Ginsenoside Compound K Induces Ros-Mediated Apoptosis and Autophagic Inhibition in Human Neuroblastoma Cells In Vitro and In Vivo

Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identif...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 20; no. 17; p. 4279
Main Authors Oh, Jung-Mi, Kim, Eunhee, Chun, Sungkun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2019
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms20174279

Cover

Abstract Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.
AbstractList Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.
Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.
Whether autophagy increases or inhibits cell death in response to cellular stress remains questionable [17]. [...]to balance cell survival and death, it is necessary to understand the complexity of the relationship between cancer cell apoptosis and autophagy. [...]its mechanism of action in neuroblastoma cells is unknown. [...]in the present study, we aimed to investigate the anticancer effects of CK and its underlying mechanisms on crosstalk between apoptosis and autophagy in neuroblastoma cell lines. 2. [...]the number of colonies was decreased in a dose-dependent manner after treatment with CK in both SK-N-BE(2) and SH-SY5Y cells (Figure 1D). The results showed that CK significantly induced accumulation of the sub-G1population (apoptotic cells) in a dose-dependent manner (Figure 2A,B). [...]CK treatment increased the level of P21 protein, a potent inhibitor of cell cycle progression in SK-N-BE(2) and SH-SY5Y cells (Figure 2C).
Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.
Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.
Author Kim, Eunhee
Chun, Sungkun
Oh, Jung-Mi
AuthorAffiliation 1 Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
2 School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
AuthorAffiliation_xml – name: 2 School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
– name: 1 Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
Author_xml – sequence: 1
  givenname: Jung-Mi
  orcidid: 0009-0002-7034-7168
  surname: Oh
  fullname: Oh, Jung-Mi
– sequence: 2
  givenname: Eunhee
  surname: Kim
  fullname: Kim, Eunhee
– sequence: 3
  givenname: Sungkun
  orcidid: 0000-0001-9837-2299
  surname: Chun
  fullname: Chun, Sungkun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31480534$$D View this record in MEDLINE/PubMed
BookMark eNpt0ctrFTEUB-AgFfvQnWsJuHHhaJ6TmY1wudS22CqIug2ZJNOby0wy5lHo0v_c9GG5La6SkC-Hc_I7BHs-eAvAa4w-UNqjj247J4KwYET0z8ABZoQ0CLVib2e_Dw5T2iJEKOH9C7BPMesQp-wA_DlxPlkfkjMWrsO8hOIN_ALPvCnaJvg9pObCGqeyNXC1hCVXmqCqaFVyWDbq0umqN25w2QUPnYenZVYefrUlhmFSKYdZwbWdplQd_OVyDLfvbw9X4SV4Pqop2Vf36xH4-fn4x_q0Of92crZenTeaYZKbjraUc4XJiAeLuWA96rRRRoxoVBRT0_LecNENmnJGEOKmxYQrNbTCCjMM9Ah8uqu7lGG2Rlufo5rkEt2s4rUMysnHN95t5GW4kq1gov5VLfDuvkAMv4tNWc4u6TqX8jaUJAnpGOe8RV2lb5_QbSjR1_EkoZTQtkMYV_Vmt6OHVv6lU8H7O6BjSCna8YFgJG_Cl7vhV06ecO2yukmlzuOm_z_6C0lOs4A
CitedBy_id crossref_primary_10_1038_s41598_024_71123_w
crossref_primary_10_3390_antiox11101890
crossref_primary_10_1016_j_biopha_2025_117838
crossref_primary_10_3390_cimb46030148
crossref_primary_10_1016_j_biopha_2020_110812
crossref_primary_10_1016_j_lfs_2020_117793
crossref_primary_10_3390_ijms21249704
crossref_primary_10_1016_j_biopha_2022_113696
crossref_primary_10_3390_molecules25092262
crossref_primary_10_1016_j_biopha_2020_110378
crossref_primary_10_1016_j_phymed_2022_154584
crossref_primary_10_1039_D1FO00348H
crossref_primary_10_1002_ptr_7395
crossref_primary_10_1016_j_phrs_2021_105428
crossref_primary_10_1080_87559129_2020_1817065
crossref_primary_10_3389_fphar_2023_1215020
crossref_primary_10_1007_s10735_021_09990_0
crossref_primary_10_3390_cells12010168
crossref_primary_10_1002_ptr_8229
crossref_primary_10_3390_biomedicines10061265
crossref_primary_10_3390_biom10071028
crossref_primary_10_1016_j_jdsct_2025_100072
crossref_primary_10_3390_biomedicines8110517
crossref_primary_10_3390_pharmaceutics15112539
crossref_primary_10_1155_2020_8886955
crossref_primary_10_1038_s41419_020_2234_5
crossref_primary_10_3390_cancers15010024
crossref_primary_10_3390_molecules26010092
crossref_primary_10_1186_s12943_022_01524_w
crossref_primary_10_1016_j_xphs_2020_12_034
crossref_primary_10_1111_cbdd_13983
crossref_primary_10_1016_j_biopha_2022_114139
crossref_primary_10_1016_j_jgr_2020_12_004
crossref_primary_10_1186_s13019_022_01846_2
crossref_primary_10_3390_nu16172835
crossref_primary_10_1136_wjps_2020_000121
crossref_primary_10_1177_15347354221101203
crossref_primary_10_1016_j_bcp_2022_115101
crossref_primary_10_3389_fphar_2024_1403285
crossref_primary_10_1016_j_bcp_2024_116111
crossref_primary_10_1038_s41392_021_00869_w
crossref_primary_10_1039_C9FO02602A
crossref_primary_10_1155_2021_9140191
crossref_primary_10_3390_ijms21176430
crossref_primary_10_3389_fphar_2023_1218803
crossref_primary_10_3390_biom10030484
Cites_doi 10.1158/0008-5472.CAN-06-4217
10.1055/s-2006-957938
10.1128/MCB.25.3.1025-1040.2005
10.1016/j.molonc.2009.05.007
10.1016/j.neuropharm.2006.10.001
10.1016/j.canlet.2015.07.008
10.1021/jf070354a
10.1038/cddis.2014.467
10.1056/NEJMra1205406
10.1080/15548627.2016.1192751
10.3390/ijms11124916
10.15252/embj.201490784
10.1038/srep10027
10.1016/j.molcel.2011.07.039
10.1002/ijc.31965
10.1016/j.neuroscience.2009.08.014
10.1056/NEJMra0804577
10.1007/BF02975208
10.1371/journal.pone.0087707
10.18632/oncotarget.19887
10.3390/ijms18020367
10.1038/cddis.2013.273
10.1039/C4AY00288A
10.1126/science.281.5381.1312
10.1074/jbc.M702824200
10.4161/auto.4600
10.3390/ijms18091865
10.1038/onc.2015.455
10.3892/ijo.2017.3866
10.1038/sj.cdd.4401359
10.1016/j.redox.2014.12.003
10.1016/S0304-3835(99)00188-3
10.4161/auto.19496
10.1016/j.clinre.2018.01.005
10.18632/oncotarget.17732
10.1080/15548627.2016.1239676
10.1016/j.etap.2010.04.008
10.4161/15548627.2014.973338
10.1038/nrc1738
10.1016/j.canlet.2003.09.037
10.1096/fj.00-0267com
10.1080/10286020500208600
10.1016/j.critrevonc.2017.02.004
10.1038/nrm2239
10.1158/0008-5472.CAN-07-0562
10.1159/000491655
10.1080/01926230701320337
10.3390/ijms20051213
10.1007/978-1-60761-411-1_4
10.18632/oncotarget.4767
10.1016/j.bcp.2014.12.018
10.1016/j.bbamcr.2013.06.001
10.1002/ijc.21356
10.1016/S0006-2952(99)00212-9
10.1038/nrc1014
10.1371/journal.pone.0051544
10.1038/nrm3735
10.1634/theoncologist.8-3-278
10.1007/BF01200720
10.1139/bcb-2018-0226
10.1172/JCI73941
10.1021/jf900331g
10.1016/j.pcl.2007.10.014
10.1083/jcb.200507002
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms20174279
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Research Library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC6747534
31480534
10_3390_ijms20174279
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2017R1D1A1B03035125
– fundername: Korea Health Industry Development Institute
  grantid: HI17C1510
– fundername: National Research Foundation of Korea
  grantid: NRF-2017R1A5A2015061
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c412t-836355a12f1be1574908cdad7f0fa313d659d578bc3542005d6125aab67e7dbb3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:06:36 EDT 2025
Mon Sep 08 14:17:24 EDT 2025
Fri Jul 25 20:20:31 EDT 2025
Wed Feb 19 02:31:46 EST 2025
Tue Jul 01 01:45:54 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords ginsenoside
neuroblastoma
apoptosis
autophagy
mitochondrial ROS
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-836355a12f1be1574908cdad7f0fa313d659d578bc3542005d6125aab67e7dbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9837-2299
0009-0002-7034-7168
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20174279
PMID 31480534
PQID 2332368011
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747534
proquest_miscellaneous_2284555608
proquest_journals_2332368011
pubmed_primary_31480534
crossref_primary_10_3390_ijms20174279
crossref_citationtrail_10_3390_ijms20174279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
2019-Sep-01
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Klionsky (ref_49) 2012; 8
Park (ref_3) 2008; 55
Gavilan (ref_40) 2015; 5
Wang (ref_65) 2014; 6
ref_11
Despouy (ref_63) 2015; 4
Xu (ref_22) 2016; 8
Radogna (ref_12) 2015; 94
Attele (ref_18) 1999; 58
Mizushima (ref_35) 2007; 3
Han (ref_41) 2007; 55
Wang (ref_43) 2012; 40
White (ref_17) 2015; 125
Matsumoto (ref_33) 2011; 44
Paglin (ref_67) 2001; 61
Pan (ref_39) 2009; 164
ref_69
Herrera (ref_30) 2001; 15
ref_66
Apel (ref_2) 2008; 68
Kroemer (ref_38) 2005; 5
Hasegawa (ref_23) 1996; 62
ref_29
Lee (ref_42) 1999; 144
Oh (ref_20) 2004; 205
Kim (ref_55) 2017; 13
Maiuri (ref_15) 2007; 8
Pankiv (ref_34) 2007; 282
Boya (ref_37) 2005; 25
Go (ref_53) 2017; 8
Kanzawa (ref_32) 2004; 11
Maris (ref_5) 2010; 362
Thornberry (ref_10) 1998; 281
Eruslanov (ref_31) 2010; 594
Chae (ref_25) 2009; 57
Jung (ref_45) 2006; 118
Bjorkoy (ref_36) 2005; 171
Fujiwara (ref_57) 2007; 31
Lee (ref_27) 2010; 11
Radogna (ref_61) 2016; 35
Loos (ref_51) 2014; 10
Galluzzi (ref_16) 2015; 34
Hasima (ref_9) 2014; 5
Nikoletopoulou (ref_8) 2013; 1833
Dey (ref_6) 2018; 145
Chen (ref_62) 2017; 112
Zheng (ref_54) 2016; 12
Leung (ref_21) 2007; 52
Hasegawa (ref_24) 1997; 20
Brech (ref_56) 2009; 3
Brodeur (ref_1) 2003; 3
Marino (ref_14) 2014; 15
Kim (ref_28) 2013; 4
Chang (ref_59) 2017; 50
Tsai (ref_48) 2015; 6
Li (ref_47) 2018; 47
Choi (ref_13) 2013; 368
Li (ref_46) 2019; 97
Elmore (ref_7) 2007; 35
Tong (ref_60) 2015; 367
Yuan (ref_64) 2018; 42
Kim (ref_26) 2010; 30
Zhou (ref_44) 2006; 8
Muhammad (ref_52) 2017; 8
Tode (ref_19) 1993; 120
Weinstein (ref_4) 2003; 8
Kauffman (ref_68) 2016; 2
Kim (ref_58) 2007; 67
References_xml – volume: 67
  start-page: 6314
  year: 2007
  ident: ref_58
  article-title: Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-4217
– volume: 2
  start-page: 361
  year: 2016
  ident: ref_68
  article-title: MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS
  publication-title: React. Oxyg. Species (Apex)
– volume: 62
  start-page: 453
  year: 1996
  ident: ref_23
  article-title: Main ginseng saponin metabolites formed by intestinal bacteria
  publication-title: Planta Med.
  doi: 10.1055/s-2006-957938
– volume: 25
  start-page: 1025
  year: 2005
  ident: ref_37
  article-title: Inhibition of macroautophagy triggers apoptosis
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.25.3.1025-1040.2005
– volume: 3
  start-page: 366
  year: 2009
  ident: ref_56
  article-title: Autophagy in tumour suppression and promotion
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2009.05.007
– volume: 52
  start-page: 827
  year: 2007
  ident: ref_21
  article-title: Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2006.10.001
– volume: 367
  start-page: 18
  year: 2015
  ident: ref_60
  article-title: Reactive oxygen species in redox cancer therapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.07.008
– volume: 55
  start-page: 9373
  year: 2007
  ident: ref_41
  article-title: Transformation of bioactive compounds by Fusarium sacchari fungus isolated from the soil-cultivated ginseng
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf070354a
– volume: 5
  start-page: e1509
  year: 2014
  ident: ref_9
  article-title: Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.467
– volume: 61
  start-page: 439
  year: 2001
  ident: ref_67
  article-title: A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles
  publication-title: Cancer Res.
– volume: 368
  start-page: 651
  year: 2013
  ident: ref_13
  article-title: Autophagy in human health and disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1205406
– volume: 12
  start-page: 1593
  year: 2016
  ident: ref_54
  article-title: Inhibition of autophagosome-lysosome fusion by ginsenoside Ro via the ESR2-NCF1-ROS pathway sensitizes esophageal cancer cells to 5-fluorouracil-induced cell death via the CHEK1-mediated DNA damage checkpoint
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1192751
– volume: 11
  start-page: 4916
  year: 2010
  ident: ref_27
  article-title: Compound K, a metabolite of ginseng saponin, induces mitochondria-dependent and caspase-dependent apoptosis via the generation of reactive oxygen species in human colon cancer cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms11124916
– volume: 34
  start-page: 856
  year: 2015
  ident: ref_16
  article-title: Autophagy in malignant transformation and cancer progression
  publication-title: EMBO J.
  doi: 10.15252/embj.201490784
– volume: 5
  start-page: 10027
  year: 2015
  ident: ref_40
  article-title: Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3beta dependent mechanism
  publication-title: Sci. Rep.
  doi: 10.1038/srep10027
– volume: 44
  start-page: 279
  year: 2011
  ident: ref_33
  article-title: Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.07.039
– volume: 145
  start-page: 1731
  year: 2018
  ident: ref_6
  article-title: Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31965
– volume: 164
  start-page: 541
  year: 2009
  ident: ref_39
  article-title: Rapamycin protects against rotenone-induced apoptosis through autophagy induction
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2009.08.014
– volume: 362
  start-page: 2202
  year: 2010
  ident: ref_5
  article-title: Recent advances in neuroblastoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0804577
– volume: 20
  start-page: 539
  year: 1997
  ident: ref_24
  article-title: Ginseng intestinal bacterial metabolite IH901 as a new anti-metastatic agent
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/BF02975208
– ident: ref_66
  doi: 10.1371/journal.pone.0087707
– volume: 8
  start-page: 66226
  year: 2017
  ident: ref_52
  article-title: Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19887
– ident: ref_11
  doi: 10.3390/ijms18020367
– volume: 4
  start-page: e750
  year: 2013
  ident: ref_28
  article-title: A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.273
– volume: 6
  start-page: 3019
  year: 2014
  ident: ref_65
  article-title: Measurement of DCF fluorescence as a measure of reactive oxygen species in murine islets of Langerhans
  publication-title: Anal. Methods
  doi: 10.1039/C4AY00288A
– volume: 281
  start-page: 1312
  year: 1998
  ident: ref_10
  article-title: Caspases: Enemies within
  publication-title: Science
  doi: 10.1126/science.281.5381.1312
– volume: 282
  start-page: 24131
  year: 2007
  ident: ref_34
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 3
  start-page: 542
  year: 2007
  ident: ref_35
  article-title: How to interpret LC3 immunoblotting
  publication-title: Autophagy
  doi: 10.4161/auto.4600
– ident: ref_50
  doi: 10.3390/ijms18091865
– volume: 35
  start-page: 3839
  year: 2016
  ident: ref_61
  article-title: Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma
  publication-title: Oncogene
  doi: 10.1038/onc.2015.455
– volume: 50
  start-page: 873
  year: 2017
  ident: ref_59
  article-title: Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2017.3866
– volume: 11
  start-page: 448
  year: 2004
  ident: ref_32
  article-title: Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401359
– volume: 4
  start-page: 184
  year: 2015
  ident: ref_63
  article-title: Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.12.003
– volume: 144
  start-page: 39
  year: 1999
  ident: ref_42
  article-title: Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin
  publication-title: Cancer Lett.
  doi: 10.1016/S0304-3835(99)00188-3
– volume: 8
  start-page: 445
  year: 2012
  ident: ref_49
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.19496
– volume: 42
  start-page: 306
  year: 2018
  ident: ref_64
  article-title: The role of ROS-induced autophagy in hepatocellular carcinoma
  publication-title: Clin. Res. Hepatol. Gastroenterol.
  doi: 10.1016/j.clinre.2018.01.005
– volume: 8
  start-page: 58790
  year: 2017
  ident: ref_53
  article-title: 3-Decylcatechol induces autophagy-mediated cell death through the IRE1alpha/JNK/p62 in hepatocellular carcinoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17732
– volume: 13
  start-page: 149
  year: 2017
  ident: ref_55
  article-title: GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma by inducing autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1239676
– volume: 30
  start-page: 134
  year: 2010
  ident: ref_26
  article-title: Ginseng saponin metabolite induces apoptosis in MCF-7 breast cancer cells through the modulation of AMP-activated protein kinase
  publication-title: Environ. Toxicol. Pharm.
  doi: 10.1016/j.etap.2010.04.008
– volume: 10
  start-page: 2087
  year: 2014
  ident: ref_51
  article-title: Defining and measuring autophagosome flux-concept and reality
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.973338
– volume: 5
  start-page: 886
  year: 2005
  ident: ref_38
  article-title: Lysosomes and autophagy in cell death control
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1738
– volume: 205
  start-page: 23
  year: 2004
  ident: ref_20
  article-title: 20(S)-Protopanaxatriol, one of ginsenoside metabolites, inhibits inducible nitric oxide synthase and cyclooxygenase-2 expressions through inactivation of nuclear factor-kappaB in RAW 264.7 macrophages stimulated with lipopolysaccharide
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2003.09.037
– volume: 40
  start-page: 1970
  year: 2012
  ident: ref_43
  article-title: Ginsenoside compound K, not Rb1, possesses potential chemopreventive activities in human colorectal cancer
  publication-title: Int. J. Oncol.
– volume: 15
  start-page: 741
  year: 2001
  ident: ref_30
  article-title: Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes
  publication-title: FASEB J.
  doi: 10.1096/fj.00-0267com
– volume: 8
  start-page: 519
  year: 2006
  ident: ref_44
  article-title: Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020500208600
– volume: 112
  start-page: 21
  year: 2017
  ident: ref_62
  article-title: The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/j.critrevonc.2017.02.004
– volume: 8
  start-page: 741
  year: 2007
  ident: ref_15
  article-title: Self-eating and self-killing: Crosstalk between autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2239
– volume: 68
  start-page: 1485
  year: 2008
  ident: ref_2
  article-title: Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0562
– volume: 47
  start-page: 2589
  year: 2018
  ident: ref_47
  article-title: Compound K Inhibits Autophagy-Mediated Apoptosis Through Activation of the PI3K-Akt Signaling Pathway Thus Protecting Against Ischemia/Reperfusion Injury
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000491655
– volume: 35
  start-page: 495
  year: 2007
  ident: ref_7
  article-title: Apoptosis: A review of programmed cell death
  publication-title: Toxicol. Pathol.
  doi: 10.1080/01926230701320337
– ident: ref_69
  doi: 10.3390/ijms20051213
– volume: 594
  start-page: 57
  year: 2010
  ident: ref_31
  article-title: Identification of ROS using oxidized DCFDA and flow-cytometry
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-411-1_4
– volume: 6
  start-page: 28851
  year: 2015
  ident: ref_48
  article-title: Licochalcone A induces autophagy through PI3K/Akt/mTOR inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4767
– volume: 94
  start-page: 1
  year: 2015
  ident: ref_12
  article-title: Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target
  publication-title: Biochem. Pharm.
  doi: 10.1016/j.bcp.2014.12.018
– volume: 1833
  start-page: 3448
  year: 2013
  ident: ref_8
  article-title: Crosstalk between apoptosis, necrosis and autophagy
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.06.001
– volume: 8
  start-page: 1708
  year: 2016
  ident: ref_22
  article-title: The antitumor activity study of ginsenosides and metabolites in lung cancer cell
  publication-title: Am. J. Transl. Res.
– volume: 118
  start-page: 490
  year: 2006
  ident: ref_45
  article-title: Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.21356
– volume: 58
  start-page: 1685
  year: 1999
  ident: ref_18
  article-title: Ginseng pharmacology: Multiple constituents and multiple actions
  publication-title: Biochem. Pharm.
  doi: 10.1016/S0006-2952(99)00212-9
– volume: 3
  start-page: 203
  year: 2003
  ident: ref_1
  article-title: Neuroblastoma: Biological insights into a clinical enigma
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1014
– ident: ref_29
  doi: 10.1371/journal.pone.0051544
– volume: 15
  start-page: 81
  year: 2014
  ident: ref_14
  article-title: Self-consumption: The interplay of autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3735
– volume: 8
  start-page: 278
  year: 2003
  ident: ref_4
  article-title: Advances in the diagnosis and treatment of neuroblastoma
  publication-title: Oncologist
  doi: 10.1634/theoncologist.8-3-278
– volume: 31
  start-page: 753
  year: 2007
  ident: ref_57
  article-title: Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy
  publication-title: Int. J. Oncol.
– volume: 120
  start-page: 24
  year: 1993
  ident: ref_19
  article-title: Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/BF01200720
– volume: 97
  start-page: 406
  year: 2019
  ident: ref_46
  article-title: Ginsenoside metabolite compound K induces apoptosis and autophagy in non-small cell lung cancer cells via AMPK-mTOR and JNK pathways
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/bcb-2018-0226
– volume: 125
  start-page: 42
  year: 2015
  ident: ref_17
  article-title: The role for autophagy in cancer
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI73941
– volume: 57
  start-page: 5777
  year: 2009
  ident: ref_25
  article-title: Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf900331g
– volume: 55
  start-page: 97
  year: 2008
  ident: ref_3
  article-title: Neuroblastoma: Biology, prognosis, and treatment
  publication-title: Pediatr. Clin. N. Am.
  doi: 10.1016/j.pcl.2007.10.014
– volume: 171
  start-page: 603
  year: 2005
  ident: ref_36
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507002
SSID ssj0023259
Score 2.470029
Snippet Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer...
Whether autophagy increases or inhibits cell death in response to cellular stress remains questionable [17]. [...]to balance cell survival and death, it is...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4279
SubjectTerms Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis
Apoptosis - drug effects
Autophagy
Autophagy - drug effects
Cancer therapies
Cell cycle
Cell growth
Cell Line, Tumor
Cell Proliferation - drug effects
Cells, Cultured
Flow cytometry
Ginsenosides - pharmacology
Ginsenosides - therapeutic use
Human Umbilical Vein Endothelial Cells
Humans
Mice
Mice, Nude
Microscopy
Morphology
Neuroblastoma
Neuroblastoma - drug therapy
Neuroblastoma - metabolism
Neuroblastoma - physiopathology
Permeability
Proteins
Reactive Oxygen Species - metabolism
Tumorigenesis
Xenograft Model Antitumor Assays
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9qi-CL-G1qlRX0SUKz2SSbexA5S2tRekix0rewm93QyDV7NrmCj_7nzmw-vCr6GDJLkp2d78n8AF5FaZkrkUZhrqShMqMNVTQrw5lWUlueV7aihP7JIjs-Sz6ep-dbsBj_haG2ylEnekVtXEk58v1YiFhkqE_5u9X3kFCjqLo6QmioAVrBvPUjxm7BDqrkHM_9zvvDxefTKQQTsYdP42iVwiydZX0rvMDAf7_-dtmiNcRQkdq6No3UX57nnw2UGxbp6B7cHVxJNu95fx-2bPMAbvfgkj8ews8PNeWNHeFxMhJ7AlBinxiBdaByYKeuDU88UIc1bL5yqw5JW6aQaL6mcQMKlSJSX9Tat3WxumE-5c_8QA-NbnfnLhU7sMtli3Tsa91dOb_eX1y7R3B2dPjl4DgcABfCMuFxF-aC3A_F44ojn1JJRcHSKCOrqFKCC4NbZlDEdSnShNJRhvwjpXQmrTRai8ew3bjGPgUWKSlmhldZZhTqYpvT1B7NjTTCSJFEAbwZd7goh2nkBIqxLDAqIX4Um_wI4PVEveqncPyDbm9kVjHIYlv8PjkBvJxuoxRRaUQ11q2RBq10mqL3lwfwpOft9CCBESOqqiQAeYPrEwFN6L55p6kv_KTuDIM1XLn7_9d6BnfwA4bOtT3Y7q7W9jm6Op1-MZzfX-oG_40
  priority: 102
  providerName: ProQuest
Title Ginsenoside Compound K Induces Ros-Mediated Apoptosis and Autophagic Inhibition in Human Neuroblastoma Cells In Vitro and In Vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/31480534
https://www.proquest.com/docview/2332368011
https://www.proquest.com/docview/2284555608
https://pubmed.ncbi.nlm.nih.gov/PMC6747534
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da5xAEB_yQaEvIf02SY8ttE_FVm9dVx9KuYZcQsuFEnrl3mTXXYnlopfTC81j__POqCe5poW-iLKzKDvO9zA_gNeeSCPFhedGShoqM1pXeXHqxlpJbf0osxkl9Cfn4dk0-DwTsy1Yo412B1j9NbQjPKnpcv7u5_XtRxT4DxRxYsj-Pv9xVaEdwyBPxtuwizYppDBsEvT1BHQbGtg0Sni4pKDbFvh7uzeN0z2P88_GyTuWaLwPe50LyUYtzx_Bli0ew4MWVPL2Cfw6zSlfXBIOJyNxJ-Ak9oURSAcqBXZRVu6kAeiwho0W5aJG0oopJBqtaMyAQmWI1Je5btq5WF6wJtXPmkEeGt3turxS7NjO5xXSse95vSyb_c3DTfkUpuOTb8dnbge04KaBP6zdiJPbofxh5iN_hKRiYGqUkZmXKe5zE4rYoGjrlIuA0lCG_CKldCitNFrzZ7BTlIV9AcxTksfGz8LQKNTBNqJpPdo30nAjeeA58HZ9wknaTSEnMIx5gtEI8SO5yw8H3vTUi3b6xj_ojtbMSta_UDLkfMhDtMC-A6_6ZZQeKomowpYrpEHrLAR6fZEDz1ve9i_iGCmiigockBtc7wloMvfmSpFfNhO6QwzScOfBf37-ITzE26517Qh26uXKvkRfp9YD2JYziddofDqA3U8n518vBmR9xKD5wX8DMRICzQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5RAEJ_UGqMvxm_RqmtinwwpsMDCgzGX6vXq9fpgWtM33GWXFHOFs3CaPvoP-Tc6s3B41ehbH8nOwsLMzsfOMD-AV16UJ5JHnptIoSnNaFzppbmbKimU8ZPCFHSgPzuMJ8fhh5PoZAN-rv6FobLKlU60ilrXOZ2R7wScBzxGfeq_XXx1CTWKsqsrCI1OLKbm4juGbM2b_XfI3-0gGL8_2p24PaqAm4d-0LoJJxsr_aDwcTGRoMxXrqUWhVdI7nMdR6lGOVY5j0I6c9HkBEipYmGEVorjfa_B9RBjO9pFyXhvCPB4YMHZfLR5Lt4l7grtOU-9nfLLWYO2FgNRKhpbN4F_-bV_lmeu2bvxHbjdO6ps1EnWXdgw1T240UFXXtyHH3slnUrXhPbJSKkQPBObMoICQdXDPtaNO7MwIEaz0aJetEjaMIlEoyU1M5CocpH6tFS2aIyVFbMJBWbbhSh06tv6TLJdM583SMc-le15befbi2_1Azi-kg__EDarujKPgXlS8FT7RRxriZreJNQTSPlaaK4FDz0HXq--cJb3vc4JcmOeYcxD_MjW-eHA9kC96Hp8_INua8WsrN_pTfZbLh14OQzjHqXEi6xMvUQa9AGiCH3LxIFHHW-HB3GMR1ERhg6IS1wfCKj_9-WRqjy1fcBjDAVx5pP_L-sF3JwczQ6yg_3D6VO4hS_T18htwWZ7vjTP0Klq1XMryQw-X_XW-QU4mTUz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAC0aiJxRtEm_i5IDQqmXbsrRCiKLegh07atA2WZosqEf-Fr-uM86DLQhuPUYZ5zVvz2Q-gJdemMWSh54bS6GpzGhc6SWZmygplPHj3OS0oX9wGO0djd8dh8dr8Kv_F4baKnubaA21rjLaIx8FnAc8Qnvqj_KuLeLDzvTN4ptLCFJUae3hNFoRmZnzH5i-1a_3d5DXW0Ewfftpe8_tEAbcbOwHjRtz8rfSD3IfHywUVAXLtNQi93LJfa6jMNEo0yrj4Zj2XzQFBFKqSBihleJ43WtwXXCRkHbF090h2eOBBWrz0f-5eJWobbrnPPFGxdfTGv0uJqXUQLbqDv-Kcf9s1VzxfdM7cLsLWtmklbK7sGbKe3CjhbE8vw8_dwvaoa4I-ZORgSGoJjZjBAuCZoh9rGr3wEKCGM0mi2rRIGnNJBJNljTYQKL5ReqTQtkGMlaUzBYXmB0dojDAb6pTybbNfF4jHftcNGeVXW8PvlcP4OhKPvxDWC-r0jwG5knBE-3nUaQlWn0T03wg5WuhuRZ87Dnwqv_CadbNPSf4jXmK-Q_xI13lhwNbA_WinffxD7qNnllpp_V1-ltGHXgxnEZ9pSKMLE21RBqMB8IQ48zYgUctb4cbccxN0SiOHRCXuD4Q0Czwy2fK4sTOBI8wLcSVT_7_WM_hJipN-n7_cPYUbuG7dO1yG7DenC3NJsZXjXpmBZnBl6vWnAt6Cjlp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ginsenoside+Compound+K+Induces+Ros-Mediated+Apoptosis+and+Autophagic+Inhibition+in+Human+Neuroblastoma+Cells+In+Vitro+and+In+Vivo&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Oh%2C+Jung-Mi&rft.au=Kim%2C+Eunhee&rft.au=Chun%2C+Sungkun&rft.date=2019-09-01&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=20&rft.issue=17&rft.spage=4279&rft_id=info:doi/10.3390%2Fijms20174279&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms20174279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon