Model Selection for Semiparametric Marginal Mean Regression Accounting for Within-Cluster Subsampling Variability and Informative Cluster Size

We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each sub...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 74; no. 3; pp. 934 - 943
Main Authors Shen, Chung-Wei, Chen, Yi-Hau
Format Journal Article
LanguageEnglish
Published United States Wiley-Blackwell 01.09.2018
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12869

Cover

Abstract We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.
AbstractList We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.
We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.
Summary We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is “informative” in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within‐cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121–1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within‐cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.
We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is “informative” in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika88, 1121–1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.
Author Shen, Chung-Wei
Chen, Yi-Hau
Author_xml – sequence: 1
  givenname: Chung-Wei
  surname: Shen
  fullname: Shen, Chung-Wei
– sequence: 2
  givenname: Yi-Hau
  surname: Chen
  fullname: Chen, Yi-Hau
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29534287$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7LZ6470y4I0IU_M1mcllXfxY6FLw-27IZM6sKZlkTTLK-iP8zWa63V4U0QMhHPI870XeE3TkvAOEHhN8RvK87IwfzwhthLyHFqTipMSc4iO0wBiLknHy9RidxHiVV1lh-gAdU1kxTpt6gX6vfQ-2-AAWdDLeFYMPeRvNVgU1QgpGF2sVNsYpW6xBueI9bALEOLPnWvvJJeM219oXk74ZVy7tFBPklKmLatza-fmzCkZ1xpq0K5Tri5XLwqiS-QHFLW9-wUN0f1A2wqOb-xR9evP64_JdeXH5drU8vyg1J1SWUgquFBe1lriR0BFNu1rwpuq7HrSGQfQD60VD6FBLRpo8vdZKMEorooVgp-j5Pncb_PcJYmpHEzVYqxz4KbaUVExQWjP8fxQTVjcVYVVGn91Br_wU8s_NgYTmwxuaqac31NSN0LfbYEYVdu2hlAzgPaCDjzHA0GqT1NxOCsrYluB27r2de2-ve8_KizvKIfWvMNnDP42F3T_I9tXqcn1wnuydq5h8uHV4hSWVXLI_28_Ibw
CitedBy_id crossref_primary_10_1002_pst_2261
crossref_primary_10_1002_bimj_202000199
Cites_doi 10.1214/009053606000000281
10.1093/biomet/88.4.1121
10.1111/j.1467-9868.2010.00740.x
10.1111/biom.12151
10.1111/j.1541-0420.2005.00331.x
10.1002/bimj.201200236
10.1093/oso/9780198524847.001.0001
10.1111/1541-0420.00005
10.1111/j.0006-341X.2001.00120.x
10.1111/biom.12381
10.1111/j.1541-0420.2012.01758.x
10.1093/biomet/73.1.13
ContentType Journal Article
Copyright Copyright © 2018 International Biometric Society
2018, The International Biometric Society
2018, The International Biometric Society.
Copyright_xml – notice: Copyright © 2018 International Biometric Society
– notice: 2018, The International Biometric Society
– notice: 2018, The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.12869
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 943
ExternalDocumentID 29534287
10_1111_biom_12869
BIOM12869
45092949
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
2AX
2QV
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXSQ
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADODI
ADOZA
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGORE
AGTJU
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HQ6
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SA0
SUPJJ
SV3
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
3-9
31~
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AANHP
AAWIL
AAZSN
ABAWQ
ABJCF
ABUWG
ACBWZ
ACHJO
ACKIV
ACRPL
ACYXJ
ADNMO
ADULT
AFKRA
AGLNM
AGQPQ
AHGBF
AIHAF
AJBYB
ALEEW
ARAPS
ASPBG
AS~
AVWKF
AZFZN
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
FEDTE
FXEWX
FYUFA
GNUQQ
H13
HCIFZ
HF~
HGD
HMCUK
HVGLF
IHE
K6V
K7-
L6V
LK8
M1P
M2P
M7P
M7S
NHB
P0-
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
PTHSS
Q2X
RNS
RWL
TAE
UAP
UKHRP
ZGI
ZXP
ZY4
AAYXX
CITATION
ESTFP
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c4129-9964aa467c9089eb1c2b76485dbdeccef6df3d6812f79318888dcca632251c663
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:07:58 EDT 2025
Thu Oct 02 15:32:50 EDT 2025
Wed Aug 13 03:47:58 EDT 2025
Thu Apr 03 07:09:26 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Wed Oct 01 01:41:36 EDT 2025
Wed Aug 20 07:26:03 EDT 2025
Thu Jul 03 21:54:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Clustered data
Longitudinal data
Resampling
Subsampling
Variable selection
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2018, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4129-9964aa467c9089eb1c2b76485dbdeccef6df3d6812f79318888dcca632251c663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4038-9439
0000-0003-1703-6897
PMID 29534287
PQID 2112211482
PQPubID 35366
PageCount 10
ParticipantIDs proquest_miscellaneous_2153622730
proquest_miscellaneous_2013785135
proquest_journals_2112211482
pubmed_primary_29534287
crossref_citationtrail_10_1111_biom_12869
crossref_primary_10_1111_biom_12869
wiley_primary_10_1111_biom_12869_BIOM12869
jstor_primary_45092949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180901
September 2018
2018-09-01
2018-09-00
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 9
  year: 2018
  text: 20180901
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2018
Publisher Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References 2014; 70
2014; 3
1986; 73
2006; 34
2013; 55
2013; 23
1973; 15
2008
2003; 59
2016; 72
2005; 61
2002
2001; 88
2012; 68
2001; 57
2008; 80
2010; 72
Shen (2024011406465144800_biom12869-bib-0016) 2013; 55
Hoffman (2024011406465144800_biom12869-bib-0006) 2001; 88
Liang (2024011406465144800_biom12869-bib-0008) 1986; 73
Claeskens (2024011406465144800_biom12869-bib-0003) 2008
Hsu (2024011406465144800_biom12869-bib-0007) 2014; 3
Meinshausen (2024011406465144800_biom12869-bib-0011) 2010; 72
Chiang (2024011406465144800_biom12869-bib-0002) 2008; 80
Meinshausen (2024011406465144800_biom12869-bib-0010) 2006; 34
Seaman (2024011406465144800_biom12869-bib-0014) 2014; 70
Pan (2024011406465144800_biom12869-bib-0012) 2001; 57
Shen (2024011406465144800_biom12869-bib-0015) 2012; 68
De Bin (2024011406465144800_biom12869-bib-0004) 2016; 72
Diggle (2024011406465144800_biom12869-bib-0005) 2002
Mallows (2024011406465144800_biom12869-bib-0009) 1973; 15
Cantoni (2024011406465144800_biom12869-bib-0001) 2005; 61
Pavlou (2024011406465144800_biom12869-bib-0013) 2013; 23
Williamson (2024011406465144800_biom12869-bib-0017) 2003; 59
References_xml – volume: 68
  start-page: 1046
  year: 2012
  end-page: 1054
  article-title: Model selection for generalized estimating equations accommodating dropout missingness
  publication-title: Biometrics
– volume: 34
  start-page: 1436
  year: 2006
  end-page: 1462
  article-title: High dimensional graphs and variable selection with the lasso
  publication-title: Annals of Statistics
– volume: 23
  start-page: 791
  year: 2013
  end-page: 808
  article-title: An examination of a method for marginal inference when the cluster size is informative
  publication-title: Statistica Sinica
– year: 2008
  publication-title: Model Selection and Model Averaging.
– volume: 88
  start-page: 1121
  year: 2001
  end-page: 1134
  article-title: Within‐cluster resampling
  publication-title: Biometrika
– volume: 61
  start-page: 507
  year: 2005
  end-page: 514
  article-title: Variable Selection for Marginal Longitudinal Generalized Linear Models
  publication-title: Biometrics
– volume: 57
  start-page: 120
  year: 2001
  end-page: 125
  article-title: Akaike's information criterion in generalized estimating equations
  publication-title: Biometrics
– volume: 3
  start-page: 153
  year: 2014
  end-page: 157
  article-title: Relationship between frailty and cognitive function among the older adults in Taiwan
  publication-title: The Journal of Frailty & Aging
– volume: 80
  start-page: 121
  year: 2008
  end-page: 123
  article-title: Efficient methods for informative cluster size data
  publication-title: Statistica Sinica
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis with generalized linear models
  publication-title: Biometrika
– volume: 70
  start-page: 449
  year: 2014
  end-page: 456
  article-title: Methods for obderved‐cluster inference when cluster size is informative: A review and clarifications
  publication-title: Biometrics
– year: 2002
  publication-title: Analysis of Longitudinal Data,
– volume: 72
  start-page: 272
  year: 2016
  end-page: 280
  article-title: Subsampling versus bootstrapping in resampling‐based model selection for multivariable regression
  publication-title: Biometrics
– volume: 15
  start-page: 661
  year: 1973
  end-page: 675
  article-title: Some comments on Cp
  publication-title: Technometrics
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  article-title: Stability selection (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 55
  start-page: 899
  year: 2013
  end-page: 911
  article-title: Model selection of generalized estimating equations with multiply imputed longitudinal data
  publication-title: Biometrical Journal
– volume: 59
  start-page: 36
  year: 2003
  end-page: 42
  article-title: Marginal analyses of clustered data when cluster size is informative
  publication-title: Biometrics
– volume: 34
  start-page: 1436
  year: 2006
  ident: 2024011406465144800_biom12869-bib-0010
  article-title: High dimensional graphs and variable selection with the lasso
  publication-title: Annals of Statistics
  doi: 10.1214/009053606000000281
– volume: 88
  start-page: 1121
  year: 2001
  ident: 2024011406465144800_biom12869-bib-0006
  article-title: Within-cluster resampling
  publication-title: Biometrika
  doi: 10.1093/biomet/88.4.1121
– volume: 3
  start-page: 153
  year: 2014
  ident: 2024011406465144800_biom12869-bib-0007
  article-title: Relationship between frailty and cognitive function among the older adults in Taiwan
  publication-title: The Journal of Frailty & Aging
– volume: 80
  start-page: 121
  year: 2008
  ident: 2024011406465144800_biom12869-bib-0002
  article-title: Efficient methods for informative cluster size data
  publication-title: Statistica Sinica
– volume-title: Model Selection and Model Averaging.
  year: 2008
  ident: 2024011406465144800_biom12869-bib-0003
– volume: 23
  start-page: 791
  year: 2013
  ident: 2024011406465144800_biom12869-bib-0013
  article-title: An examination of a method for marginal inference when the cluster size is informative
  publication-title: Statistica Sinica
– volume: 72
  start-page: 417
  year: 2010
  ident: 2024011406465144800_biom12869-bib-0011
  article-title: Stability selection (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 70
  start-page: 449
  year: 2014
  ident: 2024011406465144800_biom12869-bib-0014
  article-title: Methods for obderved-cluster inference when cluster size is informative: A review and clarifications
  publication-title: Biometrics
  doi: 10.1111/biom.12151
– volume: 61
  start-page: 507
  year: 2005
  ident: 2024011406465144800_biom12869-bib-0001
  article-title: Variable Selection for Marginal Longitudinal Generalized Linear Models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00331.x
– volume: 55
  start-page: 899
  year: 2013
  ident: 2024011406465144800_biom12869-bib-0016
  article-title: Model selection of generalized estimating equations with multiply imputed longitudinal data
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.201200236
– volume-title: Analysis of Longitudinal Data,
  year: 2002
  ident: 2024011406465144800_biom12869-bib-0005
  doi: 10.1093/oso/9780198524847.001.0001
– volume: 59
  start-page: 36
  year: 2003
  ident: 2024011406465144800_biom12869-bib-0017
  article-title: Marginal analyses of clustered data when cluster size is informative
  publication-title: Biometrics
  doi: 10.1111/1541-0420.00005
– volume: 57
  start-page: 120
  year: 2001
  ident: 2024011406465144800_biom12869-bib-0012
  article-title: Akaike's information criterion in generalized estimating equations
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00120.x
– volume: 72
  start-page: 272
  year: 2016
  ident: 2024011406465144800_biom12869-bib-0004
  article-title: Subsampling versus bootstrapping in resampling-based model selection for multivariable regression
  publication-title: Biometrics
  doi: 10.1111/biom.12381
– volume: 68
  start-page: 1046
  year: 2012
  ident: 2024011406465144800_biom12869-bib-0015
  article-title: Model selection for generalized estimating equations accommodating dropout missingness
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01758.x
– volume: 15
  start-page: 661
  year: 1973
  ident: 2024011406465144800_biom12869-bib-0009
  article-title: Some comments on Cp
  publication-title: Technometrics
– volume: 73
  start-page: 13
  year: 1986
  ident: 2024011406465144800_biom12869-bib-0008
  article-title: Longitudinal data analysis with generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
SSID ssj0009502
Score 2.2510598
Snippet We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a...
Summary We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 934
SubjectTerms Aged
BIOMETRIC METHODOLOGY: DISCUSSION PAPER
biometry
Chronic illnesses
Cluster Analysis
Clustered data
Clusters
Correlation analysis
Criteria
elderly
equations
females
Frailty
Geriatrics
Humans
income
Life satisfaction
Longitudinal data
Longitudinal Studies
Models, Statistical
Older people
Regression
Regression Analysis
Resampling
Risk analysis
Risk Factors
Sample Size
selection methods
Subsampling
Variable selection
Title Model Selection for Semiparametric Marginal Mean Regression Accounting for Within-Cluster Subsampling Variability and Informative Cluster Size
URI https://www.jstor.org/stable/45092949
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12869
https://www.ncbi.nlm.nih.gov/pubmed/29534287
https://www.proquest.com/docview/2112211482
https://www.proquest.com/docview/2013785135
https://www.proquest.com/docview/2153622730
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-NAEB9EEfTBO3v-yZ0nK_pyQkqz2aQp3Is9LSpUQU7oyxE2m40U23g07YE--RH8jPdJbmY3yamIoG8tmYRNMn9-k535DcAeooQs0jJwW1J1XJG1fTeJlHI7GIyp0ydoJ9Tg3D8Ljy_F6SAYzMH3qhfG8kPUH9zIMoy_JgOXSfHIyKk9vYneNaTuPc8PTT51wR8x7rYsVTgVdwlvUHKTUhnP_1OfRCNbkPgS1HyKXE3o6X2AX9WibcXJdXM2TZrq7hmf43vv6iOslJiUHVglWoU5nTdg0U6pvG3Acr-mdi0asETw1LI7f4IHGqU2YoUZpoNvmCEExn_jITGKj2lYl2JjOTGjt9hYy5xN9JWtvM2ZrAdVmNPoi_Aw_3v_oEYzYm9gBfo0SQXvKPAHU3rLKH7LZJ6yku-VfDWr5Yd3eg0ue0c_fxy75YwHVwmEGi6mW0JK9NaKNiAxcCietEMRBWmSonbpLEwzPyWStAw9iYf5epSi0oXkhzyFcGkd5vObXG8CkyLxMsw2o4zjtTVeALGvjz4moL3UVurAt-pdx6okQKc5HKO4SoTo4cfm4TuwW8v-trQfL0qtG5WpRQTCL94ReGCr0qG49AlFjKk255R-cgd26sNozbRFI3N9M0MZYoBEEOwHr8hgkAo5ws6WAxtWP-sF8E7gUxLswL7RslcWH3dPzvvm1-e3CH-BJVxkZMvstmB-Opnpr4jLpsk2LBx0D7u9bWOH_wDNCjhT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BEaIcCoQWDAUWwYVKjhJ77djHgqhSaIqEWik3a71eVxGJi-IEqT3xE_ob-SW82XVMi6pKcLPlsbW25-PN7uwbordACWViVOT3lE59WQ5CP0-09lMEY97pEw1y3uA8OoyHx_LTOBo3tTm8F8bxQ7QTbmwZ1l-zgfOE9CUr5_3pXbjXOL1Nd2SMRIUx0dfgEuduz5GFc3mX7I8bdlIu5Plz75V45EoSrwObV7GrDT57D1yH1dpyFnLNybfucpF39flfjI7__V4PaaOBpWLX6dEjumWqDt11jSrPOnR_1LK71h1aZ4TqCJ4f0wV3U5uK2vbTwU8WQME4m02YVHzG_bq0mKm57b4lZkZVYm5OXPFtJVTbq8LexpPCk-rXzws9XTKBg6jh1hTXvEPgB7J6Ryp-JlRViIbyld21aOUn52aTjvc-Hn0Y-k2bB19LoA0fGZdUCg5b8xokYocO8kEsk6jICyiYKeOiDAvmSSvhTPpI2ZMCehezK-prIKYtWqtOK_OUhJJ5v0TCmZQBnm3wAMDfEG4m4uXUXuHRu9XPznTDgc6tOKbZKhfij5_Zj-_Rm1b2u2P-uFZqy-pMKyKBwIJU4sL2Somyxi3UGbLtIOAMNPDodXsZBs2rNKoyp0vIMAkkcHAY3SCDOBUHQJ49j544BW0HEKRRyHmwRztWzW4YfPZ-_8vIHj37F-FXdG94NDrIDvYPPz-ndQw4cVV327S2mC_NC8C0Rf7SGuNvYnE7Ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB61ICo48JMWMFC6CC5FcpSs1459pKURtAQQAik3a71eVxGJQXGCBCcegWfsk3Rm13EBISR6s-Wxtbbn55vd2W8AdhAlZKGWvtuQKnJF1vLcJFTKjTAY004fv5XQBufOcXBwIX52_W5Zm0N7YSw_RDXhRpZh_DUZuL5Os0dWTvvT6-heg-g9TAs_Cqmib_-MP-LcbViycCrvEs1uyU5KhTz_7n0Sj2xJ4ktg8yl2NcGnvWA7rBaGs5BqTi7r41FSV3fPGB3_-70WYb6EpWzP6tESvNN5DWZso8rbGsx1KnbXogazhFAtwfNHeKBuan1WmH46-JMZomA8G_SIVHxA_boUG8ih6b7FBlrmbKh_2-LbnMmqV4W5jSaFe_mf-wfVHxOBAyvQrUmqeUeBG8zqLan4LZN5ykrKV3LXrJLv3elPcNH-cf79wC3bPLhKINpwMeMSUqLDVrQGibFD8aQViNBPkxQVTGdBmnkp8aRl6EyamLKHKepdQK6oqRAxLcNUfpXrVWBSJM0ME84w4_hsjQ9A-Ouhm_FpObWROvB18rNjVXKgUyuOfjzJhejjx-bjO7BdyV5b5o8XpZaNzlQiAhEYjwRe2JgoUVy6hSLGbJtzykC5A1vVZTRoWqWRub4aowyRQCIO9vxXZDBOBRyRZ8OBFaug1QB45HuUBzuwa9TslcHH3w5POuZo7S3CX-DD6X47Pjo8_rUOszje0BbdbcDUaDjWnxGljZJNY4t_AbuzOoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Selection+for+Semiparametric+Marginal+Mean+Regression+Accounting+for+Within-Cluster+Subsampling+Variability+and+Informative+Cluster+Size&rft.jtitle=Biometrics&rft.au=Shen%2C+Chung-Wei&rft.au=Chen%2C+Yi-Hau&rft.date=2018-09-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=74&rft.issue=3&rft.spage=934&rft.epage=943&rft_id=info:doi/10.1111%2Fbiom.12869&rft.externalDocID=45092949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon