Model Selection for Semiparametric Marginal Mean Regression Accounting for Within-Cluster Subsampling Variability and Informative Cluster Size
We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each sub...
        Saved in:
      
    
          | Published in | Biometrics Vol. 74; no. 3; pp. 934 - 943 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Wiley-Blackwell
    
        01.09.2018
     Blackwell Publishing Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0006-341X 1541-0420 1541-0420  | 
| DOI | 10.1111/biom.12869 | 
Cover
| Abstract | We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. | 
    
|---|---|
| AbstractList | We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is "informative" in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121-1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. Summary We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is “informative” in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within‐cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika 88, 1121–1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within‐cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly. We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a longitudinal study on the physical frailty outcome in the elderly, where the cluster size, that is, the number of the observed outcomes in each subject, is “informative” in the sense that it is related to the frailty outcome itself. The new proposal, called Resampling Cluster Information Criterion (RCIC), is based on the resampling idea utilized in the within-cluster resampling method (Hoffman, Sen, and Weinberg, 2001, Biometrika88, 1121–1134) and accommodates informative cluster size. The implementation of RCIC, however, is free of performing actual resampling of the data and hence is computationally convenient. Compared with the existing model selection methods for marginal mean regression, the RCIC method incorporates an additional component accounting for variability of the model over within-cluster subsampling, and leads to remarkable improvements in selecting the correct model, regardless of whether the cluster size is informative or not. Applying the RCIC method to the longitudinal frailty study, we identify being female, old age, low income and life satisfaction, and chronic health conditions as significant risk factors for physical frailty in the elderly.  | 
    
| Author | Shen, Chung-Wei Chen, Yi-Hau  | 
    
| Author_xml | – sequence: 1 givenname: Chung-Wei surname: Shen fullname: Shen, Chung-Wei – sequence: 2 givenname: Yi-Hau surname: Chen fullname: Chen, Yi-Hau  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29534287$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkV1rFDEUhoNU7LZ6470y4I0IU_M1mcllXfxY6FLw-27IZM6sKZlkTTLK-iP8zWa63V4U0QMhHPI870XeE3TkvAOEHhN8RvK87IwfzwhthLyHFqTipMSc4iO0wBiLknHy9RidxHiVV1lh-gAdU1kxTpt6gX6vfQ-2-AAWdDLeFYMPeRvNVgU1QgpGF2sVNsYpW6xBueI9bALEOLPnWvvJJeM219oXk74ZVy7tFBPklKmLatza-fmzCkZ1xpq0K5Tri5XLwqiS-QHFLW9-wUN0f1A2wqOb-xR9evP64_JdeXH5drU8vyg1J1SWUgquFBe1lriR0BFNu1rwpuq7HrSGQfQD60VD6FBLRpo8vdZKMEorooVgp-j5Pncb_PcJYmpHEzVYqxz4KbaUVExQWjP8fxQTVjcVYVVGn91Br_wU8s_NgYTmwxuaqac31NSN0LfbYEYVdu2hlAzgPaCDjzHA0GqT1NxOCsrYluB27r2de2-ve8_KizvKIfWvMNnDP42F3T_I9tXqcn1wnuydq5h8uHV4hSWVXLI_28_Ibw | 
    
| CitedBy_id | crossref_primary_10_1002_pst_2261 crossref_primary_10_1002_bimj_202000199  | 
    
| Cites_doi | 10.1214/009053606000000281 10.1093/biomet/88.4.1121 10.1111/j.1467-9868.2010.00740.x 10.1111/biom.12151 10.1111/j.1541-0420.2005.00331.x 10.1002/bimj.201200236 10.1093/oso/9780198524847.001.0001 10.1111/1541-0420.00005 10.1111/j.0006-341X.2001.00120.x 10.1111/biom.12381 10.1111/j.1541-0420.2012.01758.x 10.1093/biomet/73.1.13  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2018 International Biometric Society 2018, The International Biometric Society 2018, The International Biometric Society.  | 
    
| Copyright_xml | – notice: Copyright © 2018 International Biometric Society – notice: 2018, The International Biometric Society – notice: 2018, The International Biometric Society.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6  | 
    
| DOI | 10.1111/biom.12869 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA MEDLINE CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Biology Mathematics  | 
    
| EISSN | 1541-0420 | 
    
| EndPage | 943 | 
    
| ExternalDocumentID | 29534287 10_1111_biom_12869 BIOM12869 45092949  | 
    
| Genre | article Journal Article  | 
    
| GroupedDBID | --- -~X .3N .4S .DC .GA 05W 0R~ 10A 1OC 23N 2AX 2QV 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJNI ABLJU ABMNT ABPPZ ABPVW ABXSQ ABXVV ABYWD ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACUHS ACXBN ACXQS ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADODI ADOZA ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFVYC AFWVQ AFZJQ AGORE AGTJU AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE AJNCP AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X HQ6 HZI HZ~ IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NU- O66 O9- OIG OJZSN OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL ROX RX1 RXW SA0 SUPJJ SV3 TN5 TUS UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT .GJ .Y3 3-9 31~ 7X7 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AANHP AAWIL AAZSN ABAWQ ABJCF ABUWG ACBWZ ACHJO ACKIV ACRPL ACYXJ ADNMO ADULT AFKRA AGLNM AGQPQ AHGBF AIHAF AJBYB ALEEW ARAPS ASPBG AS~ AVWKF AZFZN AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF DWQXO FEDTE FXEWX FYUFA GNUQQ H13 HCIFZ HF~ HGD HMCUK HVGLF IHE K6V K7- L6V LK8 M1P M2P M7P M7S NHB P0- P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO PTHSS Q2X RNS RWL TAE UAP UKHRP ZGI ZXP ZY4 AAYXX CITATION ESTFP AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c4129-9964aa467c9089eb1c2b76485dbdeccef6df3d6812f79318888dcca632251c663 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0006-341X 1541-0420  | 
    
| IngestDate | Fri Oct 03 00:07:58 EDT 2025 Thu Oct 02 15:32:50 EDT 2025 Wed Aug 13 03:47:58 EDT 2025 Thu Apr 03 07:09:26 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Wed Oct 01 01:41:36 EDT 2025 Wed Aug 20 07:26:03 EDT 2025 Thu Jul 03 21:54:24 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Clustered data Longitudinal data Resampling Subsampling Variable selection  | 
    
| Language | English | 
    
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2018, The International Biometric Society.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4129-9964aa467c9089eb1c2b76485dbdeccef6df3d6812f79318888dcca632251c663 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4038-9439 0000-0003-1703-6897  | 
    
| PMID | 29534287 | 
    
| PQID | 2112211482 | 
    
| PQPubID | 35366 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_2153622730 proquest_miscellaneous_2013785135 proquest_journals_2112211482 pubmed_primary_29534287 crossref_citationtrail_10_1111_biom_12869 crossref_primary_10_1111_biom_12869 wiley_primary_10_1111_biom_12869_BIOM12869 jstor_primary_45092949  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20180901 September 2018 2018-09-01 2018-09-00  | 
    
| PublicationDateYYYYMMDD | 2018-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2018 text: 20180901 day: 1  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Biometrics | 
    
| PublicationTitleAlternate | Biometrics | 
    
| PublicationYear | 2018 | 
    
| Publisher | Wiley-Blackwell Blackwell Publishing Ltd  | 
    
| Publisher_xml | – name: Wiley-Blackwell – name: Blackwell Publishing Ltd  | 
    
| References | 2014; 70 2014; 3 1986; 73 2006; 34 2013; 55 2013; 23 1973; 15 2008 2003; 59 2016; 72 2005; 61 2002 2001; 88 2012; 68 2001; 57 2008; 80 2010; 72 Shen (2024011406465144800_biom12869-bib-0016) 2013; 55 Hoffman (2024011406465144800_biom12869-bib-0006) 2001; 88 Liang (2024011406465144800_biom12869-bib-0008) 1986; 73 Claeskens (2024011406465144800_biom12869-bib-0003) 2008 Hsu (2024011406465144800_biom12869-bib-0007) 2014; 3 Meinshausen (2024011406465144800_biom12869-bib-0011) 2010; 72 Chiang (2024011406465144800_biom12869-bib-0002) 2008; 80 Meinshausen (2024011406465144800_biom12869-bib-0010) 2006; 34 Seaman (2024011406465144800_biom12869-bib-0014) 2014; 70 Pan (2024011406465144800_biom12869-bib-0012) 2001; 57 Shen (2024011406465144800_biom12869-bib-0015) 2012; 68 De Bin (2024011406465144800_biom12869-bib-0004) 2016; 72 Diggle (2024011406465144800_biom12869-bib-0005) 2002 Mallows (2024011406465144800_biom12869-bib-0009) 1973; 15 Cantoni (2024011406465144800_biom12869-bib-0001) 2005; 61 Pavlou (2024011406465144800_biom12869-bib-0013) 2013; 23 Williamson (2024011406465144800_biom12869-bib-0017) 2003; 59  | 
    
| References_xml | – volume: 68 start-page: 1046 year: 2012 end-page: 1054 article-title: Model selection for generalized estimating equations accommodating dropout missingness publication-title: Biometrics – volume: 34 start-page: 1436 year: 2006 end-page: 1462 article-title: High dimensional graphs and variable selection with the lasso publication-title: Annals of Statistics – volume: 23 start-page: 791 year: 2013 end-page: 808 article-title: An examination of a method for marginal inference when the cluster size is informative publication-title: Statistica Sinica – year: 2008 publication-title: Model Selection and Model Averaging. – volume: 88 start-page: 1121 year: 2001 end-page: 1134 article-title: Within‐cluster resampling publication-title: Biometrika – volume: 61 start-page: 507 year: 2005 end-page: 514 article-title: Variable Selection for Marginal Longitudinal Generalized Linear Models publication-title: Biometrics – volume: 57 start-page: 120 year: 2001 end-page: 125 article-title: Akaike's information criterion in generalized estimating equations publication-title: Biometrics – volume: 3 start-page: 153 year: 2014 end-page: 157 article-title: Relationship between frailty and cognitive function among the older adults in Taiwan publication-title: The Journal of Frailty & Aging – volume: 80 start-page: 121 year: 2008 end-page: 123 article-title: Efficient methods for informative cluster size data publication-title: Statistica Sinica – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis with generalized linear models publication-title: Biometrika – volume: 70 start-page: 449 year: 2014 end-page: 456 article-title: Methods for obderved‐cluster inference when cluster size is informative: A review and clarifications publication-title: Biometrics – year: 2002 publication-title: Analysis of Longitudinal Data, – volume: 72 start-page: 272 year: 2016 end-page: 280 article-title: Subsampling versus bootstrapping in resampling‐based model selection for multivariable regression publication-title: Biometrics – volume: 15 start-page: 661 year: 1973 end-page: 675 article-title: Some comments on Cp publication-title: Technometrics – volume: 72 start-page: 417 year: 2010 end-page: 473 article-title: Stability selection (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 55 start-page: 899 year: 2013 end-page: 911 article-title: Model selection of generalized estimating equations with multiply imputed longitudinal data publication-title: Biometrical Journal – volume: 59 start-page: 36 year: 2003 end-page: 42 article-title: Marginal analyses of clustered data when cluster size is informative publication-title: Biometrics – volume: 34 start-page: 1436 year: 2006 ident: 2024011406465144800_biom12869-bib-0010 article-title: High dimensional graphs and variable selection with the lasso publication-title: Annals of Statistics doi: 10.1214/009053606000000281 – volume: 88 start-page: 1121 year: 2001 ident: 2024011406465144800_biom12869-bib-0006 article-title: Within-cluster resampling publication-title: Biometrika doi: 10.1093/biomet/88.4.1121 – volume: 3 start-page: 153 year: 2014 ident: 2024011406465144800_biom12869-bib-0007 article-title: Relationship between frailty and cognitive function among the older adults in Taiwan publication-title: The Journal of Frailty & Aging – volume: 80 start-page: 121 year: 2008 ident: 2024011406465144800_biom12869-bib-0002 article-title: Efficient methods for informative cluster size data publication-title: Statistica Sinica – volume-title: Model Selection and Model Averaging. year: 2008 ident: 2024011406465144800_biom12869-bib-0003 – volume: 23 start-page: 791 year: 2013 ident: 2024011406465144800_biom12869-bib-0013 article-title: An examination of a method for marginal inference when the cluster size is informative publication-title: Statistica Sinica – volume: 72 start-page: 417 year: 2010 ident: 2024011406465144800_biom12869-bib-0011 article-title: Stability selection (with discussion) publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.1467-9868.2010.00740.x – volume: 70 start-page: 449 year: 2014 ident: 2024011406465144800_biom12869-bib-0014 article-title: Methods for obderved-cluster inference when cluster size is informative: A review and clarifications publication-title: Biometrics doi: 10.1111/biom.12151 – volume: 61 start-page: 507 year: 2005 ident: 2024011406465144800_biom12869-bib-0001 article-title: Variable Selection for Marginal Longitudinal Generalized Linear Models publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00331.x – volume: 55 start-page: 899 year: 2013 ident: 2024011406465144800_biom12869-bib-0016 article-title: Model selection of generalized estimating equations with multiply imputed longitudinal data publication-title: Biometrical Journal doi: 10.1002/bimj.201200236 – volume-title: Analysis of Longitudinal Data, year: 2002 ident: 2024011406465144800_biom12869-bib-0005 doi: 10.1093/oso/9780198524847.001.0001 – volume: 59 start-page: 36 year: 2003 ident: 2024011406465144800_biom12869-bib-0017 article-title: Marginal analyses of clustered data when cluster size is informative publication-title: Biometrics doi: 10.1111/1541-0420.00005 – volume: 57 start-page: 120 year: 2001 ident: 2024011406465144800_biom12869-bib-0012 article-title: Akaike's information criterion in generalized estimating equations publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00120.x – volume: 72 start-page: 272 year: 2016 ident: 2024011406465144800_biom12869-bib-0004 article-title: Subsampling versus bootstrapping in resampling-based model selection for multivariable regression publication-title: Biometrics doi: 10.1111/biom.12381 – volume: 68 start-page: 1046 year: 2012 ident: 2024011406465144800_biom12869-bib-0015 article-title: Model selection for generalized estimating equations accommodating dropout missingness publication-title: Biometrics doi: 10.1111/j.1541-0420.2012.01758.x – volume: 15 start-page: 661 year: 1973 ident: 2024011406465144800_biom12869-bib-0009 article-title: Some comments on Cp publication-title: Technometrics – volume: 73 start-page: 13 year: 1986 ident: 2024011406465144800_biom12869-bib-0008 article-title: Longitudinal data analysis with generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13  | 
    
| SSID | ssj0009502 | 
    
| Score | 2.2510598 | 
    
| Snippet | We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by a... Summary We propose a model selection criterion for semiparametric marginal mean regression based on generalized estimating equations. The work is motivated by...  | 
    
| SourceID | proquest pubmed crossref wiley jstor  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 934 | 
    
| SubjectTerms | Aged BIOMETRIC METHODOLOGY: DISCUSSION PAPER biometry Chronic illnesses Cluster Analysis Clustered data Clusters Correlation analysis Criteria elderly equations females Frailty Geriatrics Humans income Life satisfaction Longitudinal data Longitudinal Studies Models, Statistical Older people Regression Regression Analysis Resampling Risk analysis Risk Factors Sample Size selection methods Subsampling Variable selection  | 
    
| Title | Model Selection for Semiparametric Marginal Mean Regression Accounting for Within-Cluster Subsampling Variability and Informative Cluster Size | 
    
| URI | https://www.jstor.org/stable/45092949 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12869 https://www.ncbi.nlm.nih.gov/pubmed/29534287 https://www.proquest.com/docview/2112211482 https://www.proquest.com/docview/2013785135 https://www.proquest.com/docview/2153622730  | 
    
| Volume | 74 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-NAEB9EEfTBO3v-yZ0nK_pyQkqz2aQp3Is9LSpUQU7oyxE2m40U23g07YE--RH8jPdJbmY3yamIoG8tmYRNMn9-k535DcAeooQs0jJwW1J1XJG1fTeJlHI7GIyp0ydoJ9Tg3D8Ljy_F6SAYzMH3qhfG8kPUH9zIMoy_JgOXSfHIyKk9vYneNaTuPc8PTT51wR8x7rYsVTgVdwlvUHKTUhnP_1OfRCNbkPgS1HyKXE3o6X2AX9WibcXJdXM2TZrq7hmf43vv6iOslJiUHVglWoU5nTdg0U6pvG3Acr-mdi0asETw1LI7f4IHGqU2YoUZpoNvmCEExn_jITGKj2lYl2JjOTGjt9hYy5xN9JWtvM2ZrAdVmNPoi_Aw_3v_oEYzYm9gBfo0SQXvKPAHU3rLKH7LZJ6yku-VfDWr5Yd3eg0ue0c_fxy75YwHVwmEGi6mW0JK9NaKNiAxcCietEMRBWmSonbpLEwzPyWStAw9iYf5epSi0oXkhzyFcGkd5vObXG8CkyLxMsw2o4zjtTVeALGvjz4moL3UVurAt-pdx6okQKc5HKO4SoTo4cfm4TuwW8v-trQfL0qtG5WpRQTCL94ReGCr0qG49AlFjKk255R-cgd26sNozbRFI3N9M0MZYoBEEOwHr8hgkAo5ws6WAxtWP-sF8E7gUxLswL7RslcWH3dPzvvm1-e3CH-BJVxkZMvstmB-Opnpr4jLpsk2LBx0D7u9bWOH_wDNCjhT | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BEaIcCoQWDAUWwYVKjhJ77djHgqhSaIqEWik3a71eVxGJi-IEqT3xE_ob-SW82XVMi6pKcLPlsbW25-PN7uwbordACWViVOT3lE59WQ5CP0-09lMEY97pEw1y3uA8OoyHx_LTOBo3tTm8F8bxQ7QTbmwZ1l-zgfOE9CUr5_3pXbjXOL1Nd2SMRIUx0dfgEuduz5GFc3mX7I8bdlIu5Plz75V45EoSrwObV7GrDT57D1yH1dpyFnLNybfucpF39flfjI7__V4PaaOBpWLX6dEjumWqDt11jSrPOnR_1LK71h1aZ4TqCJ4f0wV3U5uK2vbTwU8WQME4m02YVHzG_bq0mKm57b4lZkZVYm5OXPFtJVTbq8LexpPCk-rXzws9XTKBg6jh1hTXvEPgB7J6Ryp-JlRViIbyld21aOUn52aTjvc-Hn0Y-k2bB19LoA0fGZdUCg5b8xokYocO8kEsk6jICyiYKeOiDAvmSSvhTPpI2ZMCehezK-prIKYtWqtOK_OUhJJ5v0TCmZQBnm3wAMDfEG4m4uXUXuHRu9XPznTDgc6tOKbZKhfij5_Zj-_Rm1b2u2P-uFZqy-pMKyKBwIJU4sL2Somyxi3UGbLtIOAMNPDodXsZBs2rNKoyp0vIMAkkcHAY3SCDOBUHQJ49j544BW0HEKRRyHmwRztWzW4YfPZ-_8vIHj37F-FXdG94NDrIDvYPPz-ndQw4cVV327S2mC_NC8C0Rf7SGuNvYnE7Ag | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB61ICo48JMWMFC6CC5FcpSs1459pKURtAQQAik3a71eVxGJQXGCBCcegWfsk3Rm13EBISR6s-Wxtbbn55vd2W8AdhAlZKGWvtuQKnJF1vLcJFTKjTAY004fv5XQBufOcXBwIX52_W5Zm0N7YSw_RDXhRpZh_DUZuL5Os0dWTvvT6-heg-g9TAs_Cqmib_-MP-LcbViycCrvEs1uyU5KhTz_7n0Sj2xJ4ktg8yl2NcGnvWA7rBaGs5BqTi7r41FSV3fPGB3_-70WYb6EpWzP6tESvNN5DWZso8rbGsx1KnbXogazhFAtwfNHeKBuan1WmH46-JMZomA8G_SIVHxA_boUG8ih6b7FBlrmbKh_2-LbnMmqV4W5jSaFe_mf-wfVHxOBAyvQrUmqeUeBG8zqLan4LZN5ykrKV3LXrJLv3elPcNH-cf79wC3bPLhKINpwMeMSUqLDVrQGibFD8aQViNBPkxQVTGdBmnkp8aRl6EyamLKHKepdQK6oqRAxLcNUfpXrVWBSJM0ME84w4_hsjQ9A-Ouhm_FpObWROvB18rNjVXKgUyuOfjzJhejjx-bjO7BdyV5b5o8XpZaNzlQiAhEYjwRe2JgoUVy6hSLGbJtzykC5A1vVZTRoWqWRub4aowyRQCIO9vxXZDBOBRyRZ8OBFaug1QB45HuUBzuwa9TslcHH3w5POuZo7S3CX-DD6X47Pjo8_rUOszje0BbdbcDUaDjWnxGljZJNY4t_AbuzOoY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Selection+for+Semiparametric+Marginal+Mean+Regression+Accounting+for+Within-Cluster+Subsampling+Variability+and+Informative+Cluster+Size&rft.jtitle=Biometrics&rft.au=Shen%2C+Chung-Wei&rft.au=Chen%2C+Yi-Hau&rft.date=2018-09-01&rft.pub=Wiley-Blackwell&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=74&rft.issue=3&rft.spage=934&rft.epage=943&rft_id=info:doi/10.1111%2Fbiom.12869&rft.externalDocID=45092949 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |