Quantum Coding with Low-Depth Random Circuits

Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity inD≥1spatial dimensions to generate quantum error-correctin...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 11; no. 3; p. 031066
Main Authors Gullans, Michael J., Krastanov, Stefan, Huse, David A., Jiang, Liang, Flammia, Steven T.
Format Journal Article
LanguageEnglish
Published College Park American Physical Society 01.09.2021
Subjects
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.11.031066

Cover

Abstract Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity inD≥1spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depthO(logN)random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for anyD. Previous results on random circuits have only shown thatO(N1/D)depth suffices or thatO(log3N)depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero withN. We find that the requisite depth scales likeO(logN)only for dimensionsD≥2and that random circuits requireO(N)depth forD=1. Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth inD≥2spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits inD=2dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
AbstractList Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D≥1 spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth O ( logN ) random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any D . Previous results on random circuits have only shown that O ( N1 / D ) depth suffices or that O ( log3N ) depth suffices for all-to-all connectivity ( D → ∞ ). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with N . We find that the requisite depth scales like O ( logN ) only for dimensions D≥2 and that random circuits require O ( N ) depth for D=1 . Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth in D≥2 spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits in D=2 dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity inD≥1spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depthO(logN)random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for anyD. Previous results on random circuits have only shown thatO(N1/D)depth suffices or thatO(log3N)depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero withN. We find that the requisite depth scales likeO(logN)only for dimensionsD≥2and that random circuits requireO(N)depth forD=1. Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth inD≥2spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits inD=2dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D≥1 spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth O(logN) random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any D. Previous results on random circuits have only shown that O(N^{1/D}) depth suffices or that O(log^{3}N) depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with N. We find that the requisite depth scales like O(logN) only for dimensions D≥2 and that random circuits require O(sqrt[N]) depth for D=1. Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth in D≥2 spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits in D=2 dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications.
ArticleNumber 031066
Author Krastanov, Stefan
Huse, David A.
Flammia, Steven T.
Gullans, Michael J.
Jiang, Liang
Author_xml – sequence: 1
  givenname: Michael J.
  orcidid: 0000-0003-3974-2987
  surname: Gullans
  fullname: Gullans, Michael J.
– sequence: 2
  givenname: Stefan
  surname: Krastanov
  fullname: Krastanov, Stefan
– sequence: 3
  givenname: David A.
  orcidid: 0000-0003-1008-5178
  surname: Huse
  fullname: Huse, David A.
– sequence: 4
  givenname: Liang
  orcidid: 0000-0002-0000-9342
  surname: Jiang
  fullname: Jiang, Liang
– sequence: 5
  givenname: Steven T.
  surname: Flammia
  fullname: Flammia, Steven T.
BackLink https://www.osti.gov/biblio/1822498$$D View this record in Osti.gov
BookMark eNp9UU1v1DAQtVCRKEv_AKcVnFM8duwkR7RQqLRSoQKJmzXxR9er1A6O02X_PS6hiA-JuXjGnvfe-M1TchJisIQ8B3oOQPmrD7vjdG3vvpTqnHKgUj4ipwwkrTin7clv-RNyNk17WkJSqJvmlFQfZwx5vl1vovHhZn3webfexkP1xo4lu8ZgYnn0Sc8-T8_IY4fDZM9-nivy-eLtp837anv17nLzelvpGliuhOYOgJnedi0X0nQghBE9NwwbahB5z5peatq6vrZdzzUXogUAYx21EiVfkcuF10TcqzH5W0xHFdGrHxcx3ShM2evBKrTIhHBGIHO1ANZJCwIb7JyroWtY4eIL1xxGPB5wGH4RAlX3BqqxGJjs3bdSqcXAgnqxoOKUvZq0z1bvdAzB6qygZawuX1uRl0vTmOLX2U5Z7eOcQnFGMdHIuoGuvR-ALV06xanouH_0Hxb4h377F6iMgNnHkBP64X_Q74QqoV8
CitedBy_id crossref_primary_10_1103_PhysRevLett_132_140401
crossref_primary_10_1103_PhysRevB_109_214308
crossref_primary_10_1103_PRXQuantum_5_010347
crossref_primary_10_1103_PhysRevResearch_6_023055
crossref_primary_10_1103_PRXQuantum_4_030313
crossref_primary_10_1007_s00220_024_04958_z
crossref_primary_10_1103_PhysRevLett_131_020401
crossref_primary_10_1103_PhysRevResearch_5_L042043
crossref_primary_10_1103_PhysRevA_106_022432
crossref_primary_10_1103_PhysRevB_110_035113
crossref_primary_10_1103_PhysRevB_107_214201
crossref_primary_10_1103_PhysRevB_108_214302
crossref_primary_10_1103_PhysRevB_104_155111
crossref_primary_10_1103_PhysRevLett_133_200402
crossref_primary_10_1103_PRXQuantum_5_010313
crossref_primary_10_1103_PhysRevResearch_7_013040
crossref_primary_10_1109_ACCESS_2023_3327214
crossref_primary_10_1103_PRXQuantum_4_010331
crossref_primary_10_1103_PRXQuantum_5_030327
crossref_primary_10_1103_PhysRevB_104_L180301
crossref_primary_10_22331_q_2023_04_20_985
crossref_primary_10_1103_PhysRevResearch_5_023027
crossref_primary_10_1103_PhysRevB_105_144202
crossref_primary_10_1016_j_scib_2021_10_017
crossref_primary_10_1103_PhysRevB_108_165126
crossref_primary_10_1103_PhysRevLett_129_120604
crossref_primary_10_22331_q_2022_05_09_707
crossref_primary_10_1103_PhysRevLett_129_200602
crossref_primary_10_1103_PhysRevLett_134_120401
crossref_primary_10_1103_PhysRevA_109_042414
crossref_primary_10_1103_PhysRevB_105_104306
crossref_primary_10_1103_PRXQuantum_3_020314
crossref_primary_10_1103_PhysRevLett_127_235701
crossref_primary_10_1103_PhysRevResearch_6_013137
Cites_doi 10.1103/PhysRevLett.78.3217
10.26421/QIC13.11-12-1
10.1103/PhysRevB.100.134306
10.1103/PhysRevLett.125.070606
10.1103/PhysRevLett.104.050503
10.26421/QIC14.13-14-9
10.1103/PhysRevX.8.031058
10.26421/QIC7.4-2
10.1109/FOCS.2015.55
10.1038/nature07127
10.1007/JHEP04(2013)022
10.1088/1367-2630/16/4/045014
10.1103/PhysRevLett.124.130501
10.1103/PhysRevA.54.2614
10.1103/PhysRevB.102.054302
10.1103/PhysRevLett.117.060505
10.1103/PhysRevResearch.3.023200
10.1103/PhysRevResearch.2.043072
10.1103/PhysRevB.99.174205
10.1038/s41467-021-22274-1
10.1103/PhysRevB.102.094204
10.1103/PhysRevX.9.041031
10.1126/science.aao4309
10.1103/PhysRevX.7.021029
10.1109/TIT.2013.2292061
10.1007/JHEP02(2016)004
10.1080/00018732.2016.1198134
10.1103/PhysRevA.54.2629
10.1038/s41567-020-01112-z
10.1103/PhysRevA.60.1888
10.1103/PhysRevB.102.064202
10.1103/PhysRevX.11.011030
10.1038/npjqi.2015.5
10.1016/S0375-9601(02)01272-0
10.1038/ncomms7979
10.1088/1126-6708/2007/09/120
10.1103/PhysRevB.101.060301
10.1103/PhysRevA.98.052301
10.1126/science.1243289
10.1103/PhysRevX.9.041053
10.1103/PhysRevA.89.022326
10.1103/PhysRevA.102.022403
10.1017/9781316809976
10.1038/s41567-018-0318-2
10.1142/S1230161208000043
10.1103/PhysRevB.99.224307
10.1016/j.laa.2011.08.049
10.1145/3408039
10.1103/PhysRevLett.98.160502
10.1038/nature25769
10.1103/PhysRevA.55.1613
10.1109/TIT.1962.1057683
10.21468/SciPostPhys.7.2.024
10.1109/ISIT.2013.6620245
10.1103/PhysRevA.89.022317
10.1103/PhysRevLett.126.170602
10.1103/PhysRevA.57.830
10.1103/PhysRevA.98.062302
10.1103/PhysRevX.7.031016
10.1103/PhysRevX.8.041019
10.1007/JHEP06(2015)149
10.1126/sciadv.aay5901
10.1103/PhysRevA.87.020304
10.1038/ncomms11419
10.1103/PhysRevX.8.031057
10.1103/PhysRevLett.97.180501
10.1038/s41567-020-0992-8
10.1103/PhysRevA.86.032324
10.1103/PhysRevB.101.104301
10.1007/s00220-009-0873-6
10.1103/PhysRevA.73.012340
10.1103/PhysRevB.98.035118
10.1007/s00220-017-2971-1
10.1103/PhysRevX.8.021014
10.1007/s00220-016-2706-8
10.1007/BF01009436
10.1038/nature18949
10.1103/PhysRevX.8.021013
10.1103/PhysRevA.71.062313
10.1103/PhysRevResearch.2.033042
10.1103/PhysRevX.10.041020
10.1038/nature18648
10.1103/PRXQuantum.2.010352
10.1038/s41586-019-1197-0
10.1103/PhysRevB.103.104306
10.1103/PhysRevB.101.235104
10.1103/PhysRevResearch.2.013022
10.1103/PhysRevLett.71.666
10.1103/PhysRevB.98.205136
10.1103/PhysRevLett.109.160503
10.1103/PhysRevLett.98.150404
10.1103/PhysRevLett.123.170503
10.4171/AIHPD/105
10.1103/PhysRevLett.98.030501
10.1038/s41567-018-0124-x
10.1038/nature03350
10.1007/s00220-015-2470-1
10.1103/PhysRevLett.104.050504
10.1007/s00220-005-1317-6
10.1070/RM1997v052n06ABEH002155
10.1088/1367-2630/13/4/043005
10.1103/PhysRevB.103.174309
10.1103/PhysRevA.43.2046
10.1103/PhysRevLett.125.030505
10.1103/PhysRevA.78.052331
10.1109/TIT.1973.1054971
10.26421/QIC16.9-10-1
10.1103/PhysRevB.101.104302
10.1103/PhysRevLett.111.120501
10.1103/PhysRevA.100.022332
10.22331/q-2021-01-17-382
10.1038/s41586-019-1666-5
10.1103/PhysRevLett.35.1399
10.1103/PhysRevA.102.033316
10.1080/09500340008244046
10.1146/annurev-conmatphys-031214-014726
10.1103/PhysRevB.100.064204
10.1103/PhysRevB.102.035119
10.1103/PhysRevX.9.031009
10.1002/j.1538-7305.1948.tb01338.x
10.1126/sciadv.aay4929
10.1088/1367-2630/14/12/123011
10.1103/PhysRevA.71.022316
10.1103/PhysRevLett.120.050505
10.1063/1.1499754
10.1103/PhysRevA.70.052328
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Yale Univ., New Haven, CT (United States)
CorporateAuthor_xml – name: Yale Univ., New Haven, CT (United States)
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
OTOTI
ADTOC
UNPAY
DOA
DOI 10.1103/PhysRevX.11.031066
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2160-3308
ExternalDocumentID oai_doaj_org_article_aea255fd5a2f451296e15a7a9ff41972
10.1103/physrevx.11.031066
1822498
10_1103_PhysRevX_11_031066
GroupedDBID 3MX
5VS
88I
AAFWJ
AAYXX
ABJCF
ABSSX
ABUWG
ADBBV
AENEX
AFGMR
AFKRA
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
M2P
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
ROL
S7W
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ABCKA
ADETJ
OTOTI
ADTOC
AECSF
UNPAY
ID FETCH-LOGICAL-c412t-5c3f112dbe98356d9155d5b3d2a70daa3b27b6c08fb4e9b3c3558111def0e6a63
IEDL.DBID DOA
ISSN 2160-3308
IngestDate Fri Oct 03 12:37:11 EDT 2025
Sun Oct 26 03:46:03 EDT 2025
Mon Apr 01 04:53:56 EDT 2024
Fri Jul 25 11:52:26 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Wed Oct 01 02:17:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-5c3f112dbe98356d9155d5b3d2a70daa3b27b6c08fb4e9b3c3558111def0e6a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Packard Foundation
USDOE Office of Science (SC)
National Science Foundation (NSF)
SC0019406; W911NF-18-1-0020; W911NF-18-1-0212; W911NF-16-1-0349; FA9550-19-1-0399; EFMA-1640959; 2013-39273; OMA-1936118; EEC-1941583
US Army Research Office (ARO)
US Air Force Office of Scientific Research (AFOSR)
ORCID 0000-0002-0000-9342
0000-0003-3974-2987
0000-0003-1008-5178
0000000200009342
0000000339742987
0000000310085178
OpenAccessLink https://doaj.org/article/aea255fd5a2f451296e15a7a9ff41972
PQID 2576471982
PQPubID 5161131
ParticipantIDs doaj_primary_oai_doaj_org_article_aea255fd5a2f451296e15a7a9ff41972
unpaywall_primary_10_1103_physrevx_11_031066
osti_scitechconnect_1822498
proquest_journals_2576471982
crossref_primary_10_1103_PhysRevX_11_031066
crossref_citationtrail_10_1103_PhysRevX_11_031066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace College Park
PublicationPlace_xml – name: College Park
– name: United States
PublicationTitle Physical review. X
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevX.11.031066Cc54R1
PhysRevX.11.031066Cc31R1
PhysRevX.11.031066Cc73R1
PhysRevX.11.031066Cc50R1
PhysRevX.11.031066Cc16R1
PhysRevX.11.031066Cc92R1
PhysRevX.11.031066Cc12R1
PhysRevX.11.031066Cc58R1
PhysRevX.11.031066Cc96R1
PhysRevX.11.031066Cc35R1
PhysRevX.11.031066Cc77R1
PhysRevX.11.031066Cc136R1
PhysRevX.11.031066Cc117R1
PhysRevX.11.031066Cc132R1
PhysRevX.11.031066Cc89R1
PhysRevX.11.031066Cc6R1
PhysRevX.11.031066Cc20R1
PhysRevX.11.031066Cc62R1
PhysRevX.11.031066Cc2R1
PhysRevX.11.031066Cc81R1
PhysRevX.11.031066Cc28R1
PhysRevX.11.031066Cc47R1
PhysRevX.11.031066Cc85R1
PhysRevX.11.031066Cc24R1
PhysRevX.11.031066Cc66R1
PhysRevX.11.031066Cc125R1
PhysRevX.11.031066Cc102R1
PhysRevX.11.031066Cc106R1
PhysRevX.11.031066Cc144R1
PhysRevX.11.031066Cc121R1
PhysRevX.11.031066Cc30R1
PhysRevX.11.031066Cc53R1
PhysRevX.11.031066Cc76R1
PhysRevX.11.031066Cc99R1
PhysRevX.11.031066Cc72R1
PhysRevX.11.031066Cc91R1
PhysRevX.11.031066Cc15R1
PhysRevX.11.031066Cc34R1
PhysRevX.11.031066Cc57R1
PhysRevX.11.031066Cc95R1
PhysRevX.11.031066Cc11R1
PhysRevX.11.031066Cc118R1
PhysRevX.11.031066Cc19R1
PhysRevX.11.031066Cc110R1
PhysRevX.11.031066Cc133R1
PhysRevX.11.031066Cc65R1
PhysRevX.11.031066Cc88R1
PhysRevX.11.031066Cc9R1
PhysRevX.11.031066Cc5R1
PhysRevX.11.031066Cc27R1
PhysRevX.11.031066Cc80R1
PhysRevX.11.031066Cc1R1
PhysRevX.11.031066Cc23R1
PhysRevX.11.031066Cc46R1
PhysRevX.11.031066Cc69R1
A. Leverrier (PhysRevX.11.031066Cc61R1) 2015
PhysRevX.11.031066Cc107R1
PhysRevX.11.031066Cc145R1
M. A. Nielsen (PhysRevX.11.031066Cc129R1) 2011
PhysRevX.11.031066Cc122R1
PhysRevX.11.031066Cc141R1
PhysRevX.11.031066Cc75R1
PhysRevX.11.031066Cc52R1
PhysRevX.11.031066Cc71R1
PhysRevX.11.031066Cc37R1
PhysRevX.11.031066Cc18R1
PhysRevX.11.031066Cc94R1
PhysRevX.11.031066Cc33R1
PhysRevX.11.031066Cc79R1
PhysRevX.11.031066Cc14R1
PhysRevX.11.031066Cc56R1
PhysRevX.11.031066Cc98R1
PhysRevX.11.031066Cc115R1
PhysRevX.11.031066Cc119R1
PhysRevX.11.031066Cc111R1
PhysRevX.11.031066Cc130R1
PhysRevX.11.031066Cc8R1
PhysRevX.11.031066Cc41R1
PhysRevX.11.031066Cc4R1
PhysRevX.11.031066Cc60R1
PhysRevX.11.031066Cc49R1
PhysRevX.11.031066Cc83R1
PhysRevX.11.031066Cc22R1
PhysRevX.11.031066Cc68R1
PhysRevX.11.031066Cc45R1
PhysRevX.11.031066Cc87R1
PhysRevX.11.031066Cc104R1
PhysRevX.11.031066Cc123R1
PhysRevX.11.031066Cc108R1
PhysRevX.11.031066Cc90R1
PhysRevX.11.031066Cc127R1
PhysRevX.11.031066Cc100R1
PhysRevX.11.031066Cc32R1
PhysRevX.11.031066Cc74R1
PhysRevX.11.031066Cc70R1
PhysRevX.11.031066Cc59R1
PhysRevX.11.031066Cc93R1
PhysRevX.11.031066Cc17R1
PhysRevX.11.031066Cc36R1
PhysRevX.11.031066Cc55R1
PhysRevX.11.031066Cc78R1
PhysRevX.11.031066Cc97R1
PhysRevX.11.031066Cc13R1
PhysRevX.11.031066Cc112R1
PhysRevX.11.031066Cc135R1
PhysRevX.11.031066Cc116R1
PhysRevX.11.031066Cc139R1
M. M. Wilde (PhysRevX.11.031066Cc137R1) 2017
PhysRevX.11.031066Cc131R1
PhysRevX.11.031066Cc21R1
PhysRevX.11.031066Cc40R1
PhysRevX.11.031066Cc63R1
PhysRevX.11.031066Cc7R1
PhysRevX.11.031066Cc3R1
PhysRevX.11.031066Cc25R2
PhysRevX.11.031066Cc29R1
PhysRevX.11.031066Cc48R1
PhysRevX.11.031066Cc82R1
PhysRevX.11.031066Cc109R1
PhysRevX.11.031066Cc44R1
PhysRevX.11.031066Cc67R1
PhysRevX.11.031066Cc86R1
PhysRevX.11.031066Cc101R1
PhysRevX.11.031066Cc124R1
PhysRevX.11.031066Cc105R1
PhysRevX.11.031066Cc128R1
PhysRevX.11.031066Cc143R1
References_xml – ident: PhysRevX.11.031066Cc127R1
  doi: 10.1103/PhysRevLett.78.3217
– ident: PhysRevX.11.031066Cc81R1
  doi: 10.26421/QIC13.11-12-1
– ident: PhysRevX.11.031066Cc91R1
  doi: 10.1103/PhysRevB.100.134306
– ident: PhysRevX.11.031066Cc99R1
  doi: 10.1103/PhysRevLett.125.070606
– ident: PhysRevX.11.031066Cc59R1
  doi: 10.1103/PhysRevLett.104.050503
– ident: PhysRevX.11.031066Cc25R2
  doi: 10.26421/QIC14.13-14-9
– ident: PhysRevX.11.031066Cc78R1
  doi: 10.1103/PhysRevX.8.031058
– ident: PhysRevX.11.031066Cc13R1
  doi: 10.26421/QIC7.4-2
– volume-title: Quantum Expander Codes
  year: 2015
  ident: PhysRevX.11.031066Cc61R1
  doi: 10.1109/FOCS.2015.55
– ident: PhysRevX.11.031066Cc67R1
  doi: 10.1038/nature07127
– ident: PhysRevX.11.031066Cc71R1
  doi: 10.1007/JHEP04(2013)022
– ident: PhysRevX.11.031066Cc16R1
  doi: 10.1088/1367-2630/16/4/045014
– ident: PhysRevX.11.031066Cc29R1
  doi: 10.1103/PhysRevLett.124.130501
– ident: PhysRevX.11.031066Cc130R1
  doi: 10.1103/PhysRevA.54.2614
– ident: PhysRevX.11.031066Cc104R1
  doi: 10.1103/PhysRevB.102.054302
– ident: PhysRevX.11.031066Cc2R1
  doi: 10.1103/PhysRevLett.117.060505
– ident: PhysRevX.11.031066Cc106R1
  doi: 10.1103/PhysRevResearch.3.023200
– ident: PhysRevX.11.031066Cc109R1
  doi: 10.1103/PhysRevResearch.2.043072
– ident: PhysRevX.11.031066Cc80R1
  doi: 10.1103/PhysRevB.99.174205
– ident: PhysRevX.11.031066Cc30R1
  doi: 10.1038/s41467-021-22274-1
– ident: PhysRevX.11.031066Cc115R1
  doi: 10.1103/PhysRevB.102.094204
– ident: PhysRevX.11.031066Cc28R1
  doi: 10.1103/PhysRevX.9.041031
– ident: PhysRevX.11.031066Cc6R1
  doi: 10.1126/science.aao4309
– ident: PhysRevX.11.031066Cc56R1
  doi: 10.1103/PhysRevX.7.021029
– ident: PhysRevX.11.031066Cc24R1
  doi: 10.1109/TIT.2013.2292061
– ident: PhysRevX.11.031066Cc72R1
  doi: 10.1007/JHEP02(2016)004
– ident: PhysRevX.11.031066Cc88R1
  doi: 10.1080/00018732.2016.1198134
– ident: PhysRevX.11.031066Cc133R1
  doi: 10.1103/PhysRevA.54.2629
– ident: PhysRevX.11.031066Cc105R1
  doi: 10.1038/s41567-020-01112-z
– ident: PhysRevX.11.031066Cc131R1
  doi: 10.1103/PhysRevA.60.1888
– ident: PhysRevX.11.031066Cc112R1
  doi: 10.1103/PhysRevB.102.064202
– ident: PhysRevX.11.031066Cc107R1
  doi: 10.1103/PhysRevX.11.011030
– ident: PhysRevX.11.031066Cc18R1
  doi: 10.1038/npjqi.2015.5
– ident: PhysRevX.11.031066Cc132R1
  doi: 10.1016/S0375-9601(02)01272-0
– ident: PhysRevX.11.031066Cc4R1
  doi: 10.1038/ncomms7979
– ident: PhysRevX.11.031066Cc70R1
  doi: 10.1088/1126-6708/2007/09/120
– ident: PhysRevX.11.031066Cc100R1
  doi: 10.1103/PhysRevB.101.060301
– ident: PhysRevX.11.031066Cc69R1
  doi: 10.1103/PhysRevA.98.052301
– ident: PhysRevX.11.031066Cc17R1
  doi: 10.1126/science.1243289
– ident: PhysRevX.11.031066Cc23R1
  doi: 10.1103/PhysRevX.9.041053
– ident: PhysRevX.11.031066Cc50R1
  doi: 10.1103/PhysRevA.89.022326
– ident: PhysRevX.11.031066Cc57R1
  doi: 10.1103/PhysRevA.102.022403
– volume-title: Quantum Information Theory
  year: 2017
  ident: PhysRevX.11.031066Cc137R1
  doi: 10.1017/9781316809976
– ident: PhysRevX.11.031066Cc83R1
  doi: 10.1038/s41567-018-0318-2
– ident: PhysRevX.11.031066Cc121R1
  doi: 10.1142/S1230161208000043
– ident: PhysRevX.11.031066Cc92R1
  doi: 10.1103/PhysRevB.99.224307
– ident: PhysRevX.11.031066Cc141R1
  doi: 10.1016/j.laa.2011.08.049
– ident: PhysRevX.11.031066Cc20R1
  doi: 10.1145/3408039
– ident: PhysRevX.11.031066Cc53R1
  doi: 10.1103/PhysRevLett.98.160502
– ident: PhysRevX.11.031066Cc7R1
  doi: 10.1038/nature25769
– ident: PhysRevX.11.031066Cc135R1
  doi: 10.1103/PhysRevA.55.1613
– ident: PhysRevX.11.031066Cc32R1
  doi: 10.1109/TIT.1962.1057683
– ident: PhysRevX.11.031066Cc95R1
  doi: 10.21468/SciPostPhys.7.2.024
– ident: PhysRevX.11.031066Cc35R1
  doi: 10.1109/ISIT.2013.6620245
– ident: PhysRevX.11.031066Cc65R1
  doi: 10.1103/PhysRevA.89.022317
– ident: PhysRevX.11.031066Cc108R1
  doi: 10.1103/PhysRevLett.126.170602
– ident: PhysRevX.11.031066Cc124R1
  doi: 10.1103/PhysRevA.57.830
– ident: PhysRevX.11.031066Cc62R1
  doi: 10.1103/PhysRevA.98.062302
– ident: PhysRevX.11.031066Cc73R1
  doi: 10.1103/PhysRevX.7.031016
– ident: PhysRevX.11.031066Cc79R1
  doi: 10.1103/PhysRevX.8.041019
– ident: PhysRevX.11.031066Cc68R1
  doi: 10.1007/JHEP06(2015)149
– ident: PhysRevX.11.031066Cc22R1
  doi: 10.1126/sciadv.aay5901
– ident: PhysRevX.11.031066Cc63R1
  doi: 10.1103/PhysRevA.87.020304
– ident: PhysRevX.11.031066Cc123R1
  doi: 10.1038/ncomms11419
– ident: PhysRevX.11.031066Cc77R1
  doi: 10.1103/PhysRevX.8.031057
– ident: PhysRevX.11.031066Cc52R1
  doi: 10.1103/PhysRevLett.97.180501
– ident: PhysRevX.11.031066Cc19R1
  doi: 10.1038/s41567-020-0992-8
– ident: PhysRevX.11.031066Cc14R1
  doi: 10.1103/PhysRevA.86.032324
– ident: PhysRevX.11.031066Cc97R1
  doi: 10.1103/PhysRevB.101.104301
– ident: PhysRevX.11.031066Cc128R1
  doi: 10.1007/s00220-009-0873-6
– ident: PhysRevX.11.031066Cc60R1
  doi: 10.1103/PhysRevA.73.012340
– ident: PhysRevX.11.031066Cc76R1
  doi: 10.1103/PhysRevB.98.035118
– ident: PhysRevX.11.031066Cc122R1
  doi: 10.1007/s00220-017-2971-1
– ident: PhysRevX.11.031066Cc74R1
  doi: 10.1103/PhysRevX.8.021014
– ident: PhysRevX.11.031066Cc37R1
  doi: 10.1007/s00220-016-2706-8
– ident: PhysRevX.11.031066Cc143R1
  doi: 10.1007/BF01009436
– ident: PhysRevX.11.031066Cc5R1
  doi: 10.1038/nature18949
– ident: PhysRevX.11.031066Cc75R1
  doi: 10.1103/PhysRevX.8.021013
– ident: PhysRevX.11.031066Cc144R1
  doi: 10.1103/PhysRevA.71.062313
– ident: PhysRevX.11.031066Cc40R1
  doi: 10.1103/PhysRevResearch.2.033042
– ident: PhysRevX.11.031066Cc93R1
  doi: 10.1103/PhysRevX.10.041020
– ident: PhysRevX.11.031066Cc3R1
  doi: 10.1038/nature18648
– ident: PhysRevX.11.031066Cc116R1
  doi: 10.1103/PRXQuantum.2.010352
– ident: PhysRevX.11.031066Cc8R1
  doi: 10.1038/s41586-019-1197-0
– ident: PhysRevX.11.031066Cc118R1
  doi: 10.1103/PhysRevB.103.104306
– ident: PhysRevX.11.031066Cc101R1
  doi: 10.1103/PhysRevB.101.235104
– ident: PhysRevX.11.031066Cc102R1
  doi: 10.1103/PhysRevResearch.2.013022
– ident: PhysRevX.11.031066Cc86R1
  doi: 10.1103/PhysRevLett.71.666
– ident: PhysRevX.11.031066Cc89R1
  doi: 10.1103/PhysRevB.98.205136
– ident: PhysRevX.11.031066Cc49R1
  doi: 10.1103/PhysRevLett.109.160503
– ident: PhysRevX.11.031066Cc145R1
  doi: 10.1103/PhysRevLett.98.150404
– ident: PhysRevX.11.031066Cc9R1
  doi: 10.1103/PhysRevLett.123.170503
– ident: PhysRevX.11.031066Cc47R1
  doi: 10.4171/AIHPD/105
– ident: PhysRevX.11.031066Cc125R1
  doi: 10.1103/PhysRevLett.98.030501
– ident: PhysRevX.11.031066Cc82R1
  doi: 10.1038/s41567-018-0124-x
– ident: PhysRevX.11.031066Cc11R1
  doi: 10.1038/nature03350
– ident: PhysRevX.11.031066Cc34R1
  doi: 10.1007/s00220-015-2470-1
– ident: PhysRevX.11.031066Cc48R1
  doi: 10.1103/PhysRevLett.104.050504
– volume-title: Quantum Computation and Quantum Information
  year: 2011
  ident: PhysRevX.11.031066Cc129R1
– ident: PhysRevX.11.031066Cc136R1
  doi: 10.1007/s00220-005-1317-6
– ident: PhysRevX.11.031066Cc45R1
  doi: 10.1070/RM1997v052n06ABEH002155
– ident: PhysRevX.11.031066Cc54R1
  doi: 10.1088/1367-2630/13/4/043005
– ident: PhysRevX.11.031066Cc117R1
  doi: 10.1103/PhysRevB.103.174309
– ident: PhysRevX.11.031066Cc85R1
  doi: 10.1103/PhysRevA.43.2046
– ident: PhysRevX.11.031066Cc94R1
  doi: 10.1103/PhysRevLett.125.030505
– ident: PhysRevX.11.031066Cc21R1
  doi: 10.1103/PhysRevA.78.052331
– ident: PhysRevX.11.031066Cc33R1
  doi: 10.1109/TIT.1973.1054971
– ident: PhysRevX.11.031066Cc36R1
  doi: 10.26421/QIC16.9-10-1
– ident: PhysRevX.11.031066Cc98R1
  doi: 10.1103/PhysRevB.101.104302
– ident: PhysRevX.11.031066Cc15R1
  doi: 10.1103/PhysRevLett.111.120501
– ident: PhysRevX.11.031066Cc66R1
  doi: 10.1103/PhysRevA.100.022332
– ident: PhysRevX.11.031066Cc119R1
  doi: 10.22331/q-2021-01-17-382
– ident: PhysRevX.11.031066Cc1R1
  doi: 10.1038/s41586-019-1666-5
– ident: PhysRevX.11.031066Cc41R1
  doi: 10.1103/PhysRevLett.35.1399
– ident: PhysRevX.11.031066Cc111R1
  doi: 10.1103/PhysRevA.102.033316
– ident: PhysRevX.11.031066Cc44R1
  doi: 10.1080/09500340008244046
– ident: PhysRevX.11.031066Cc87R1
  doi: 10.1146/annurev-conmatphys-031214-014726
– ident: PhysRevX.11.031066Cc96R1
  doi: 10.1103/PhysRevB.100.064204
– ident: PhysRevX.11.031066Cc110R1
  doi: 10.1103/PhysRevB.102.035119
– ident: PhysRevX.11.031066Cc90R1
  doi: 10.1103/PhysRevX.9.031009
– ident: PhysRevX.11.031066Cc31R1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: PhysRevX.11.031066Cc58R1
  doi: 10.1126/sciadv.aay4929
– ident: PhysRevX.11.031066Cc55R1
  doi: 10.1088/1367-2630/14/12/123011
– ident: PhysRevX.11.031066Cc12R1
  doi: 10.1103/PhysRevA.71.022316
– ident: PhysRevX.11.031066Cc27R1
  doi: 10.1103/PhysRevLett.120.050505
– ident: PhysRevX.11.031066Cc46R1
  doi: 10.1063/1.1499754
– ident: PhysRevX.11.031066Cc139R1
  doi: 10.1103/PhysRevA.70.052328
SSID ssj0000601477
Score 2.5618234
Snippet Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional...
SourceID doaj
unpaywall
osti
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 031066
SubjectTerms Algorithms
Channel capacity
Circuits
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Codes
Coding
Coding theory
Convergence
Critical phenomena
Data processing
Error analysis
Error correcting codes
Error correction
Error correction & detection
Fault tolerance
Operators
Phase transitions
Physics
quantum channels
quantum computation
Quantum computers
Quantum computing
Quantum entanglement
quantum error correction
Quantum phenomena
Qubits (quantum computing)
Random errors
Statistical analysis
Subsystems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrRBcUHmJ0BblwA1Cs7YTJweE-lSFYAUrKu3NGr9QpSVZdpMW_j2ebLILQuopLyeyZuyZz5PxNwCvs-C3LXcmkc7IRFhBdtCwJHesyHThOSItFD9P8ssr8XGWzXZgMuyFobTKwSZ2htrWhmLkRwSMgyEtC_Zh8TOhqlH0d3UooYF9aQX7vqMYuwe7jJixRrB7cj75Mt1EXYh9REg57J5J-RElWk7dzewdcXkGrNPRJW49VEfkHw51mHD_gNAHbbXA37c4n__ljy724FEPJOPjteYfw46rnsD9LqHTrJ5C8rUNMmt_xKc1eaeY4q3xp_o2OXOLcDbFytbh4fXStNfN6hlcXZx_O71M-tIIiRFj1iSZ4T4gJatdGSBUbonl3WaaW4YytYhcM6lzkxZeC1dqbohFPZg163zqcsz5cxhVdeVeQFxy66RDZwsthRYCi8KnKIlvknPMswjGgziU6XnDqXzFXHXrh5SrQYThSq1FGMGbzTuLNWvGna1PSMqblsR43d2ol99VP4EUOgyrH28zZF4QSsndOEOJpfeCSqdFsE86UgE4EPutoTQh06gxZcmWRQQHg-pUP0lXajukIni7Ued_HaYQ09Ld_Np2-OXdX9uHh4wyX7pMtAMYNcvWHQbo0uhX_Xj8A7SW7L8
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVoheeFcsLWgP3CBLEjtOciyFqkJQQcVKy8kav6SqSxJtkrbw65nJY0tVCamnvDySM5nxfOOMPzP2JsG4bbkzQepMGggraBw0cSBdnCU68xyAEsWvJ_J4IT4vk-UWizdTF8X5HKq6-4dfWd87dcjfUz3kqbtYzolyEyGJlPfYtkwQf0_Y9uLk28FP2kUukjio8DAbV8egIE0QrN3F1bXgjQjUEfXjoUSHugEyH7RFBb8vYbX6J94cPerXANYdTSGVmZzP20bPzZ_bJI53eJXH7OEAP2cHvb08YVuueMrud2Wgpn7Ggu8tarr9NTssKabNaJZ29qW8DD66Cs9OobAlPjxbm_asqZ-zxdGnH4fHwbChQmBEFDdBYrhHfGW1yxF4SUvc8DbR3MaQhhaA6zjV0oSZ18LlmhviXsfB0DofOgmS77JJURbuBZvl3LrUgbOZToUWArLMh5ASSyXnIJMpi0YlKzOwjdOmFyvVZR0hV6Ma8Er1apiytxuZqufa-G_rD_TtNi2JJ7u7gfpWg9spcIA5k7cJxF4QtpEuSiCF3HtBG65N2R59eYVwgzhzDRUXmUZFVFubZ1O2PxqEGly7VpShYUTPMxR-tzGSWx0e7e66wy_v1nyP7cRUP9PVs-2zSbNu3SsEQI1-PVj8X4KWAPg
  priority: 102
  providerName: Unpaywall
Title Quantum Coding with Low-Depth Random Circuits
URI https://www.proquest.com/docview/2576471982
https://www.osti.gov/biblio/1822498
http://link.aps.org/pdf/10.1103/PhysRevX.11.031066
https://doaj.org/article/aea255fd5a2f451296e15a7a9ff41972
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2160-3308
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601477
  issn: 2160-3308
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2160-3308
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601477
  issn: 2160-3308
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2160-3308
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601477
  issn: 2160-3308
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2160-3308
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601477
  issn: 2160-3308
  databaseCode: BENPR
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL4qmmLZEP3MDU8a6962NbGioEUYmIFE6r2ZdUKdhRYrfl3zNjO2kQElw42WvvSqMZ78w3q_E3jL3JMG477m0svZWxcIL8oE3j3KcqMypwAEoUv0zyi5n4NM_mO62-qCasowfuFHcMHhD1BpdBGgRFp9yPMpBQhCCoZRZ530QVO8lU54MR-ku5-Usm4cdUUDn11_P3xNmJmKalRbyLRC1hP14q3Fi_gc1HTbmEnzewWOzEnfFT9qQHjNFJJ-gzds-Xz9nDtnDTrl-w-GuDuml-RGcVRaGIzlWjz9VN_MEv8W4Kpavw5dXKNlf1-iWbjc-_nV3EfQuE2IpRWseZ5QERkTO-QKiUO2Jzd5nhLgWZOABuUmlym6hghC8Mt8SWju7L-ZD4HHL-iu2VVen3WVRw56UH75SRwggBSoUEJPFKcg55NmCjjTq07fnBqU3FQrd5QsL1RoU40p0KB-ztds2yY8f46-xT0vJ2JjFbtw_Q3rq3t_6XvQfskGykESAQy62lciBb6xFVwxZqwI42ptP9ZlxryqkwBhcKF7_bmvMPgekoaeWvb-8EPvgfAh-yxynVwbR1aUdsr141_jUCmdoM2X01_jhkD07PJ5fTYfsF42g2uTz5_gtkO_L8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUEUvqE_VQFsf2lPr4uyuvfYBVTwVSojaCKTcln25QkrtkNgE_lx_GzuOnbSqxI2T36vVzO7sN-PZbwA-Rm7dNtTqgFvNA2YY2kFNgtiSJFJJRqVER_GsH3cv2PdhNFyBP-1eGEyrbG1ibahNoTFGvoPA2BnSNCHfxtcBVo3Cv6ttCQ3ZlFYwuzXFWLOx49TezZwLN909OXT6_kTI8dH5QTdoqgwEmnVIGUSaZg50GGVTh0Zig4TpJlLUEMlDIyVVhKtYh0mmmE0V1UhI7iyEsVloYxlT1-4TWGOUpc75W9s_6v8YLKI8yHbCOG9364R0BxM7B_Zm-BW5Qx22qukZlytiXTjAHQo3wf8BvetVPpZ3Mzka_bX-HT-HjQa4-nvzkfYCVmz-Ep7WCaR6-gqCn5XTUfXbPyhwNfQxvuv3illwaMfubCBzU7iHVxNdXZXT13DxKEJ6A6t5kdu34KfUWG6lNYniTDEmkyQLJUd-S0plHHnQacUhdMNTjuUyRqL2V0IqWhG6KzEXoQefF9-M5ywdD769j1JevIkM2_WNYvJLNBNWSCudt5WZSJKMISqKbSeSXKZZxrBUmwdbqCPhgAqy7WpMS9Kl6GBWbpp4sN2qTjRGYSqWQ9iDLwt1_tdhDGlN7M3tssObD7f2Ada752c90Tvpn27BM4JZN3UW3DaslpPKvnOwqVTvm7Hpw-VjT4d7qq4qIg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVoheeFcsLWgP3CBLEjtOciyFqkJQQcVKy8kav6SqSxJtkrbw65nJY0tVCamnvDySM5nxfOOMPzP2JsG4bbkzQepMGggraBw0cSBdnCU68xyAEsWvJ_J4IT4vk-UWizdTF8X5HKq6-4dfWd87dcjfUz3kqbtYzolyEyGJlPfYtkwQf0_Y9uLk28FP2kUukjio8DAbV8egIE0QrN3F1bXgjQjUEfXjoUSHugEyH7RFBb8vYbX6J94cPerXANYdTSGVmZzP20bPzZ_bJI53eJXH7OEAP2cHvb08YVuueMrud2Wgpn7Ggu8tarr9NTssKabNaJZ29qW8DD66Cs9OobAlPjxbm_asqZ-zxdGnH4fHwbChQmBEFDdBYrhHfGW1yxF4SUvc8DbR3MaQhhaA6zjV0oSZ18LlmhviXsfB0DofOgmS77JJURbuBZvl3LrUgbOZToUWArLMh5ASSyXnIJMpi0YlKzOwjdOmFyvVZR0hV6Ma8Er1apiytxuZqufa-G_rD_TtNi2JJ7u7gfpWg9spcIA5k7cJxF4QtpEuSiCF3HtBG65N2R59eYVwgzhzDRUXmUZFVFubZ1O2PxqEGly7VpShYUTPMxR-tzGSWx0e7e66wy_v1nyP7cRUP9PVs-2zSbNu3SsEQI1-PVj8X4KWAPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Coding+with+Low-Depth+Random+Circuits&rft.jtitle=Physical+review.+X&rft.au=Michael+J.+Gullans&rft.au=Stefan+Krastanov&rft.au=David+A.+Huse&rft.au=Liang+Jiang&rft.date=2021-09-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=11&rft.issue=3&rft.spage=031066&rft_id=info:doi/10.1103%2FPhysRevX.11.031066&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aea255fd5a2f451296e15a7a9ff41972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon