-0267com 10.1080/10286020500208600 10.1016/j.critrevonc.2017.02.004 10.1038/nrm2239 10.1158/0008-5472.CAN-07-0562 10.1159/000491655 10.1080/01926230701320337 10.3390/ijms20051213 10.1007/978-1-60761-411-1_4 10.18632/oncotarget.4767 10.1016/j.bcp.2014.12.018 10.1016/j.bbamcr.2013.06.001 10.1002/ijc.21356 10.1016/S0006-2952(99)00212-9 10.1038/nrc1014 10.1371/journal.pone.0051544 10.1038/nrm3735 10.1634/theoncologist.8-3-278 10.1007/BF01200720 10.1139/bcb-2018-0226 10.1172/JCI73941 10.1021/jf900331g 10.1016/j.pcl.2007.10.014 10.1083/jcb.200507002 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms20174279 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Research Library Research Library (Corporate) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6747534 31480534 10_3390_ijms20174279 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2017R1D1A1B03035125 – fundername: Korea Health Industry Development Institute grantid: HI17C1510 – fundername: National Research Foundation of Korea grantid: NRF-2017R1A5A2015061 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c412t-836355a12f1be1574908cdad7f0fa313d659d578bc3542005d6125aab67e7dbb3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:06:36 EDT 2025 Mon Sep 08 14:17:24 EDT 2025 Fri Jul 25 20:20:31 EDT 2025 Wed Feb 19 02:31:46 EST 2025 Tue Jul 01 01:45:54 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | ginsenoside neuroblastoma apoptosis autophagy mitochondrial ROS |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-836355a12f1be1574908cdad7f0fa313d659d578bc3542005d6125aab67e7dbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9837-2299 0009-0002-7034-7168 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20174279 |
PMID | 31480534 |
PQID | 2332368011 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747534 proquest_miscellaneous_2284555608 proquest_journals_2332368011 pubmed_primary_31480534 crossref_primary_10_3390_ijms20174279 crossref_citationtrail_10_3390_ijms20174279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 2019-Sep-01 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Klionsky (ref_49) 2012; 8 Park (ref_3) 2008; 55 Gavilan (ref_40) 2015; 5 Wang (ref_65) 2014; 6 ref_11 Despouy (ref_63) 2015; 4 Xu (ref_22) 2016; 8 Radogna (ref_12) 2015; 94 Attele (ref_18) 1999; 58 Mizushima (ref_35) 2007; 3 Han (ref_41) 2007; 55 Wang (ref_43) 2012; 40 White (ref_17) 2015; 125 Matsumoto (ref_33) 2011; 44 Paglin (ref_67) 2001; 61 Pan (ref_39) 2009; 164 ref_69 Herrera (ref_30) 2001; 15 ref_66 Apel (ref_2) 2008; 68 Kroemer (ref_38) 2005; 5 Hasegawa (ref_23) 1996; 62 ref_29 Lee (ref_42) 1999; 144 Oh (ref_20) 2004; 205 Kim (ref_55) 2017; 13 Maiuri (ref_15) 2007; 8 Pankiv (ref_34) 2007; 282 Boya (ref_37) 2005; 25 Go (ref_53) 2017; 8 Kanzawa (ref_32) 2004; 11 Maris (ref_5) 2010; 362 Thornberry (ref_10) 1998; 281 Eruslanov (ref_31) 2010; 594 Chae (ref_25) 2009; 57 Jung (ref_45) 2006; 118 Bjorkoy (ref_36) 2005; 171 Fujiwara (ref_57) 2007; 31 Lee (ref_27) 2010; 11 Radogna (ref_61) 2016; 35 Loos (ref_51) 2014; 10 Galluzzi (ref_16) 2015; 34 Hasima (ref_9) 2014; 5 Nikoletopoulou (ref_8) 2013; 1833 Dey (ref_6) 2018; 145 Chen (ref_62) 2017; 112 Zheng (ref_54) 2016; 12 Leung (ref_21) 2007; 52 Hasegawa (ref_24) 1997; 20 Brech (ref_56) 2009; 3 Brodeur (ref_1) 2003; 3 Marino (ref_14) 2014; 15 Kim (ref_28) 2013; 4 Chang (ref_59) 2017; 50 Tsai (ref_48) 2015; 6 Li (ref_47) 2018; 47 Choi (ref_13) 2013; 368 Li (ref_46) 2019; 97 Elmore (ref_7) 2007; 35 Tong (ref_60) 2015; 367 Yuan (ref_64) 2018; 42 Kim (ref_26) 2010; 30 Zhou (ref_44) 2006; 8 Muhammad (ref_52) 2017; 8 Tode (ref_19) 1993; 120 Weinstein (ref_4) 2003; 8 Kauffman (ref_68) 2016; 2 Kim (ref_58) 2007; 67 |
References_xml | – volume: 67 start-page: 6314 year: 2007 ident: ref_58 article-title: Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-4217 – volume: 2 start-page: 361 year: 2016 ident: ref_68 article-title: MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS publication-title: React. Oxyg. Species (Apex) – volume: 62 start-page: 453 year: 1996 ident: ref_23 article-title: Main ginseng saponin metabolites formed by intestinal bacteria publication-title: Planta Med. doi: 10.1055/s-2006-957938 – volume: 25 start-page: 1025 year: 2005 ident: ref_37 article-title: Inhibition of macroautophagy triggers apoptosis publication-title: Mol. Cell Biol. doi: 10.1128/MCB.25.3.1025-1040.2005 – volume: 3 start-page: 366 year: 2009 ident: ref_56 article-title: Autophagy in tumour suppression and promotion publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2009.05.007 – volume: 52 start-page: 827 year: 2007 ident: ref_21 article-title: Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2006.10.001 – volume: 367 start-page: 18 year: 2015 ident: ref_60 article-title: Reactive oxygen species in redox cancer therapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.07.008 – volume: 55 start-page: 9373 year: 2007 ident: ref_41 article-title: Transformation of bioactive compounds by Fusarium sacchari fungus isolated from the soil-cultivated ginseng publication-title: J. Agric. Food Chem. doi: 10.1021/jf070354a – volume: 5 start-page: e1509 year: 2014 ident: ref_9 article-title: Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.467 – volume: 61 start-page: 439 year: 2001 ident: ref_67 article-title: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles publication-title: Cancer Res. – volume: 368 start-page: 651 year: 2013 ident: ref_13 article-title: Autophagy in human health and disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1205406 – volume: 12 start-page: 1593 year: 2016 ident: ref_54 article-title: Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint publication-title: Autophagy doi: 10.1080/15548627.2016.1192751 – volume: 11 start-page: 4916 year: 2010 ident: ref_27 article-title: Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11124916 – volume: 34 start-page: 856 year: 2015 ident: ref_16 article-title: Autophagy in malignant transformation and cancer progression publication-title: EMBO J. doi: 10.15252/embj.201490784 – volume: 5 start-page: 10027 year: 2015 ident: ref_40 article-title: Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3beta dependent mechanism publication-title: Sci. Rep. doi: 10.1038/srep10027 – volume: 44 start-page: 279 year: 2011 ident: ref_33 article-title: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.07.039 – volume: 145 start-page: 1731 year: 2018 ident: ref_6 article-title: Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives publication-title: Int. J. Cancer doi: 10.1002/ijc.31965 – volume: 164 start-page: 541 year: 2009 ident: ref_39 article-title: Rapamycin protects against rotenone-induced apoptosis through autophagy induction publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.08.014 – volume: 362 start-page: 2202 year: 2010 ident: ref_5 article-title: Recent advances in neuroblastoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0804577 – volume: 20 start-page: 539 year: 1997 ident: ref_24 article-title: Ginseng intestinal bacterial metabolite IH901 as a new anti-metastatic agent publication-title: Arch. Pharm. Res. doi: 10.1007/BF02975208 – ident: ref_66 doi: 10.1371/journal.pone.0087707 – volume: 8 start-page: 66226 year: 2017 ident: ref_52 article-title: Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death publication-title: Oncotarget doi: 10.18632/oncotarget.19887 – ident: ref_11 doi: 10.3390/ijms18020367 – volume: 4 start-page: e750 year: 2013 ident: ref_28 article-title: A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.273 – volume: 6 start-page: 3019 year: 2014 ident: ref_65 article-title: Measurement of DCF fluorescence as a measure of reactive oxygen species in murine islets of Langerhans publication-title: Anal. Methods doi: 10.1039/C4AY00288A – volume: 281 start-page: 1312 year: 1998 ident: ref_10 article-title: Caspases: Enemies within publication-title: Science doi: 10.1126/science.281.5381.1312 – volume: 282 start-page: 24131 year: 2007 ident: ref_34 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 – volume: 3 start-page: 542 year: 2007 ident: ref_35 article-title: How to interpret LC3 immunoblotting publication-title: Autophagy doi: 10.4161/auto.4600 – ident: ref_50 doi: 10.3390/ijms18091865 – volume: 35 start-page: 3839 year: 2016 ident: ref_61 article-title: Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma publication-title: Oncogene doi: 10.1038/onc.2015.455 – volume: 50 start-page: 873 year: 2017 ident: ref_59 article-title: Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling publication-title: Int. J. Oncol. doi: 10.3892/ijo.2017.3866 – volume: 11 start-page: 448 year: 2004 ident: ref_32 article-title: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401359 – volume: 4 start-page: 184 year: 2015 ident: ref_63 article-title: Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy publication-title: Redox Biol. doi: 10.1016/j.redox.2014.12.003 – volume: 144 start-page: 39 year: 1999 ident: ref_42 article-title: Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin publication-title: Cancer Lett. doi: 10.1016/S0304-3835(99)00188-3 – volume: 8 start-page: 445 year: 2012 ident: ref_49 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy publication-title: Autophagy doi: 10.4161/auto.19496 – volume: 42 start-page: 306 year: 2018 ident: ref_64 article-title: The role of ROS-induced autophagy in hepatocellular carcinoma publication-title: Clin. Res. Hepatol. Gastroenterol. doi: 10.1016/j.clinre.2018.01.005 – volume: 8 start-page: 58790 year: 2017 ident: ref_53 article-title: 3-Decylcatechol induces autophagy-mediated cell death through the IRE1alpha/JNK/p62 in hepatocellular carcinoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.17732 – volume: 13 start-page: 149 year: 2017 ident: ref_55 article-title: GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy publication-title: Autophagy doi: 10.1080/15548627.2016.1239676 – volume: 30 start-page: 134 year: 2010 ident: ref_26 article-title: Ginseng saponin metabolite induces apoptosis in MCF-7 breast cancer cells through the modulation of AMP-activated protein kinase publication-title: Environ. Toxicol. Pharm. doi: 10.1016/j.etap.2010.04.008 – volume: 10 start-page: 2087 year: 2014 ident: ref_51 article-title: Defining and measuring autophagosome flux-concept and reality publication-title: Autophagy doi: 10.4161/15548627.2014.973338 – volume: 5 start-page: 886 year: 2005 ident: ref_38 article-title: Lysosomes and autophagy in cell death control publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1738 – volume: 205 start-page: 23 year: 2004 ident: ref_20 article-title: 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide publication-title: Cancer Lett. doi: 10.1016/j.canlet.2003.09.037 – volume: 40 start-page: 1970 year: 2012 ident: ref_43 article-title: Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer publication-title: Int. J. Oncol. – volume: 15 start-page: 741 year: 2001 ident: ref_30 article-title: Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes publication-title: FASEB J. doi: 10.1096/fj.00-0267com – volume: 8 start-page: 519 year: 2006 ident: ref_44 article-title: Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K publication-title: J. Asian Nat. Prod. Res. doi: 10.1080/10286020500208600 – volume: 112 start-page: 21 year: 2017 ident: ref_62 article-title: The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2017.02.004 – volume: 8 start-page: 741 year: 2007 ident: ref_15 article-title: Self-eating and self-killing: Crosstalk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2239 – volume: 68 start-page: 1485 year: 2008 ident: ref_2 article-title: Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0562 – volume: 47 start-page: 2589 year: 2018 ident: ref_47 article-title: Compound K Inhibits Autophagy-Mediated Apoptosis Through Activation of the PI3K-Akt Signaling Pathway Thus Protecting Against Ischemia/Reperfusion Injury publication-title: Cell Physiol. Biochem. doi: 10.1159/000491655 – volume: 35 start-page: 495 year: 2007 ident: ref_7 article-title: Apoptosis: A review of programmed cell death publication-title: Toxicol. Pathol. doi: 10.1080/01926230701320337 – ident: ref_69 doi: 10.3390/ijms20051213 – volume: 594 start-page: 57 year: 2010 ident: ref_31 article-title: Identification of ROS using oxidized DCFDA and flow-cytometry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-411-1_4 – volume: 6 start-page: 28851 year: 2015 ident: ref_48 article-title: Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.4767 – volume: 94 start-page: 1 year: 2015 ident: ref_12 article-title: Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target publication-title: Biochem. Pharm. doi: 10.1016/j.bcp.2014.12.018 – volume: 1833 start-page: 3448 year: 2013 ident: ref_8 article-title: Crosstalk between apoptosis, necrosis and autophagy publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.06.001 – volume: 8 start-page: 1708 year: 2016 ident: ref_22 article-title: The antitumor activity study of ginsenosides and metabolites in lung cancer cell publication-title: Am. J. Transl. Res. – volume: 118 start-page: 490 year: 2006 ident: ref_45 article-title: Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells publication-title: Int. J. Cancer doi: 10.1002/ijc.21356 – volume: 58 start-page: 1685 year: 1999 ident: ref_18 article-title: Ginseng pharmacology: Multiple constituents and multiple actions publication-title: Biochem. Pharm. doi: 10.1016/S0006-2952(99)00212-9 – volume: 3 start-page: 203 year: 2003 ident: ref_1 article-title: Neuroblastoma: Biological insights into a clinical enigma publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1014 – ident: ref_29 doi: 10.1371/journal.pone.0051544 – volume: 15 start-page: 81 year: 2014 ident: ref_14 article-title: Self-consumption: The interplay of autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3735 – volume: 8 start-page: 278 year: 2003 ident: ref_4 article-title: Advances in the diagnosis and treatment of neuroblastoma publication-title: Oncologist doi: 10.1634/theoncologist.8-3-278 – volume: 31 start-page: 753 year: 2007 ident: ref_57 article-title: Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy publication-title: Int. J. Oncol. – volume: 120 start-page: 24 year: 1993 ident: ref_19 article-title: Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/BF01200720 – volume: 97 start-page: 406 year: 2019 ident: ref_46 article-title: Ginsenoside metabolite compound K induces apoptosis and autophagy in non-small cell lung cancer cells via AMPK-mTOR and JNK pathways publication-title: Biochem. Cell Biol. doi: 10.1139/bcb-2018-0226 – volume: 125 start-page: 42 year: 2015 ident: ref_17 article-title: The role for autophagy in cancer publication-title: J. Clin. Investig. doi: 10.1172/JCI73941 – volume: 57 start-page: 5777 year: 2009 ident: ref_25 article-title: Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo publication-title: J. Agric. Food Chem. doi: 10.1021/jf900331g – volume: 55 start-page: 97 year: 2008 ident: ref_3 article-title: Neuroblastoma: Biology, prognosis, and treatment publication-title: Pediatr. Clin. N. Am. doi: 10.1016/j.pcl.2007.10.014 – volume: 171 start-page: 603 year: 2005 ident: ref_36 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. doi: 10.1083/jcb.200507002 |
SSID | ssj0023259 |
Score | 2.470029 |
Snippet | Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer... Whether autophagy increases or inhibits cell death in response to cellular stress remains questionable [17]. [...]to balance cell survival and death, it is... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4279 |
SubjectTerms | Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis Apoptosis - drug effects Autophagy Autophagy - drug effects Cancer therapies Cell cycle Cell growth Cell Line, Tumor Cell Proliferation - drug effects Cells, Cultured Flow cytometry Ginsenosides - pharmacology Ginsenosides - therapeutic use Human Umbilical Vein Endothelial Cells Humans Mice Mice, Nude Microscopy Morphology Neuroblastoma Neuroblastoma - drug therapy Neuroblastoma - metabolism Neuroblastoma - physiopathology Permeability Proteins Reactive Oxygen Species - metabolism Tumorigenesis Xenograft Model Antitumor Assays |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qi-CL-G1qlRX0SUKz2SSbexA5S2tRekix0rewm93QyDV7NrmCj_7nzmw-vCr6GDJLkp2d78n8AF5FaZkrkUZhrqShMqMNVTQrw5lWUlueV7aihP7JIjs-Sz6ep-dbsBj_haG2ylEnekVtXEk58v1YiFhkqE_5u9X3kFCjqLo6QmioAVrBvPUjxm7BDqrkHM_9zvvDxefTKQQTsYdP42iVwiydZX0rvMDAf7_-dtmiNcRQkdq6No3UX57nnw2UGxbp6B7cHVxJNu95fx-2bPMAbvfgkj8ews8PNeWNHeFxMhJ7AlBinxiBdaByYKeuDU88UIc1bL5yqw5JW6aQaL6mcQMKlSJSX9Tat3WxumE-5c_8QA-NbnfnLhU7sMtli3Tsa91dOb_eX1y7R3B2dPjl4DgcABfCMuFxF-aC3A_F44ojn1JJRcHSKCOrqFKCC4NbZlDEdSnShNJRhvwjpXQmrTRai8ew3bjGPgUWKSlmhldZZhTqYpvT1B7NjTTCSJFEAbwZd7goh2nkBIqxLDAqIX4Um_wI4PVEveqncPyDbm9kVjHIYlv8PjkBvJxuoxRRaUQ11q2RBq10mqL3lwfwpOft9CCBESOqqiQAeYPrEwFN6L55p6kv_KTuDIM1XLn7_9d6BnfwA4bOtT3Y7q7W9jm6Op1-MZzfX-oG_40 priority: 102 providerName: ProQuest |
Title | Ginsenoside Compound K Induces Ros-Mediated Apoptosis and Autophagic Inhibition in Human Neuroblastoma Cells In Vitro and In Vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31480534 https://www.proquest.com/docview/2332368011 https://www.proquest.com/docview/2284555608 https://pubmed.ncbi.nlm.nih.gov/PMC6747534 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da5xAEB_yQaEvIf02SY8ttE_FVm9dVx9KuYZcQsuFEnrl3mTXXYnlopfTC81j__POqCe5poW-iLKzKDvO9zA_gNeeSCPFhedGShoqM1pXeXHqxlpJbf0osxkl9Cfn4dk0-DwTsy1Yo412B1j9NbQjPKnpcv7u5_XtRxT4DxRxYsj-Pv9xVaEdwyBPxtuwizYppDBsEvT1BHQbGtg0Sni4pKDbFvh7uzeN0z2P88_GyTuWaLwPe50LyUYtzx_Bli0ew4MWVPL2Cfw6zSlfXBIOJyNxJ-Ak9oURSAcqBXZRVu6kAeiwho0W5aJG0oopJBqtaMyAQmWI1Je5btq5WF6wJtXPmkEeGt3turxS7NjO5xXSse95vSyb_c3DTfkUpuOTb8dnbge04KaBP6zdiJPbofxh5iN_hKRiYGqUkZmXKe5zE4rYoGjrlIuA0lCG_CKldCitNFrzZ7BTlIV9AcxTksfGz8LQKNTBNqJpPdo30nAjeeA58HZ9wknaTSEnMIx5gtEI8SO5yw8H3vTUi3b6xj_ojtbMSta_UDLkfMhDtMC-A6_6ZZQeKomowpYrpEHrLAR6fZEDz1ve9i_iGCmiigockBtc7wloMvfmSpFfNhO6QwzScOfBf37-ITzE26517Qh26uXKvkRfp9YD2JYziddofDqA3U8n518vBmR9xKD5wX8DMRICzQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5RAEJ_UGqMvxm_RqmtinwwpsMDCgzGX6vXq9fpgWtM33GWXFHOFs3CaPvoP-Tc6s3B41ehbH8nOwsLMzsfOMD-AV16UJ5JHnptIoSnNaFzppbmbKimU8ZPCFHSgPzuMJ8fhh5PoZAN-rv6FobLKlU60ilrXOZ2R7wScBzxGfeq_XXx1CTWKsqsrCI1OLKbm4juGbM2b_XfI3-0gGL8_2p24PaqAm4d-0LoJJxsr_aDwcTGRoMxXrqUWhVdI7nMdR6lGOVY5j0I6c9HkBEipYmGEVorjfa_B9RBjO9pFyXhvCPB4YMHZfLR5Lt4l7grtOU-9nfLLWYO2FgNRKhpbN4F_-bV_lmeu2bvxHbjdO6ps1EnWXdgw1T240UFXXtyHH3slnUrXhPbJSKkQPBObMoICQdXDPtaNO7MwIEaz0aJetEjaMIlEoyU1M5CocpH6tFS2aIyVFbMJBWbbhSh06tv6TLJdM583SMc-le15befbi2_1Azi-kg__EDarujKPgXlS8FT7RRxriZreJNQTSPlaaK4FDz0HXq--cJb3vc4JcmOeYcxD_MjW-eHA9kC96Hp8_INua8WsrN_pTfZbLh14OQzjHqXEi6xMvUQa9AGiCH3LxIFHHW-HB3GMR1ERhg6IS1wfCKj_9-WRqjy1fcBjDAVx5pP_L-sF3JwczQ6yg_3D6VO4hS_T18htwWZ7vjTP0Klq1XMryQw-X_XW-QU4mTUz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAC0aiJxRtEm_i5IDQqmXbsrRCiKLegh07atA2WZosqEf-Fr-uM86DLQhuPUYZ5zVvz2Q-gJdemMWSh54bS6GpzGhc6SWZmygplPHj3OS0oX9wGO0djd8dh8dr8Kv_F4baKnubaA21rjLaIx8FnAc8Qnvqj_KuLeLDzvTN4ptLCFJUae3hNFoRmZnzH5i-1a_3d5DXW0Ewfftpe8_tEAbcbOwHjRtz8rfSD3IfHywUVAXLtNQi93LJfa6jMNEo0yrj4Zj2XzQFBFKqSBihleJ43WtwXXCRkHbF090h2eOBBWrz0f-5eJWobbrnPPFGxdfTGv0uJqXUQLbqDv-Kcf9s1VzxfdM7cLsLWtmklbK7sGbKe3CjhbE8vw8_dwvaoa4I-ZORgSGoJjZjBAuCZoh9rGr3wEKCGM0mi2rRIGnNJBJNljTYQKL5ReqTQtkGMlaUzBYXmB0dojDAb6pTybbNfF4jHftcNGeVXW8PvlcP4OhKPvxDWC-r0jwG5knBE-3nUaQlWn0T03wg5WuhuRZ87Dnwqv_CadbNPSf4jXmK-Q_xI13lhwNbA_WinffxD7qNnllpp_V1-ltGHXgxnEZ9pSKMLE21RBqMB8IQ48zYgUctb4cbccxN0SiOHRCXuD4Q0Czwy2fK4sTOBI8wLcSVT_7_WM_hJipN-n7_cPYUbuG7dO1yG7DenC3NJsZXjXpmBZnBl6vWnAt6Cjlp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ginsenoside+Compound+K+Induces+Ros-Mediated+Apoptosis+and+Autophagic+Inhibition+in+Human+Neuroblastoma+Cells+In+Vitro+and+In+Vivo&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Oh%2C+Jung-Mi&rft.au=Kim%2C+Eunhee&rft.au=Chun%2C+Sungkun&rft.date=2019-09-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=20&rft.issue=17&rft.spage=4279&rft_id=info:doi/10.3390%2Fijms20174279&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms20174279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |