Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields
A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic b...
Saved in:
Published in | The Journal of chemical physics Vol. 144; no. 11; pp. 114501 - 114505 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
21.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.4943885 |
Cover
Abstract | A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N
corr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales. |
---|---|
AbstractList | A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, Ncorr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales. A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales. A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a "hump," i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, Ncorr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a "hump," i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, Ncorr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales. A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N corr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales. |
Author | Richert, Ranko |
Author_xml | – sequence: 1 givenname: Ranko surname: Richert fullname: Richert, Ranko organization: School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27004881$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22660814$$D View this record in Osti.gov |
BookMark | eNqdkc9rFDEUx4NU7LZ68B-QgBcrTPteMslkjlKsCkUveg6ZTNLNMptsk5lC_3sju9uCePL04PH5fng_zshJTNER8hbhEkHyK7xs-5YrJV6QFYLqm072cEJWAAybXoI8JWelbAAAO9a-IqesA2iVwhVZf0-xmUJ0JtMxuMnZOQdLS7iLZl6yKzR56uKc0-6R2rWJd7UVIp3C_RLGQssybGqGzonOYevo6HYujjVAn1y-asfymrz0ZiruzaGek183n39ef21uf3z5dv3ptrEt4tx4GDz3LQPLe-wQOjV0nvWWg5EwMmE4uE5w0TI29NyIbkQvrWCqd2LwreDn5P3em8ocdLFhdnZtU4x1Gs2YlKCwrdSHPbXL6X5xZdbbUKybJhNdWorGrhOSI2PqWfiEbtKSY91BM2SoBErASr07UMuwdaPe5bA1-VEfL12Bqz1gcyolO6_raGYOqd7WhEkj6D-_1KgPv6yJi78SR-m_2I97thyt_wc_pPwM6t3o-W9kgLge |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1103_PhysRevE_96_022150 crossref_primary_10_1063_1_5003813 crossref_primary_10_1063_5_0060310 crossref_primary_10_1088_1361_648X_aa7cc4 crossref_primary_10_1063_1_4979600 crossref_primary_10_1103_PhysRevE_96_032611 crossref_primary_10_1016_j_tca_2018_12_002 crossref_primary_10_1063_1_5048093 crossref_primary_10_1016_j_molliq_2020_114215 crossref_primary_10_1103_PhysRevE_106_064122 crossref_primary_10_1140_epjst_e2017_70073_9 crossref_primary_10_1063_1_4960620 crossref_primary_10_1140_epjst_e2017_70087_9 crossref_primary_10_1063_1_4964863 crossref_primary_10_1063_1_5065412 crossref_primary_10_1088_1742_5468_ab371e crossref_primary_10_1063_5_0056657 crossref_primary_10_1063_1_5003861 |
Cites_doi | 10.1063/1.1789474 10.1103/PhysRevB.90.104202 10.1063/1.4918280 10.1103/PhysRevLett.104.165703 10.1021/jp8038187 10.1016/0032-3861(67)90021-3 10.1103/physreve.60.4983 10.1103/PhysRevLett.111.225702 10.1063/1.4929988 10.1002/9781118949702.ch4 10.1103/PhysRevB.84.104204 10.1103/PhysRevE.77.041501 10.1063/1.2121629 10.1063/1.1696442 10.1016/j.jnoncrysol.2010.05.088 10.1246/bcsj.39.1827 10.1146/annurev.physchem.51.1.99 10.1039/b717019j 10.1063/1.4941089 10.1063/1.3591375 10.1063/1.4799268 10.1007/BF01356228 10.1103/PhysRevLett.109.167802 10.1063/1.1732842 10.1021/jp9015189 10.1146/annurev-matsci-062910-100341 10.1063/1.4906191 10.1088/0953-8984/14/23/201 10.1103/PhysRevE.85.051502 10.1140/epjb/e2011-20599-5 10.1103/PhysRevB.75.064302 10.1103/PhysRevLett.110.107603 10.1103/PhysRevLett.114.067601 10.1063/1.4922933 10.1063/1.3139519 10.1126/science.274.5288.752 10.1103/PhysRevB.72.064204 10.1103/PhysRevE.57.1384 10.1063/1.1484381 10.1103/PhysRevLett.99.185701 |
ContentType | Journal Article |
Copyright | AIP Publishing LLC 2016 AIP Publishing LLC. |
Copyright_xml | – notice: AIP Publishing LLC – notice: 2016 AIP Publishing LLC. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OTOTI |
DOI | 10.1063/1.4943885 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 22660814 27004881 10_1063_1_4943885 jcp |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 0ZJ ABPTK AGIHO OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c411t-f0bf3f420c39171078b7f29c30a60d25a30e7535422b93a57d1f6c5289e5bf453 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri May 19 01:42:28 EDT 2023 Fri Jul 11 10:24:06 EDT 2025 Mon Jun 30 03:37:14 EDT 2025 Wed Feb 19 01:56:00 EST 2025 Tue Jul 01 04:16:06 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Fri Jun 21 00:14:56 EDT 2024 Tue Jul 04 19:19:17 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 0021-9606/2016/144(11)/114501/5/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c411t-f0bf3f420c39171078b7f29c30a60d25a30e7535422b93a57d1f6c5289e5bf453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8503-3175 |
PMID | 27004881 |
PQID | 2121851601 |
PQPubID | 2050685 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_1_4943885 proquest_journals_2121851601 crossref_citationtrail_10_1063_1_4943885 crossref_primary_10_1063_1_4943885 pubmed_primary_27004881 osti_scitechconnect_22660814 proquest_miscellaneous_1775631228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160321 2016-03-21 2016-Mar-21 |
PublicationDateYYYYMMDD | 2016-03-21 |
PublicationDate_xml | – month: 03 year: 2016 text: 20160321 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2016 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Samanta, Richert (c20) 2015; 142 Herweg (c3) 1920; 3 Małecki (c6) 1962; 36 Wang, Richert (c32) 2007; 99 Park, Ryu, Kim, Kang (c12) 2009; 113 Huang, Richert (c18) 2008; 112 Singh, Richert (c7) 2012; 109 Richert (c2) 2014; 156 Havriliak, Negami (c26) 1967; 8 Young-Gonzales, Samanta, Richert (c23) 2015; 143 Weinstein, Richert (c37) 2007; 75 Matyushov (c5) 2015; 142 Bauer, Lunkenheimer, Loidl (c40) 2013; 111 Richert (c29) 2002; 14 Bouchaud, Biroli (c24) 2005; 72 Ediger (c28) 2000; 51 Brun, Ladieu, L’Hôte, Tarzia, Biroli, Bouchaud (c25) 2011; 84 Brun, Crauste-Thibierge, Ladieu, L’Hôte (c41) 2011; 134 Khalife, Pathak, Richert (c16) 2011; 83 Richert (c43) 2011; 357 L’Hôte, Tourbot, Ladieu, Gadige (c22) 2014; 90 Diezemann (c42) 2012; 85 Goldstein (c31) 2005; 123 Matyushov, Richert (c27) 2016; 144 Michl, Bauer, Lunkenheimer, Loidl (c34) 2015; 114 Crauste-Thibierge, Brun, Ladieu, L’Hôte, Biroli, Bouchaud (c38) 2010; 104 De Smet, Hellemans, Rouleau, Corteau, Bose (c4) 1998; 57 Roling, Murugavel, Heuer, Lühning, Friedrich, Röthel (c9) 2008; 10 Schiener, Böhmer, Loidl, Chamberlin (c14) 1996; 274 Johari (c19) 2013; 138 Riechers, Samwer, Richert (c35) 2015; 142 Blazhnov, Malomuzh, Lishchuk (c39) 2004; 121 Scott (c13) 2011; 41 Matsuo, Suga, Seki (c15) 1966; 39 Drozd-Rzoska, Rzoska, Zioło (c11) 2008; 77 Roling (c8) 2002; 117 Zioło, Rzoska (c10) 1999; 60 Adam, Gibbs (c21) 1965; 43 Huang, Richert (c33) 2009; 130 Bauer, Lunkenheimer, Kastner, Loidl (c17) 2013; 110 (2023062602300016500_c37) 2007; 75 (2023062602300016500_c18) 2008; 112 2023062602300016500_c36 (2023062602300016500_c6) 1962; 36 (2023062602300016500_c32) 2007; 99 (2023062602300016500_c20) 2015; 142 (2023062602300016500_c15) 1966; 39 (2023062602300016500_c33) 2009; 130 (2023062602300016500_c7) 2012; 109 (2023062602300016500_c13) 2011; 41 (2023062602300016500_c43) 2011; 357 Kremer (2023062602300016500_c1) 2002 (2023062602300016500_c35) 2015; 142 (2023062602300016500_c11) 2008; 77 (2023062602300016500_c40) 2013; 111 (2023062602300016500_c26) 1967; 8 (2023062602300016500_c2) 2014; 156 (2023062602300016500_c19) 2013; 138 (2023062602300016500_c9) 2008; 10 (2023062602300016500_c27) 2016; 144 (2023062602300016500_c22) 2014; 90 (2023062602300016500_c39) 2004; 121 (2023062602300016500_c16) 2011; 83 (2023062602300016500_c30) 1958 (2023062602300016500_c31) 2005; 123 (2023062602300016500_c24) 2005; 72 (2023062602300016500_c21) 1965; 43 (2023062602300016500_c8) 2002; 117 (2023062602300016500_c10) 1999; 60 (2023062602300016500_c4) 1998; 57 (2023062602300016500_c14) 1996; 274 (2023062602300016500_c23) 2015; 143 (2023062602300016500_c28) 2000; 51 (2023062602300016500_c25) 2011; 84 (2023062602300016500_c42) 2012; 85 (2023062602300016500_c3) 1920; 3 (2023062602300016500_c17) 2013; 110 (2023062602300016500_c5) 2015; 142 (2023062602300016500_c12) 2009; 113 (2023062602300016500_c29) 2002; 14 (2023062602300016500_c34) 2015; 114 (2023062602300016500_c38) 2010; 104 (2023062602300016500_c41) 2011; 134 |
References_xml | – volume: 111 start-page: 225702 year: 2013 ident: c40 publication-title: Phys. Rev. Lett. – volume: 357 start-page: 726 year: 2011 ident: c43 publication-title: J. Non-Cryst. Solids – volume: 142 start-page: 044504 year: 2015 ident: c20 publication-title: J. Chem. Phys. – volume: 110 start-page: 107603 year: 2013 ident: c17 publication-title: Phys. Rev. Lett. – volume: 156 start-page: 101 year: 2014 ident: c2 publication-title: Adv. Chem. Phys. – volume: 142 start-page: 244502 year: 2015 ident: c5 publication-title: J. Chem. Phys. – volume: 3 start-page: 36 year: 1920 ident: c3 publication-title: Z. Phys. – volume: 138 start-page: 154503 year: 2013 ident: c19 publication-title: J. Chem. Phys. – volume: 109 start-page: 167802 year: 2012 ident: c7 publication-title: Phys. Rev. Lett. – volume: 51 start-page: 99 year: 2000 ident: c28 publication-title: Annu. Rev. Phys. Chem. – volume: 134 start-page: 194507 year: 2011 ident: c41 publication-title: J. Chem, Phys. – volume: 39 start-page: 1827 year: 1966 ident: c15 publication-title: Bull. Chem. Soc. Jpn. – volume: 99 start-page: 185701 year: 2007 ident: c32 publication-title: Phys. Rev. Lett. – volume: 130 start-page: 194509 year: 2009 ident: c33 publication-title: J. Chem. Phys. – volume: 8 start-page: 161 year: 1967 ident: c26 publication-title: Polymer – volume: 121 start-page: 6435 year: 2004 ident: c39 publication-title: J. Chem. Phys. – volume: 113 start-page: 12271 year: 2009 ident: c12 publication-title: J. Phys. Chem. B – volume: 75 start-page: 064302 year: 2007 ident: c37 publication-title: Phys. Rev. B – volume: 14 start-page: R703 year: 2002 ident: c29 publication-title: J. Phys.: Condens. Matter – volume: 41 start-page: 229 year: 2011 ident: c13 publication-title: Annu. Rev. Mater. Res. – volume: 274 start-page: 752 year: 1996 ident: c14 publication-title: Science – volume: 85 start-page: 051502 year: 2012 ident: c42 publication-title: Phys. Rev. E – volume: 90 start-page: 104202 year: 2014 ident: c22 publication-title: Phys. Rev. B – volume: 144 start-page: 041102 year: 2016 ident: c27 publication-title: J. Chem. Phys. – volume: 114 start-page: 067601 year: 2015 ident: c34 publication-title: Phys. Rev. Lett. – volume: 60 start-page: 4983 year: 1999 ident: c10 publication-title: Phys. Rev. E – volume: 123 start-page: 244511 year: 2005 ident: c31 publication-title: J. Chem. Phys. – volume: 142 start-page: 154504 year: 2015 ident: c35 publication-title: J. Chem. Phys. – volume: 10 start-page: 4211 year: 2008 ident: c9 publication-title: Phys. Chem. Chem. Phys. – volume: 104 start-page: 165703 year: 2010 ident: c38 publication-title: Phys. Rev. Lett. – volume: 117 start-page: 1320 year: 2002 ident: c8 publication-title: J. Chem. Phys. – volume: 77 start-page: 041501 year: 2008 ident: c11 publication-title: Phys. Rev. E – volume: 112 start-page: 9909 year: 2008 ident: c18 publication-title: J. Phys. Chem. B – volume: 83 start-page: 429 year: 2011 ident: c16 publication-title: Eur. Phys. J. B – volume: 57 start-page: 1384 year: 1998 ident: c4 publication-title: Phys. Rev. E – volume: 143 start-page: 104504 year: 2015 ident: c23 publication-title: J. Chem. Phys. – volume: 43 start-page: 139 year: 1965 ident: c21 publication-title: J. Chem. Phys. – volume: 72 start-page: 064204 year: 2005 ident: c24 publication-title: Phys. Rev. B – volume: 84 start-page: 104204 year: 2011 ident: c25 publication-title: Phys. Rev. B – volume: 36 start-page: 2144 year: 1962 ident: c6 publication-title: J. Chem. Phys. – volume: 121 start-page: 6435 year: 2004 ident: 2023062602300016500_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.1789474 – volume: 90 start-page: 104202 year: 2014 ident: 2023062602300016500_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.104202 – volume: 142 start-page: 154504 year: 2015 ident: 2023062602300016500_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.4918280 – volume: 104 start-page: 165703 year: 2010 ident: 2023062602300016500_c38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.165703 – volume: 112 start-page: 9909 year: 2008 ident: 2023062602300016500_c18 publication-title: J. Phys. Chem. B doi: 10.1021/jp8038187 – volume: 8 start-page: 161 year: 1967 ident: 2023062602300016500_c26 publication-title: Polymer doi: 10.1016/0032-3861(67)90021-3 – ident: 2023062602300016500_c36 – volume: 60 start-page: 4983 year: 1999 ident: 2023062602300016500_c10 publication-title: Phys. Rev. E doi: 10.1103/physreve.60.4983 – volume-title: Broadband Dielectric Spectroscopy year: 2002 ident: 2023062602300016500_c1 – volume: 111 start-page: 225702 year: 2013 ident: 2023062602300016500_c40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.225702 – volume: 143 start-page: 104504 year: 2015 ident: 2023062602300016500_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.4929988 – volume: 156 start-page: 101 year: 2014 ident: 2023062602300016500_c2 publication-title: Adv. Chem. Phys. doi: 10.1002/9781118949702.ch4 – volume: 84 start-page: 104204 year: 2011 ident: 2023062602300016500_c25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.104204 – volume: 77 start-page: 041501 year: 2008 ident: 2023062602300016500_c11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.041501 – volume: 123 start-page: 244511 year: 2005 ident: 2023062602300016500_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.2121629 – volume: 43 start-page: 139 year: 1965 ident: 2023062602300016500_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.1696442 – volume: 357 start-page: 726 year: 2011 ident: 2023062602300016500_c43 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2010.05.088 – volume: 39 start-page: 1827 year: 1966 ident: 2023062602300016500_c15 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.39.1827 – volume: 51 start-page: 99 year: 2000 ident: 2023062602300016500_c28 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.51.1.99 – volume: 10 start-page: 4211 year: 2008 ident: 2023062602300016500_c9 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b717019j – volume: 144 start-page: 041102 year: 2016 ident: 2023062602300016500_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4941089 – volume: 134 start-page: 194507 year: 2011 ident: 2023062602300016500_c41 publication-title: J. Chem, Phys. doi: 10.1063/1.3591375 – volume: 138 start-page: 154503 year: 2013 ident: 2023062602300016500_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.4799268 – volume-title: Theory of Dielectrics year: 1958 ident: 2023062602300016500_c30 – volume: 3 start-page: 36 year: 1920 ident: 2023062602300016500_c3 publication-title: Z. Phys. doi: 10.1007/BF01356228 – volume: 109 start-page: 167802 year: 2012 ident: 2023062602300016500_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.167802 – volume: 36 start-page: 2144 year: 1962 ident: 2023062602300016500_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.1732842 – volume: 113 start-page: 12271 year: 2009 ident: 2023062602300016500_c12 publication-title: J. Phys. Chem. B doi: 10.1021/jp9015189 – volume: 41 start-page: 229 year: 2011 ident: 2023062602300016500_c13 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-062910-100341 – volume: 142 start-page: 044504 year: 2015 ident: 2023062602300016500_c20 publication-title: J. Chem. Phys. doi: 10.1063/1.4906191 – volume: 14 start-page: R703 year: 2002 ident: 2023062602300016500_c29 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/14/23/201 – volume: 85 start-page: 051502 year: 2012 ident: 2023062602300016500_c42 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.051502 – volume: 83 start-page: 429 year: 2011 ident: 2023062602300016500_c16 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2011-20599-5 – volume: 75 start-page: 064302 year: 2007 ident: 2023062602300016500_c37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.064302 – volume: 110 start-page: 107603 year: 2013 ident: 2023062602300016500_c17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.107603 – volume: 114 start-page: 067601 year: 2015 ident: 2023062602300016500_c34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.067601 – volume: 142 start-page: 244502 year: 2015 ident: 2023062602300016500_c5 publication-title: J. Chem. Phys. doi: 10.1063/1.4922933 – volume: 130 start-page: 194509 year: 2009 ident: 2023062602300016500_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.3139519 – volume: 274 start-page: 752 year: 1996 ident: 2023062602300016500_c14 publication-title: Science doi: 10.1126/science.274.5288.752 – volume: 72 start-page: 064204 year: 2005 ident: 2023062602300016500_c24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.064204 – volume: 57 start-page: 1384 year: 1998 ident: 2023062602300016500_c4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.57.1384 – volume: 117 start-page: 1320 year: 2002 ident: 2023062602300016500_c8 publication-title: J. Chem. Phys. doi: 10.1063/1.1484381 – volume: 99 start-page: 185701 year: 2007 ident: 2023062602300016500_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.185701 |
SSID | ssj0001724 |
Score | 2.324476 |
Snippet | A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time... |
SourceID | osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114501 |
SubjectTerms | ACTIVATION ENERGY Amplitudes DIELECTRIC MATERIALS Dielectric polarization ELECTRIC FIELDS ENTROPY EXPERIMENTAL DATA INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Mathematical models NONLINEAR PROBLEMS NUMERICAL SOLUTION PARTICLE TRACKS TEMPERATURE DEPENDENCE Thermodynamic properties TIME DEPENDENCE |
Title | Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields |
URI | http://dx.doi.org/10.1063/1.4943885 https://www.ncbi.nlm.nih.gov/pubmed/27004881 https://www.proquest.com/docview/2121851601 https://www.proquest.com/docview/1775631228 https://www.osti.gov/biblio/22660814 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0001724 issn: 0021-9606 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExo8IBi3wkDm8oBUZTi247SP0wBNCCYEm7S3yHZsLWIkpU2R4NdzHDtOBxUavERV4jiuvxOf7zjngtALKxXlgqjETFWZ8JmliQRenJQM1IFRmaGmy_Z5JA5P-LvT7HQogthFl7RqT__cGFfyP6jCOcDVRcn-A7KxUzgBvwFfOALCcLwUxkdNnTiaKBeTsvIFbSo9cS4ZXbrOzkvD7d428x8hwrfzfj2vvq2qcjlZrpTbhenoZ_XVBVD5grjtJPbVObgt1xnsEEvWsVjdJxzwWySD57xzMfXhQJ9k_aVZ311IhXOv8iHL0ds_TZyV4_WFXyTJdJbkwpf5jKuoT-PYi0u6cXkGPuR2Cvb4jLOpL9VzMQX2b6opOgx2n8oFK9Ii3HoVbdFcCDpCW_uvP7z_HLUvELKQeduPu88mJdir-NwLHGTUwFq6yb64gbaBhXiHiDXOcXwL3QzTjPc98rfRFVPvoO2DvkbfDrr20c_6HXQ2yAIeZAEPsoAbi4Ms4CALuKpxkAUcZAG3DXaygKMs4NiXl4W76OTtm-ODwyRU0Ug0T9M2sURZZjklmoFpDtb-VOWWzjQjUpCSZpIRAzZrxilVMyazvEyt0BkY4iZTlmfsHhrVTW0eIMwsKQmVpSA658BrJTOgAKRRRGhX6XGMXvbzWvQz5yqdnBd_4DdGz2LTuc-rsqnRrgOncDAYfaad65duC7AYBDBZDpd70IrwVi4LoGJAQVNBYDRP42WAxX0Ik7VpVssizfNMsJTS6Rjd92DHQThHDFBqcPfziP7fRrih1fdmMbQo5qV9eJk_-whdH17AXTRqFyvzGAhvq54EGf8FySKqMg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-linear+dielectric+signatures+of+entropy+changes+in+liquids+subject+to+time+dependent+electric+fields&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Richert%2C+Ranko&rft.date=2016-03-21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=144&rft.issue=11&rft_id=info:doi/10.1063%2F1.4943885&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4943885 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |