Quantum Coding with Low-Depth Random Circuits
Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity inD≥1spatial dimensions to generate quantum error-correctin...
Saved in:
| Published in | Physical review. X Vol. 11; no. 3; p. 031066 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
College Park
American Physical Society
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2160-3308 2160-3308 |
| DOI | 10.1103/PhysRevX.11.031066 |
Cover
| Abstract | Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity inD≥1spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depthO(logN)random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for anyD. Previous results on random circuits have only shown thatO(N1/D)depth suffices or thatO(log3N)depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero withN. We find that the requisite depth scales likeO(logN)only for dimensionsD≥2and that random circuits requireO(N)depth forD=1. Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth inD≥2spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits inD=2dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications. |
|---|---|
| AbstractList | Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D≥1 spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth O ( logN ) random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any D . Previous results on random circuits have only shown that O ( N1 / D ) depth suffices or that O ( log3N ) depth suffices for all-to-all connectivity ( D → ∞ ). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with N . We find that the requisite depth scales like O ( logN ) only for dimensions D≥2 and that random circuits require O ( N ) depth for D=1 . Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth in D≥2 spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits in D=2 dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications. Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity inD≥1spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depthO(logN)random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for anyD. Previous results on random circuits have only shown thatO(N1/D)depth suffices or thatO(log3N)depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero withN. We find that the requisite depth scales likeO(logN)only for dimensionsD≥2and that random circuits requireO(N)depth forD=1. Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth inD≥2spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits inD=2dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications. Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional counterparts. Here, we use ensembles of low-depth random circuits with local connectivity in D≥1 spatial dimensions to generate quantum error-correcting codes. For random stabilizer codes and the erasure channel, we find strong evidence that a depth O(logN) random circuit is necessary and sufficient to converge (with high probability) to zero failure probability for any finite amount below the optimal erasure threshold, set by the channel capacity, for any D. Previous results on random circuits have only shown that O(N^{1/D}) depth suffices or that O(log^{3}N) depth suffices for all-to-all connectivity (D→∞). We then study the critical behavior of the erasure threshold in the so-called moderate deviation limit, where both the failure probability and the distance to the optimal threshold converge to zero with N. We find that the requisite depth scales like O(logN) only for dimensions D≥2 and that random circuits require O(sqrt[N]) depth for D=1. Finally, we introduce an “expurgation” algorithm that uses quantum measurements to remove logical operators that cause the code to fail by turning them into either additional stabilizers or into gauge operators in a subsystem code. With such targeted measurements, we can achieve sublogarithmic depth in D≥2 spatial dimensions below capacity without increasing the maximum weight of the check operators. We find that for any rate beneath the capacity, high-performing codes with thousands of logical qubits are achievable with depth 4–8 expurgated random circuits in D=2 dimensions. These results indicate that finite-rate quantum codes are practically relevant for near-term devices and may significantly reduce the resource requirements to achieve fault tolerance for near-term applications. |
| ArticleNumber | 031066 |
| Author | Krastanov, Stefan Huse, David A. Flammia, Steven T. Gullans, Michael J. Jiang, Liang |
| Author_xml | – sequence: 1 givenname: Michael J. orcidid: 0000-0003-3974-2987 surname: Gullans fullname: Gullans, Michael J. – sequence: 2 givenname: Stefan surname: Krastanov fullname: Krastanov, Stefan – sequence: 3 givenname: David A. orcidid: 0000-0003-1008-5178 surname: Huse fullname: Huse, David A. – sequence: 4 givenname: Liang orcidid: 0000-0002-0000-9342 surname: Jiang fullname: Jiang, Liang – sequence: 5 givenname: Steven T. surname: Flammia fullname: Flammia, Steven T. |
| BackLink | https://www.osti.gov/biblio/1822498$$D View this record in Osti.gov |
| BookMark | eNp9UU1v1DAQtVCRKEv_AKcVnFM8duwkR7RQqLRSoQKJmzXxR9er1A6O02X_PS6hiA-JuXjGnvfe-M1TchJisIQ8B3oOQPmrD7vjdG3vvpTqnHKgUj4ipwwkrTin7clv-RNyNk17WkJSqJvmlFQfZwx5vl1vovHhZn3webfexkP1xo4lu8ZgYnn0Sc8-T8_IY4fDZM9-nivy-eLtp837anv17nLzelvpGliuhOYOgJnedi0X0nQghBE9NwwbahB5z5peatq6vrZdzzUXogUAYx21EiVfkcuF10TcqzH5W0xHFdGrHxcx3ShM2evBKrTIhHBGIHO1ANZJCwIb7JyroWtY4eIL1xxGPB5wGH4RAlX3BqqxGJjs3bdSqcXAgnqxoOKUvZq0z1bvdAzB6qygZawuX1uRl0vTmOLX2U5Z7eOcQnFGMdHIuoGuvR-ALV06xanouH_0Hxb4h377F6iMgNnHkBP64X_Q74QqoV8 |
| CitedBy_id | crossref_primary_10_1103_PhysRevLett_132_140401 crossref_primary_10_1103_PhysRevB_109_214308 crossref_primary_10_1103_PRXQuantum_5_010347 crossref_primary_10_1103_PhysRevResearch_6_023055 crossref_primary_10_1103_PRXQuantum_4_030313 crossref_primary_10_1007_s00220_024_04958_z crossref_primary_10_1103_PhysRevLett_131_020401 crossref_primary_10_1103_PhysRevResearch_5_L042043 crossref_primary_10_1103_PhysRevA_106_022432 crossref_primary_10_1103_PhysRevB_110_035113 crossref_primary_10_1103_PhysRevB_107_214201 crossref_primary_10_1103_PhysRevB_108_214302 crossref_primary_10_1103_PhysRevB_104_155111 crossref_primary_10_1103_PhysRevLett_133_200402 crossref_primary_10_1103_PRXQuantum_5_010313 crossref_primary_10_1103_PhysRevResearch_7_013040 crossref_primary_10_1109_ACCESS_2023_3327214 crossref_primary_10_1103_PRXQuantum_4_010331 crossref_primary_10_1103_PRXQuantum_5_030327 crossref_primary_10_1103_PhysRevB_104_L180301 crossref_primary_10_22331_q_2023_04_20_985 crossref_primary_10_1103_PhysRevResearch_5_023027 crossref_primary_10_1103_PhysRevB_105_144202 crossref_primary_10_1016_j_scib_2021_10_017 crossref_primary_10_1103_PhysRevB_108_165126 crossref_primary_10_1103_PhysRevLett_129_120604 crossref_primary_10_22331_q_2022_05_09_707 crossref_primary_10_1103_PhysRevLett_129_200602 crossref_primary_10_1103_PhysRevLett_134_120401 crossref_primary_10_1103_PhysRevA_109_042414 crossref_primary_10_1103_PhysRevB_105_104306 crossref_primary_10_1103_PRXQuantum_3_020314 crossref_primary_10_1103_PhysRevLett_127_235701 crossref_primary_10_1103_PhysRevResearch_6_013137 |
| Cites_doi | 10.1103/PhysRevLett.78.3217 10.26421/QIC13.11-12-1 10.1103/PhysRevB.100.134306 10.1103/PhysRevLett.125.070606 10.1103/PhysRevLett.104.050503 10.26421/QIC14.13-14-9 10.1103/PhysRevX.8.031058 10.26421/QIC7.4-2 10.1109/FOCS.2015.55 10.1038/nature07127 10.1007/JHEP04(2013)022 10.1088/1367-2630/16/4/045014 10.1103/PhysRevLett.124.130501 10.1103/PhysRevA.54.2614 10.1103/PhysRevB.102.054302 10.1103/PhysRevLett.117.060505 10.1103/PhysRevResearch.3.023200 10.1103/PhysRevResearch.2.043072 10.1103/PhysRevB.99.174205 10.1038/s41467-021-22274-1 10.1103/PhysRevB.102.094204 10.1103/PhysRevX.9.041031 10.1126/science.aao4309 10.1103/PhysRevX.7.021029 10.1109/TIT.2013.2292061 10.1007/JHEP02(2016)004 10.1080/00018732.2016.1198134 10.1103/PhysRevA.54.2629 10.1038/s41567-020-01112-z 10.1103/PhysRevA.60.1888 10.1103/PhysRevB.102.064202 10.1103/PhysRevX.11.011030 10.1038/npjqi.2015.5 10.1016/S0375-9601(02)01272-0 10.1038/ncomms7979 10.1088/1126-6708/2007/09/120 10.1103/PhysRevB.101.060301 10.1103/PhysRevA.98.052301 10.1126/science.1243289 10.1103/PhysRevX.9.041053 10.1103/PhysRevA.89.022326 10.1103/PhysRevA.102.022403 10.1017/9781316809976 10.1038/s41567-018-0318-2 10.1142/S1230161208000043 10.1103/PhysRevB.99.224307 10.1016/j.laa.2011.08.049 10.1145/3408039 10.1103/PhysRevLett.98.160502 10.1038/nature25769 10.1103/PhysRevA.55.1613 10.1109/TIT.1962.1057683 10.21468/SciPostPhys.7.2.024 10.1109/ISIT.2013.6620245 10.1103/PhysRevA.89.022317 10.1103/PhysRevLett.126.170602 10.1103/PhysRevA.57.830 10.1103/PhysRevA.98.062302 10.1103/PhysRevX.7.031016 10.1103/PhysRevX.8.041019 10.1007/JHEP06(2015)149 10.1126/sciadv.aay5901 10.1103/PhysRevA.87.020304 10.1038/ncomms11419 10.1103/PhysRevX.8.031057 10.1103/PhysRevLett.97.180501 10.1038/s41567-020-0992-8 10.1103/PhysRevA.86.032324 10.1103/PhysRevB.101.104301 10.1007/s00220-009-0873-6 10.1103/PhysRevA.73.012340 10.1103/PhysRevB.98.035118 10.1007/s00220-017-2971-1 10.1103/PhysRevX.8.021014 10.1007/s00220-016-2706-8 10.1007/BF01009436 10.1038/nature18949 10.1103/PhysRevX.8.021013 10.1103/PhysRevA.71.062313 10.1103/PhysRevResearch.2.033042 10.1103/PhysRevX.10.041020 10.1038/nature18648 10.1103/PRXQuantum.2.010352 10.1038/s41586-019-1197-0 10.1103/PhysRevB.103.104306 10.1103/PhysRevB.101.235104 10.1103/PhysRevResearch.2.013022 10.1103/PhysRevLett.71.666 10.1103/PhysRevB.98.205136 10.1103/PhysRevLett.109.160503 10.1103/PhysRevLett.98.150404 10.1103/PhysRevLett.123.170503 10.4171/AIHPD/105 10.1103/PhysRevLett.98.030501 10.1038/s41567-018-0124-x 10.1038/nature03350 10.1007/s00220-015-2470-1 10.1103/PhysRevLett.104.050504 10.1007/s00220-005-1317-6 10.1070/RM1997v052n06ABEH002155 10.1088/1367-2630/13/4/043005 10.1103/PhysRevB.103.174309 10.1103/PhysRevA.43.2046 10.1103/PhysRevLett.125.030505 10.1103/PhysRevA.78.052331 10.1109/TIT.1973.1054971 10.26421/QIC16.9-10-1 10.1103/PhysRevB.101.104302 10.1103/PhysRevLett.111.120501 10.1103/PhysRevA.100.022332 10.22331/q-2021-01-17-382 10.1038/s41586-019-1666-5 10.1103/PhysRevLett.35.1399 10.1103/PhysRevA.102.033316 10.1080/09500340008244046 10.1146/annurev-conmatphys-031214-014726 10.1103/PhysRevB.100.064204 10.1103/PhysRevB.102.035119 10.1103/PhysRevX.9.031009 10.1002/j.1538-7305.1948.tb01338.x 10.1126/sciadv.aay4929 10.1088/1367-2630/14/12/123011 10.1103/PhysRevA.71.022316 10.1103/PhysRevLett.120.050505 10.1063/1.1499754 10.1103/PhysRevA.70.052328 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Yale Univ., New Haven, CT (United States) |
| CorporateAuthor_xml | – name: Yale Univ., New Haven, CT (United States) |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U OTOTI ADTOC UNPAY DOA |
| DOI | 10.1103/PhysRevX.11.031066 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2160-3308 |
| ExternalDocumentID | oai_doaj_org_article_aea255fd5a2f451296e15a7a9ff41972 10.1103/physrevx.11.031066 1822498 10_1103_PhysRevX_11_031066 |
| GroupedDBID | 3MX 5VS 88I AAFWJ AAYXX ABJCF ABSSX ABUWG ADBBV AENEX AFGMR AFKRA AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS AUAIK AZQEC BCNDV BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD FRP GNUQQ GROUPED_DOAJ HCIFZ KQ8 M2P M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO ROL S7W 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQQKQ PQUKI PRINS Q9U ABCKA ADETJ OTOTI ADTOC AECSF UNPAY |
| ID | FETCH-LOGICAL-c412t-5c3f112dbe98356d9155d5b3d2a70daa3b27b6c08fb4e9b3c3558111def0e6a63 |
| IEDL.DBID | DOA |
| ISSN | 2160-3308 |
| IngestDate | Fri Oct 03 12:37:11 EDT 2025 Sun Oct 26 03:46:03 EDT 2025 Mon Apr 01 04:53:56 EDT 2024 Fri Jul 25 11:52:26 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Wed Oct 01 02:17:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c412t-5c3f112dbe98356d9155d5b3d2a70daa3b27b6c08fb4e9b3c3558111def0e6a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Packard Foundation USDOE Office of Science (SC) National Science Foundation (NSF) SC0019406; W911NF-18-1-0020; W911NF-18-1-0212; W911NF-16-1-0349; FA9550-19-1-0399; EFMA-1640959; 2013-39273; OMA-1936118; EEC-1941583 US Army Research Office (ARO) US Air Force Office of Scientific Research (AFOSR) |
| ORCID | 0000-0002-0000-9342 0000-0003-3974-2987 0000-0003-1008-5178 0000000200009342 0000000339742987 0000000310085178 |
| OpenAccessLink | https://doaj.org/article/aea255fd5a2f451296e15a7a9ff41972 |
| PQID | 2576471982 |
| PQPubID | 5161131 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aea255fd5a2f451296e15a7a9ff41972 unpaywall_primary_10_1103_physrevx_11_031066 osti_scitechconnect_1822498 proquest_journals_2576471982 crossref_primary_10_1103_PhysRevX_11_031066 crossref_citationtrail_10_1103_PhysRevX_11_031066 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | College Park |
| PublicationPlace_xml | – name: College Park – name: United States |
| PublicationTitle | Physical review. X |
| PublicationYear | 2021 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevX.11.031066Cc54R1 PhysRevX.11.031066Cc31R1 PhysRevX.11.031066Cc73R1 PhysRevX.11.031066Cc50R1 PhysRevX.11.031066Cc16R1 PhysRevX.11.031066Cc92R1 PhysRevX.11.031066Cc12R1 PhysRevX.11.031066Cc58R1 PhysRevX.11.031066Cc96R1 PhysRevX.11.031066Cc35R1 PhysRevX.11.031066Cc77R1 PhysRevX.11.031066Cc136R1 PhysRevX.11.031066Cc117R1 PhysRevX.11.031066Cc132R1 PhysRevX.11.031066Cc89R1 PhysRevX.11.031066Cc6R1 PhysRevX.11.031066Cc20R1 PhysRevX.11.031066Cc62R1 PhysRevX.11.031066Cc2R1 PhysRevX.11.031066Cc81R1 PhysRevX.11.031066Cc28R1 PhysRevX.11.031066Cc47R1 PhysRevX.11.031066Cc85R1 PhysRevX.11.031066Cc24R1 PhysRevX.11.031066Cc66R1 PhysRevX.11.031066Cc125R1 PhysRevX.11.031066Cc102R1 PhysRevX.11.031066Cc106R1 PhysRevX.11.031066Cc144R1 PhysRevX.11.031066Cc121R1 PhysRevX.11.031066Cc30R1 PhysRevX.11.031066Cc53R1 PhysRevX.11.031066Cc76R1 PhysRevX.11.031066Cc99R1 PhysRevX.11.031066Cc72R1 PhysRevX.11.031066Cc91R1 PhysRevX.11.031066Cc15R1 PhysRevX.11.031066Cc34R1 PhysRevX.11.031066Cc57R1 PhysRevX.11.031066Cc95R1 PhysRevX.11.031066Cc11R1 PhysRevX.11.031066Cc118R1 PhysRevX.11.031066Cc19R1 PhysRevX.11.031066Cc110R1 PhysRevX.11.031066Cc133R1 PhysRevX.11.031066Cc65R1 PhysRevX.11.031066Cc88R1 PhysRevX.11.031066Cc9R1 PhysRevX.11.031066Cc5R1 PhysRevX.11.031066Cc27R1 PhysRevX.11.031066Cc80R1 PhysRevX.11.031066Cc1R1 PhysRevX.11.031066Cc23R1 PhysRevX.11.031066Cc46R1 PhysRevX.11.031066Cc69R1 A. Leverrier (PhysRevX.11.031066Cc61R1) 2015 PhysRevX.11.031066Cc107R1 PhysRevX.11.031066Cc145R1 M. A. Nielsen (PhysRevX.11.031066Cc129R1) 2011 PhysRevX.11.031066Cc122R1 PhysRevX.11.031066Cc141R1 PhysRevX.11.031066Cc75R1 PhysRevX.11.031066Cc52R1 PhysRevX.11.031066Cc71R1 PhysRevX.11.031066Cc37R1 PhysRevX.11.031066Cc18R1 PhysRevX.11.031066Cc94R1 PhysRevX.11.031066Cc33R1 PhysRevX.11.031066Cc79R1 PhysRevX.11.031066Cc14R1 PhysRevX.11.031066Cc56R1 PhysRevX.11.031066Cc98R1 PhysRevX.11.031066Cc115R1 PhysRevX.11.031066Cc119R1 PhysRevX.11.031066Cc111R1 PhysRevX.11.031066Cc130R1 PhysRevX.11.031066Cc8R1 PhysRevX.11.031066Cc41R1 PhysRevX.11.031066Cc4R1 PhysRevX.11.031066Cc60R1 PhysRevX.11.031066Cc49R1 PhysRevX.11.031066Cc83R1 PhysRevX.11.031066Cc22R1 PhysRevX.11.031066Cc68R1 PhysRevX.11.031066Cc45R1 PhysRevX.11.031066Cc87R1 PhysRevX.11.031066Cc104R1 PhysRevX.11.031066Cc123R1 PhysRevX.11.031066Cc108R1 PhysRevX.11.031066Cc90R1 PhysRevX.11.031066Cc127R1 PhysRevX.11.031066Cc100R1 PhysRevX.11.031066Cc32R1 PhysRevX.11.031066Cc74R1 PhysRevX.11.031066Cc70R1 PhysRevX.11.031066Cc59R1 PhysRevX.11.031066Cc93R1 PhysRevX.11.031066Cc17R1 PhysRevX.11.031066Cc36R1 PhysRevX.11.031066Cc55R1 PhysRevX.11.031066Cc78R1 PhysRevX.11.031066Cc97R1 PhysRevX.11.031066Cc13R1 PhysRevX.11.031066Cc112R1 PhysRevX.11.031066Cc135R1 PhysRevX.11.031066Cc116R1 PhysRevX.11.031066Cc139R1 M. M. Wilde (PhysRevX.11.031066Cc137R1) 2017 PhysRevX.11.031066Cc131R1 PhysRevX.11.031066Cc21R1 PhysRevX.11.031066Cc40R1 PhysRevX.11.031066Cc63R1 PhysRevX.11.031066Cc7R1 PhysRevX.11.031066Cc3R1 PhysRevX.11.031066Cc25R2 PhysRevX.11.031066Cc29R1 PhysRevX.11.031066Cc48R1 PhysRevX.11.031066Cc82R1 PhysRevX.11.031066Cc109R1 PhysRevX.11.031066Cc44R1 PhysRevX.11.031066Cc67R1 PhysRevX.11.031066Cc86R1 PhysRevX.11.031066Cc101R1 PhysRevX.11.031066Cc124R1 PhysRevX.11.031066Cc105R1 PhysRevX.11.031066Cc128R1 PhysRevX.11.031066Cc143R1 |
| References_xml | – ident: PhysRevX.11.031066Cc127R1 doi: 10.1103/PhysRevLett.78.3217 – ident: PhysRevX.11.031066Cc81R1 doi: 10.26421/QIC13.11-12-1 – ident: PhysRevX.11.031066Cc91R1 doi: 10.1103/PhysRevB.100.134306 – ident: PhysRevX.11.031066Cc99R1 doi: 10.1103/PhysRevLett.125.070606 – ident: PhysRevX.11.031066Cc59R1 doi: 10.1103/PhysRevLett.104.050503 – ident: PhysRevX.11.031066Cc25R2 doi: 10.26421/QIC14.13-14-9 – ident: PhysRevX.11.031066Cc78R1 doi: 10.1103/PhysRevX.8.031058 – ident: PhysRevX.11.031066Cc13R1 doi: 10.26421/QIC7.4-2 – volume-title: Quantum Expander Codes year: 2015 ident: PhysRevX.11.031066Cc61R1 doi: 10.1109/FOCS.2015.55 – ident: PhysRevX.11.031066Cc67R1 doi: 10.1038/nature07127 – ident: PhysRevX.11.031066Cc71R1 doi: 10.1007/JHEP04(2013)022 – ident: PhysRevX.11.031066Cc16R1 doi: 10.1088/1367-2630/16/4/045014 – ident: PhysRevX.11.031066Cc29R1 doi: 10.1103/PhysRevLett.124.130501 – ident: PhysRevX.11.031066Cc130R1 doi: 10.1103/PhysRevA.54.2614 – ident: PhysRevX.11.031066Cc104R1 doi: 10.1103/PhysRevB.102.054302 – ident: PhysRevX.11.031066Cc2R1 doi: 10.1103/PhysRevLett.117.060505 – ident: PhysRevX.11.031066Cc106R1 doi: 10.1103/PhysRevResearch.3.023200 – ident: PhysRevX.11.031066Cc109R1 doi: 10.1103/PhysRevResearch.2.043072 – ident: PhysRevX.11.031066Cc80R1 doi: 10.1103/PhysRevB.99.174205 – ident: PhysRevX.11.031066Cc30R1 doi: 10.1038/s41467-021-22274-1 – ident: PhysRevX.11.031066Cc115R1 doi: 10.1103/PhysRevB.102.094204 – ident: PhysRevX.11.031066Cc28R1 doi: 10.1103/PhysRevX.9.041031 – ident: PhysRevX.11.031066Cc6R1 doi: 10.1126/science.aao4309 – ident: PhysRevX.11.031066Cc56R1 doi: 10.1103/PhysRevX.7.021029 – ident: PhysRevX.11.031066Cc24R1 doi: 10.1109/TIT.2013.2292061 – ident: PhysRevX.11.031066Cc72R1 doi: 10.1007/JHEP02(2016)004 – ident: PhysRevX.11.031066Cc88R1 doi: 10.1080/00018732.2016.1198134 – ident: PhysRevX.11.031066Cc133R1 doi: 10.1103/PhysRevA.54.2629 – ident: PhysRevX.11.031066Cc105R1 doi: 10.1038/s41567-020-01112-z – ident: PhysRevX.11.031066Cc131R1 doi: 10.1103/PhysRevA.60.1888 – ident: PhysRevX.11.031066Cc112R1 doi: 10.1103/PhysRevB.102.064202 – ident: PhysRevX.11.031066Cc107R1 doi: 10.1103/PhysRevX.11.011030 – ident: PhysRevX.11.031066Cc18R1 doi: 10.1038/npjqi.2015.5 – ident: PhysRevX.11.031066Cc132R1 doi: 10.1016/S0375-9601(02)01272-0 – ident: PhysRevX.11.031066Cc4R1 doi: 10.1038/ncomms7979 – ident: PhysRevX.11.031066Cc70R1 doi: 10.1088/1126-6708/2007/09/120 – ident: PhysRevX.11.031066Cc100R1 doi: 10.1103/PhysRevB.101.060301 – ident: PhysRevX.11.031066Cc69R1 doi: 10.1103/PhysRevA.98.052301 – ident: PhysRevX.11.031066Cc17R1 doi: 10.1126/science.1243289 – ident: PhysRevX.11.031066Cc23R1 doi: 10.1103/PhysRevX.9.041053 – ident: PhysRevX.11.031066Cc50R1 doi: 10.1103/PhysRevA.89.022326 – ident: PhysRevX.11.031066Cc57R1 doi: 10.1103/PhysRevA.102.022403 – volume-title: Quantum Information Theory year: 2017 ident: PhysRevX.11.031066Cc137R1 doi: 10.1017/9781316809976 – ident: PhysRevX.11.031066Cc83R1 doi: 10.1038/s41567-018-0318-2 – ident: PhysRevX.11.031066Cc121R1 doi: 10.1142/S1230161208000043 – ident: PhysRevX.11.031066Cc92R1 doi: 10.1103/PhysRevB.99.224307 – ident: PhysRevX.11.031066Cc141R1 doi: 10.1016/j.laa.2011.08.049 – ident: PhysRevX.11.031066Cc20R1 doi: 10.1145/3408039 – ident: PhysRevX.11.031066Cc53R1 doi: 10.1103/PhysRevLett.98.160502 – ident: PhysRevX.11.031066Cc7R1 doi: 10.1038/nature25769 – ident: PhysRevX.11.031066Cc135R1 doi: 10.1103/PhysRevA.55.1613 – ident: PhysRevX.11.031066Cc32R1 doi: 10.1109/TIT.1962.1057683 – ident: PhysRevX.11.031066Cc95R1 doi: 10.21468/SciPostPhys.7.2.024 – ident: PhysRevX.11.031066Cc35R1 doi: 10.1109/ISIT.2013.6620245 – ident: PhysRevX.11.031066Cc65R1 doi: 10.1103/PhysRevA.89.022317 – ident: PhysRevX.11.031066Cc108R1 doi: 10.1103/PhysRevLett.126.170602 – ident: PhysRevX.11.031066Cc124R1 doi: 10.1103/PhysRevA.57.830 – ident: PhysRevX.11.031066Cc62R1 doi: 10.1103/PhysRevA.98.062302 – ident: PhysRevX.11.031066Cc73R1 doi: 10.1103/PhysRevX.7.031016 – ident: PhysRevX.11.031066Cc79R1 doi: 10.1103/PhysRevX.8.041019 – ident: PhysRevX.11.031066Cc68R1 doi: 10.1007/JHEP06(2015)149 – ident: PhysRevX.11.031066Cc22R1 doi: 10.1126/sciadv.aay5901 – ident: PhysRevX.11.031066Cc63R1 doi: 10.1103/PhysRevA.87.020304 – ident: PhysRevX.11.031066Cc123R1 doi: 10.1038/ncomms11419 – ident: PhysRevX.11.031066Cc77R1 doi: 10.1103/PhysRevX.8.031057 – ident: PhysRevX.11.031066Cc52R1 doi: 10.1103/PhysRevLett.97.180501 – ident: PhysRevX.11.031066Cc19R1 doi: 10.1038/s41567-020-0992-8 – ident: PhysRevX.11.031066Cc14R1 doi: 10.1103/PhysRevA.86.032324 – ident: PhysRevX.11.031066Cc97R1 doi: 10.1103/PhysRevB.101.104301 – ident: PhysRevX.11.031066Cc128R1 doi: 10.1007/s00220-009-0873-6 – ident: PhysRevX.11.031066Cc60R1 doi: 10.1103/PhysRevA.73.012340 – ident: PhysRevX.11.031066Cc76R1 doi: 10.1103/PhysRevB.98.035118 – ident: PhysRevX.11.031066Cc122R1 doi: 10.1007/s00220-017-2971-1 – ident: PhysRevX.11.031066Cc74R1 doi: 10.1103/PhysRevX.8.021014 – ident: PhysRevX.11.031066Cc37R1 doi: 10.1007/s00220-016-2706-8 – ident: PhysRevX.11.031066Cc143R1 doi: 10.1007/BF01009436 – ident: PhysRevX.11.031066Cc5R1 doi: 10.1038/nature18949 – ident: PhysRevX.11.031066Cc75R1 doi: 10.1103/PhysRevX.8.021013 – ident: PhysRevX.11.031066Cc144R1 doi: 10.1103/PhysRevA.71.062313 – ident: PhysRevX.11.031066Cc40R1 doi: 10.1103/PhysRevResearch.2.033042 – ident: PhysRevX.11.031066Cc93R1 doi: 10.1103/PhysRevX.10.041020 – ident: PhysRevX.11.031066Cc3R1 doi: 10.1038/nature18648 – ident: PhysRevX.11.031066Cc116R1 doi: 10.1103/PRXQuantum.2.010352 – ident: PhysRevX.11.031066Cc8R1 doi: 10.1038/s41586-019-1197-0 – ident: PhysRevX.11.031066Cc118R1 doi: 10.1103/PhysRevB.103.104306 – ident: PhysRevX.11.031066Cc101R1 doi: 10.1103/PhysRevB.101.235104 – ident: PhysRevX.11.031066Cc102R1 doi: 10.1103/PhysRevResearch.2.013022 – ident: PhysRevX.11.031066Cc86R1 doi: 10.1103/PhysRevLett.71.666 – ident: PhysRevX.11.031066Cc89R1 doi: 10.1103/PhysRevB.98.205136 – ident: PhysRevX.11.031066Cc49R1 doi: 10.1103/PhysRevLett.109.160503 – ident: PhysRevX.11.031066Cc145R1 doi: 10.1103/PhysRevLett.98.150404 – ident: PhysRevX.11.031066Cc9R1 doi: 10.1103/PhysRevLett.123.170503 – ident: PhysRevX.11.031066Cc47R1 doi: 10.4171/AIHPD/105 – ident: PhysRevX.11.031066Cc125R1 doi: 10.1103/PhysRevLett.98.030501 – ident: PhysRevX.11.031066Cc82R1 doi: 10.1038/s41567-018-0124-x – ident: PhysRevX.11.031066Cc11R1 doi: 10.1038/nature03350 – ident: PhysRevX.11.031066Cc34R1 doi: 10.1007/s00220-015-2470-1 – ident: PhysRevX.11.031066Cc48R1 doi: 10.1103/PhysRevLett.104.050504 – volume-title: Quantum Computation and Quantum Information year: 2011 ident: PhysRevX.11.031066Cc129R1 – ident: PhysRevX.11.031066Cc136R1 doi: 10.1007/s00220-005-1317-6 – ident: PhysRevX.11.031066Cc45R1 doi: 10.1070/RM1997v052n06ABEH002155 – ident: PhysRevX.11.031066Cc54R1 doi: 10.1088/1367-2630/13/4/043005 – ident: PhysRevX.11.031066Cc117R1 doi: 10.1103/PhysRevB.103.174309 – ident: PhysRevX.11.031066Cc85R1 doi: 10.1103/PhysRevA.43.2046 – ident: PhysRevX.11.031066Cc94R1 doi: 10.1103/PhysRevLett.125.030505 – ident: PhysRevX.11.031066Cc21R1 doi: 10.1103/PhysRevA.78.052331 – ident: PhysRevX.11.031066Cc33R1 doi: 10.1109/TIT.1973.1054971 – ident: PhysRevX.11.031066Cc36R1 doi: 10.26421/QIC16.9-10-1 – ident: PhysRevX.11.031066Cc98R1 doi: 10.1103/PhysRevB.101.104302 – ident: PhysRevX.11.031066Cc15R1 doi: 10.1103/PhysRevLett.111.120501 – ident: PhysRevX.11.031066Cc66R1 doi: 10.1103/PhysRevA.100.022332 – ident: PhysRevX.11.031066Cc119R1 doi: 10.22331/q-2021-01-17-382 – ident: PhysRevX.11.031066Cc1R1 doi: 10.1038/s41586-019-1666-5 – ident: PhysRevX.11.031066Cc41R1 doi: 10.1103/PhysRevLett.35.1399 – ident: PhysRevX.11.031066Cc111R1 doi: 10.1103/PhysRevA.102.033316 – ident: PhysRevX.11.031066Cc44R1 doi: 10.1080/09500340008244046 – ident: PhysRevX.11.031066Cc87R1 doi: 10.1146/annurev-conmatphys-031214-014726 – ident: PhysRevX.11.031066Cc96R1 doi: 10.1103/PhysRevB.100.064204 – ident: PhysRevX.11.031066Cc110R1 doi: 10.1103/PhysRevB.102.035119 – ident: PhysRevX.11.031066Cc90R1 doi: 10.1103/PhysRevX.9.031009 – ident: PhysRevX.11.031066Cc31R1 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: PhysRevX.11.031066Cc58R1 doi: 10.1126/sciadv.aay4929 – ident: PhysRevX.11.031066Cc55R1 doi: 10.1088/1367-2630/14/12/123011 – ident: PhysRevX.11.031066Cc12R1 doi: 10.1103/PhysRevA.71.022316 – ident: PhysRevX.11.031066Cc27R1 doi: 10.1103/PhysRevLett.120.050505 – ident: PhysRevX.11.031066Cc46R1 doi: 10.1063/1.1499754 – ident: PhysRevX.11.031066Cc139R1 doi: 10.1103/PhysRevA.70.052328 |
| SSID | ssj0000601477 |
| Score | 2.5618234 |
| Snippet | Random quantum circuits have played a central role in establishing the computational advantages of near-term quantum computers over their conventional... |
| SourceID | doaj unpaywall osti proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 031066 |
| SubjectTerms | Algorithms Channel capacity Circuits CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Codes Coding Coding theory Convergence Critical phenomena Data processing Error analysis Error correcting codes Error correction Error correction & detection Fault tolerance Operators Phase transitions Physics quantum channels quantum computation Quantum computers Quantum computing Quantum entanglement quantum error correction Quantum phenomena Qubits (quantum computing) Random errors Statistical analysis Subsystems |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrRBcUHmJ0BblwA1Cs7YTJweE-lSFYAUrKu3NGr9QpSVZdpMW_j2ebLILQuopLyeyZuyZz5PxNwCvs-C3LXcmkc7IRFhBdtCwJHesyHThOSItFD9P8ssr8XGWzXZgMuyFobTKwSZ2htrWhmLkRwSMgyEtC_Zh8TOhqlH0d3UooYF9aQX7vqMYuwe7jJixRrB7cj75Mt1EXYh9REg57J5J-RElWk7dzewdcXkGrNPRJW49VEfkHw51mHD_gNAHbbXA37c4n__ljy724FEPJOPjteYfw46rnsD9LqHTrJ5C8rUNMmt_xKc1eaeY4q3xp_o2OXOLcDbFytbh4fXStNfN6hlcXZx_O71M-tIIiRFj1iSZ4T4gJatdGSBUbonl3WaaW4YytYhcM6lzkxZeC1dqbohFPZg163zqcsz5cxhVdeVeQFxy66RDZwsthRYCi8KnKIlvknPMswjGgziU6XnDqXzFXHXrh5SrQYThSq1FGMGbzTuLNWvGna1PSMqblsR43d2ol99VP4EUOgyrH28zZF4QSsndOEOJpfeCSqdFsE86UgE4EPutoTQh06gxZcmWRQQHg-pUP0lXajukIni7Ued_HaYQ09Ld_Np2-OXdX9uHh4wyX7pMtAMYNcvWHQbo0uhX_Xj8A7SW7L8 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVoheeFcsLWgP3CBLEjtOciyFqkJQQcVKy8kav6SqSxJtkrbw65nJY0tVCamnvDySM5nxfOOMPzP2JsG4bbkzQepMGggraBw0cSBdnCU68xyAEsWvJ_J4IT4vk-UWizdTF8X5HKq6-4dfWd87dcjfUz3kqbtYzolyEyGJlPfYtkwQf0_Y9uLk28FP2kUukjio8DAbV8egIE0QrN3F1bXgjQjUEfXjoUSHugEyH7RFBb8vYbX6J94cPerXANYdTSGVmZzP20bPzZ_bJI53eJXH7OEAP2cHvb08YVuueMrud2Wgpn7Ggu8tarr9NTssKabNaJZ29qW8DD66Cs9OobAlPjxbm_asqZ-zxdGnH4fHwbChQmBEFDdBYrhHfGW1yxF4SUvc8DbR3MaQhhaA6zjV0oSZ18LlmhviXsfB0DofOgmS77JJURbuBZvl3LrUgbOZToUWArLMh5ASSyXnIJMpi0YlKzOwjdOmFyvVZR0hV6Ma8Er1apiytxuZqufa-G_rD_TtNi2JJ7u7gfpWg9spcIA5k7cJxF4QtpEuSiCF3HtBG65N2R59eYVwgzhzDRUXmUZFVFubZ1O2PxqEGly7VpShYUTPMxR-tzGSWx0e7e66wy_v1nyP7cRUP9PVs-2zSbNu3SsEQI1-PVj8X4KWAPg priority: 102 providerName: Unpaywall |
| Title | Quantum Coding with Low-Depth Random Circuits |
| URI | https://www.proquest.com/docview/2576471982 https://www.osti.gov/biblio/1822498 http://link.aps.org/pdf/10.1103/PhysRevX.11.031066 https://doaj.org/article/aea255fd5a2f451296e15a7a9ff41972 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2160-3308 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601477 issn: 2160-3308 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2160-3308 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601477 issn: 2160-3308 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2160-3308 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601477 issn: 2160-3308 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2160-3308 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601477 issn: 2160-3308 databaseCode: BENPR dateStart: 20110801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL4qmmLZEP3MDU8a6962NbGioEUYmIFE6r2ZdUKdhRYrfl3zNjO2kQElw42WvvSqMZ78w3q_E3jL3JMG477m0svZWxcIL8oE3j3KcqMypwAEoUv0zyi5n4NM_mO62-qCasowfuFHcMHhD1BpdBGgRFp9yPMpBQhCCoZRZ530QVO8lU54MR-ku5-Usm4cdUUDn11_P3xNmJmKalRbyLRC1hP14q3Fi_gc1HTbmEnzewWOzEnfFT9qQHjNFJJ-gzds-Xz9nDtnDTrl-w-GuDuml-RGcVRaGIzlWjz9VN_MEv8W4Kpavw5dXKNlf1-iWbjc-_nV3EfQuE2IpRWseZ5QERkTO-QKiUO2Jzd5nhLgWZOABuUmlym6hghC8Mt8SWju7L-ZD4HHL-iu2VVen3WVRw56UH75SRwggBSoUEJPFKcg55NmCjjTq07fnBqU3FQrd5QsL1RoU40p0KB-ztds2yY8f46-xT0vJ2JjFbtw_Q3rq3t_6XvQfskGykESAQy62lciBb6xFVwxZqwI42ptP9ZlxryqkwBhcKF7_bmvMPgekoaeWvb-8EPvgfAh-yxynVwbR1aUdsr141_jUCmdoM2X01_jhkD07PJ5fTYfsF42g2uTz5_gtkO_L8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUEUvqE_VQFsf2lPr4uyuvfYBVTwVSojaCKTcln25QkrtkNgE_lx_GzuOnbSqxI2T36vVzO7sN-PZbwA-Rm7dNtTqgFvNA2YY2kFNgtiSJFJJRqVER_GsH3cv2PdhNFyBP-1eGEyrbG1ibahNoTFGvoPA2BnSNCHfxtcBVo3Cv6ttCQ3ZlFYwuzXFWLOx49TezZwLN909OXT6_kTI8dH5QTdoqgwEmnVIGUSaZg50GGVTh0Zig4TpJlLUEMlDIyVVhKtYh0mmmE0V1UhI7iyEsVloYxlT1-4TWGOUpc75W9s_6v8YLKI8yHbCOG9364R0BxM7B_Zm-BW5Qx22qukZlytiXTjAHQo3wf8BvetVPpZ3Mzka_bX-HT-HjQa4-nvzkfYCVmz-Ep7WCaR6-gqCn5XTUfXbPyhwNfQxvuv3illwaMfubCBzU7iHVxNdXZXT13DxKEJ6A6t5kdu34KfUWG6lNYniTDEmkyQLJUd-S0plHHnQacUhdMNTjuUyRqL2V0IqWhG6KzEXoQefF9-M5ywdD769j1JevIkM2_WNYvJLNBNWSCudt5WZSJKMISqKbSeSXKZZxrBUmwdbqCPhgAqy7WpMS9Kl6GBWbpp4sN2qTjRGYSqWQ9iDLwt1_tdhDGlN7M3tssObD7f2Ada752c90Tvpn27BM4JZN3UW3DaslpPKvnOwqVTvm7Hpw-VjT4d7qq4qIg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVoheeFcsLWgP3CBLEjtOciyFqkJQQcVKy8kav6SqSxJtkrbw65nJY0tVCamnvDySM5nxfOOMPzP2JsG4bbkzQepMGggraBw0cSBdnCU68xyAEsWvJ_J4IT4vk-UWizdTF8X5HKq6-4dfWd87dcjfUz3kqbtYzolyEyGJlPfYtkwQf0_Y9uLk28FP2kUukjio8DAbV8egIE0QrN3F1bXgjQjUEfXjoUSHugEyH7RFBb8vYbX6J94cPerXANYdTSGVmZzP20bPzZ_bJI53eJXH7OEAP2cHvb08YVuueMrud2Wgpn7Ggu8tarr9NTssKabNaJZ29qW8DD66Cs9OobAlPjxbm_asqZ-zxdGnH4fHwbChQmBEFDdBYrhHfGW1yxF4SUvc8DbR3MaQhhaA6zjV0oSZ18LlmhviXsfB0DofOgmS77JJURbuBZvl3LrUgbOZToUWArLMh5ASSyXnIJMpi0YlKzOwjdOmFyvVZR0hV6Ma8Er1apiytxuZqufa-G_rD_TtNi2JJ7u7gfpWg9spcIA5k7cJxF4QtpEuSiCF3HtBG65N2R59eYVwgzhzDRUXmUZFVFubZ1O2PxqEGly7VpShYUTPMxR-tzGSWx0e7e66wy_v1nyP7cRUP9PVs-2zSbNu3SsEQI1-PVj8X4KWAPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Coding+with+Low-Depth+Random+Circuits&rft.jtitle=Physical+review.+X&rft.au=Michael+J.+Gullans&rft.au=Stefan+Krastanov&rft.au=David+A.+Huse&rft.au=Liang+Jiang&rft.date=2021-09-01&rft.pub=American+Physical+Society&rft.eissn=2160-3308&rft.volume=11&rft.issue=3&rft.spage=031066&rft_id=info:doi/10.1103%2FPhysRevX.11.031066&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_aea255fd5a2f451296e15a7a9ff41972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-3308&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-3308&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-3308&client=summon |