Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition

Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesir...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 25; pp. e1707629 - n/a
Main Authors Yan, Chong, Cheng, Xin‐Bing, Tian, Yang, Chen, Xiang, Zhang, Xue‐Qiang, Li, Wen‐Jun, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201707629

Cover

Abstract Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. A dual‐layered film is obtained on a Li metal anode by spontaneous chemical reaction between lithium plates and fluoroethylene carbonate solvents. Such film can protect the Li metal anodes from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode.
AbstractList Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes. A dual‐layered film is obtained on a Li metal anode by spontaneous chemical reaction between lithium plates and fluoroethylene carbonate solvents. Such film can protect the Li metal anodes from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode.
Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO Li and ROLi) on the top and abundant inorganic components (Li CO and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO 2 Li and ROLi) on the top and abundant inorganic components (Li 2 CO 3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.
Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO2 Li and ROLi) on the top and abundant inorganic components (Li2 CO3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO2 Li and ROLi) on the top and abundant inorganic components (Li2 CO3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.
Author Huang, Jia‐Qi
Li, Wen‐Jun
Zhang, Qiang
Cheng, Xin‐Bing
Tian, Yang
Zhang, Xue‐Qiang
Yan, Chong
Chen, Xiang
Author_xml – sequence: 1
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  organization: Tsinghua University
– sequence: 3
  givenname: Yang
  surname: Tian
  fullname: Tian, Yang
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 5
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Tsinghua University
– sequence: 6
  givenname: Wen‐Jun
  surname: Li
  fullname: Li, Wen‐Jun
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29676037$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq4zAUhsWQMk3S2XY5GLqZjVNdbNlahlw6Ayntot2Oka1jqiJbGUmmZDeP0Gfsk1QhnQwUSjcSgu875-j8EzTqbQ8InRM8IxjTS6k6OaOYFLjgVHxBY5JTkmZY5CM0xoLlqeBZeYom3j9ijAXH_Cs6pYIXHLNijH4vB2le_j5v5A4cqGStTZfcOhugCfG50eFBD11yDUGaZN5bBUmwyaqXtYFkCb1yOkD01w7gSC9ha70O2vZn6KSVxsO3t3uK7teru8XPdHNz9Wsx36RNRqhI27ooWyJpLZtSCKKAS8UEUzQXZV3zTDWtFIwJTilrW6kypjhXNS3bmsSTsin6cai7dfbPAD5UnfYNGCN7sIOvKKZl_HvJy4hevEMf7eD6OF2k8pxnoshwpL6_UUPdgaq2TnfS7ap_m4vA7AA0znrvoD0iBFf7aKp9NNUxmihk74RGB7lfUnBSm481cdCetIHdJ02q-fJ6_t99BYhJpD8
CitedBy_id crossref_primary_10_1039_D4EE06048B
crossref_primary_10_1002_eem2_12861
crossref_primary_10_1021_acsaem_0c01232
crossref_primary_10_1002_anie_202106237
crossref_primary_10_1021_acsami_9b08438
crossref_primary_10_1016_j_cej_2023_148094
crossref_primary_10_1063_5_0068465
crossref_primary_10_1002_adma_202202668
crossref_primary_10_1021_acsami_9b22968
crossref_primary_10_1002_adfm_202102336
crossref_primary_10_1002_aenm_201802365
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1021_acsami_9b05056
crossref_primary_10_1016_j_nanoen_2019_05_020
crossref_primary_10_1002_ange_201915440
crossref_primary_10_1002_ente_202400374
crossref_primary_10_1002_adfm_202205304
crossref_primary_10_1002_asia_202300453
crossref_primary_10_1002_celc_201801410
crossref_primary_10_1038_s41467_020_20339_1
crossref_primary_10_1016_j_jcis_2023_06_147
crossref_primary_10_1016_j_electacta_2024_144834
crossref_primary_10_1038_s41578_021_00320_0
crossref_primary_10_1002_adfm_202009694
crossref_primary_10_1063_5_0083830
crossref_primary_10_1002_bte2_20240051
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1002_adma_202416377
crossref_primary_10_1039_C9TA01834D
crossref_primary_10_1002_ente_202100087
crossref_primary_10_1016_j_ensm_2018_12_007
crossref_primary_10_1039_D0TA01060J
crossref_primary_10_1149_1945_7111_ab7aa0
crossref_primary_10_1002_smll_202001992
crossref_primary_10_1016_j_apsusc_2021_151439
crossref_primary_10_1002_adma_201907516
crossref_primary_10_1039_D1TA04741H
crossref_primary_10_1134_S1023193522030041
crossref_primary_10_1002_adma_202209140
crossref_primary_10_1002_ange_202116586
crossref_primary_10_1002_smll_202205233
crossref_primary_10_1021_acssuschemeng_1c00878
crossref_primary_10_1002_advs_202104391
crossref_primary_10_1021_acsaem_4c00667
crossref_primary_10_1002_cssc_202301777
crossref_primary_10_1007_s11581_019_02993_8
crossref_primary_10_1002_batt_202100347
crossref_primary_10_1002_smll_202106983
crossref_primary_10_1039_D4TA01708K
crossref_primary_10_1021_acsami_9b09551
crossref_primary_10_1021_acs_nanolett_1c01137
crossref_primary_10_1002_eem2_12622
crossref_primary_10_1021_acsaem_2c00573
crossref_primary_10_1021_acsami_2c12136
crossref_primary_10_1039_C8SC05178J
crossref_primary_10_1021_acsami_0c08094
crossref_primary_10_1016_j_ensm_2018_03_024
crossref_primary_10_1021_acs_nanolett_0c00201
crossref_primary_10_1021_acs_chemrev_1c00838
crossref_primary_10_1002_adfm_202006033
crossref_primary_10_1016_j_cej_2022_134698
crossref_primary_10_1002_aesr_202100186
crossref_primary_10_1021_acsami_9b21679
crossref_primary_10_1016_j_jechem_2020_09_030
crossref_primary_10_1016_j_cej_2024_150667
crossref_primary_10_1039_D1TA09575G
crossref_primary_10_1002_anie_202216934
crossref_primary_10_1002_aenm_202203687
crossref_primary_10_1002_adfm_202408365
crossref_primary_10_1002_adfm_202007255
crossref_primary_10_1002_er_8117
crossref_primary_10_1002_smll_202301740
crossref_primary_10_3390_inorganics10010005
crossref_primary_10_1021_acsnano_2c05016
crossref_primary_10_1002_adma_202308507
crossref_primary_10_1021_acsami_8b14045
crossref_primary_10_1002_nano_202000164
crossref_primary_10_1021_acsami_0c07904
crossref_primary_10_1002_smtd_202201435
crossref_primary_10_1021_acsnano_2c04170
crossref_primary_10_1016_j_matt_2019_06_020
crossref_primary_10_1021_acs_jpcc_1c09488
crossref_primary_10_1002_ange_202016608
crossref_primary_10_1002_anie_202016608
crossref_primary_10_1016_j_jelechem_2021_115499
crossref_primary_10_1016_j_cej_2021_129965
crossref_primary_10_1021_acsnano_1c04642
crossref_primary_10_1039_C9SC01845J
crossref_primary_10_1073_pnas_2211059119
crossref_primary_10_1149_1945_7111_ac91aa
crossref_primary_10_1002_anie_202315122
crossref_primary_10_1002_ange_202106237
crossref_primary_10_1021_acsami_0c20099
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1016_j_cej_2023_148020
crossref_primary_10_1002_adfm_202111026
crossref_primary_10_1007_s12221_022_4953_y
crossref_primary_10_1016_j_memsci_2020_118424
crossref_primary_10_1021_acsaem_0c01758
crossref_primary_10_1016_j_jpowsour_2021_229744
crossref_primary_10_1002_aenm_201901967
crossref_primary_10_1016_j_jechem_2022_08_021
crossref_primary_10_1002_anie_202110589
crossref_primary_10_1021_acsami_9b08703
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1002_adma_202206625
crossref_primary_10_1039_D0CP03487H
crossref_primary_10_1039_D2TA01515C
crossref_primary_10_1016_j_cej_2022_140375
crossref_primary_10_1021_acs_nanolett_3c03340
crossref_primary_10_1002_aenm_202002373
crossref_primary_10_1007_s11998_022_00690_2
crossref_primary_10_1039_C9TA02407G
crossref_primary_10_1002_anie_201914417
crossref_primary_10_1002_eom2_12264
crossref_primary_10_1002_adma_201905873
crossref_primary_10_1002_admi_202001698
crossref_primary_10_1002_adma_201906722
crossref_primary_10_1021_acsenergylett_8b00935
crossref_primary_10_1021_acsami_9b04122
crossref_primary_10_1021_acs_chemmater_9b04043
crossref_primary_10_1063_5_0107648
crossref_primary_10_1039_C8TA09380F
crossref_primary_10_3390_en14175220
crossref_primary_10_1016_j_ensm_2018_06_024
crossref_primary_10_1002_aenm_202302565
crossref_primary_10_1016_j_ensm_2021_02_041
crossref_primary_10_1021_acsami_4c10070
crossref_primary_10_1002_chem_202302773
crossref_primary_10_1002_eom2_12010
crossref_primary_10_1021_acsnano_4c05040
crossref_primary_10_1002_adma_201904537
crossref_primary_10_1002_adfm_202300892
crossref_primary_10_1002_adma_202205751
crossref_primary_10_1002_nano_202000003
crossref_primary_10_1021_acsami_1c20976
crossref_primary_10_1016_j_ensm_2019_08_024
crossref_primary_10_1021_acsaem_1c00615
crossref_primary_10_1002_aenm_202302577
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1021_acsami_2c07917
crossref_primary_10_1007_s12598_023_02319_8
crossref_primary_10_20517_cs_2024_66
crossref_primary_10_1002_smll_202301523
crossref_primary_10_1002_adma_202200181
crossref_primary_10_1039_D2TA09182H
crossref_primary_10_1002_batt_202000016
crossref_primary_10_1002_aenm_202100935
crossref_primary_10_1039_D4CC06729K
crossref_primary_10_1002_admi_202000154
crossref_primary_10_1002_aenm_202001235
crossref_primary_10_1021_acsenergylett_1c00150
crossref_primary_10_1002_adma_201808393
crossref_primary_10_1016_j_est_2024_110976
crossref_primary_10_1039_D0TA12508C
crossref_primary_10_1039_D0CP00151A
crossref_primary_10_1002_anie_201915440
crossref_primary_10_1016_j_cej_2021_132156
crossref_primary_10_1016_j_jcis_2022_09_026
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1007_s12274_023_5889_2
crossref_primary_10_1002_smll_202205142
crossref_primary_10_1016_j_jcis_2022_08_101
crossref_primary_10_1002_chem_202000467
crossref_primary_10_1021_acsnano_2c08480
crossref_primary_10_1002_aenm_202201411
crossref_primary_10_1021_acs_iecr_2c00958
crossref_primary_10_1002_smll_202200919
crossref_primary_10_1039_D1CC03044B
crossref_primary_10_3389_fmats_2019_00267
crossref_primary_10_1016_j_jechem_2022_07_032
crossref_primary_10_1039_C9NR05670J
crossref_primary_10_1002_adma_201902399
crossref_primary_10_1002_anie_202110441
crossref_primary_10_1021_acssuschemeng_2c01368
crossref_primary_10_1002_adfm_201809219
crossref_primary_10_1039_D1EE00110H
crossref_primary_10_1002_smll_202405453
crossref_primary_10_1039_C9NR06544J
crossref_primary_10_1002_smll_202207222
crossref_primary_10_1016_j_cej_2022_134637
crossref_primary_10_1016_j_apsusc_2023_156447
crossref_primary_10_1016_j_jcis_2024_04_029
crossref_primary_10_1016_j_nanoen_2020_105068
crossref_primary_10_1002_adfm_202009805
crossref_primary_10_1002_aenm_202002654
crossref_primary_10_1002_advs_202104635
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1016_j_ensm_2019_07_026
crossref_primary_10_1002_ente_202000348
crossref_primary_10_1002_aenm_201804000
crossref_primary_10_1002_smll_202000756
crossref_primary_10_1016_j_nanoen_2019_103910
crossref_primary_10_1021_acsaem_9b02337
crossref_primary_10_1021_acsenergylett_3c01357
crossref_primary_10_1002_ange_201805456
crossref_primary_10_1021_acsami_8b16080
crossref_primary_10_1002_batt_202000192
crossref_primary_10_1016_j_cej_2020_124848
crossref_primary_10_1002_anie_202100494
crossref_primary_10_1038_s41467_021_23155_3
crossref_primary_10_1039_D1EE01140E
crossref_primary_10_1039_D0TA02410D
crossref_primary_10_1039_D1QM00474C
crossref_primary_10_1038_s41598_023_36341_8
crossref_primary_10_1002_aenm_201900487
crossref_primary_10_1002_aenm_202103589
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1039_D3DT00260H
crossref_primary_10_1002_adfm_202009917
crossref_primary_10_1016_j_mtener_2020_100465
crossref_primary_10_1002_aenm_202103480
crossref_primary_10_1002_aenm_201903843
crossref_primary_10_1016_j_jechem_2020_07_036
crossref_primary_10_1002_advs_202100488
crossref_primary_10_1021_acsaem_2c03181
crossref_primary_10_1016_j_jechem_2022_09_007
crossref_primary_10_1002_anie_201813905
crossref_primary_10_1021_acsami_9b03682
crossref_primary_10_1016_j_jpowsour_2019_01_016
crossref_primary_10_1021_acsami_4c13277
crossref_primary_10_1002_adma_202102034
crossref_primary_10_1016_j_jechem_2022_12_060
crossref_primary_10_1126_sciadv_adf1550
crossref_primary_10_1002_adma_202002850
crossref_primary_10_1038_s41467_019_13436_3
crossref_primary_10_1021_acsami_9b04898
crossref_primary_10_1002_aenm_201901796
crossref_primary_10_3390_en14227467
crossref_primary_10_1002_adma_201908293
crossref_primary_10_1002_smll_202405143
crossref_primary_10_1021_acsaem_1c03976
crossref_primary_10_1002_inf2_12000
crossref_primary_10_1021_acsami_3c02728
crossref_primary_10_1021_acsami_0c21301
crossref_primary_10_1039_C9RA09481D
crossref_primary_10_1002_ange_202400619
crossref_primary_10_1002_aenm_201901486
crossref_primary_10_1016_j_elecom_2022_107395
crossref_primary_10_1002_adma_202303710
crossref_primary_10_1007_s11814_024_00241_y
crossref_primary_10_1016_j_est_2022_106075
crossref_primary_10_1016_j_cclet_2019_06_013
crossref_primary_10_1016_j_mtener_2023_101341
crossref_primary_10_1021_acsenergylett_8b02483
crossref_primary_10_1039_D0TA03774E
crossref_primary_10_1021_acsaem_3c00335
crossref_primary_10_1021_acsami_9b18703
crossref_primary_10_1016_j_cej_2021_129494
crossref_primary_10_1007_s12613_024_2996_3
crossref_primary_10_1016_j_electacta_2020_135772
crossref_primary_10_1016_j_mtener_2021_100930
crossref_primary_10_1039_D0CC05084A
crossref_primary_10_1002_adfm_202104395
crossref_primary_10_1016_j_jpowsour_2019_04_090
crossref_primary_10_1021_acssuschemeng_2c03271
crossref_primary_10_1016_j_ensm_2019_11_007
crossref_primary_10_1039_C8CC09372E
crossref_primary_10_1002_adfm_202004664
crossref_primary_10_1002_adma_201806470
crossref_primary_10_1039_D2TA07985B
crossref_primary_10_1360_SSC_2024_0082
crossref_primary_10_1016_j_cej_2023_144477
crossref_primary_10_1039_C8TA05336G
crossref_primary_10_1039_C8TA07612J
crossref_primary_10_1039_D1TA03059K
crossref_primary_10_1149_1945_7111_acd587
crossref_primary_10_1016_j_ensm_2018_07_010
crossref_primary_10_1007_s11581_024_05618_x
crossref_primary_10_1002_advs_202300985
crossref_primary_10_1016_j_ensm_2019_09_020
crossref_primary_10_1002_er_6846
crossref_primary_10_1016_j_apsusc_2022_152885
crossref_primary_10_1002_ange_202216934
crossref_primary_10_1039_D3CE01005H
crossref_primary_10_1002_adma_201902785
crossref_primary_10_1016_j_jechem_2022_10_026
crossref_primary_10_1016_j_jechem_2020_06_060
crossref_primary_10_1002_advs_202201297
crossref_primary_10_1016_j_ensm_2018_07_004
crossref_primary_10_1002_aenm_202102242
crossref_primary_10_1002_aenm_202103332
crossref_primary_10_1002_ange_202315122
crossref_primary_10_1039_D0TA09753E
crossref_primary_10_1039_D4QI00632A
crossref_primary_10_1002_ange_202100494
crossref_primary_10_1002_inf2_12046
crossref_primary_10_35534_spe_2023_10003
crossref_primary_10_1021_acsami_1c04972
crossref_primary_10_1021_acsaem_9b00766
crossref_primary_10_1021_acsami_3c19580
crossref_primary_10_1002_smtd_202101613
crossref_primary_10_1021_jacs_1c04222
crossref_primary_10_1016_j_trechm_2020_10_008
crossref_primary_10_1021_acsaem_1c01174
crossref_primary_10_1039_D4SE00548A
crossref_primary_10_1002_adfm_201909887
crossref_primary_10_1021_acsami_1c24755
crossref_primary_10_1016_j_jechem_2020_08_019
crossref_primary_10_1149_1945_7111_ab981b
crossref_primary_10_1016_j_ensm_2020_04_043
crossref_primary_10_34133_2022_9754612
crossref_primary_10_1007_s11664_021_08971_z
crossref_primary_10_1016_j_ensm_2018_09_015
crossref_primary_10_1007_s11426_019_9519_9
crossref_primary_10_1002_smsc_202100058
crossref_primary_10_1021_acs_nanolett_0c00352
crossref_primary_10_1039_D1QM00185J
crossref_primary_10_1002_adfm_202305674
crossref_primary_10_1039_C9TA02341K
crossref_primary_10_1021_acsmaterialslett_9b00118
crossref_primary_10_1021_acs_accounts_0c00412
crossref_primary_10_2174_0115734110299035240422114008
crossref_primary_10_1002_inf2_12189
crossref_primary_10_1021_acsaem_2c03663
crossref_primary_10_1007_s11426_023_1845_7
crossref_primary_10_1039_D1TA06327H
crossref_primary_10_1002_adma_201901820
crossref_primary_10_1021_acsami_3c06007
crossref_primary_10_1002_aenm_202000962
crossref_primary_10_1021_acsaem_9b00627
crossref_primary_10_1002_anie_202116586
crossref_primary_10_1016_j_matt_2022_01_017
crossref_primary_10_1016_j_jechem_2020_12_024
crossref_primary_10_1002_smll_202104390
crossref_primary_10_1016_j_ssi_2021_115831
crossref_primary_10_1039_C9EE02558H
crossref_primary_10_1039_D1TC01905H
crossref_primary_10_1016_j_jcis_2023_12_131
crossref_primary_10_1007_s12274_019_2481_x
crossref_primary_10_1016_j_matt_2019_05_008
crossref_primary_10_1021_acs_jpcc_0c11194
crossref_primary_10_1002_anie_201805456
crossref_primary_10_1002_anie_202400619
crossref_primary_10_1002_ange_201813905
crossref_primary_10_1002_chem_201904631
crossref_primary_10_1002_adma_202304511
crossref_primary_10_1002_eem2_12474
crossref_primary_10_1038_s41560_025_01733_9
crossref_primary_10_1002_batt_202100075
crossref_primary_10_1021_acssuschemeng_9b03751
crossref_primary_10_1149_1945_7111_abaf9e
crossref_primary_10_1002_adfm_202417296
crossref_primary_10_1021_acsami_2c00842
crossref_primary_10_1021_acsaem_1c03336
crossref_primary_10_1039_D0CS01017K
crossref_primary_10_1021_acsaem_1c03333
crossref_primary_10_1002_eem2_12345
crossref_primary_10_1002_smtd_201900383
crossref_primary_10_1016_j_matt_2019_05_016
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1021_acsami_1c06164
crossref_primary_10_1039_D3TA03877G
crossref_primary_10_1002_ange_201914417
crossref_primary_10_1002_smtd_202300731
crossref_primary_10_1002_adma_202003657
crossref_primary_10_1002_smll_202007717
crossref_primary_10_1016_j_ensm_2019_03_029
crossref_primary_10_1021_acs_langmuir_2c03166
crossref_primary_10_1149_1945_7111_ad8d12
crossref_primary_10_1002_ange_202110441
crossref_primary_10_1021_acsami_8b17924
crossref_primary_10_1007_s41918_021_00109_3
crossref_primary_10_1002_smtd_201900177
crossref_primary_10_1002_adma_201804587
crossref_primary_10_1038_s41565_022_01107_2
crossref_primary_10_1002_adma_202201410
crossref_primary_10_1002_ente_201800768
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1021_acsami_2c19226
crossref_primary_10_1016_j_jechem_2020_07_030
crossref_primary_10_1002_adma_201902724
crossref_primary_10_1007_s40843_019_1277_3
crossref_primary_10_1002_smll_202307553
crossref_primary_10_1016_j_jechem_2021_09_040
crossref_primary_10_1149_1945_7111_abd1f3
crossref_primary_10_1002_batt_202100389
crossref_primary_10_1039_D0TA11444H
crossref_primary_10_3390_ma16216995
crossref_primary_10_1002_adma_201908494
crossref_primary_10_1016_j_elecom_2020_106685
crossref_primary_10_1016_j_jechem_2020_08_044
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1021_acsami_1c01979
crossref_primary_10_1002_ange_202110589
crossref_primary_10_1186_s40580_020_00231_w
crossref_primary_10_1002_aenm_201801528
crossref_primary_10_1038_s41467_019_09211_z
crossref_primary_10_1002_batt_202300344
crossref_primary_10_12677_JOCR_2023_114024
crossref_primary_10_1002_adma_202311195
crossref_primary_10_1016_j_jechem_2022_02_041
crossref_primary_10_1002_adfm_201805301
crossref_primary_10_1002_adfm_201806752
crossref_primary_10_1039_D0MH01030H
crossref_primary_10_1002_adfm_201910777
crossref_primary_10_1002_aesr_202100010
crossref_primary_10_1039_D3GC02151C
crossref_primary_10_1007_s40843_022_2387_1
crossref_primary_10_1039_D1SC06181J
crossref_primary_10_1016_j_ensm_2020_04_032
crossref_primary_10_3390_batteries9050283
Cites_doi 10.1021/jacs.7b06437
10.1038/nnano.2017.16
10.1021/jacs.7b06364
10.1002/adma.201605531
10.1021/acsenergylett.7b00619
10.1021/ja312241y
10.1016/0022-0728(93)02998-W
10.1021/acs.chemmater.5b03358
10.1038/nmat4041
10.1021/acsami.6b00831
10.1073/pnas.1708489114
10.1002/anie.201707093
10.1016/j.jpowsour.2016.07.056
10.1002/adma.201504526
10.1021/jp068691u
10.1093/nsr/nww078
10.1016/j.joule.2017.06.004
10.1016/j.chempr.2016.07.009
10.1002/adma.201701169
10.1021/acsnano.5b01990
10.1021/acsenergylett.7b00163
10.1002/advs.201600445
10.1038/ncomms8436
10.1002/admi.201700166
10.1021/acs.nanolett.7b01020
10.1002/anie.201702099
10.1002/adma.201700389
10.1021/acs.chemmater.7b00551
10.1021/acs.chemmater.7b03027
10.1002/adfm.201602353
10.1038/ncomms7362
10.1002/adma.201504117
10.1021/jacs.7b05251
10.1016/j.joule.2017.11.009
10.1002/advs.201600168
10.1016/j.chempr.2017.01.003
10.1002/adfm.201605989
10.1038/natrevmats.2016.13
10.1016/j.ensm.2016.01.007
10.1038/nenergy.2017.12
10.1021/acs.chemmater.6b00029
10.1016/j.ensm.2016.09.003
10.1002/adma.201700783
10.1016/j.mattod.2014.10.040
10.1021/acsenergylett.7b00300
10.1021/nl404471v
10.1038/nmat4821
10.1038/s41467-017-00519-2
10.1016/j.nanoen.2017.04.056
10.1002/adma.201603755
10.1021/jp404155y
10.1021/acs.jpcc.5b01228
10.1002/aenm.201402273
10.1002/adma.201501490
10.1021/acs.chemrev.7b00115
10.1149/2.008306jes
10.1002/adma.201700007
10.1002/advs.201500213
10.1016/j.nanoen.2017.07.052
10.1073/pnas.1600422113
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201707629
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29676037
10_1002_adma_201707629
ADMA201707629
Genre article
Journal Article
GrantInformation_xml – fundername: Tsinghua National Laboratory for Information Science and Technology
– fundername: National Natural Science Foundation of China
  funderid: 21776019; 21676160
– fundername: Young Elite Scientists Sponsorship Program by CAST
  funderid: 2015QNRC001
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500; 2016YFA0200102
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAHHS
AAYOK
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4129-fb78f1a2bac8991de6ad393d2598bb64dcfa93396223ffad43d66db28fb1b2823
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:06:48 EDT 2025
Fri Jul 25 06:23:48 EDT 2025
Wed Feb 19 02:43:49 EST 2025
Thu Oct 09 00:09:05 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Wed Aug 20 07:25:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords lithium fluoride
lithium metal anode
fluoroethylene carbonate
dendrite-free electrode
rechargeable batteries
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4129-fb78f1a2bac8991de6ad393d2598bb64dcfa93396223ffad43d66db28fb1b2823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 29676037
PQID 2055649740
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2028960868
proquest_journals_2055649740
pubmed_primary_29676037
crossref_primary_10_1002_adma_201707629
crossref_citationtrail_10_1002_adma_201707629
wiley_primary_10_1002_adma_201707629_ADMA201707629
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017 2017; 6 4
2017; 7
2015; 6
2017; 2
2017 2017 2015 2013 2013; 2 2 27 117 160
2015; 18
1994 2016; 367 28
2017; 27
2015; 9
2017 2016; 29 3
2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017; 16 36 29 17 4 29 39 29 29 2 1
2017; 139
2016 2016 2017 2017 2017; 113 8 29 139 114
2016; 1
2015; 27
2017 2016 2017 2017 2016 2017; 29 28 29 56 1 1
2007; 111
2017; 56
2014; 14
2015; 119
2016 2017 2017 2017; 4 117 29 12
2015 2017; 5 4
2016; 28
2017 2013 2015 2016 2016 2017 2014; 2 135 6 3 327 8 13
2016; 26
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_3_3
e_1_2_4_5_1
e_1_2_4_3_2
e_1_2_4_7_1
e_1_2_4_3_4
e_1_2_4_5_2
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_10_1
e_1_2_4_10_2
e_1_2_4_10_3
e_1_2_4_12_1
e_1_2_4_10_4
e_1_2_4_10_5
e_1_2_4_14_1
e_1_2_4_10_6
e_1_2_4_16_1
e_1_2_4_10_7
e_1_2_4_10_8
e_1_2_4_16_3
e_1_2_4_18_1
e_1_2_4_10_9
e_1_2_4_16_2
e_1_2_4_16_5
e_1_2_4_18_3
e_1_2_4_16_4
e_1_2_4_18_2
e_1_2_4_10_11
e_1_2_4_18_5
e_1_2_4_16_6
e_1_2_4_18_4
Adams B. D. (e_1_2_4_25_1) 2017; 7
e_1_2_4_10_10
e_1_2_4_20_1
e_1_2_4_22_1
e_1_2_4_24_1
e_1_2_4_26_2
e_1_2_4_26_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_2
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_8_1
e_1_2_4_8_4
e_1_2_4_8_3
e_1_2_4_8_6
e_1_2_4_8_5
e_1_2_4_8_7
e_1_2_4_11_1
e_1_2_4_13_1
e_1_2_4_15_1
e_1_2_4_15_2
e_1_2_4_15_3
e_1_2_4_15_4
e_1_2_4_17_1
e_1_2_4_15_5
e_1_2_4_19_1
References_xml – volume: 29 28 29 56 1 1
  start-page: 1700783 2155 1700389 7764 287 563
  year: 2017 2016 2017 2017 2016 2017
  publication-title: Adv. Mater. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Chem Joule
– volume: 2
  start-page: 1321
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 2 2 27 117 160
  start-page: 1337 2228 5241 13403 A709
  year: 2017 2017 2015 2013 2013
  publication-title: ACS Energy Lett. ACS Energy Lett. Adv. Mater. J. Phys. Chem. C J. Electrochem. Soc.
– volume: 139
  start-page: 11550
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 16013
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 5 4
  start-page: 1402273 1600168
  year: 2015 2017
  publication-title: Adv. Energy Mater. Adv. Sci.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 56
  start-page: 14207
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  start-page: 15288
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1605989
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 16 36 29 17 4 29 39 29 29 2 1
  start-page: 572 411 1605531 3731 1700166 9182 662 1605531 1603755 258 871
  year: 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017
  publication-title: Nat. Mater. Nano Energy Adv. Mater. Nano Lett. Adv. Mater. Interfaces Chem. Mater. Nano Energy Adv. Mater. Adv. Mater. Chem Joule
– volume: 14
  start-page: 1405
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  start-page: 1702097
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 7094
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 27
  start-page: 7990
  year: 2015
  publication-title: Chem. Mater.
– volume: 367 28
  start-page: 15 2147
  year: 1994 2016
  publication-title: J. Electroanal. Chem. Chem. Mater.
– volume: 113 8 29 139 114
  start-page: 7094 10617 4768 13779 11069
  year: 2016 2016 2017 2017 2017
  publication-title: Proc. Natl. Acad. Sci. USA ACS Appl. Mater. Interfaces Chem. Mater. J. Am. Chem. Soc. Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 2 135 6 3 327 8 13
  start-page: 17012 4450 7436 77 212 336 961
  year: 2017 2013 2015 2016 2016 2017 2014
  publication-title: Nat. Energy J. Am. Chem. Soc. Nat. Commun. Energy Storage Mater. J. Power Sources Nat. Commun. Nat. Mater.
– volume: 29 3
  start-page: 1701169 1500213
  year: 2017 2016
  publication-title: Adv. Mater. Adv. Sci.
– volume: 111
  start-page: 7411
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 4 117 29 12
  start-page: 54 10403 1700007 194
  year: 2016 2017 2017 2017
  publication-title: Natl. Sci. Rev. Chem. Rev. Adv. Mater. Nat. Nanotechnol.
– volume: 119
  start-page: 7060
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 6 4
  start-page: 18 1600445
  year: 2017 2017
  publication-title: Energy Storage Mater. Adv. Sci.
– volume: 9
  start-page: 6373
  year: 2015
  publication-title: ACS Nano
– ident: e_1_2_4_17_1
  doi: 10.1021/jacs.7b06437
– ident: e_1_2_4_3_4
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_4_15_4
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_4_10_3
  doi: 10.1002/adma.201605531
– ident: e_1_2_4_18_2
  doi: 10.1021/acsenergylett.7b00619
– ident: e_1_2_4_8_2
  doi: 10.1021/ja312241y
– ident: e_1_2_4_26_1
  doi: 10.1016/0022-0728(93)02998-W
– ident: e_1_2_4_21_1
  doi: 10.1021/acs.chemmater.5b03358
– ident: e_1_2_4_8_7
  doi: 10.1038/nmat4041
– ident: e_1_2_4_15_2
  doi: 10.1021/acsami.6b00831
– ident: e_1_2_4_15_5
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_4_24_1
  doi: 10.1002/anie.201707093
– ident: e_1_2_4_8_5
  doi: 10.1016/j.jpowsour.2016.07.056
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_4_22_1
  doi: 10.1021/jp068691u
– ident: e_1_2_4_3_1
  doi: 10.1093/nsr/nww078
– ident: e_1_2_4_16_6
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_4_16_5
  doi: 10.1016/j.chempr.2016.07.009
– ident: e_1_2_4_7_1
  doi: 10.1002/adma.201701169
– ident: e_1_2_4_4_1
  doi: 10.1021/acsnano.5b01990
– ident: e_1_2_4_18_1
  doi: 10.1021/acsenergylett.7b00163
– ident: e_1_2_4_6_2
  doi: 10.1002/advs.201600445
– ident: e_1_2_4_8_3
  doi: 10.1038/ncomms8436
– ident: e_1_2_4_10_5
  doi: 10.1002/admi.201700166
– ident: e_1_2_4_10_4
  doi: 10.1021/acs.nanolett.7b01020
– ident: e_1_2_4_16_4
  doi: 10.1002/anie.201702099
– ident: e_1_2_4_10_8
  doi: 10.1002/adma.201605531
– ident: e_1_2_4_16_3
  doi: 10.1002/adma.201700389
– ident: e_1_2_4_15_3
  doi: 10.1021/acs.chemmater.7b00551
– ident: e_1_2_4_10_6
  doi: 10.1021/acs.chemmater.7b03027
– ident: e_1_2_4_14_1
  doi: 10.1002/adfm.201602353
– ident: e_1_2_4_13_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_4_16_2
  doi: 10.1002/adma.201504117
– ident: e_1_2_4_12_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_4_10_11
  doi: 10.1016/j.joule.2017.11.009
– ident: e_1_2_4_5_2
  doi: 10.1002/advs.201600168
– ident: e_1_2_4_10_10
  doi: 10.1016/j.chempr.2017.01.003
– volume: 7
  start-page: 1702097
  year: 2017
  ident: e_1_2_4_25_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_4_9_1
  doi: 10.1002/adfm.201605989
– ident: e_1_2_4_2_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_4_8_4
  doi: 10.1016/j.ensm.2016.01.007
– ident: e_1_2_4_8_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_4_26_2
  doi: 10.1021/acs.chemmater.6b00029
– ident: e_1_2_4_6_1
  doi: 10.1016/j.ensm.2016.09.003
– ident: e_1_2_4_16_1
  doi: 10.1002/adma.201700783
– ident: e_1_2_4_1_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_4_19_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_4_23_1
  doi: 10.1021/nl404471v
– ident: e_1_2_4_10_1
  doi: 10.1038/nmat4821
– ident: e_1_2_4_8_6
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_4_10_2
  doi: 10.1016/j.nanoen.2017.04.056
– ident: e_1_2_4_10_9
  doi: 10.1002/adma.201603755
– ident: e_1_2_4_18_4
  doi: 10.1021/jp404155y
– ident: e_1_2_4_20_1
  doi: 10.1021/acs.jpcc.5b01228
– ident: e_1_2_4_5_1
  doi: 10.1002/aenm.201402273
– ident: e_1_2_4_18_3
  doi: 10.1002/adma.201501490
– ident: e_1_2_4_3_2
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_4_18_5
  doi: 10.1149/2.008306jes
– ident: e_1_2_4_3_3
  doi: 10.1002/adma.201700007
– ident: e_1_2_4_7_2
  doi: 10.1002/advs.201500213
– ident: e_1_2_4_10_7
  doi: 10.1016/j.nanoen.2017.07.052
– ident: e_1_2_4_15_1
  doi: 10.1073/pnas.1600422113
SSID ssj0009606
Score 2.685991
Snippet Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for...
Lithium metal batteries (such as lithium-sulfur, lithium-air, solid state batteries with lithium metal anode) are highly considered as promising candidates for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1707629
SubjectTerms Anodes
Anodic protection
Batteries
dendrite‐free electrode
Dendritic structure
Deposition
Energy storage
fluoroethylene carbonate
Lithium
Lithium batteries
Lithium fluoride
lithium metal anode
Protective coatings
Rechargeable batteries
Storage systems
Thermal runaway
Title Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201707629
https://www.ncbi.nlm.nih.gov/pubmed/29676037
https://www.proquest.com/docview/2055649740
https://www.proquest.com/docview/2028960868
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CnLYD-wUsg01BmsQp0NiOkxyrtRWaKJqmIXEieo4draJNUUkOcOJP2N-4v2TPTpNSJjRpXKJYfk4c2y_-vsT-HsBnkSqWKvJvQsMiEMijQOUog0SiBeQxl07seXwmT87F14vo4sEu_kYfovvgZj3Dva-tg6O6OV6JhqJ2ukFhTEyc2R18IZeOU31f6UdZeO7E9qgKqRRJq9rYY8frxddnpb-g5jpydVPP6BVgW-lmxcnVUV2po_zukZ7jc57qNWwtcanfbwbSG9gw5Vt4-UCt8B1cDmqc_r7_dYq3NsCnP5pMZ_63RueBkqeT6ueknvljU9kLlXNt_GruD93mLH9gSr0geEvlRwtjOuuBaZeNbcP5aPjjy0mwDM8Q5IJQQlCoOClCZApzIm2hNhI1T7kmQpUoJYXOC0w5TyUhkKJALbiWNnpVUqiQjozvwGY5L8178DmBKCUEJj3MidBGiscEWzVRwwIZGu5B0HZPli-1y20IjWnWqC6zzLZb1rWbB4ed_XWj2vGk5X7b29nSe28oN4okDVTR8-Cgyya_sz9TsDTz2toQVZVECBMPdptR0t2KpTKWPR57wFxf_6MOWX8w7nepD_9TaA9e0HnSrGHbh81qUZuPhJYq9cl5xB_XLQtC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuMwFL3isQAWDG8ywyNISKxCW9txkmU1pSrQIoRAYkVkx46oKCkqyWJmxSfwjfMlc500gYIQEmwiOb5OnNg3Pse5PgbYZ4EkgUT_RjTMHCao68hIcMfnwgByj_Jc7Ll3xjtX7OTaLaMJzVqYQh-imnAznpF_r42Dmwnp2otqqFC5cFDDQypOgmmYZRzJisFFFy8KUgag53J7WImAM7_UbayT2mT5yXHpHdicxK754NP-AbKsdhFzcneYpfIw-vtG0fFbz7UEi2NoajeLvrQMUzpZgYVXgoWrcNPKxODf03NX_DF7fNrt_uDePi-kHjDZ7ae3_eze7unUXCgZKm2nQ_soX59lt3SiRohwsXx7pHVl3dJl5NgaXLWPLn93nPEODU7EECg4sfT8uCGIFBHytobSXCgaUIWcypeSMxXFIqA04AhC4lgoRhU3G1j5sWzgkdB1mEmGid4EmyKOkowJvy4i5LSupB4iV4XsMBZEaGqBU7ZPGI3ly80uGoOwEF4moXlvYfXeLDio7B8K4Y4PLbfK5g7HDvyIua7Lsa-yugV7VTa6nvmfIhI9zIwNslWOnNC3YKPoJtWtSMA9XqeeBSRv7E_qEDZbvWaV-vmVQrsw17nsdcPu8dnpL5jH834R0rYFM-ko09sInlK5k7vHf5pQD2M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BIiF6aPkpNLSUIFXilHbXdhz7uGoa9We3qlArcSKyY0es2GZX2-QAJx6BZ-RJOk42KQtCleASyfE4mdie-Jtk_A3AHpOaSI32jWiYBUzRMNCZ4oHgygHyiPKa7Hl8zo-v2OnHsI0mdHthGn6I7oObs4z6fe0M3M5NfnDHGqpMTRw0iNAVJ_IhPGKhFC6qL_5wxyDlAHpNt4dKSM5Ey9vYJwer7VfXpT_A5ip2rRefZAN0q3YTc_Jlvyr1fvbtN0bH_3qup7C-hKb-sJlLz-CBLZ7D2i-EhS_gU1yp6c_vP0bqq8vx6SeT6bV_0VA9YHE0KT9Pqmt_bEt3oWJmrF_O_KN6f5Yf28IsEOFi-2RhbScd2zZybBOukqPLw-NgmaEhyBgChSDXkcgHimiVod82MJYrQyU16FMJrTkzWa4kpZIjCMlzZRg13CWwErke4JHQl9ArZoXdAp8ijtKMKdFXGfq0oaYRIleD3mGuiLLUg6AdnzRb0pe7LBrTtCFeJqnrt7TrNw_ed_Lzhrjjr5I77XCnSwO-wdow5DhXWd-Dd101mp77n6IKO6ucDHqrHH1C4cGrZpp0tyKSR7xPIw9IPdj36JAO4_GwK73-l0Zv4fFFnKSjk_OzbXiCp0UT0bYDvXJR2TeInUq9W1vHLSxdDuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Layered+Film+Protected+Lithium+Metal+Anode+to+Enable+Dendrite%E2%80%90Free+Lithium+Deposition&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yan%2C+Chong&rft.au=Cheng%2C+Xin%E2%80%90Bing&rft.au=Tian%2C+Yang&rft.au=Chen%2C+Xiang&rft.date=2018-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=25&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201707629&rft.externalDBID=10.1002%252Fadma.201707629&rft.externalDocID=ADMA201707629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon