Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesir...
Saved in:
| Published in | Advanced materials (Weinheim) Vol. 30; no. 25; pp. e1707629 - n/a |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
Wiley Subscription Services, Inc
01.06.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0935-9648 1521-4095 1521-4095 |
| DOI | 10.1002/adma.201707629 |
Cover
| Abstract | Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.
A dual‐layered film is obtained on a Li metal anode by spontaneous chemical reaction between lithium plates and fluoroethylene carbonate solvents. Such film can protect the Li metal anodes from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. |
|---|---|
| AbstractList | Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. A dual‐layered film is obtained on a Li metal anode by spontaneous chemical reaction between lithium plates and fluoroethylene carbonate solvents. Such film can protect the Li metal anodes from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO Li and ROLi) on the top and abundant inorganic components (Li CO and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO 2 Li and ROLi) on the top and abundant inorganic components (Li 2 CO 3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO2 Li and ROLi) on the top and abundant inorganic components (Li2 CO3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO2 Li and ROLi) on the top and abundant inorganic components (Li2 CO3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. |
| Author | Huang, Jia‐Qi Li, Wen‐Jun Zhang, Qiang Cheng, Xin‐Bing Tian, Yang Zhang, Xue‐Qiang Yan, Chong Chen, Xiang |
| Author_xml | – sequence: 1 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 2 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing organization: Tsinghua University – sequence: 3 givenname: Yang surname: Tian fullname: Tian, Yang organization: Beijing Institute of Technology – sequence: 4 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 5 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Tsinghua University – sequence: 6 givenname: Wen‐Jun surname: Li fullname: Li, Wen‐Jun organization: Chinese Academy of Sciences – sequence: 7 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology – sequence: 8 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29676037$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctq4zAUhsWQMk3S2XY5GLqZjVNdbNlahlw6Ayntot2Oka1jqiJbGUmmZDeP0Gfsk1QhnQwUSjcSgu875-j8EzTqbQ8InRM8IxjTS6k6OaOYFLjgVHxBY5JTkmZY5CM0xoLlqeBZeYom3j9ijAXH_Cs6pYIXHLNijH4vB2le_j5v5A4cqGStTZfcOhugCfG50eFBD11yDUGaZN5bBUmwyaqXtYFkCb1yOkD01w7gSC9ha70O2vZn6KSVxsO3t3uK7teru8XPdHNz9Wsx36RNRqhI27ooWyJpLZtSCKKAS8UEUzQXZV3zTDWtFIwJTilrW6kypjhXNS3bmsSTsin6cai7dfbPAD5UnfYNGCN7sIOvKKZl_HvJy4hevEMf7eD6OF2k8pxnoshwpL6_UUPdgaq2TnfS7ap_m4vA7AA0znrvoD0iBFf7aKp9NNUxmihk74RGB7lfUnBSm481cdCetIHdJ02q-fJ6_t99BYhJpD8 |
| CitedBy_id | crossref_primary_10_1039_D4EE06048B crossref_primary_10_1002_eem2_12861 crossref_primary_10_1021_acsaem_0c01232 crossref_primary_10_1002_anie_202106237 crossref_primary_10_1021_acsami_9b08438 crossref_primary_10_1016_j_cej_2023_148094 crossref_primary_10_1063_5_0068465 crossref_primary_10_1002_adma_202202668 crossref_primary_10_1021_acsami_9b22968 crossref_primary_10_1002_adfm_202102336 crossref_primary_10_1002_aenm_201802365 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1021_acsami_9b05056 crossref_primary_10_1016_j_nanoen_2019_05_020 crossref_primary_10_1002_ange_201915440 crossref_primary_10_1002_ente_202400374 crossref_primary_10_1002_adfm_202205304 crossref_primary_10_1002_asia_202300453 crossref_primary_10_1002_celc_201801410 crossref_primary_10_1038_s41467_020_20339_1 crossref_primary_10_1016_j_jcis_2023_06_147 crossref_primary_10_1016_j_electacta_2024_144834 crossref_primary_10_1038_s41578_021_00320_0 crossref_primary_10_1002_adfm_202009694 crossref_primary_10_1063_5_0083830 crossref_primary_10_1002_bte2_20240051 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1002_adma_202416377 crossref_primary_10_1039_C9TA01834D crossref_primary_10_1002_ente_202100087 crossref_primary_10_1016_j_ensm_2018_12_007 crossref_primary_10_1039_D0TA01060J crossref_primary_10_1149_1945_7111_ab7aa0 crossref_primary_10_1002_smll_202001992 crossref_primary_10_1016_j_apsusc_2021_151439 crossref_primary_10_1002_adma_201907516 crossref_primary_10_1039_D1TA04741H crossref_primary_10_1134_S1023193522030041 crossref_primary_10_1002_adma_202209140 crossref_primary_10_1002_ange_202116586 crossref_primary_10_1002_smll_202205233 crossref_primary_10_1021_acssuschemeng_1c00878 crossref_primary_10_1002_advs_202104391 crossref_primary_10_1021_acsaem_4c00667 crossref_primary_10_1002_cssc_202301777 crossref_primary_10_1007_s11581_019_02993_8 crossref_primary_10_1002_batt_202100347 crossref_primary_10_1002_smll_202106983 crossref_primary_10_1039_D4TA01708K crossref_primary_10_1021_acsami_9b09551 crossref_primary_10_1021_acs_nanolett_1c01137 crossref_primary_10_1002_eem2_12622 crossref_primary_10_1021_acsaem_2c00573 crossref_primary_10_1021_acsami_2c12136 crossref_primary_10_1039_C8SC05178J crossref_primary_10_1021_acsami_0c08094 crossref_primary_10_1016_j_ensm_2018_03_024 crossref_primary_10_1021_acs_nanolett_0c00201 crossref_primary_10_1021_acs_chemrev_1c00838 crossref_primary_10_1002_adfm_202006033 crossref_primary_10_1016_j_cej_2022_134698 crossref_primary_10_1002_aesr_202100186 crossref_primary_10_1021_acsami_9b21679 crossref_primary_10_1016_j_jechem_2020_09_030 crossref_primary_10_1016_j_cej_2024_150667 crossref_primary_10_1039_D1TA09575G crossref_primary_10_1002_anie_202216934 crossref_primary_10_1002_aenm_202203687 crossref_primary_10_1002_adfm_202408365 crossref_primary_10_1002_adfm_202007255 crossref_primary_10_1002_er_8117 crossref_primary_10_1002_smll_202301740 crossref_primary_10_3390_inorganics10010005 crossref_primary_10_1021_acsnano_2c05016 crossref_primary_10_1002_adma_202308507 crossref_primary_10_1021_acsami_8b14045 crossref_primary_10_1002_nano_202000164 crossref_primary_10_1021_acsami_0c07904 crossref_primary_10_1002_smtd_202201435 crossref_primary_10_1021_acsnano_2c04170 crossref_primary_10_1016_j_matt_2019_06_020 crossref_primary_10_1021_acs_jpcc_1c09488 crossref_primary_10_1002_ange_202016608 crossref_primary_10_1002_anie_202016608 crossref_primary_10_1016_j_jelechem_2021_115499 crossref_primary_10_1016_j_cej_2021_129965 crossref_primary_10_1021_acsnano_1c04642 crossref_primary_10_1039_C9SC01845J crossref_primary_10_1073_pnas_2211059119 crossref_primary_10_1149_1945_7111_ac91aa crossref_primary_10_1002_anie_202315122 crossref_primary_10_1002_ange_202106237 crossref_primary_10_1021_acsami_0c20099 crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1016_j_cej_2023_148020 crossref_primary_10_1002_adfm_202111026 crossref_primary_10_1007_s12221_022_4953_y crossref_primary_10_1016_j_memsci_2020_118424 crossref_primary_10_1021_acsaem_0c01758 crossref_primary_10_1016_j_jpowsour_2021_229744 crossref_primary_10_1002_aenm_201901967 crossref_primary_10_1016_j_jechem_2022_08_021 crossref_primary_10_1002_anie_202110589 crossref_primary_10_1021_acsami_9b08703 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1002_adma_202206625 crossref_primary_10_1039_D0CP03487H crossref_primary_10_1039_D2TA01515C crossref_primary_10_1016_j_cej_2022_140375 crossref_primary_10_1021_acs_nanolett_3c03340 crossref_primary_10_1002_aenm_202002373 crossref_primary_10_1007_s11998_022_00690_2 crossref_primary_10_1039_C9TA02407G crossref_primary_10_1002_anie_201914417 crossref_primary_10_1002_eom2_12264 crossref_primary_10_1002_adma_201905873 crossref_primary_10_1002_admi_202001698 crossref_primary_10_1002_adma_201906722 crossref_primary_10_1021_acsenergylett_8b00935 crossref_primary_10_1021_acsami_9b04122 crossref_primary_10_1021_acs_chemmater_9b04043 crossref_primary_10_1063_5_0107648 crossref_primary_10_1039_C8TA09380F crossref_primary_10_3390_en14175220 crossref_primary_10_1016_j_ensm_2018_06_024 crossref_primary_10_1002_aenm_202302565 crossref_primary_10_1016_j_ensm_2021_02_041 crossref_primary_10_1021_acsami_4c10070 crossref_primary_10_1002_chem_202302773 crossref_primary_10_1002_eom2_12010 crossref_primary_10_1021_acsnano_4c05040 crossref_primary_10_1002_adma_201904537 crossref_primary_10_1002_adfm_202300892 crossref_primary_10_1002_adma_202205751 crossref_primary_10_1002_nano_202000003 crossref_primary_10_1021_acsami_1c20976 crossref_primary_10_1016_j_ensm_2019_08_024 crossref_primary_10_1021_acsaem_1c00615 crossref_primary_10_1002_aenm_202302577 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1021_acsami_2c07917 crossref_primary_10_1007_s12598_023_02319_8 crossref_primary_10_20517_cs_2024_66 crossref_primary_10_1002_smll_202301523 crossref_primary_10_1002_adma_202200181 crossref_primary_10_1039_D2TA09182H crossref_primary_10_1002_batt_202000016 crossref_primary_10_1002_aenm_202100935 crossref_primary_10_1039_D4CC06729K crossref_primary_10_1002_admi_202000154 crossref_primary_10_1002_aenm_202001235 crossref_primary_10_1021_acsenergylett_1c00150 crossref_primary_10_1002_adma_201808393 crossref_primary_10_1016_j_est_2024_110976 crossref_primary_10_1039_D0TA12508C crossref_primary_10_1039_D0CP00151A crossref_primary_10_1002_anie_201915440 crossref_primary_10_1016_j_cej_2021_132156 crossref_primary_10_1016_j_jcis_2022_09_026 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1007_s12274_023_5889_2 crossref_primary_10_1002_smll_202205142 crossref_primary_10_1016_j_jcis_2022_08_101 crossref_primary_10_1002_chem_202000467 crossref_primary_10_1021_acsnano_2c08480 crossref_primary_10_1002_aenm_202201411 crossref_primary_10_1021_acs_iecr_2c00958 crossref_primary_10_1002_smll_202200919 crossref_primary_10_1039_D1CC03044B crossref_primary_10_3389_fmats_2019_00267 crossref_primary_10_1016_j_jechem_2022_07_032 crossref_primary_10_1039_C9NR05670J crossref_primary_10_1002_adma_201902399 crossref_primary_10_1002_anie_202110441 crossref_primary_10_1021_acssuschemeng_2c01368 crossref_primary_10_1002_adfm_201809219 crossref_primary_10_1039_D1EE00110H crossref_primary_10_1002_smll_202405453 crossref_primary_10_1039_C9NR06544J crossref_primary_10_1002_smll_202207222 crossref_primary_10_1016_j_cej_2022_134637 crossref_primary_10_1016_j_apsusc_2023_156447 crossref_primary_10_1016_j_jcis_2024_04_029 crossref_primary_10_1016_j_nanoen_2020_105068 crossref_primary_10_1002_adfm_202009805 crossref_primary_10_1002_aenm_202002654 crossref_primary_10_1002_advs_202104635 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1016_j_ensm_2019_07_026 crossref_primary_10_1002_ente_202000348 crossref_primary_10_1002_aenm_201804000 crossref_primary_10_1002_smll_202000756 crossref_primary_10_1016_j_nanoen_2019_103910 crossref_primary_10_1021_acsaem_9b02337 crossref_primary_10_1021_acsenergylett_3c01357 crossref_primary_10_1002_ange_201805456 crossref_primary_10_1021_acsami_8b16080 crossref_primary_10_1002_batt_202000192 crossref_primary_10_1016_j_cej_2020_124848 crossref_primary_10_1002_anie_202100494 crossref_primary_10_1038_s41467_021_23155_3 crossref_primary_10_1039_D1EE01140E crossref_primary_10_1039_D0TA02410D crossref_primary_10_1039_D1QM00474C crossref_primary_10_1038_s41598_023_36341_8 crossref_primary_10_1002_aenm_201900487 crossref_primary_10_1002_aenm_202103589 crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1039_D3DT00260H crossref_primary_10_1002_adfm_202009917 crossref_primary_10_1016_j_mtener_2020_100465 crossref_primary_10_1002_aenm_202103480 crossref_primary_10_1002_aenm_201903843 crossref_primary_10_1016_j_jechem_2020_07_036 crossref_primary_10_1002_advs_202100488 crossref_primary_10_1021_acsaem_2c03181 crossref_primary_10_1016_j_jechem_2022_09_007 crossref_primary_10_1002_anie_201813905 crossref_primary_10_1021_acsami_9b03682 crossref_primary_10_1016_j_jpowsour_2019_01_016 crossref_primary_10_1021_acsami_4c13277 crossref_primary_10_1002_adma_202102034 crossref_primary_10_1016_j_jechem_2022_12_060 crossref_primary_10_1126_sciadv_adf1550 crossref_primary_10_1002_adma_202002850 crossref_primary_10_1038_s41467_019_13436_3 crossref_primary_10_1021_acsami_9b04898 crossref_primary_10_1002_aenm_201901796 crossref_primary_10_3390_en14227467 crossref_primary_10_1002_adma_201908293 crossref_primary_10_1002_smll_202405143 crossref_primary_10_1021_acsaem_1c03976 crossref_primary_10_1002_inf2_12000 crossref_primary_10_1021_acsami_3c02728 crossref_primary_10_1021_acsami_0c21301 crossref_primary_10_1039_C9RA09481D crossref_primary_10_1002_ange_202400619 crossref_primary_10_1002_aenm_201901486 crossref_primary_10_1016_j_elecom_2022_107395 crossref_primary_10_1002_adma_202303710 crossref_primary_10_1007_s11814_024_00241_y crossref_primary_10_1016_j_est_2022_106075 crossref_primary_10_1016_j_cclet_2019_06_013 crossref_primary_10_1016_j_mtener_2023_101341 crossref_primary_10_1021_acsenergylett_8b02483 crossref_primary_10_1039_D0TA03774E crossref_primary_10_1021_acsaem_3c00335 crossref_primary_10_1021_acsami_9b18703 crossref_primary_10_1016_j_cej_2021_129494 crossref_primary_10_1007_s12613_024_2996_3 crossref_primary_10_1016_j_electacta_2020_135772 crossref_primary_10_1016_j_mtener_2021_100930 crossref_primary_10_1039_D0CC05084A crossref_primary_10_1002_adfm_202104395 crossref_primary_10_1016_j_jpowsour_2019_04_090 crossref_primary_10_1021_acssuschemeng_2c03271 crossref_primary_10_1016_j_ensm_2019_11_007 crossref_primary_10_1039_C8CC09372E crossref_primary_10_1002_adfm_202004664 crossref_primary_10_1002_adma_201806470 crossref_primary_10_1039_D2TA07985B crossref_primary_10_1360_SSC_2024_0082 crossref_primary_10_1016_j_cej_2023_144477 crossref_primary_10_1039_C8TA05336G crossref_primary_10_1039_C8TA07612J crossref_primary_10_1039_D1TA03059K crossref_primary_10_1149_1945_7111_acd587 crossref_primary_10_1016_j_ensm_2018_07_010 crossref_primary_10_1007_s11581_024_05618_x crossref_primary_10_1002_advs_202300985 crossref_primary_10_1016_j_ensm_2019_09_020 crossref_primary_10_1002_er_6846 crossref_primary_10_1016_j_apsusc_2022_152885 crossref_primary_10_1002_ange_202216934 crossref_primary_10_1039_D3CE01005H crossref_primary_10_1002_adma_201902785 crossref_primary_10_1016_j_jechem_2022_10_026 crossref_primary_10_1016_j_jechem_2020_06_060 crossref_primary_10_1002_advs_202201297 crossref_primary_10_1016_j_ensm_2018_07_004 crossref_primary_10_1002_aenm_202102242 crossref_primary_10_1002_aenm_202103332 crossref_primary_10_1002_ange_202315122 crossref_primary_10_1039_D0TA09753E crossref_primary_10_1039_D4QI00632A crossref_primary_10_1002_ange_202100494 crossref_primary_10_1002_inf2_12046 crossref_primary_10_35534_spe_2023_10003 crossref_primary_10_1021_acsami_1c04972 crossref_primary_10_1021_acsaem_9b00766 crossref_primary_10_1021_acsami_3c19580 crossref_primary_10_1002_smtd_202101613 crossref_primary_10_1021_jacs_1c04222 crossref_primary_10_1016_j_trechm_2020_10_008 crossref_primary_10_1021_acsaem_1c01174 crossref_primary_10_1039_D4SE00548A crossref_primary_10_1002_adfm_201909887 crossref_primary_10_1021_acsami_1c24755 crossref_primary_10_1016_j_jechem_2020_08_019 crossref_primary_10_1149_1945_7111_ab981b crossref_primary_10_1016_j_ensm_2020_04_043 crossref_primary_10_34133_2022_9754612 crossref_primary_10_1007_s11664_021_08971_z crossref_primary_10_1016_j_ensm_2018_09_015 crossref_primary_10_1007_s11426_019_9519_9 crossref_primary_10_1002_smsc_202100058 crossref_primary_10_1021_acs_nanolett_0c00352 crossref_primary_10_1039_D1QM00185J crossref_primary_10_1002_adfm_202305674 crossref_primary_10_1039_C9TA02341K crossref_primary_10_1021_acsmaterialslett_9b00118 crossref_primary_10_1021_acs_accounts_0c00412 crossref_primary_10_2174_0115734110299035240422114008 crossref_primary_10_1002_inf2_12189 crossref_primary_10_1021_acsaem_2c03663 crossref_primary_10_1007_s11426_023_1845_7 crossref_primary_10_1039_D1TA06327H crossref_primary_10_1002_adma_201901820 crossref_primary_10_1021_acsami_3c06007 crossref_primary_10_1002_aenm_202000962 crossref_primary_10_1021_acsaem_9b00627 crossref_primary_10_1002_anie_202116586 crossref_primary_10_1016_j_matt_2022_01_017 crossref_primary_10_1016_j_jechem_2020_12_024 crossref_primary_10_1002_smll_202104390 crossref_primary_10_1016_j_ssi_2021_115831 crossref_primary_10_1039_C9EE02558H crossref_primary_10_1039_D1TC01905H crossref_primary_10_1016_j_jcis_2023_12_131 crossref_primary_10_1007_s12274_019_2481_x crossref_primary_10_1016_j_matt_2019_05_008 crossref_primary_10_1021_acs_jpcc_0c11194 crossref_primary_10_1002_anie_201805456 crossref_primary_10_1002_anie_202400619 crossref_primary_10_1002_ange_201813905 crossref_primary_10_1002_chem_201904631 crossref_primary_10_1002_adma_202304511 crossref_primary_10_1002_eem2_12474 crossref_primary_10_1038_s41560_025_01733_9 crossref_primary_10_1002_batt_202100075 crossref_primary_10_1021_acssuschemeng_9b03751 crossref_primary_10_1149_1945_7111_abaf9e crossref_primary_10_1002_adfm_202417296 crossref_primary_10_1021_acsami_2c00842 crossref_primary_10_1021_acsaem_1c03336 crossref_primary_10_1039_D0CS01017K crossref_primary_10_1021_acsaem_1c03333 crossref_primary_10_1002_eem2_12345 crossref_primary_10_1002_smtd_201900383 crossref_primary_10_1016_j_matt_2019_05_016 crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1021_acsami_1c06164 crossref_primary_10_1039_D3TA03877G crossref_primary_10_1002_ange_201914417 crossref_primary_10_1002_smtd_202300731 crossref_primary_10_1002_adma_202003657 crossref_primary_10_1002_smll_202007717 crossref_primary_10_1016_j_ensm_2019_03_029 crossref_primary_10_1021_acs_langmuir_2c03166 crossref_primary_10_1149_1945_7111_ad8d12 crossref_primary_10_1002_ange_202110441 crossref_primary_10_1021_acsami_8b17924 crossref_primary_10_1007_s41918_021_00109_3 crossref_primary_10_1002_smtd_201900177 crossref_primary_10_1002_adma_201804587 crossref_primary_10_1038_s41565_022_01107_2 crossref_primary_10_1002_adma_202201410 crossref_primary_10_1002_ente_201800768 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1021_acsami_2c19226 crossref_primary_10_1016_j_jechem_2020_07_030 crossref_primary_10_1002_adma_201902724 crossref_primary_10_1007_s40843_019_1277_3 crossref_primary_10_1002_smll_202307553 crossref_primary_10_1016_j_jechem_2021_09_040 crossref_primary_10_1149_1945_7111_abd1f3 crossref_primary_10_1002_batt_202100389 crossref_primary_10_1039_D0TA11444H crossref_primary_10_3390_ma16216995 crossref_primary_10_1002_adma_201908494 crossref_primary_10_1016_j_elecom_2020_106685 crossref_primary_10_1016_j_jechem_2020_08_044 crossref_primary_10_1002_adfm_201907006 crossref_primary_10_1021_acsami_1c01979 crossref_primary_10_1002_ange_202110589 crossref_primary_10_1186_s40580_020_00231_w crossref_primary_10_1002_aenm_201801528 crossref_primary_10_1038_s41467_019_09211_z crossref_primary_10_1002_batt_202300344 crossref_primary_10_12677_JOCR_2023_114024 crossref_primary_10_1002_adma_202311195 crossref_primary_10_1016_j_jechem_2022_02_041 crossref_primary_10_1002_adfm_201805301 crossref_primary_10_1002_adfm_201806752 crossref_primary_10_1039_D0MH01030H crossref_primary_10_1002_adfm_201910777 crossref_primary_10_1002_aesr_202100010 crossref_primary_10_1039_D3GC02151C crossref_primary_10_1007_s40843_022_2387_1 crossref_primary_10_1039_D1SC06181J crossref_primary_10_1016_j_ensm_2020_04_032 crossref_primary_10_3390_batteries9050283 |
| Cites_doi | 10.1021/jacs.7b06437 10.1038/nnano.2017.16 10.1021/jacs.7b06364 10.1002/adma.201605531 10.1021/acsenergylett.7b00619 10.1021/ja312241y 10.1016/0022-0728(93)02998-W 10.1021/acs.chemmater.5b03358 10.1038/nmat4041 10.1021/acsami.6b00831 10.1073/pnas.1708489114 10.1002/anie.201707093 10.1016/j.jpowsour.2016.07.056 10.1002/adma.201504526 10.1021/jp068691u 10.1093/nsr/nww078 10.1016/j.joule.2017.06.004 10.1016/j.chempr.2016.07.009 10.1002/adma.201701169 10.1021/acsnano.5b01990 10.1021/acsenergylett.7b00163 10.1002/advs.201600445 10.1038/ncomms8436 10.1002/admi.201700166 10.1021/acs.nanolett.7b01020 10.1002/anie.201702099 10.1002/adma.201700389 10.1021/acs.chemmater.7b00551 10.1021/acs.chemmater.7b03027 10.1002/adfm.201602353 10.1038/ncomms7362 10.1002/adma.201504117 10.1021/jacs.7b05251 10.1016/j.joule.2017.11.009 10.1002/advs.201600168 10.1016/j.chempr.2017.01.003 10.1002/adfm.201605989 10.1038/natrevmats.2016.13 10.1016/j.ensm.2016.01.007 10.1038/nenergy.2017.12 10.1021/acs.chemmater.6b00029 10.1016/j.ensm.2016.09.003 10.1002/adma.201700783 10.1016/j.mattod.2014.10.040 10.1021/acsenergylett.7b00300 10.1021/nl404471v 10.1038/nmat4821 10.1038/s41467-017-00519-2 10.1016/j.nanoen.2017.04.056 10.1002/adma.201603755 10.1021/jp404155y 10.1021/acs.jpcc.5b01228 10.1002/aenm.201402273 10.1002/adma.201501490 10.1021/acs.chemrev.7b00115 10.1149/2.008306jes 10.1002/adma.201700007 10.1002/advs.201500213 10.1016/j.nanoen.2017.07.052 10.1073/pnas.1600422113 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201707629 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 29676037 10_1002_adma_201707629 ADMA201707629 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Tsinghua National Laboratory for Information Science and Technology – fundername: National Natural Science Foundation of China funderid: 21776019; 21676160 – fundername: Young Elite Scientists Sponsorship Program by CAST funderid: 2015QNRC001 – fundername: National Key Research and Development Program funderid: 2016YFA0202500; 2016YFA0200102 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAHHS AAYOK ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE NPM RWI RWM WRC 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4129-fb78f1a2bac8991de6ad393d2598bb64dcfa93396223ffad43d66db28fb1b2823 |
| IEDL.DBID | DR2 |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 19:06:48 EDT 2025 Fri Jul 25 06:23:48 EDT 2025 Wed Feb 19 02:43:49 EST 2025 Thu Oct 09 00:09:05 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Wed Aug 20 07:25:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | lithium fluoride lithium metal anode fluoroethylene carbonate dendrite-free electrode rechargeable batteries |
| Language | English |
| License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4129-fb78f1a2bac8991de6ad393d2598bb64dcfa93396223ffad43d66db28fb1b2823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3929-1541 |
| PMID | 29676037 |
| PQID | 2055649740 |
| PQPubID | 2045203 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2028960868 proquest_journals_2055649740 pubmed_primary_29676037 crossref_primary_10_1002_adma_201707629 crossref_citationtrail_10_1002_adma_201707629 wiley_primary_10_1002_adma_201707629_ADMA201707629 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jun |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017 2017; 6 4 2017; 7 2015; 6 2017; 2 2017 2017 2015 2013 2013; 2 2 27 117 160 2015; 18 1994 2016; 367 28 2017; 27 2015; 9 2017 2016; 29 3 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017; 16 36 29 17 4 29 39 29 29 2 1 2017; 139 2016 2016 2017 2017 2017; 113 8 29 139 114 2016; 1 2015; 27 2017 2016 2017 2017 2016 2017; 29 28 29 56 1 1 2007; 111 2017; 56 2014; 14 2015; 119 2016 2017 2017 2017; 4 117 29 12 2015 2017; 5 4 2016; 28 2017 2013 2015 2016 2016 2017 2014; 2 135 6 3 327 8 13 2016; 26 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_3_3 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_7_1 e_1_2_4_3_4 e_1_2_4_5_2 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_10_1 e_1_2_4_10_2 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_10_4 e_1_2_4_10_5 e_1_2_4_14_1 e_1_2_4_10_6 e_1_2_4_16_1 e_1_2_4_10_7 e_1_2_4_10_8 e_1_2_4_16_3 e_1_2_4_18_1 e_1_2_4_10_9 e_1_2_4_16_2 e_1_2_4_16_5 e_1_2_4_18_3 e_1_2_4_16_4 e_1_2_4_18_2 e_1_2_4_10_11 e_1_2_4_18_5 e_1_2_4_16_6 e_1_2_4_18_4 Adams B. D. (e_1_2_4_25_1) 2017; 7 e_1_2_4_10_10 e_1_2_4_20_1 e_1_2_4_22_1 e_1_2_4_24_1 e_1_2_4_26_2 e_1_2_4_26_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_2 e_1_2_4_6_1 e_1_2_4_8_2 e_1_2_4_8_1 e_1_2_4_8_4 e_1_2_4_8_3 e_1_2_4_8_6 e_1_2_4_8_5 e_1_2_4_8_7 e_1_2_4_11_1 e_1_2_4_13_1 e_1_2_4_15_1 e_1_2_4_15_2 e_1_2_4_15_3 e_1_2_4_15_4 e_1_2_4_17_1 e_1_2_4_15_5 e_1_2_4_19_1 |
| References_xml | – volume: 29 28 29 56 1 1 start-page: 1700783 2155 1700389 7764 287 563 year: 2017 2016 2017 2017 2016 2017 publication-title: Adv. Mater. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Chem Joule – volume: 2 start-page: 1321 year: 2017 publication-title: ACS Energy Lett. – volume: 2 2 27 117 160 start-page: 1337 2228 5241 13403 A709 year: 2017 2017 2015 2013 2013 publication-title: ACS Energy Lett. ACS Energy Lett. Adv. Mater. J. Phys. Chem. C J. Electrochem. Soc. – volume: 139 start-page: 11550 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 16013 year: 2016 publication-title: Nat. Rev. Mater. – volume: 5 4 start-page: 1402273 1600168 year: 2015 2017 publication-title: Adv. Energy Mater. Adv. Sci. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 56 start-page: 14207 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 15288 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1605989 year: 2017 publication-title: Adv. Funct. Mater. – volume: 16 36 29 17 4 29 39 29 29 2 1 start-page: 572 411 1605531 3731 1700166 9182 662 1605531 1603755 258 871 year: 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 publication-title: Nat. Mater. Nano Energy Adv. Mater. Nano Lett. Adv. Mater. Interfaces Chem. Mater. Nano Energy Adv. Mater. Adv. Mater. Chem Joule – volume: 14 start-page: 1405 year: 2014 publication-title: Nano Lett. – volume: 7 start-page: 1702097 year: 2017 publication-title: Adv. Energy Mater. – volume: 26 start-page: 7094 year: 2016 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 27 start-page: 7990 year: 2015 publication-title: Chem. Mater. – volume: 367 28 start-page: 15 2147 year: 1994 2016 publication-title: J. Electroanal. Chem. Chem. Mater. – volume: 113 8 29 139 114 start-page: 7094 10617 4768 13779 11069 year: 2016 2016 2017 2017 2017 publication-title: Proc. Natl. Acad. Sci. USA ACS Appl. Mater. Interfaces Chem. Mater. J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 2 135 6 3 327 8 13 start-page: 17012 4450 7436 77 212 336 961 year: 2017 2013 2015 2016 2016 2017 2014 publication-title: Nat. Energy J. Am. Chem. Soc. Nat. Commun. Energy Storage Mater. J. Power Sources Nat. Commun. Nat. Mater. – volume: 29 3 start-page: 1701169 1500213 year: 2017 2016 publication-title: Adv. Mater. Adv. Sci. – volume: 111 start-page: 7411 year: 2007 publication-title: J. Phys. Chem. C – volume: 4 117 29 12 start-page: 54 10403 1700007 194 year: 2016 2017 2017 2017 publication-title: Natl. Sci. Rev. Chem. Rev. Adv. Mater. Nat. Nanotechnol. – volume: 119 start-page: 7060 year: 2015 publication-title: J. Phys. Chem. C – volume: 6 4 start-page: 18 1600445 year: 2017 2017 publication-title: Energy Storage Mater. Adv. Sci. – volume: 9 start-page: 6373 year: 2015 publication-title: ACS Nano – ident: e_1_2_4_17_1 doi: 10.1021/jacs.7b06437 – ident: e_1_2_4_3_4 doi: 10.1038/nnano.2017.16 – ident: e_1_2_4_15_4 doi: 10.1021/jacs.7b06364 – ident: e_1_2_4_10_3 doi: 10.1002/adma.201605531 – ident: e_1_2_4_18_2 doi: 10.1021/acsenergylett.7b00619 – ident: e_1_2_4_8_2 doi: 10.1021/ja312241y – ident: e_1_2_4_26_1 doi: 10.1016/0022-0728(93)02998-W – ident: e_1_2_4_21_1 doi: 10.1021/acs.chemmater.5b03358 – ident: e_1_2_4_8_7 doi: 10.1038/nmat4041 – ident: e_1_2_4_15_2 doi: 10.1021/acsami.6b00831 – ident: e_1_2_4_15_5 doi: 10.1073/pnas.1708489114 – ident: e_1_2_4_24_1 doi: 10.1002/anie.201707093 – ident: e_1_2_4_8_5 doi: 10.1016/j.jpowsour.2016.07.056 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201504526 – ident: e_1_2_4_22_1 doi: 10.1021/jp068691u – ident: e_1_2_4_3_1 doi: 10.1093/nsr/nww078 – ident: e_1_2_4_16_6 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_4_16_5 doi: 10.1016/j.chempr.2016.07.009 – ident: e_1_2_4_7_1 doi: 10.1002/adma.201701169 – ident: e_1_2_4_4_1 doi: 10.1021/acsnano.5b01990 – ident: e_1_2_4_18_1 doi: 10.1021/acsenergylett.7b00163 – ident: e_1_2_4_6_2 doi: 10.1002/advs.201600445 – ident: e_1_2_4_8_3 doi: 10.1038/ncomms8436 – ident: e_1_2_4_10_5 doi: 10.1002/admi.201700166 – ident: e_1_2_4_10_4 doi: 10.1021/acs.nanolett.7b01020 – ident: e_1_2_4_16_4 doi: 10.1002/anie.201702099 – ident: e_1_2_4_10_8 doi: 10.1002/adma.201605531 – ident: e_1_2_4_16_3 doi: 10.1002/adma.201700389 – ident: e_1_2_4_15_3 doi: 10.1021/acs.chemmater.7b00551 – ident: e_1_2_4_10_6 doi: 10.1021/acs.chemmater.7b03027 – ident: e_1_2_4_14_1 doi: 10.1002/adfm.201602353 – ident: e_1_2_4_13_1 doi: 10.1038/ncomms7362 – ident: e_1_2_4_16_2 doi: 10.1002/adma.201504117 – ident: e_1_2_4_12_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_4_10_11 doi: 10.1016/j.joule.2017.11.009 – ident: e_1_2_4_5_2 doi: 10.1002/advs.201600168 – ident: e_1_2_4_10_10 doi: 10.1016/j.chempr.2017.01.003 – volume: 7 start-page: 1702097 year: 2017 ident: e_1_2_4_25_1 publication-title: Adv. Energy Mater. – ident: e_1_2_4_9_1 doi: 10.1002/adfm.201605989 – ident: e_1_2_4_2_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_4_8_4 doi: 10.1016/j.ensm.2016.01.007 – ident: e_1_2_4_8_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_4_26_2 doi: 10.1021/acs.chemmater.6b00029 – ident: e_1_2_4_6_1 doi: 10.1016/j.ensm.2016.09.003 – ident: e_1_2_4_16_1 doi: 10.1002/adma.201700783 – ident: e_1_2_4_1_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_4_19_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_4_23_1 doi: 10.1021/nl404471v – ident: e_1_2_4_10_1 doi: 10.1038/nmat4821 – ident: e_1_2_4_8_6 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_4_10_2 doi: 10.1016/j.nanoen.2017.04.056 – ident: e_1_2_4_10_9 doi: 10.1002/adma.201603755 – ident: e_1_2_4_18_4 doi: 10.1021/jp404155y – ident: e_1_2_4_20_1 doi: 10.1021/acs.jpcc.5b01228 – ident: e_1_2_4_5_1 doi: 10.1002/aenm.201402273 – ident: e_1_2_4_18_3 doi: 10.1002/adma.201501490 – ident: e_1_2_4_3_2 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_4_18_5 doi: 10.1149/2.008306jes – ident: e_1_2_4_3_3 doi: 10.1002/adma.201700007 – ident: e_1_2_4_7_2 doi: 10.1002/advs.201500213 – ident: e_1_2_4_10_7 doi: 10.1016/j.nanoen.2017.07.052 – ident: e_1_2_4_15_1 doi: 10.1073/pnas.1600422113 |
| SSID | ssj0009606 |
| Score | 2.685991 |
| Snippet | Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for... Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1707629 |
| SubjectTerms | Anodes Anodic protection Batteries dendrite‐free electrode Dendritic structure Deposition Energy storage fluoroethylene carbonate Lithium Lithium batteries Lithium fluoride lithium metal anode Protective coatings Rechargeable batteries Storage systems Thermal runaway |
| Title | Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201707629 https://www.ncbi.nlm.nih.gov/pubmed/29676037 https://www.proquest.com/docview/2055649740 https://www.proquest.com/docview/2028960868 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CnLYD-wUsg01BmsQp0NiOkxyrtRWaKJqmIXEieo4draJNUUkOcOJP2N-4v2TPTpNSJjRpXKJYfk4c2y_-vsT-HsBnkSqWKvJvQsMiEMijQOUog0SiBeQxl07seXwmT87F14vo4sEu_kYfovvgZj3Dva-tg6O6OV6JhqJ2ukFhTEyc2R18IZeOU31f6UdZeO7E9qgKqRRJq9rYY8frxddnpb-g5jpydVPP6BVgW-lmxcnVUV2po_zukZ7jc57qNWwtcanfbwbSG9gw5Vt4-UCt8B1cDmqc_r7_dYq3NsCnP5pMZ_63RueBkqeT6ueknvljU9kLlXNt_GruD93mLH9gSr0geEvlRwtjOuuBaZeNbcP5aPjjy0mwDM8Q5IJQQlCoOClCZApzIm2hNhI1T7kmQpUoJYXOC0w5TyUhkKJALbiWNnpVUqiQjozvwGY5L8178DmBKCUEJj3MidBGiscEWzVRwwIZGu5B0HZPli-1y20IjWnWqC6zzLZb1rWbB4ed_XWj2vGk5X7b29nSe28oN4okDVTR8-Cgyya_sz9TsDTz2toQVZVECBMPdptR0t2KpTKWPR57wFxf_6MOWX8w7nepD_9TaA9e0HnSrGHbh81qUZuPhJYq9cl5xB_XLQtC |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuMwFL3isQAWDG8ywyNISKxCW9txkmU1pSrQIoRAYkVkx46oKCkqyWJmxSfwjfMlc500gYIQEmwiOb5OnNg3Pse5PgbYZ4EkgUT_RjTMHCao68hIcMfnwgByj_Jc7Ll3xjtX7OTaLaMJzVqYQh-imnAznpF_r42Dmwnp2otqqFC5cFDDQypOgmmYZRzJisFFFy8KUgag53J7WImAM7_UbayT2mT5yXHpHdicxK754NP-AbKsdhFzcneYpfIw-vtG0fFbz7UEi2NoajeLvrQMUzpZgYVXgoWrcNPKxODf03NX_DF7fNrt_uDePi-kHjDZ7ae3_eze7unUXCgZKm2nQ_soX59lt3SiRohwsXx7pHVl3dJl5NgaXLWPLn93nPEODU7EECg4sfT8uCGIFBHytobSXCgaUIWcypeSMxXFIqA04AhC4lgoRhU3G1j5sWzgkdB1mEmGid4EmyKOkowJvy4i5LSupB4iV4XsMBZEaGqBU7ZPGI3ly80uGoOwEF4moXlvYfXeLDio7B8K4Y4PLbfK5g7HDvyIua7Lsa-yugV7VTa6nvmfIhI9zIwNslWOnNC3YKPoJtWtSMA9XqeeBSRv7E_qEDZbvWaV-vmVQrsw17nsdcPu8dnpL5jH834R0rYFM-ko09sInlK5k7vHf5pQD2M |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BIiF6aPkpNLSUIFXilHbXdhz7uGoa9We3qlArcSKyY0es2GZX2-QAJx6BZ-RJOk42KQtCleASyfE4mdie-Jtk_A3AHpOaSI32jWiYBUzRMNCZ4oHgygHyiPKa7Hl8zo-v2OnHsI0mdHthGn6I7oObs4z6fe0M3M5NfnDHGqpMTRw0iNAVJ_IhPGKhFC6qL_5wxyDlAHpNt4dKSM5Ey9vYJwer7VfXpT_A5ip2rRefZAN0q3YTc_Jlvyr1fvbtN0bH_3qup7C-hKb-sJlLz-CBLZ7D2i-EhS_gU1yp6c_vP0bqq8vx6SeT6bV_0VA9YHE0KT9Pqmt_bEt3oWJmrF_O_KN6f5Yf28IsEOFi-2RhbScd2zZybBOukqPLw-NgmaEhyBgChSDXkcgHimiVod82MJYrQyU16FMJrTkzWa4kpZIjCMlzZRg13CWwErke4JHQl9ArZoXdAp8ijtKMKdFXGfq0oaYRIleD3mGuiLLUg6AdnzRb0pe7LBrTtCFeJqnrt7TrNw_ed_Lzhrjjr5I77XCnSwO-wdow5DhXWd-Dd101mp77n6IKO6ucDHqrHH1C4cGrZpp0tyKSR7xPIw9IPdj36JAO4_GwK73-l0Zv4fFFnKSjk_OzbXiCp0UT0bYDvXJR2TeInUq9W1vHLSxdDuc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Layered+Film+Protected+Lithium+Metal+Anode+to+Enable+Dendrite%E2%80%90Free+Lithium+Deposition&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Chong&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.au=Tian%2C+Yang&rft.au=Chen%2C+Xiang&rft.date=2018-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201707629&rft.externalDBID=10.1002%252Fadma.201707629&rft.externalDocID=ADMA201707629 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |