Increased Angiogenesis by Exosomes Secreted by Adipose-Derived Stem Cells upon Lipopolysaccharide Stimulation
Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that au...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 16; p. 8877 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms22168877 |
Cover
Abstract | Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis. |
---|---|
AbstractList | Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis. Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis.Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis. |
Author | Hsieh, Ting-Min Huang, Lien-Hung Liu, Hang-Tsung Lin, Chia-Wei Kuo, Pao-Jen Tsai, Chia-Wen Huang, Chun-Ying Wu, Shao-Chun Wu, Chia-Jung Wu, Yi-Chan Rau, Cheng-Shyuan Hsieh, Ching-Hua |
AuthorAffiliation | 5 Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan 2 Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; bow110470@gmail.com (P.-J.K.); sallylin1201@gmail.com (C.-W.L.); janewu0922@gmail.com (Y.-C.W.); alicewu8818@gmail.com (C.-J.W.); flying011401@gmail.com (C.-W.T.) 1 Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; shaochunwu@gmail.com 3 Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; ersh2127@adm.cgmh.org.tw (C.-S.R.); ahonbob@gmail.com (L.-H.H.) 4 Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; hs168hs168@gmail.com (T.-M.H.); htl1688@cgmh.org.tw (H.-T |
AuthorAffiliation_xml | – name: 3 Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; ersh2127@adm.cgmh.org.tw (C.-S.R.); ahonbob@gmail.com (L.-H.H.) – name: 5 Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan – name: 1 Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; shaochunwu@gmail.com – name: 4 Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; hs168hs168@gmail.com (T.-M.H.); htl1688@cgmh.org.tw (H.-T.L.) – name: 2 Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; bow110470@gmail.com (P.-J.K.); sallylin1201@gmail.com (C.-W.L.); janewu0922@gmail.com (Y.-C.W.); alicewu8818@gmail.com (C.-J.W.); flying011401@gmail.com (C.-W.T.) |
Author_xml | – sequence: 1 givenname: Shao-Chun orcidid: 0000-0002-0984-6921 surname: Wu fullname: Wu, Shao-Chun – sequence: 2 givenname: Pao-Jen surname: Kuo fullname: Kuo, Pao-Jen – sequence: 3 givenname: Cheng-Shyuan surname: Rau fullname: Rau, Cheng-Shyuan – sequence: 4 givenname: Lien-Hung surname: Huang fullname: Huang, Lien-Hung – sequence: 5 givenname: Chia-Wei surname: Lin fullname: Lin, Chia-Wei – sequence: 6 givenname: Yi-Chan surname: Wu fullname: Wu, Yi-Chan – sequence: 7 givenname: Chia-Jung surname: Wu fullname: Wu, Chia-Jung – sequence: 8 givenname: Chia-Wen surname: Tsai fullname: Tsai, Chia-Wen – sequence: 9 givenname: Ting-Min surname: Hsieh fullname: Hsieh, Ting-Min – sequence: 10 givenname: Hang-Tsung surname: Liu fullname: Liu, Hang-Tsung – sequence: 11 givenname: Chun-Ying orcidid: 0000-0002-8192-0129 surname: Huang fullname: Huang, Chun-Ying – sequence: 12 givenname: Ching-Hua orcidid: 0000-0002-0945-2746 surname: Hsieh fullname: Hsieh, Ching-Hua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34445582$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v1DAQxS1URD_gxhlF4sKBgD22E-eCtNoWWmklDoWz5fWOt14ldrCTiv3va2ipthUnj2Z-fpo375QchRiQkLeMfuK8o5_9bsgArFGqbV-QEyYAakqb9uigPianOe8oBQ6ye0WOuRBCSgUnZLgKNqHJuKkWYevjFgNmn6v1vrr4HXMcMFfXWJCpEKW52PgxZqzPMfnb0rqecKiW2Pe5mscYqlUZj7HfZ2PtjUl-gwXxw9ybycfwmrx0ps_45uE9Iz-_XvxYXtar79-ulotVbQWDqea8laqR1qBxTHEhXcsZtK1qnXDMmI6tkRnJDVVWoZPW8Y5LcICUOgprfka-3OuO83rAjcUwJdPrMfnBpL2Oxuunk-Bv9DbeasW7BrquCHx4EEjx14x50oPPttg0AeOcNcimoeWIDS3o-2foLs4pFHsaGhAgKEheqHeHGz2u8i-JAny8B2yKOSd0jwij-k_Q-jDogsMz3Prp742LH9___9Md7k2trw |
CitedBy_id | crossref_primary_10_1097_JS9_0000000000002166 crossref_primary_10_2147_IJN_S466136 crossref_primary_10_3389_fimmu_2023_1256687 crossref_primary_10_1007_s12015_024_10762_y crossref_primary_10_1186_s13287_024_04069_5 crossref_primary_10_1002_jcp_31185 crossref_primary_10_1093_burnst_tkae021 crossref_primary_10_3390_cimb44100337 crossref_primary_10_1186_s13287_022_02952_7 crossref_primary_10_3390_ijms251910692 crossref_primary_10_3390_cells14060458 crossref_primary_10_1016_j_gendis_2022_06_009 crossref_primary_10_1016_j_colsurfb_2022_113119 crossref_primary_10_3389_fnmol_2022_883378 |
Cites_doi | 10.5966/sctm.2014-0267 10.1089/wound.2017.0775 10.1016/j.biopha.2018.08.013 10.1074/jbc.M112.340505 10.3390/ijms21041306 10.1186/s12967-015-0417-0 10.1097/SCS.0000000000001852 10.1016/j.mrfmmm.2004.05.019 10.1111/cpr.12830 10.1152/ajpheart.00237.2004 10.1126/science.1891716 10.1038/ncomms7429 10.3402/jev.v4.26760 10.1002/(SICI)1097-0215(19960315)65:6<785::AID-IJC14>3.0.CO;2-3 10.1242/dev.016378 10.1158/1078-0432.CCR-07-4843 10.1097/PRS.0000000000001927 10.1111/jocd.13215 10.1016/j.freeradbiomed.2010.09.006 10.1172/JCI114957 10.1016/j.sbi.2017.02.005 10.1186/s13287-018-0887-0 10.1074/jbc.M115.678979 10.21037/atm.2017.01.53 10.1038/sj.emboj.7601539 10.1186/1471-2334-12-321 10.1074/jbc.M208231200 10.4061/2010/532704 10.3390/biom5031386 10.1002/jbm.a.36835 10.1152/ajpcell.00041.2020 10.1128/MCB.24.17.7806-7819.2004 10.1146/annurev.immunol.15.1.675 10.1038/s41586-018-0522-3 10.1186/s13287-016-0412-2 10.1186/s13287-019-1152-x 10.1155/2020/5293850 10.3390/ijms20040917 10.3390/ijms22073684 10.4049/jimmunol.170.6.3369 10.1126/science.1840701 10.1080/20013078.2018.1535750 10.1080/20013078.2017.1359478 10.1016/j.biopha.2017.10.034 10.1161/ATVBAHA.112.300648 10.1016/S0006-291X(03)00149-9 10.1016/S1016-8478(23)07385-5 10.3390/ijms20153721 10.1038/s41419-020-2288-4 10.3390/pathogens9010006 10.1089/wound.2012.0361 10.1097/00005537-199908000-00013 10.1111/j.1600-0625.2010.01221.x 10.1007/978-1-4939-2550-6_15 10.1016/j.neuroscience.2014.02.050 10.1042/CBI20090304 10.1016/j.tcb.2016.11.003 10.1161/ATVBAHA.108.172015 10.1155/2015/657086 10.1371/journal.pone.0225472 10.1159/000485949 10.1093/femsre/fuw007 10.7717/peerj.1669 10.1128/MCB.23.14.4959-4971.2003 10.1128/ecosalplus.esp-0001-2018 10.1002/ijc.25600 10.1038/nrmicro818 10.1161/ATVBAHA.108.178962 10.1016/j.bbrc.2020.05.127 10.1371/journal.pone.0027385 10.1111/cpr.12993 10.23736/S0026-4806.20.07205-5 10.1523/JNEUROSCI.1321-09.2009 10.1158/1078-0432.CCR-08-1137 10.3390/bioengineering6010004 10.18632/oncotarget.7573 10.1172/JCI32044 10.1080/15476278.2015.1126018 10.1016/j.ejphar.2005.02.050 10.2174/138920021801170119204832 10.3347/kjp.2011.49.3.291 10.3892/etm.2016.3309 10.1007/5584_2018_251 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms22168877 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC8396299 34445582 10_3390_ijms22168877 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Chang Gung Memorial Hospital grantid: CMRPG8K0361 – fundername: Chang Gung Memorial Hospital grantid: CMRPG8J1011 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c412t-3375865caeaf18345f73127787f4f1aa91be1a53a08c8ef5cf39352f2e00f02b3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:10:09 EDT 2025 Fri Sep 05 08:09:39 EDT 2025 Fri Jul 25 20:15:46 EDT 2025 Mon Jul 21 05:56:21 EDT 2025 Tue Jul 01 03:07:47 EDT 2025 Thu Apr 24 23:00:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | adipose-derived stem cells nuclear factor-κB angiogenesis endothelial cell activating protein 1 interleukin-8 lipopolysaccharide exosome cAMP response element binding protein proteomic analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-3375865caeaf18345f73127787f4f1aa91be1a53a08c8ef5cf39352f2e00f02b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work as the first authors. |
ORCID | 0000-0002-0945-2746 0000-0002-8192-0129 0000-0002-0984-6921 |
OpenAccessLink | https://www.proquest.com/docview/2624240253?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 34445582 |
PQID | 2624240253 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8396299 proquest_miscellaneous_2566044460 proquest_journals_2624240253 pubmed_primary_34445582 crossref_primary_10_3390_ijms22168877 crossref_citationtrail_10_3390_ijms22168877 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210818 |
PublicationDateYYYYMMDD | 2021-08-18 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210818 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Shi (ref_35) 2016; 7 Balaji (ref_7) 2012; 1 Li (ref_50) 2003; 170 Li (ref_15) 2018; 50 Kundu (ref_38) 2004; 555 ref_12 Fujioka (ref_40) 2004; 24 ref_11 Tan (ref_63) 2020; 529 Murakami (ref_87) 2017; 44 Impey (ref_43) 2004; 119 Reuter (ref_39) 2010; 49 Waugh (ref_52) 2008; 14 Kevil (ref_60) 1996; 65 Greening (ref_18) 2015; 1295 Heidemann (ref_49) 2003; 278 Witwer (ref_83) 2018; 7 Taverna (ref_14) 2017; 5 Qiu (ref_13) 2020; 19 Yamamoto (ref_72) 2015; 6 Maldonado (ref_28) 2016; 40 Graff (ref_62) 2007; 117 Wang (ref_64) 2017; 96 Jeon (ref_42) 2007; 23 Ruoslahti (ref_69) 1991; 87 Schruefer (ref_51) 2005; 288 Nam (ref_56) 2011; 49 Zhang (ref_21) 2015; 4 Durrant (ref_66) 2020; 11 ref_22 Marfia (ref_6) 2015; 11 Goodarzi (ref_20) 2018; 1119 Schmidt (ref_37) 2007; 26 Akita (ref_4) 2010; 2010 ref_27 Maroto (ref_84) 2017; 6 Lee (ref_41) 2009; 29 Zhang (ref_24) 2015; 13 Jundi (ref_54) 2015; 5 Holmes (ref_57) 1991; 253 Ozpur (ref_9) 2016; 137 Jiang (ref_47) 2010; 34 Baggiolini (ref_59) 1997; 15 Kang (ref_45) 2014; 267 Shafei (ref_25) 2020; 108 Kim (ref_8) 2011; 20 Park (ref_36) 2003; 23 Lorenz (ref_67) 2018; 562 Cooper (ref_82) 2018; 7 Silva (ref_68) 2008; 28 Kaper (ref_29) 2004; 2 Carlson (ref_70) 2008; 135 ref_31 ref_75 An (ref_17) 2021; 54 ref_30 ref_74 Gopal (ref_77) 2016; 7 Qiu (ref_23) 2020; 53 Sakamoto (ref_48) 2009; 15 Delgado (ref_55) 2003; 302 Yan (ref_76) 2016; 4 Eisele (ref_78) 2015; 4 Maas (ref_79) 2017; 27 Cheng (ref_73) 2012; 287 Li (ref_3) 2016; 12 Ren (ref_10) 2019; 10 Lin (ref_19) 2015; 2015 Gadelkarim (ref_2) 2018; 107 Vu (ref_33) 2021; 112 Xiong (ref_81) 2020; 2020 Ebrahimian (ref_32) 2009; 29 Zhao (ref_46) 2011; 128 Ren (ref_26) 2019; 23 Luo (ref_80) 2017; 44 ref_85 Athanasios (ref_86) 2017; 18 ref_1 Nathan (ref_61) 1999; 109 Shi (ref_16) 2020; 318 Hasdemir (ref_5) 2015; 26 Holm (ref_34) 2018; 9 Rhee (ref_44) 2015; 290 Murphy (ref_58) 1991; 253 Strieter (ref_53) 1992; 141 Paris (ref_65) 2005; 514 Turlo (ref_71) 2013; 33 |
References_xml | – volume: 4 start-page: 513 year: 2015 ident: ref_21 article-title: Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2014-0267 – volume: 7 start-page: 299 year: 2018 ident: ref_82 article-title: Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing publication-title: Adv. Wound Care doi: 10.1089/wound.2017.0775 – volume: 107 start-page: 625 year: 2018 ident: ref_2 article-title: Adipose-derived stem cells: Effectiveness and advances in delivery in diabetic wound healing publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.08.013 – volume: 287 start-page: 23356 year: 2012 ident: ref_73 article-title: Promyelocytic leukemia protein (PML) regulates endothelial cell network formation and migration in response to tumor necrosis factor α (TNFα) and interferon α (IFNα) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.340505 – ident: ref_1 doi: 10.3390/ijms21041306 – volume: 13 start-page: 49 year: 2015 ident: ref_24 article-title: Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis publication-title: J. Transl. Med. doi: 10.1186/s12967-015-0417-0 – volume: 23 start-page: 52 year: 2019 ident: ref_26 article-title: Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 26 start-page: 1450 year: 2015 ident: ref_5 article-title: Adipose-Derived Stem Cells Improve Survival of Random Pattern Cutaneous Flaps in Radiation Damaged Skin publication-title: J. Craniofac. Surg. doi: 10.1097/SCS.0000000000001852 – volume: 555 start-page: 65 year: 2004 ident: ref_38 article-title: Molecular basis of chemoprevention by resveratrol: NF-kappaB and AP-1 as potential targets publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2004.05.019 – volume: 53 start-page: e12830 year: 2020 ident: ref_23 article-title: Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis publication-title: Cell Prolif. doi: 10.1111/cpr.12830 – volume: 288 start-page: H1186 year: 2005 ident: ref_51 article-title: Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00237.2004 – volume: 253 start-page: 1280 year: 1991 ident: ref_58 article-title: Cloning of complementary DNA encoding a functional human interleukin-8 receptor publication-title: Science doi: 10.1126/science.1891716 – volume: 6 start-page: 6429 year: 2015 ident: ref_72 article-title: Integrin β1 controls VE-cadherin localization and blood vessel stability publication-title: Nat. Commun. doi: 10.1038/ncomms7429 – volume: 4 start-page: 26760 year: 2015 ident: ref_78 article-title: Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting publication-title: J. Extracell. Vesicles doi: 10.3402/jev.v4.26760 – volume: 65 start-page: 785 year: 1996 ident: ref_60 article-title: Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: Implications for tumor angiogenesis publication-title: Int. J. Cancer doi: 10.1002/(SICI)1097-0215(19960315)65:6<785::AID-IJC14>3.0.CO;2-3 – volume: 135 start-page: 2193 year: 2008 ident: ref_70 article-title: Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice publication-title: Development doi: 10.1242/dev.016378 – volume: 14 start-page: 6735 year: 2008 ident: ref_52 article-title: The interleukin-8 pathway in cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-4843 – volume: 119 start-page: 1041 year: 2004 ident: ref_43 article-title: Defining the CREB regulon: A genome-wide analysis of transcription factor regulatory regions publication-title: Cell – volume: 137 start-page: 134 year: 2016 ident: ref_9 article-title: Generation of Skin Tissue Using Adipose Tissue-Derived Stem Cells publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0000000000001927 – volume: 19 start-page: 574 year: 2020 ident: ref_13 article-title: Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review publication-title: J. Cosmet. Dermatol. doi: 10.1111/jocd.13215 – volume: 49 start-page: 1603 year: 2010 ident: ref_39 article-title: Oxidative stress, inflammation, and cancer: How are they linked? publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2010.09.006 – volume: 87 start-page: 1 year: 1991 ident: ref_69 article-title: Integrins publication-title: J. Clin. Investig. doi: 10.1172/JCI114957 – volume: 44 start-page: 134 year: 2017 ident: ref_87 article-title: Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2017.02.005 – volume: 9 start-page: 142 year: 2018 ident: ref_34 article-title: Adipose-derived stem cells for treatment of chronic ulcers: Current status publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-018-0887-0 – volume: 290 start-page: 26194 year: 2015 ident: ref_44 article-title: Corticotropin Releasing Hormone and Urocortin 3 Stimulate Vascular Endothelial Growth Factor Expression through the cAMP/CREB Pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.678979 – volume: 5 start-page: 83 year: 2017 ident: ref_14 article-title: Extracellular vesicles: Small bricks for tissue repair/regeneration publication-title: Ann. Transl. Med. doi: 10.21037/atm.2017.01.53 – volume: 50 start-page: 1 year: 2018 ident: ref_15 article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model publication-title: Exp. Mol. Med. – volume: 26 start-page: 710 year: 2007 ident: ref_37 article-title: Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis publication-title: EMBO J. doi: 10.1038/sj.emboj.7601539 – ident: ref_30 doi: 10.1186/1471-2334-12-321 – volume: 278 start-page: 8508 year: 2003 ident: ref_49 article-title: Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208231200 – volume: 2010 start-page: 532704 year: 2010 ident: ref_4 article-title: Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury publication-title: Stem Cells Int. doi: 10.4061/2010/532704 – volume: 5 start-page: 1386 year: 2015 ident: ref_54 article-title: Transcription of Interleukin-8: How Altered Regulation Can Affect Cystic Fibrosis Lung Disease publication-title: Biomolecules doi: 10.3390/biom5031386 – volume: 108 start-page: 545 year: 2020 ident: ref_25 article-title: Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.36835 – volume: 318 start-page: C848 year: 2020 ident: ref_16 article-title: Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-mediated autophagy publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00041.2020 – volume: 24 start-page: 7806 year: 2004 ident: ref_40 article-title: NF-kappaB and AP-1 connection: Mechanism of NF-kappaB-dependent regulation of AP-1 activity publication-title: Mol. Cell Biol. doi: 10.1128/MCB.24.17.7806-7819.2004 – volume: 15 start-page: 675 year: 1997 ident: ref_59 article-title: Human chemokines: An update publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.675 – volume: 562 start-page: 128 year: 2018 ident: ref_67 article-title: Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival publication-title: Nature doi: 10.1038/s41586-018-0522-3 – volume: 7 start-page: 155 year: 2016 ident: ref_35 article-title: Localization of human adipose-derived stem cells and their effect in repair of diabetic foot ulcers in rats publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-016-0412-2 – volume: 10 start-page: 47 year: 2019 ident: ref_10 article-title: Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways publication-title: Stem Cell Res. Ther. doi: 10.1186/s13287-019-1152-x – volume: 2020 start-page: 5293850 year: 2020 ident: ref_81 article-title: Comparison of Proangiogenic Effects of Adipose-Derived Stem Cells and Foreskin Fibroblast Exosomes on Artificial Dermis Prefabricated Flaps publication-title: Stem Cells Int. doi: 10.1155/2020/5293850 – ident: ref_74 doi: 10.3390/ijms20040917 – ident: ref_75 doi: 10.3390/ijms22073684 – volume: 170 start-page: 3369 year: 2003 ident: ref_50 article-title: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis publication-title: J. Immunol. doi: 10.4049/jimmunol.170.6.3369 – volume: 253 start-page: 1278 year: 1991 ident: ref_57 article-title: Structure and functional expression of a human interleukin-8 receptor publication-title: Science doi: 10.1126/science.1840701 – volume: 7 start-page: 1535750 year: 2018 ident: ref_83 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 6 start-page: 1359478 year: 2017 ident: ref_84 article-title: Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2017.1359478 – volume: 96 start-page: 750 year: 2017 ident: ref_64 article-title: Targeting eIF4E inhibits growth, survival and angiogenesis in retinoblastoma and enhances efficacy of chemotherapy publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.10.034 – volume: 33 start-page: 2325 year: 2013 ident: ref_71 article-title: β1-integrin is essential for vasoregulation and smooth muscle survival in vivo publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.112.300648 – volume: 302 start-page: 275 year: 2003 ident: ref_55 article-title: Vasoactive intestinal peptide inhibits IL-8 production in human monocytes by downregulating nuclear factor kappaB-dependent transcriptional activity publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(03)00149-9 – volume: 23 start-page: 23 year: 2007 ident: ref_42 article-title: The PKA/CREB pathway is closely involved in VEGF expression in mouse macrophages publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)07385-5 – ident: ref_11 doi: 10.3390/ijms20153721 – volume: 11 start-page: 98 year: 2020 ident: ref_66 article-title: Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling publication-title: Cell Death Dis. doi: 10.1038/s41419-020-2288-4 – ident: ref_31 doi: 10.3390/pathogens9010006 – volume: 1 start-page: 159 year: 2012 ident: ref_7 article-title: The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype publication-title: Adv. Wound Care doi: 10.1089/wound.2012.0361 – volume: 109 start-page: 1253 year: 1999 ident: ref_61 article-title: Expression of eIF4E during head and neck tumorigenesis: Possible role in angiogenesis publication-title: Laryngoscope doi: 10.1097/00005537-199908000-00013 – volume: 20 start-page: 383 year: 2011 ident: ref_8 article-title: Adipose-derived stem cells as a new therapeutic modality for ageing skin publication-title: Exp. Dermatol. doi: 10.1111/j.1600-0625.2010.01221.x – volume: 1295 start-page: 179 year: 2015 ident: ref_18 article-title: A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2550-6_15 – volume: 267 start-page: 232 year: 2014 ident: ref_45 article-title: Curculigoside A induces angiogenesis through VCAM-1/Egr-3/CREB/VEGF signaling pathway publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.02.050 – volume: 34 start-page: 1155 year: 2010 ident: ref_47 article-title: Down-regulation of CREB-binding protein expression inhibits thrombin-induced proliferation of endothelial cells: Possible relevance to PDGF-B publication-title: Cell Biol. Int. doi: 10.1042/CBI20090304 – volume: 27 start-page: 172 year: 2017 ident: ref_79 article-title: Extracellular Vesicles: Unique Intercellular Delivery Vehicles publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.11.003 – volume: 28 start-page: 1703 year: 2008 ident: ref_68 article-title: Integrins: The keys to unlocking angiogenesis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.172015 – volume: 2015 start-page: 657086 year: 2015 ident: ref_19 article-title: Exosomes: Novel biomarkers for clinical diagnosis publication-title: Sci. World J. doi: 10.1155/2015/657086 – volume: 141 start-page: 1279 year: 1992 ident: ref_53 article-title: Interleukin-8. A corneal factor that induces neovascularization publication-title: Am. J. Pathol. – ident: ref_22 doi: 10.1371/journal.pone.0225472 – volume: 44 start-page: 2105 year: 2017 ident: ref_80 article-title: Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury publication-title: Cell Physiol. Biochem. doi: 10.1159/000485949 – volume: 40 start-page: 480 year: 2016 ident: ref_28 article-title: Lipopolysaccharide modification in Gram-negative bacteria during chronic infection publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuw007 – volume: 4 start-page: e1669 year: 2016 ident: ref_76 article-title: Role of heparan sulfate in mediating CXCL8-induced endothelial cell migration publication-title: PeerJ doi: 10.7717/peerj.1669 – volume: 23 start-page: 4959 year: 2003 ident: ref_36 article-title: Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): Role of cytoplasmic trapping of HIF-2alpha publication-title: Mol. Cell Biol. doi: 10.1128/MCB.23.14.4959-4971.2003 – ident: ref_27 doi: 10.1128/ecosalplus.esp-0001-2018 – volume: 128 start-page: 2602 year: 2011 ident: ref_46 article-title: VEGF stimulates PKD-mediated CREB-dependent orphan nuclear receptor Nurr1 expression: Role in VEGF-induced angiogenesis publication-title: Int. J. Cancer doi: 10.1002/ijc.25600 – volume: 2 start-page: 123 year: 2004 ident: ref_29 article-title: Pathogenic Escherichia coli publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro818 – volume: 29 start-page: 503 year: 2009 ident: ref_32 article-title: Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.178962 – volume: 529 start-page: 519 year: 2020 ident: ref_63 article-title: Inhibition of eIF4E signaling by ribavirin selectively targets lung cancer and angiogenesis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.05.127 – ident: ref_85 doi: 10.1371/journal.pone.0027385 – volume: 54 start-page: e12993 year: 2021 ident: ref_17 article-title: Exosomes from adipose-derived stem cells and application to skin wound healing publication-title: Cell Prolif. doi: 10.1111/cpr.12993 – volume: 112 start-page: 384 year: 2021 ident: ref_33 article-title: Stem cell-derived exosomes for wound healing: Current status and promising directions publication-title: Minerva Med. doi: 10.23736/S0026-4806.20.07205-5 – volume: 29 start-page: 8493 year: 2009 ident: ref_41 article-title: Induction of neuronal vascular endothelial growth factor expression by cAMP in the dentate gyrus of the hippocampus is required for antidepressant-like behaviors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1321-09.2009 – volume: 15 start-page: 2583 year: 2009 ident: ref_48 article-title: CREB in the pathophysiology of cancer: Implications for targeting transcription factors for cancer therapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1137 – ident: ref_12 doi: 10.3390/bioengineering6010004 – volume: 7 start-page: 19709 year: 2016 ident: ref_77 article-title: Oncogenic epithelial cell-derived exosomes containing Rac1 and PAK2 induce angiogenesis in recipient endothelial cells publication-title: Oncotarget doi: 10.18632/oncotarget.7573 – volume: 117 start-page: 2638 year: 2007 ident: ref_62 article-title: Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity publication-title: J. Clin. Investig. doi: 10.1172/JCI32044 – volume: 11 start-page: 183 year: 2015 ident: ref_6 article-title: Mesenchymal stem cells: Potential for therapy and treatment of chronic non-healing skin wounds publication-title: Organogenesis doi: 10.1080/15476278.2015.1126018 – volume: 514 start-page: 1 year: 2005 ident: ref_65 article-title: Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2005.02.050 – volume: 18 start-page: 5 year: 2017 ident: ref_86 article-title: Protein-Protein Interaction (PPI) Network: Recent Advances in Drug Discovery publication-title: Curr. Drug Metab. doi: 10.2174/138920021801170119204832 – volume: 49 start-page: 291 year: 2011 ident: ref_56 article-title: NF-κB and CREB are involved in IL-8 production of human neutrophils induced by Trichomonas vaginalis-derived secretory products publication-title: Korean J. Parasitol. doi: 10.3347/kjp.2011.49.3.291 – volume: 12 start-page: 45 year: 2016 ident: ref_3 article-title: Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing publication-title: Exp. Ther. Med. doi: 10.3892/etm.2016.3309 – volume: 1119 start-page: 119 year: 2018 ident: ref_20 article-title: Mesenchymal Stem Cells-Derived Exosomes for Wound Regeneration publication-title: Adv. Exp. Med. Biol. doi: 10.1007/5584_2018_251 |
SSID | ssj0023259 |
Score | 2.4023626 |
Snippet | Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8877 |
SubjectTerms | Angiogenesis Binding sites Cell adhesion & migration Cell Movement Cell Proliferation Cells, Cultured Diabetes Exosomes - physiology Genes Human Umbilical Vein Endothelial Cells - cytology Human Umbilical Vein Endothelial Cells - drug effects Human Umbilical Vein Endothelial Cells - physiology Humans Infections Lipopolysaccharides - pharmacology Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - physiology Neovascularization, Physiologic Neutrophils Proteins Signal Transduction Stem cells Tissue engineering Vascular endothelial growth factor Wound healing |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFcEX8bvRViLok4Qmu9lc8lDkWq8U0UOshb6FTTLbRi4fmjvp_ffO5Mueoq-7AwkzOzO_2Z0PgNdGhYGO_MRJ_IyvbgySHeQC5oSiZ0LQIjRc7_xpEZxd-B8u1eUOLIZaGE6rHGxia6izKuU78kPRFjKQh5bv6u8OT43i19VhhIbuRytkR22LsTuwSyZZuRPYPZ4vPn8ZQzAp2vFpHnklJ1BR0KXCSwr8D_NvRSOEF5DWTbed1F_I888Eylse6fQB3O-hpD3rZP8QdrB8BHe74ZKbx1CQ6nPGOWb2rLzKqyu2anljJxt7flM1VYGNfc6gkTAnL86yvK4adN7TmfxJS-crLOwTXC4be11Xpf2RtutquWmIC9cUYWdIJHnRj_96Ahen868nZ04_XMFJfU-sHCkpUghUqlEbUmtfman0xJT01_jG0zryEvS0ktoN0xCNSg0X8Qoj0HWNKxL5FCZlVeIe2DIzQRbJzA0x9FXiaU8lkU7RxVRTtIgWvB24Gad953EegLGMKQJh3se3eW_Bm5G67jpu_INufxBM3OtdE_8-JRa8GrdJY_gZRJdYrYmGECx3yQtcC551chw_JGldqVBYMN2S8EjA3bi3d8r8uu3KTUgzIN_-_P-_9QLuCc6K4aa64T5MVj_WeECwZpW87M_qL1Lk-eY priority: 102 providerName: ProQuest |
Title | Increased Angiogenesis by Exosomes Secreted by Adipose-Derived Stem Cells upon Lipopolysaccharide Stimulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34445582 https://www.proquest.com/docview/2624240253 https://www.proquest.com/docview/2566044460 https://pubmed.ncbi.nlm.nih.gov/PMC8396299 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uA8EX8dvoWSLok0ST3WySPojUs_UQPcSz0LewSWbPSD7qpZXrf-9Mkoarp-BLHnYnLMzs7Pxmdz4AnhsVBXrsJ07iZ3x1Y5DOQU5gTsh7JgQtIsP5zp9Pg5O5_3GhFnuw7TbaM7D5q2vH_aTmF8Wry5-bt6Twb9jjJJf9df6jbITwAtKXcB8O25ciDuLzh_cEgg1t2zS-8HD4gO5C4K_9vWucriHOPwMnr1ii2W241UNIe9LJ_A7sYXUXbnRNJTf3oCSV50hzzOxJdZ7X53ya5Y2dbOzpZd3UJTb2GYNFwpo8OMnyZd2g85724i8aOlthaR9jUTT2ellX9ieaXtbFptEpp2jlGRJJXvZtv-7DfDb9dnzi9E0VnNT3xMqRkjyEQKUatSF19pUJpSdC0lvjG0_rsZegp5XUbpRGaFRqOHlXGIGua1yRyAdwUNUVPgJbZibIxjJzI4x8lXjaU8lYp-hiqslLRAtebrkZp33FcW58UcTkeTDv46u8t-DFQL3sKm38g-5oK5h4u11i0aa5EH6TFjwbpklT-PlDV1iviYaQK1fHC1wLHnZyHBaSNK5UJCwIdyQ8EHAV7t2ZKv_eVuMmhBmQTX_8H-s-gZuCQ2K4om50BAerizU-JUyzSkawHy5C-kazDyM4fDc9_fJ1xFZGjdqN_BtGffxm |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAkaiJ2TV3vU69qFCoU2V0jRCtJV6M2t7tzWKH-AEyJ_jtzHjFw0Ibr3ujmxrXvvNeh4Ar7XwPRm4kRW5CV3daIV-kAqYI4yeEUEzX1O98_HMm5y578_F-Qb87GphKK2y84m1o06KmO7Id1hdyIAnNH9bfrFoahT9Xe1GaMh2tEKyW7cYaws7jtTqO4Zw1e7hPsp7m7GD8enexGqnDFix67CFxTlCZk_EUkmN-u0KPeQOG6Iia1c7UgZOpBwpuLT92FdaxJqqWZlmyra1zSKOz70Bmy5doAxg89149uFjH_JxVo9rc_AUtDwReE3qPeeBvZN-zirGHA-tfLh-KP6FdP9M2LxyAh7chTstdDVHja7dgw2V34ebzTDL1QPI0NVQhrtKzFF-kRYX5EXTyoxW5vhHURWZqswTAqmIcWlxlKRlUSlrH23gGy6dLFRm7qn5vDKXZZGbU9wui_mqQq5fYkSfKCRJs3bc2EM4uxY2P4JBXuTqCZg80V4S8MT2le-KyJGOiAIZK1vFEqNTZcCbjpth3HY6p4Eb8xAjHuJ9eJX3Bmz31GXT4eMfdFudYMLWzqvwt1Ya8KrfRgul3y4yV8USaRAxU1c-zzbgcSPH_kUc14XwmQHDNQn3BNT9e30nTy_rLuCIbD3EEk___1kv4dbk9HgaTg9nR8_gNqOMHGro62_BYPF1qZ4jpFpEL1q9NeHTdZvKL1mINjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VViAuiDeGAkaiJ2TF3vX6cahQaBK1tEQVpVJv7tqebY3iBzgB8hf5VczajmlAcOt1d2Rbs_P4xjsPgNdKBJ4M3diK3VT_ulFIdlAXMMcUPROCZoHS9c4fpt7-qfv-TJxtwM9VLYxOq1zZxMZQp2Wi_5EPWFPIQB6aD1SXFnE8mrytvlh6gpS-aV2N05DdmIV0t2k31hV5HOLyO4Vz9e7BiM5-h7HJ-NPevtVNHLAS12Fzi3OCz55IJEpFsu4K5XOH-STUylWOlKEToyMFl3aQBKhEonRlK1MMbVvZLOb03Buw5ZPXp0Bw6914evyxD_84a0a3OeQRLU-EXpuGz3loD7LPec2Y45HG--sO8i_U-2fy5hVvOLkLdzoYaw5bubsHG1jch5vtYMvlA8jJ7Ohsd0zNYXGRlRfaoma1GS_N8Y-yLnOszRMNWAnv6sVhmlVljdaI9OEbLZ3MMTf3cDarzUVVFuYRbVflbFkT1y8puk-RSLK8Gz32EE6vhc2PYLMoC3wCJk-Vl4Y8tQMMXBE70hFxKBO0MZEUqaIBb1bcjJKu67kevjGLKPrRvI-u8t6AnZ66art9_INue3UwUafzdfRbQg141W-TtuorGFlguSAaQs-6Q59nG_C4Pcf-RZzWhQiYAf7aCfcEuhP4-k6RXTYdwQnleoQrnv7_s17CLVKZ6OhgevgMbjOdnKN7-wbbsDn_usDnhK7m8YtObE04v25N-QW97Dp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+Angiogenesis+by+Exosomes+Secreted+by+Adipose-Derived+Stem+Cells+upon+Lipopolysaccharide+Stimulation&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Wu%2C+Shao-Chun&rft.au=Kuo%2C+Pao-Jen&rft.au=Rau%2C+Cheng-Shyuan&rft.au=Huang%2C+Lien-Hung&rft.date=2021-08-18&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=16&rft_id=info:doi/10.3390%2Fijms22168877&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |