Methods for the computation of templates from quantitative magnetic susceptibility maps (QSM): Toward improved atlas‐ and voxel‐based analyses (VBA)
Purpose To develop and assess a method for the creation of templates for voxel‐based analysis (VBA) and atlas‐based approaches using quantitative magnetic susceptibility mapping (QSM). Materials and Methods We studied four strategies for the creation of magnetic susceptibility brain templates, deriv...
Saved in:
| Published in | Journal of magnetic resonance imaging Vol. 46; no. 5; pp. 1474 - 1484 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-1807 1522-2586 1522-2586 |
| DOI | 10.1002/jmri.25671 |
Cover
| Abstract | Purpose
To develop and assess a method for the creation of templates for voxel‐based analysis (VBA) and atlas‐based approaches using quantitative magnetic susceptibility mapping (QSM).
Materials and Methods
We studied four strategies for the creation of magnetic susceptibility brain templates, derived as successive extensions of the conventional template generation (CONV) based on only T1‐weighted (T1w) images. One method that used only T1w images involved a minor improvement of CONV (U‐CONV). One method used only magnetic susceptibility maps as input for template generation (DIRECT), and the other two used a linear combination of susceptibility and T1w images (HYBRID) and an algorithm that directly used both image modalities (MULTI), respectively. The strategies were evaluated in a group of N = 10 healthy human subjects and semiquantitatively assessed by three experienced raters. Template quality was compared statistically via worth estimates (WEs) obtained with a log‐linear Bradley‐Terry model.
Results
The overall quality of the templates was better for strategies including both susceptibility and T1w contrast (MULTI: WE = 0.62; HYBRID: WE = 0.21), but the best method depended on the anatomical region of interest. While methods using only one modality resulted in lower WEs, lowest overall WEs were obtained when only T1w images were used (DIRECT: WE = 0.12; U‐CONV: WE = 0.05).
Conclusion
Template generation strategies that employ only magnetic susceptibility contrast or both magnetic susceptibility and T1w contrast produce templates with the highest quality. The optimal approach depends on the anatomical structures of interest. The established approach of using only T1w images (CONV) results in reduced image quality compared to all other approaches studied.
Level of Evidence: 2
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2017;46:1474–1484. |
|---|---|
| AbstractList | To develop and assess a method for the creation of templates for voxel-based analysis (VBA) and atlas-based approaches using quantitative magnetic susceptibility mapping (QSM).PURPOSETo develop and assess a method for the creation of templates for voxel-based analysis (VBA) and atlas-based approaches using quantitative magnetic susceptibility mapping (QSM).We studied four strategies for the creation of magnetic susceptibility brain templates, derived as successive extensions of the conventional template generation (CONV) based on only T1 -weighted (T1 w) images. One method that used only T1 w images involved a minor improvement of CONV (U-CONV). One method used only magnetic susceptibility maps as input for template generation (DIRECT), and the other two used a linear combination of susceptibility and T1 w images (HYBRID) and an algorithm that directly used both image modalities (MULTI), respectively. The strategies were evaluated in a group of N = 10 healthy human subjects and semiquantitatively assessed by three experienced raters. Template quality was compared statistically via worth estimates (WEs) obtained with a log-linear Bradley-Terry model.MATERIALS AND METHODSWe studied four strategies for the creation of magnetic susceptibility brain templates, derived as successive extensions of the conventional template generation (CONV) based on only T1 -weighted (T1 w) images. One method that used only T1 w images involved a minor improvement of CONV (U-CONV). One method used only magnetic susceptibility maps as input for template generation (DIRECT), and the other two used a linear combination of susceptibility and T1 w images (HYBRID) and an algorithm that directly used both image modalities (MULTI), respectively. The strategies were evaluated in a group of N = 10 healthy human subjects and semiquantitatively assessed by three experienced raters. Template quality was compared statistically via worth estimates (WEs) obtained with a log-linear Bradley-Terry model.The overall quality of the templates was better for strategies including both susceptibility and T1 w contrast (MULTI: WE = 0.62; HYBRID: WE = 0.21), but the best method depended on the anatomical region of interest. While methods using only one modality resulted in lower WEs, lowest overall WEs were obtained when only T1 w images were used (DIRECT: WE = 0.12; U-CONV: WE = 0.05).RESULTSThe overall quality of the templates was better for strategies including both susceptibility and T1 w contrast (MULTI: WE = 0.62; HYBRID: WE = 0.21), but the best method depended on the anatomical region of interest. While methods using only one modality resulted in lower WEs, lowest overall WEs were obtained when only T1 w images were used (DIRECT: WE = 0.12; U-CONV: WE = 0.05).Template generation strategies that employ only magnetic susceptibility contrast or both magnetic susceptibility and T1 w contrast produce templates with the highest quality. The optimal approach depends on the anatomical structures of interest. The established approach of using only T1 w images (CONV) results in reduced image quality compared to all other approaches studied.CONCLUSIONTemplate generation strategies that employ only magnetic susceptibility contrast or both magnetic susceptibility and T1 w contrast produce templates with the highest quality. The optimal approach depends on the anatomical structures of interest. The established approach of using only T1 w images (CONV) results in reduced image quality compared to all other approaches studied.2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1474-1484.LEVEL OF EVIDENCE2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1474-1484. To develop and assess a method for the creation of templates for voxel-based analysis (VBA) and atlas-based approaches using quantitative magnetic susceptibility mapping (QSM). We studied four strategies for the creation of magnetic susceptibility brain templates, derived as successive extensions of the conventional template generation (CONV) based on only T -weighted (T w) images. One method that used only T w images involved a minor improvement of CONV (U-CONV). One method used only magnetic susceptibility maps as input for template generation (DIRECT), and the other two used a linear combination of susceptibility and T w images (HYBRID) and an algorithm that directly used both image modalities (MULTI), respectively. The strategies were evaluated in a group of N = 10 healthy human subjects and semiquantitatively assessed by three experienced raters. Template quality was compared statistically via worth estimates (WEs) obtained with a log-linear Bradley-Terry model. The overall quality of the templates was better for strategies including both susceptibility and T w contrast (MULTI: WE = 0.62; HYBRID: WE = 0.21), but the best method depended on the anatomical region of interest. While methods using only one modality resulted in lower WEs, lowest overall WEs were obtained when only T w images were used (DIRECT: WE = 0.12; U-CONV: WE = 0.05). Template generation strategies that employ only magnetic susceptibility contrast or both magnetic susceptibility and T w contrast produce templates with the highest quality. The optimal approach depends on the anatomical structures of interest. The established approach of using only T w images (CONV) results in reduced image quality compared to all other approaches studied. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1474-1484. Purpose To develop and assess a method for the creation of templates for voxel‐based analysis (VBA) and atlas‐based approaches using quantitative magnetic susceptibility mapping (QSM). Materials and Methods We studied four strategies for the creation of magnetic susceptibility brain templates, derived as successive extensions of the conventional template generation (CONV) based on only T1‐weighted (T1w) images. One method that used only T1w images involved a minor improvement of CONV (U‐CONV). One method used only magnetic susceptibility maps as input for template generation (DIRECT), and the other two used a linear combination of susceptibility and T1w images (HYBRID) and an algorithm that directly used both image modalities (MULTI), respectively. The strategies were evaluated in a group of N = 10 healthy human subjects and semiquantitatively assessed by three experienced raters. Template quality was compared statistically via worth estimates (WEs) obtained with a log‐linear Bradley‐Terry model. Results The overall quality of the templates was better for strategies including both susceptibility and T1w contrast (MULTI: WE = 0.62; HYBRID: WE = 0.21), but the best method depended on the anatomical region of interest. While methods using only one modality resulted in lower WEs, lowest overall WEs were obtained when only T1w images were used (DIRECT: WE = 0.12; U‐CONV: WE = 0.05). Conclusion Template generation strategies that employ only magnetic susceptibility contrast or both magnetic susceptibility and T1w contrast produce templates with the highest quality. The optimal approach depends on the anatomical structures of interest. The established approach of using only T1w images (CONV) results in reduced image quality compared to all other approaches studied. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1474–1484. Purpose To develop and assess a method for the creation of templates for voxel-based analysis (VBA) and atlas-based approaches using quantitative magnetic susceptibility mapping (QSM). Materials and Methods We studied four strategies for the creation of magnetic susceptibility brain templates, derived as successive extensions of the conventional template generation (CONV) based on only T1-weighted (T1w) images. One method that used only T1w images involved a minor improvement of CONV (U-CONV). One method used only magnetic susceptibility maps as input for template generation (DIRECT), and the other two used a linear combination of susceptibility and T1w images (HYBRID) and an algorithm that directly used both image modalities (MULTI), respectively. The strategies were evaluated in a group of N=10 healthy human subjects and semiquantitatively assessed by three experienced raters. Template quality was compared statistically via worth estimates (WEs) obtained with a log-linear Bradley-Terry model. Results The overall quality of the templates was better for strategies including both susceptibility and T1w contrast (MULTI: WE=0.62; HYBRID: WE=0.21), but the best method depended on the anatomical region of interest. While methods using only one modality resulted in lower WEs, lowest overall WEs were obtained when only T1w images were used (DIRECT: WE=0.12; U-CONV: WE=0.05). Conclusion Template generation strategies that employ only magnetic susceptibility contrast or both magnetic susceptibility and T1w contrast produce templates with the highest quality. The optimal approach depends on the anatomical structures of interest. The established approach of using only T1w images (CONV) results in reduced image quality compared to all other approaches studied. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1474-1484. |
| Author | Reichenbach, Jürgen R. Dwyer, Michael G. Zivadinov, Robert Feng, Xiang Bertolino, Nicola Polak, Paul Hanspach, Jannis Hagemeier, Jesper Schweser, Ferdinand Bergsland, Niels P. |
| AuthorAffiliation | 2 Magnetic Resonance Laboratory, IRCCS Don Gnocchi Foundation, Milan, Italy 3 Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, TH, Germany 1 Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA 4 Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, TH, Germany 5 MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA |
| AuthorAffiliation_xml | – name: 3 Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, TH, Germany – name: 4 Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, TH, Germany – name: 5 MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA – name: 2 Magnetic Resonance Laboratory, IRCCS Don Gnocchi Foundation, Milan, Italy – name: 1 Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA |
| Author_xml | – sequence: 1 givenname: Jannis surname: Hanspach fullname: Hanspach, Jannis organization: State University of New York – sequence: 2 givenname: Michael G. surname: Dwyer fullname: Dwyer, Michael G. organization: State University of New York – sequence: 3 givenname: Niels P. orcidid: 0000-0002-7792-0433 surname: Bergsland fullname: Bergsland, Niels P. organization: Magnetic Resonance Laboratory, IRCCS Don Gnocchi Foundation – sequence: 4 givenname: Xiang surname: Feng fullname: Feng, Xiang organization: Friedrich Schiller University Jena – sequence: 5 givenname: Jesper surname: Hagemeier fullname: Hagemeier, Jesper organization: State University of New York – sequence: 6 givenname: Nicola surname: Bertolino fullname: Bertolino, Nicola organization: State University of New York – sequence: 7 givenname: Paul orcidid: 0000-0002-7719-7572 surname: Polak fullname: Polak, Paul organization: State University of New York – sequence: 8 givenname: Jürgen R. surname: Reichenbach fullname: Reichenbach, Jürgen R. organization: Friedrich Schiller University Jena – sequence: 9 givenname: Robert surname: Zivadinov fullname: Zivadinov, Robert organization: State University of New York – sequence: 10 givenname: Ferdinand orcidid: 0000-0003-0399-9211 surname: Schweser fullname: Schweser, Ferdinand email: schweser@buffalo.edu organization: State University of New York |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28263417$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1TAQhiNURC-w4QGQJTanSCm2E8cOC6RScSnqEQIKW2uSOD0-cuLUdk45Ox6BJc_Hk-CQUkGFWPky3_97xjP7yU5ve5UkDwk-IhjTp-vO6SPKCk7uJHuEUZpSJoqduMcsS4nAfDfZ936NMS7LnN1LdqmgRZYTvpd8X6qwso1HrXUorBSqbTeMAYK2PbItCqobDAQVAWc7dDlCH_QU3ijUwUWvgq6RH32thqArbXTYxvvBo8X7j8vDZ-jcXoFrkO4GZzeqQRAM-B9fvyHoG7SxX5SJhwr8FOrBbH18afH5xfHh_eRuC8arB9frQfLp1cvzkzfp2bvXpyfHZ2mdE0rSrK0IlApKLkReY54XBRVto7CoQQjOeUMVo4RlJAfIoWqKuoIyiggVVUNEdpA8n32HsepUU6s-ODBycLoDt5UWtPw70uuVvLAbyZjgGSPRYHFt4OzlqHyQnY7fYQz0yo5eEsFzHtGsiOjjW-jaji6WHamS4QxHdjJ89GdGN6n8bloEnsxA7az3TrU3CMFymgg5TYT8NRERxrfgWs_tjdVo828JmSVX2qjtf8zl2-WH01nzEz7zzV4 |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2018_01_008 crossref_primary_10_3389_fnins_2020_606182 crossref_primary_10_3174_ajnr_A7093 crossref_primary_10_1002_nbm_5226 crossref_primary_10_1016_j_neuroimage_2022_119503 crossref_primary_10_1002_mrm_30006 crossref_primary_10_1007_s00429_022_02547_1 crossref_primary_10_1016_j_dib_2018_06_005 crossref_primary_10_1016_j_mri_2020_04_018 crossref_primary_10_3389_fnins_2022_919765 crossref_primary_10_1016_j_neuroimage_2019_02_016 crossref_primary_10_1002_mrm_28226 crossref_primary_10_1016_j_neuroimage_2017_10_063 crossref_primary_10_1016_j_mri_2019_04_003 crossref_primary_10_1002_hbm_25556 crossref_primary_10_1016_j_msard_2024_106187 crossref_primary_10_1016_j_nicl_2017_11_003 |
| Cites_doi | 10.1016/j.neuroimage.2015.10.013 10.1016/j.neuroimage.2007.10.037 10.3390/ijms17010100 10.1002/jmri.24951 10.1109/TMI.2010.2046908 10.1097/RLI.0000000000000159 10.1016/j.neuroimage.2016.02.028 10.18383/j.tom.2015.00136 10.1364/AO.46.006623 10.1093/biomet/63.2.245 10.1016/j.neuroimage.2010.05.029 10.1002/hbm.10062 10.1016/j.neuroimage.2014.10.009 10.1111/j.1471-4159.1958.tb12607.x 10.1016/j.neuroimage.2013.05.127 10.1523/JNEUROSCI.1907-15.2016 10.1002/mrm.23000 10.1016/j.neuroimage.2010.10.070 10.1109/42.836373 10.1097/01.rmr.0000245461.90406.ad 10.1007/s00330-014-3472-7 10.1148/radiol.14132475 10.1002/hbm.22423 10.1016/j.mri.2014.09.004 10.1016/j.neuroimage.2012.05.067 10.18637/jss.v048.i10 10.1016/j.acra.2008.07.007 10.1177/1352458514531085 10.1016/j.neuroimage.2016.04.065 10.1016/j.neuroimage.2012.09.055 |
| ContentType | Journal Article |
| Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. |
| Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/jmri.25671 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1522-2586 |
| EndPage | 1484 |
| ExternalDocumentID | PMC5587351 28263417 10_1002_jmri_25671 JMRI25671 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Center for Advancing Translational Sciences of the National Institutes of Health funderid: UL1TR001412 – fundername: NCATS NIH HHS grantid: UL1 TR001412 |
| GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c4121-3fb1a9ea97884c0746628fde08ca88777d2e5215314aa4abd6cba9fb1128bd183 |
| IEDL.DBID | DR2 |
| ISSN | 1053-1807 1522-2586 |
| IngestDate | Thu Aug 21 18:35:35 EDT 2025 Thu Oct 02 10:50:09 EDT 2025 Tue Oct 07 06:19:40 EDT 2025 Mon Jul 21 06:02:48 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Wed Oct 01 04:36:57 EDT 2025 Sun Sep 21 06:23:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | magnetic resonance imaging (MRI) template voxel-based analysis (VBA) quantitative susceptibility mapping (QSM) T1-weighted imaging normalization |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4121-3fb1a9ea97884c0746628fde08ca88777d2e5215314aa4abd6cba9fb1128bd183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7719-7572 0000-0002-7792-0433 0000-0003-0399-9211 |
| PMID | 28263417 |
| PQID | 1950301871 |
| PQPubID | 1006400 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5587351 proquest_miscellaneous_1874787336 proquest_journals_1950301871 pubmed_primary_28263417 crossref_primary_10_1002_jmri_25671 crossref_citationtrail_10_1002_jmri_25671 wiley_primary_10_1002_jmri_25671_JMRI25671 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Nashville |
| PublicationSubtitle | JMRI |
| PublicationTitle | Journal of magnetic resonance imaging |
| PublicationTitleAlternate | J Magn Reson Imaging |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 1 2002; 17 1976; 63 2013; 65 2015; 105 2015; 50 2006; 17 2015; 33 2008; 39 2008; 15 2011; 54 2014; 272 2016; 125 2016; 17 2007; 10 2016; 36 2014; 20 2015; 25 2000; 19 2010; 29 2015; 42 2013; 82 2016; 132 2014; 35 2016 2015 2014 1981 2012; 48 2013 2016; 136 1958; 3 2009; 2 2012; 67 2010; 52 2007; 46 2012; 62 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Fleiss JL (e_1_2_6_28_1) 1981 Avants BB (e_1_2_6_24_1) 2007; 10 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 R Core Team (e_1_2_6_26_1) 2013 Lauzon ML (e_1_2_6_34_1) 2016 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_27_1 Avants BB (e_1_2_6_14_1) 2009; 2 22659482 - Neuroimage. 2012 Sep;62(3):2083-100 26784172 - Int J Mol Sci. 2016 Jan 14;17 (1):null 18051079 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):359-66 27132546 - Neuroimage. 2016 Aug 1;136:208-14 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 26899787 - Neuroimage. 2016 May 15;132:167-174 21040794 - Neuroimage. 2011 Feb 14;54(4):2789-807 23769915 - Neuroimage. 2013 Nov 15;82:449-69 10784285 - IEEE Trans Med Imaging. 2000 Feb;19(2):143-50 21671269 - Magn Reson Med. 2012 Jan;67(1):137-47 25267705 - Magn Reson Imaging. 2015 Jan;33(1):1-25 18096412 - Neuroimage. 2008 Feb 15;39(4):1682-92 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 26844301 - Tomography. 2015 Sep;1(1):3-17 24339427 - Hum Brain Mapp. 2014 Aug;35(8):3588-601 25361824 - Eur Radiol. 2015 Mar;25(3):710-8 25980643 - J Magn Reson Imaging. 2015 Dec;42(6):1601-10 17179893 - Top Magn Reson Imaging. 2006 Feb;17(1):5-17 26477650 - Neuroimage. 2016 Jan 15;125:479-497 24787429 - Mult Scler. 2014 Nov;20(13):1692-8 18995188 - Acad Radiol. 2008 Nov;15(11):1360-75 20483380 - Neuroimage. 2010 Oct 1;52(4):1261-7 13611557 - J Neurochem. 1958 Oct;3(1):41-51 24828000 - Radiology. 2014 Sep;272(3):851-64 25900085 - Invest Radiol. 2015 Aug;50(8):522-30 23036448 - Neuroimage. 2013 Jan 15;65:299-314 26758829 - J Neurosci. 2016 Jan 13;36(2):364-74 25315786 - Neuroimage. 2015 Jan 15;105:45-52 26887659 - NMR Biomed. 2017 Apr;30(4):null 17846656 - Appl Opt. 2007 Sep 10;46(26):6623-35 |
| References_xml | – volume: 105 start-page: 45 year: 2015 end-page: 52 article-title: Association between increased magnetic susceptibility of deep gray matter nuclei and decreased motor function in healthy adults publication-title: NeuroImage – year: 1981 – volume: 25 start-page: 710 year: 2015 end-page: 718 article-title: Internal structures of the globus pallidus in patients with Parkinson's disease: evaluation with quantitative susceptibility mapping (QSM) publication-title: Eur Radiol – volume: 67 start-page: 137 year: 2012 end-page: 147 article-title: Whole brain susceptibility mapping using compressed sensing publication-title: Magn Reson Med – volume: 82 start-page: 449 year: 2013 end-page: 469 article-title: Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: Application to determine iron content in deep gray matter structures publication-title: NeuroImage – volume: 15 start-page: 1360 year: 2008 end-page: 1375 article-title: Multivariate analysis of structural and diffusion imaging in traumatic brain injury publication-title: Acad Radiol – volume: 36 start-page: 364 year: 2016 end-page: 374 article-title: In vivo MRI mapping of brain iron deposition across the adult lifespan publication-title: J Neurosci – volume: 1 start-page: 3 year: 2015 end-page: 17 article-title: Quantitative susceptibility mapping: contrast mechanisms and clinical applications publication-title: Tomogr J Imaging Res – volume: 63 start-page: 245 year: 1976 end-page: 254 article-title: Log linear representation for paired and multiple comparisons models publication-title: Biometrika – volume: 65 start-page: 299 year: 2013 end-page: 314 article-title: Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude‐, phase‐, and R2*‐imaging at ultra‐high magnetic field strength publication-title: NeuroImage – start-page: 23 year: 2015 – volume: 19 start-page: 143 year: 2000 end-page: 150 article-title: New variants of a method of MRI scale standardization publication-title: IEEE Trans Med Imaging – volume: 33 start-page: 1 year: 2015 end-page: 25 article-title: Quantitative susceptibility mapping: current status and future directions publication-title: Magn Reson Imaging – volume: 10 start-page: 359 issue: Pt 1 year: 2007 end-page: 366 article-title: Multivariate normalization with symmetric diffeomorphisms for multivariate studies publication-title: Med Image Comput Comput‐Assist Interv MICCAI Int Conf Med Image Comput Comput‐Assist Interv – volume: 17 start-page: 5 year: 2006 end-page: 17 article-title: Role of iron in neurodegenerative disorders publication-title: Top Magn Reson Imaging TMRI – volume: 132 start-page: 167 year: 2016 end-page: 174 article-title: Magnetic susceptibility of brain iron is associated with childhood spatial IQ publication-title: NeuroImage – volume: 62 start-page: 2083 year: 2012 end-page: 2100 article-title: Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain publication-title: NeuroImage – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 50 start-page: 522 year: 2015 end-page: 530 article-title: Quantitative susceptibility mapping at 3 T and 1.5 T: evaluation of consistency and reproducibility publication-title: Invest Radiol – volume: 46 start-page: 6623 year: 2007 end-page: 6635 article-title: Fast and robust three‐dimensional best path phase unwrapping algorithm publication-title: Appl Opt – volume: 29 start-page: 1310 year: 2010 end-page: 1320 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Trans Med Imaging – year: 2016 article-title: Quantitative susceptibility mapping at 3 T: comparison of acquisition methodologies publication-title: NMR Biomed – volume: 136 start-page: 208 year: 2016 end-page: 214 article-title: Quantitative susceptibility mapping of striatum in children and adults, and its association with working memory performance publication-title: NeuroImage – volume: 17 start-page: 100 year: 2016 article-title: Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping publication-title: Int J Mol Sci – volume: 52 start-page: 1261 year: 2010 end-page: 1267 article-title: Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis publication-title: NeuroImage – volume: 3 start-page: 41 year: 1958 end-page: 51 article-title: The effect of age on the non‐haemin iron in the human brain publication-title: J Neurochem – volume: 2 start-page: 1 year: 2009 end-page: 35 article-title: Advanced normalization tools (ANTS) publication-title: Insight J – volume: 39 start-page: 1682 year: 2008 end-page: 1692 article-title: Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases publication-title: NeuroImage – volume: 54 start-page: 2789 year: 2011 end-page: 2807 article-title: Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? publication-title: NeuroImage – volume: 125 start-page: 479 year: 2016 end-page: 497 article-title: Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool publication-title: NeuroImage – volume: 272 start-page: 851 year: 2014 end-page: 864 article-title: Multiple sclerosis: improved identification of disease‐relevant changes in gray and white matter by using susceptibility‐based MR imaging publication-title: Radiology – volume: 35 start-page: 3588 year: 2014 end-page: 3601 article-title: In vivo normative atlas of the hippocampal subfields using multi‐echo susceptibility imaging at 7 Tesla: susceptibility atlas of the hippocampus at 7 T publication-title: Hum Brain Mapp – volume: 20 start-page: 1692 year: 2014 end-page: 1698 article-title: Determinants of iron accumulation in deep grey matter of multiple sclerosis patients publication-title: Mult Scler J – start-page: 1787 year: 2014 – volume: 48 start-page: 1 year: 2012 end-page: 31 article-title: Prefmod: An R package for modeling preferences based on paired comparisons, rankings, or ratings publication-title: J Stat Softw – volume: 42 start-page: 1601 year: 2015 end-page: 1610 article-title: Subcortical gray matter segmentation and voxel‐based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis: Voxel‐based QSM and in MS publication-title: J Magn Reson Imaging – year: 2013 – ident: e_1_2_6_23_1 doi: 10.1016/j.neuroimage.2015.10.013 – volume: 2 start-page: 1 year: 2009 ident: e_1_2_6_14_1 article-title: Advanced normalization tools (ANTS) publication-title: Insight J – ident: e_1_2_6_15_1 doi: 10.1016/j.neuroimage.2007.10.037 – ident: e_1_2_6_5_1 doi: 10.3390/ijms17010100 – volume: 10 start-page: 359 issue: 1 year: 2007 ident: e_1_2_6_24_1 article-title: Multivariate normalization with symmetric diffeomorphisms for multivariate studies publication-title: Med Image Comput Comput‐Assist Interv MICCAI Int Conf Med Image Comput Comput‐Assist Interv – volume-title: Statistical methods for rates and proportions year: 1981 ident: e_1_2_6_28_1 – ident: e_1_2_6_37_1 doi: 10.1002/jmri.24951 – ident: e_1_2_6_20_1 doi: 10.1109/TMI.2010.2046908 – ident: e_1_2_6_11_1 – year: 2016 ident: e_1_2_6_34_1 article-title: Quantitative susceptibility mapping at 3 T: comparison of acquisition methodologies publication-title: NMR Biomed – ident: e_1_2_6_32_1 doi: 10.1097/RLI.0000000000000159 – ident: e_1_2_6_35_1 doi: 10.1016/j.neuroimage.2016.02.028 – ident: e_1_2_6_3_1 doi: 10.18383/j.tom.2015.00136 – ident: e_1_2_6_17_1 doi: 10.1364/AO.46.006623 – ident: e_1_2_6_27_1 doi: 10.1093/biomet/63.2.245 – ident: e_1_2_6_8_1 doi: 10.1016/j.neuroimage.2010.05.029 – ident: e_1_2_6_22_1 doi: 10.1002/hbm.10062 – ident: e_1_2_6_33_1 doi: 10.1016/j.neuroimage.2014.10.009 – ident: e_1_2_6_13_1 doi: 10.1111/j.1471-4159.1958.tb12607.x – ident: e_1_2_6_38_1 doi: 10.1016/j.neuroimage.2013.05.127 – ident: e_1_2_6_30_1 doi: 10.1523/JNEUROSCI.1907-15.2016 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.23000 – ident: e_1_2_6_4_1 doi: 10.1016/j.neuroimage.2010.10.070 – ident: e_1_2_6_21_1 doi: 10.1109/42.836373 – ident: e_1_2_6_6_1 doi: 10.1097/01.rmr.0000245461.90406.ad – ident: e_1_2_6_16_1 – ident: e_1_2_6_10_1 doi: 10.1007/s00330-014-3472-7 – volume-title: R: A language and environment for statistical computing year: 2013 ident: e_1_2_6_26_1 – ident: e_1_2_6_29_1 doi: 10.1148/radiol.14132475 – ident: e_1_2_6_36_1 doi: 10.1002/hbm.22423 – ident: e_1_2_6_2_1 doi: 10.1016/j.mri.2014.09.004 – ident: e_1_2_6_19_1 doi: 10.1016/j.neuroimage.2012.05.067 – ident: e_1_2_6_25_1 doi: 10.18637/jss.v048.i10 – ident: e_1_2_6_12_1 doi: 10.1016/j.acra.2008.07.007 – ident: e_1_2_6_7_1 doi: 10.1177/1352458514531085 – ident: e_1_2_6_31_1 doi: 10.1016/j.neuroimage.2016.04.065 – ident: e_1_2_6_9_1 doi: 10.1016/j.neuroimage.2012.09.055 – reference: 26477650 - Neuroimage. 2016 Jan 15;125:479-497 – reference: 23036448 - Neuroimage. 2013 Jan 15;65:299-314 – reference: 21040794 - Neuroimage. 2011 Feb 14;54(4):2789-807 – reference: 22659482 - Neuroimage. 2012 Sep;62(3):2083-100 – reference: 25900085 - Invest Radiol. 2015 Aug;50(8):522-30 – reference: 23769915 - Neuroimage. 2013 Nov 15;82:449-69 – reference: 18051079 - Med Image Comput Comput Assist Interv. 2007;10(Pt 1):359-66 – reference: 25980643 - J Magn Reson Imaging. 2015 Dec;42(6):1601-10 – reference: 18096412 - Neuroimage. 2008 Feb 15;39(4):1682-92 – reference: 17179893 - Top Magn Reson Imaging. 2006 Feb;17(1):5-17 – reference: 25315786 - Neuroimage. 2015 Jan 15;105:45-52 – reference: 21671269 - Magn Reson Med. 2012 Jan;67(1):137-47 – reference: 20378467 - IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 – reference: 24339427 - Hum Brain Mapp. 2014 Aug;35(8):3588-601 – reference: 20483380 - Neuroimage. 2010 Oct 1;52(4):1261-7 – reference: 26758829 - J Neurosci. 2016 Jan 13;36(2):364-74 – reference: 27132546 - Neuroimage. 2016 Aug 1;136:208-14 – reference: 26887659 - NMR Biomed. 2017 Apr;30(4):null – reference: 24787429 - Mult Scler. 2014 Nov;20(13):1692-8 – reference: 10784285 - IEEE Trans Med Imaging. 2000 Feb;19(2):143-50 – reference: 24828000 - Radiology. 2014 Sep;272(3):851-64 – reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55 – reference: 18995188 - Acad Radiol. 2008 Nov;15(11):1360-75 – reference: 26844301 - Tomography. 2015 Sep;1(1):3-17 – reference: 25267705 - Magn Reson Imaging. 2015 Jan;33(1):1-25 – reference: 26784172 - Int J Mol Sci. 2016 Jan 14;17 (1):null – reference: 17846656 - Appl Opt. 2007 Sep 10;46(26):6623-35 – reference: 26899787 - Neuroimage. 2016 May 15;132:167-174 – reference: 13611557 - J Neurochem. 1958 Oct;3(1):41-51 – reference: 25361824 - Eur Radiol. 2015 Mar;25(3):710-8 |
| SSID | ssj0009945 |
| Score | 2.3532398 |
| Snippet | Purpose
To develop and assess a method for the creation of templates for voxel‐based analysis (VBA) and atlas‐based approaches using quantitative magnetic... To develop and assess a method for the creation of templates for voxel-based analysis (VBA) and atlas-based approaches using quantitative magnetic... Purpose To develop and assess a method for the creation of templates for voxel-based analysis (VBA) and atlas-based approaches using quantitative magnetic... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1474 |
| SubjectTerms | Adult Aged Algorithms Brain Brain - diagnostic imaging Brain Mapping - methods Computer Simulation Female Healthy Volunteers Humans Image Interpretation, Computer-Assisted - methods Image processing Image Processing, Computer-Assisted - methods Image quality Magnetic permeability Magnetic resonance imaging magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Magnetic susceptibility Magnetism Male Methods Middle Aged Neuroimaging normalization quantitative susceptibility mapping (QSM) T1‐weighted imaging template voxel‐based analysis (VBA) Young Adult |
| Title | Methods for the computation of templates from quantitative magnetic susceptibility maps (QSM): Toward improved atlas‐ and voxel‐based analyses (VBA) |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25671 https://www.ncbi.nlm.nih.gov/pubmed/28263417 https://www.proquest.com/docview/1950301871 https://www.proquest.com/docview/1874787336 https://pubmed.ncbi.nlm.nih.gov/PMC5587351 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1053-1807 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5VPSAuQMtfaKkWwaFBchqvvZt1xaUgqlIpSJQW9YKsXe-mhKZOW8eIcuoj9Mjz8STMjB2HUIQEtzg79vpnZucbe-Ybxp4lMoHoPwRLi7QKYi91YJxSQaSdkB4cgsgo2-Kt2jmIdw_l4QJ7Ma2FqfghmhduaBm0XqOBG1tszEhDP5-cDzvgsKmAPIwUxVN7M-6oJKEOxYAfoiDU3V7DTSo2ZrvOe6NrEPN6puSvCJZc0PZt9nF68lXmyXGnnNhO9u03Xsf_vbo77FaNTflWpUxLbMHny-xGv_76fpd971O76YID0OUAHHlGLSHo2fLxgCPN1QixK8eiFX5WmpxK2GBB5SfmKMd6SV6UBWXSUFLuBfx_WvD1d-_77U2-Tym8fEjvObzjZgLQ_sflFTe541_GX_0INtDtwhBxqcBM6x9ebrXvsYPt1_uvdoK6s0OQxaEIg2hgQ5N4AyGsjjNseaKEHjjf1ZnRyFDohAdcAetDbExsrFOZNQnsBN7UOliF7rPFfJz7h4wrCxGfU74nHYAjG2uvXIIsgVZY42S3xdrTJ5xmNe05dt8YpRVhs0jxVqd0q1vsaSN7WpF9_FFqdaooaW3wRYrddCNscAjDT5phMFX8_mJyPy5BRmOzAuSfbLEHlV4100DkqwBQ9FqsN6dxjQDSgM-P5MNPRAcuJRxTwrzPSaH-cubpbn_vDf169C_CK-ymQDBDFZirbHFyXvrHAMUmdo1M7ievajQY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6hIgEX_n8CBRbBoUFyGq-9mzW3gqjSUleipKg3a9e7gUDqlDpGwIlH4Mjz8STMjF2HUIQEtzg79ib2zM4365lvGHuUyASi_xAsLdIqiL3UgXFKBZF2QnpwCCKnbItdNdyPtw_kQZObg7UwNT9Eu-GGlkHrNRo4bkivL1hD3x0eT3rgsbGC_GysIFBBTLS3YI9KEupRDAgiCkLdH7TspGJ9ce6yPzoFMk_nSv6KYckJbV6qO62WxF2IuSfve9Xc9vIvvzE7_vf_u8wuNvCUb9T6dIWd8cVVdi5tXsBfY99T6jhdcsC6HLAjz6krBD1ePhtzZLqaInzlWLfCP1SmoCo2WFP5oXlTYMkkL6uSkmkoL_czfH9U8rWXr9LuEz6iLF4-oa0O77iZA7r_8fUbN4XjH2ef_BQO0PPCENGpwExrr59udK-z_c3no2fDoGnuEORxKMIgGtvQJN5AFKvjHLueKKHHzvd1bjSSFDrhAVrAEhEbExvrVG5NAieBQ7UOFqIbbKWYFf4W48pC0OeUH0gH-MjG2iuXIFGgFdY42e-w7skjzvKG-RwbcEyzmrNZZHirM7rVHfawlT2q-T7-KLV6oilZY_Nlhg11I-xxCMMP2mGwVnwFYwo_q0BGY78CpKDssJu1YrXTQPCrAFMMOmywpHKtADKBL48Uk7fECC4lXFPCvI9Jo_7yy7PtdG-LPt3-F-H77PxwlO5kO1u7L-6wCwKxDRVkrrKV-XHl7wIym9t7ZH8_Ac3KODk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2hIlVc-P5IKbAIDg2S03jt3ay5FUrUFlJBaVFv1q53QwOpE-oYASd-Akd-H7-EmbHrEIqQ4JZkx9nEntl5a8-8x9jDRCaw-w8h0iKtgthLHRinVBBpJ6SHhCAyqrbYVVsH8c6hPKxrc7AXpuKHaG64YWTQeo0B7qduuD5nDX13fDLqQMbGDvLzsUw0VvRt7s3Zo5KENIoBQURBqLu9hp1UrM-PXcxHZ0Dm2VrJXzEsJaH-pUpptSDuQqw9ed8pZ7aTffmN2fG__99ldrGGp3yj8qcr7JzPr7LlQf0A_hr7PiDF6YID1uWAHXlGqhB0eflkyJHpaozwlWPfCv9Qmpy62GBN5cfmbY4tk7woCyqmobrcz_D5tOBrr14P2o_5PlXx8hHd6vCOmxmg-x9fv3GTO_5x8smP4Q1mXhgiOhWYae3Nk432dXbQf7b_dCuoxR2CLA5FGERDG5rEG9jF6jhD1RMl9ND5rs6MRpJCJzxAC1giYmNiY53KrEngIEio1sFCdIMt5ZPc32JcWdj0OeV70gE-srH2yiVIFGiFNU52W6x9eonTrGY-RwGOcVpxNosUT3VKp7rFHjS204rv449Wq6eektYxX6QoqBuhxiEM32-GIVrxEYzJ_aQEG416BUhB2WI3K8dqpoHNrwJM0Wux3oLLNQbIBL44ko-OiBFcSvhOCfM-Io_6yy9PdwZ72_Rq5V-M77Hll5v99MX27vPb7IJAaEP9mKtsaXZS-jsAzGb2LoXfTywcN70 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+for+the+computation+of+templates+from+quantitative+magnetic+susceptibility+maps+%28QSM%29%3A+Toward+improved+atlas%E2%80%90+and+voxel%E2%80%90based+analyses+%28VBA%29&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Hanspach%2C+Jannis&rft.au=Dwyer%2C+Michael+G.&rft.au=Bergsland%2C+Niels+P.&rft.au=Feng%2C+Xiang&rft.date=2017-11-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=46&rft.issue=5&rft.spage=1474&rft.epage=1484&rft_id=info:doi/10.1002%2Fjmri.25671&rft.externalDBID=10.1002%252Fjmri.25671&rft.externalDocID=JMRI25671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |