The multi-objective data-driven approach: A route to drive performance optimization in the food industry

Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether,...

Full description

Saved in:
Bibliographic Details
Published inTrends in food science & technology Vol. 152; p. 104697
Main Authors Perrignon, Manon, Croguennec, Thomas, Jeantet, Romain, Emily, Mathieu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0924-2244
1879-3053
DOI10.1016/j.tifs.2024.104697

Cover

Abstract Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of final product characteristics representing deviations to standard, the production yield impacting the economic performance of the food manufacturing process, and many other performance indicators. They are grossly classified as economic, quality and environmental indicators and their simultaneous consideration can be used to define the overall performance of a manufacturing process. Optimizing the overall performance of food processing requires the use of multi-objective optimization methods. Multi-objective optimization methods include five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven approach, particularly machine learning, into the multi-objective optimization offers new perspectives for optimizing and controlling food processes. The potential of this approach is still underestimated by the food industry sector. •Definition of global performance, providing an overview of the food industry's objectives.•Introducing the multi-objective optimization approach as a powerful method for optimally balancing performance objectives.•Demonstration of the benefits of coupling multi-objective optimization with data-driven models.•Identification of the main challenges linked to the application of multi-objective optimization in the food industry.•Introducing the potential of this combined approach to optimize processes and making it a decision tool for food industry.
AbstractList Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of final product characteristics representing deviations to standard, the production yield impacting the economic performance of the food manufacturing process, and many other performance indicators. They are grossly classified as economic, quality and environmental indicators and their simultaneous consideration can be used to define the overall performance of a manufacturing process. Optimizing the overall performance of food processing requires the use of multi-objective optimization methods. Multi-objective optimization methods include five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven approach, particularly machine learning, into the multi-objective optimization offers new perspectives for optimizing and controlling food processes. The potential of this approach is still underestimated by the food industry sector.
Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of final product characteristics representing deviations to standard, the production yield impacting the economic performance of the food manufacturing process, and many other performance indicators. They are grossly classified as economic, quality and environmental indicators and their simultaneous consideration can be used to define the overall performance of a manufacturing process. Optimizing the overall performance of food processing requires the use of multi-objective optimization methods. Multi-objective optimization methods include five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven approach, particularly machine learning, into the multi-objective optimization offers new perspectives for optimizing and controlling food processes. The potential of this approach is still underestimated by the food industry sector. •Definition of global performance, providing an overview of the food industry's objectives.•Introducing the multi-objective optimization approach as a powerful method for optimally balancing performance objectives.•Demonstration of the benefits of coupling multi-objective optimization with data-driven models.•Identification of the main challenges linked to the application of multi-objective optimization in the food industry.•Introducing the potential of this combined approach to optimize processes and making it a decision tool for food industry.
ArticleNumber 104697
Author Jeantet, Romain
Perrignon, Manon
Emily, Mathieu
Croguennec, Thomas
Author_xml – sequence: 1
  givenname: Manon
  orcidid: 0009-0007-8155-4919
  surname: Perrignon
  fullname: Perrignon, Manon
  organization: L'Institut Agro, INRAE, STLO (Science et Technologie Du Lait et de L’œuf), Rennes, France
– sequence: 2
  givenname: Thomas
  surname: Croguennec
  fullname: Croguennec, Thomas
  email: thomas.croguennec@institut-agro.fr
  organization: L'Institut Agro, INRAE, STLO (Science et Technologie Du Lait et de L’œuf), Rennes, France
– sequence: 3
  givenname: Romain
  surname: Jeantet
  fullname: Jeantet, Romain
  organization: L'Institut Agro, INRAE, STLO (Science et Technologie Du Lait et de L’œuf), Rennes, France
– sequence: 4
  givenname: Mathieu
  surname: Emily
  fullname: Emily, Mathieu
  organization: L'Institut Agro, Université de Rennes, CNRS, IRMAR (Institut de Recherche Mathématique de Rennes)-UMR 6625, Rennes, France
BackLink https://hal.inrae.fr/hal-04703408$$DView record in HAL
BookMark eNqNkT2P1DAQhl0cEvfBH6ByCUWWsZ11EkSzOgF30ko0R21NnInWqyQOtrNo-fV4L0hIFCcqj8bvMxo9c8OuJj8RY28FbAQI_eG4Sa6PGwmyzI1SN9UVu4ZGloWUZfma3cR4BICt2m6v2eHpQHxchuQK3x7JJnci3mHCogu5nDjOc_BoDx_5jge_JOLJ8-c_PlPofRhxssT9nNzofmFyfuJu4imP7b3vct0tMYXzHXvV4xDpzZ_3ln3_8vnp_qHYf_v6eL_bF7YUIhWotCQEJXSjlUWhtUZobV4culpb1E3bKgSLVUO50SL0TV9SbSvVNp2s1S1T69xlmvH8E4fBzMGNGM5GgLkIMkdzEWQugswqKFPvV-qAf_MenXnY7c2lB2UFqoT6JHL23ZrNYn4sFJMZXbQ0DDiRX6JRYquqGqSAHJVr1AYfY6D-_3ap_4GsS89iU0A3vIx-WlHKhk-OgonWUb5P50K-rem8ewn_DSKqs6o
CitedBy_id crossref_primary_10_1016_j_cofs_2024_101267
Cites_doi 10.1111/j.1750-3841.2009.01348.x
10.1016/j.jclepro.2011.09.011
10.1016/j.eswa.2022.117624
10.1080/23311916.2018.1502242
10.1016/j.asoc.2016.04.034
10.1016/j.asoc.2022.109476
10.1016/j.jclepro.2019.118955
10.1016/j.compchemeng.2021.107365
10.1016/j.tifs.2019.02.002
10.1002/aic.18083
10.1016/j.cofs.2023.101042
10.1016/j.compchemeng.2023.108197
10.1016/j.ress.2005.11.018
10.1016/j.jclepro.2024.141412
10.1007/s11356-023-26023-3
10.3390/foods12244511
10.1016/j.compchemeng.2022.107945
10.3390/pr10010133
10.1016/j.tifs.2022.02.027
10.1016/j.jfoodeng.2022.111283
10.1016/j.biortech.2022.128107
10.1016/j.orp.2020.100147
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright
DBID AAYXX
CITATION
7S9
L.6
1XC
ADTOC
UNPAY
DOI 10.1016/j.tifs.2024.104697
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID oai:HAL:hal-04703408v1
10_1016_j_tifs_2024_104697
S092422442400373X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSU
SSZ
T5K
WH7
WUQ
Y6R
~G-
~KM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c411t-a362ea0316963ca1666a0bc2440d86ca69bb3a0ca79ed86ba0f9f4e8c73b9d283
IEDL.DBID UNPAY
ISSN 0924-2244
1879-3053
IngestDate Sun Oct 26 02:40:27 EDT 2025
Tue Oct 14 20:31:45 EDT 2025
Sun Sep 28 10:56:57 EDT 2025
Wed Oct 01 04:41:03 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Sun Apr 06 06:53:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Global performance
Machine learning
Food transformation
Machine Learning
Artificial intelligence
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-a362ea0316963ca1666a0bc2440d86ca69bb3a0ca79ed86ba0f9f4e8c73b9d283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0007-8155-4919
0000-0001-5405-5056
0000-0003-4720-3641
0000-0001-9101-6689
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.inrae.fr/hal-04703408/document
PQID 3153780210
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_tifs_2024_104697
hal_primary_oai_HAL_hal_04703408v1
proquest_miscellaneous_3153780210
crossref_primary_10_1016_j_tifs_2024_104697
crossref_citationtrail_10_1016_j_tifs_2024_104697
elsevier_sciencedirect_doi_10_1016_j_tifs_2024_104697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Trends in food science & technology
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Shankarrao Patange, Bharatkumar Pandya (bib24) 2022; S221478532205369X
Wan, Li, Xie, Wei, Wu, Wah Tong, Wang, He, Zhang (bib25) 2022; 365
Konak, Coit, Smith (bib18) 2006; 91
Ding, Tian, Yu, Wilson, Young, Cui, Xin, Wang, Li (bib6) 2023; 12
Erdogdu (bib10) 2023; 51
Gunantara (bib14) 2018; 5
Ma, Ding, Cheng, Jiang, Tan, Gan, Wan (bib20) 2020; 244
Münch, Guillard, Gaucel, Destercke, Thévenot, Buche (bib22) 2023; 340
Sansana, Joswiak, Castillo, Wang, Rendall, Chiang, Reis (bib23) 2021; 151
Wiecek, Gardenghi (bib28) 2009; 9041
Boix, Montastruc, Pibouleau, Azzaro-Pantel, Domenech (bib4) 2012; 22
Karunakaran, Mungray, Agarwal, Ali, Chandra Garg (bib17) 2021; 289
Feil, do Amaral, Walter, Bagatini, Schreiber, Maehler (bib11) 2023; 30
Ehrgott, Gandibleux (bib9) 2000; 22
Zhou, Li, Feng, Yan, Chen, Yang (bib31) 2023; 69
Li, Wu (bib19) 2022; 128
Xu, Wang, Zhang, Yang, Yuan, Lin, Yan, Zhou, Yang (bib29) 2024; 448
Garre, Ruiz, Hontoria (bib13) 2020; 7
Younsi, Louhab (bib30) 2017; 3
Ehrgott (bib8) 2005
Drofenik, Pahor, Kravanja, Pintarič (bib7) 2023; 172
Feliciano, Guzmán-Luna, Boué, Mauricio-Iglesias, Hospido, Membré (bib12) 2022; 126
Houam, Y. (2013). Commande multi-objectifs en utilisant les inégalités matricielles linéaires (LMIs) et les algorithmes génétiques [Masters, Université Mohamed Khider - Biskra]. https://doi.org/10/Liste/20des/20figures.pdf.
Belna, Ndiaye, Taillandier, Fernandez, Agabriel, Gésan-Guiziou (bib3) 2022; 205
Wang, Li, Rangaiah, Wu (bib26) 2022; 165
Cerda-Flores, Rojas-Punzo, Nápoles-Rivera (bib5) 2022; 10
Jeantet, Delaplace, Brulé (bib16) 2011
Alaya, Solnon, Ghedira (bib2) 2007; 1
Madoumier, Trystram, Sébastian, Collignan (bib21) 2019; 86
Abakarov, Sushkov, Almonacid, Simpson (bib1) 2009; 74
Wari, Zhu (bib27) 2016; 46
Erdogdu (10.1016/j.tifs.2024.104697_bib10) 2023; 51
10.1016/j.tifs.2024.104697_bib15
Wang (10.1016/j.tifs.2024.104697_bib26) 2022; 165
Garre (10.1016/j.tifs.2024.104697_bib13) 2020; 7
Ma (10.1016/j.tifs.2024.104697_bib20) 2020; 244
Zhou (10.1016/j.tifs.2024.104697_bib31) 2023; 69
Abakarov (10.1016/j.tifs.2024.104697_bib1) 2009; 74
Feil (10.1016/j.tifs.2024.104697_bib11) 2023; 30
Cerda-Flores (10.1016/j.tifs.2024.104697_bib5) 2022; 10
Alaya (10.1016/j.tifs.2024.104697_bib2) 2007; 1
Ehrgott (10.1016/j.tifs.2024.104697_bib9) 2000; 22
Wan (10.1016/j.tifs.2024.104697_bib25) 2022; 365
Wari (10.1016/j.tifs.2024.104697_bib27) 2016; 46
Jeantet (10.1016/j.tifs.2024.104697_bib16) 2011
Feliciano (10.1016/j.tifs.2024.104697_bib12) 2022; 126
Boix (10.1016/j.tifs.2024.104697_bib4) 2012; 22
Karunakaran (10.1016/j.tifs.2024.104697_bib17) 2021; 289
Sansana (10.1016/j.tifs.2024.104697_bib23) 2021; 151
Drofenik (10.1016/j.tifs.2024.104697_bib7) 2023; 172
Shankarrao Patange (10.1016/j.tifs.2024.104697_bib24) 2022; S221478532205369X
Belna (10.1016/j.tifs.2024.104697_bib3) 2022; 205
Younsi (10.1016/j.tifs.2024.104697_bib30) 2017; 3
Gunantara (10.1016/j.tifs.2024.104697_bib14) 2018; 5
Ehrgott (10.1016/j.tifs.2024.104697_bib8) 2005
Ding (10.1016/j.tifs.2024.104697_bib6) 2023; 12
Li (10.1016/j.tifs.2024.104697_bib19) 2022; 128
Wiecek (10.1016/j.tifs.2024.104697_bib28) 2009; 9041
Konak (10.1016/j.tifs.2024.104697_bib18) 2006; 91
Münch (10.1016/j.tifs.2024.104697_bib22) 2023; 340
Xu (10.1016/j.tifs.2024.104697_bib29) 2024; 448
Madoumier (10.1016/j.tifs.2024.104697_bib21) 2019; 86
References_xml – volume: 46
  start-page: 328
  year: 2016
  end-page: 343
  ident: bib27
  article-title: A survey on metaheuristics for optimization in food manufacturing industry
  publication-title: Applied Soft Computing
– volume: 22
  start-page: 85
  year: 2012
  end-page: 97
  ident: bib4
  article-title: Industrial water management by multiobjective optimization: From individual to collective solution through eco-industrial parks
  publication-title: Journal of Cleaner Production
– volume: 289
  year: 2021
  ident: bib17
  article-title: Performance optimisation of forward-osmosis membrane system using machine learning for the treatment of textile industry wastewater
  publication-title: Journal of Cleaner Production
– volume: 172
  year: 2023
  ident: bib7
  article-title: Multi-objective scenario optimization of the food supply chain – slovenian case study
  publication-title: Computers & Chemical Engineering
– volume: 128
  year: 2022
  ident: bib19
  article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria
  publication-title: Applied Soft Computing
– volume: 1
  start-page: 450
  year: 2007
  end-page: 457
  ident: bib2
  article-title: Ant colony optimization for multi-objective optimization problems
  publication-title: 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007)
– volume: 69
  year: 2023
  ident: bib31
  article-title: A hybrid deep learning framework driven by data and reaction mechanism for predicting sustainable glycolic acid production performance
  publication-title: AIChE Journal
– volume: 7
  year: 2020
  ident: bib13
  article-title: Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty
  publication-title: Operations Research Perspectives
– volume: 30
  start-page: 52982
  year: 2023
  end-page: 52996
  ident: bib11
  article-title: Set of sustainability indicators for the dairy industry
  publication-title: Environmental Science and Pollution Research
– volume: 5
  year: 2018
  ident: bib14
  article-title: A review of multi-objective optimization: Methods and its applications
  publication-title: Cogent Engineering
– volume: 448
  year: 2024
  ident: bib29
  article-title: Transparent AI-assisted chemical engineering process: Machine learning modeling and multi-objective optimization for integrating process data and molecular-level reaction mechanisms
  publication-title: Journal of Cleaner Production
– volume: 9041
  year: 2009
  ident: bib28
  article-title: Decomposition and coordination for multiobjective complex systems
  publication-title: Dagstuhl Seminar Proceedings
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: bib18
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliability Engineering & System Safety
– volume: 126
  start-page: 180
  year: 2022
  end-page: 191
  ident: bib12
  article-title: Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change
  publication-title: Trends in Food Science & Technology
– volume: S221478532205369X
  year: 2022
  ident: bib24
  article-title: How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers
  publication-title: Materials Today: Proceedings
– volume: 12
  start-page: 24
  year: 2023
  ident: bib6
  article-title: The application of artificial intelligence and big data in the food industry
  publication-title: Foods
– volume: 22
  start-page: 425
  year: 2000
  end-page: 460
  ident: bib9
  article-title: A survey and annotated bibliography of multiobjective combinatorial optimization
  publication-title: Spectrum
– volume: 51
  year: 2023
  ident: bib10
  article-title: Mathematical modeling of food thermal processing: Current and future challenges
  publication-title: Current Opinion in Food Science
– volume: 244
  year: 2020
  ident: bib20
  article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques
  publication-title: Journal of Cleaner Production
– volume: 365
  year: 2022
  ident: bib25
  article-title: Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system
  publication-title: Bioresource Technology
– volume: 205
  year: 2022
  ident: bib3
  article-title: Multiobjective optimization of skim milk microfiltration based on expert knowledge
  publication-title: Expert Systems with Applications
– volume: 340
  year: 2023
  ident: bib22
  article-title: Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application
  publication-title: Journal of Food Engineering
– year: 2011
  ident: bib16
  publication-title: Génie des procédés appliqués à l’industrie laitière
– volume: 165
  year: 2022
  ident: bib26
  article-title: Machine learning aided multi-objective optimization and multi-criteria decision making: Framework and two applications in chemical engineering
  publication-title: Computers & Chemical Engineering
– volume: 151
  year: 2021
  ident: bib23
  article-title: Recent trends on hybrid modeling for Industry 4.0
  publication-title: Computers & Chemical Engineering
– volume: 3
  start-page: 401
  year: 2017
  end-page: 408
  ident: bib30
  article-title: Analyse de la consommation de l’énergie et des émissions de gaz à effet de serre associées à la production du fromage fondu par l’approche analyse de cycle de vie
  publication-title: Algerian J. Env. Sc. Technology
– reference: Houam, Y. (2013). Commande multi-objectifs en utilisant les inégalités matricielles linéaires (LMIs) et les algorithmes génétiques [Masters, Université Mohamed Khider - Biskra]. https://doi.org/10/Liste/20des/20figures.pdf.
– volume: 74
  start-page: E471
  year: 2009
  end-page: E487
  ident: bib1
  article-title: Multiobjective optimization approach: Thermal food processing
  publication-title: Journal of Food Science
– year: 2005
  ident: bib8
  article-title: Multicriteria optimization
– volume: 10
  start-page: 133
  year: 2022
  ident: bib5
  article-title: Applications of multi-objective optimization to industrial processes: A literature review
  publication-title: Processes
– volume: 86
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib21
  article-title: Towards a holistic approach for multi-objective optimization of food processes: A critical review
  publication-title: Trends in Food Science & Technology
– volume: 74
  start-page: E471
  issue: 9
  year: 2009
  ident: 10.1016/j.tifs.2024.104697_bib1
  article-title: Multiobjective optimization approach: Thermal food processing
  publication-title: Journal of Food Science
  doi: 10.1111/j.1750-3841.2009.01348.x
– volume: 22
  start-page: 85
  issue: 1
  year: 2012
  ident: 10.1016/j.tifs.2024.104697_bib4
  article-title: Industrial water management by multiobjective optimization: From individual to collective solution through eco-industrial parks
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2011.09.011
– ident: 10.1016/j.tifs.2024.104697_bib15
– volume: 289
  year: 2021
  ident: 10.1016/j.tifs.2024.104697_bib17
  article-title: Performance optimisation of forward-osmosis membrane system using machine learning for the treatment of textile industry wastewater
  publication-title: Journal of Cleaner Production
– volume: 1
  start-page: 450
  year: 2007
  ident: 10.1016/j.tifs.2024.104697_bib2
  article-title: Ant colony optimization for multi-objective optimization problems
  publication-title: 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007)
– volume: 9041
  year: 2009
  ident: 10.1016/j.tifs.2024.104697_bib28
  article-title: Decomposition and coordination for multiobjective complex systems
  publication-title: Dagstuhl Seminar Proceedings
– volume: 205
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib3
  article-title: Multiobjective optimization of skim milk microfiltration based on expert knowledge
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117624
– volume: 5
  issue: 1
  year: 2018
  ident: 10.1016/j.tifs.2024.104697_bib14
  article-title: A review of multi-objective optimization: Methods and its applications
  publication-title: Cogent Engineering
  doi: 10.1080/23311916.2018.1502242
– volume: 46
  start-page: 328
  year: 2016
  ident: 10.1016/j.tifs.2024.104697_bib27
  article-title: A survey on metaheuristics for optimization in food manufacturing industry
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.04.034
– volume: 128
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib19
  article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2022.109476
– volume: 244
  year: 2020
  ident: 10.1016/j.tifs.2024.104697_bib20
  article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.118955
– volume: 151
  year: 2021
  ident: 10.1016/j.tifs.2024.104697_bib23
  article-title: Recent trends on hybrid modeling for Industry 4.0
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2021.107365
– volume: 3
  start-page: 401
  issue: 2
  year: 2017
  ident: 10.1016/j.tifs.2024.104697_bib30
  article-title: Analyse de la consommation de l’énergie et des émissions de gaz à effet de serre associées à la production du fromage fondu par l’approche analyse de cycle de vie
  publication-title: Algerian J. Env. Sc. Technology
– year: 2011
  ident: 10.1016/j.tifs.2024.104697_bib16
– volume: 22
  start-page: 425
  issue: 4
  year: 2000
  ident: 10.1016/j.tifs.2024.104697_bib9
  article-title: A survey and annotated bibliography of multiobjective combinatorial optimization
  publication-title: Spectrum
– volume: 86
  start-page: 1
  year: 2019
  ident: 10.1016/j.tifs.2024.104697_bib21
  article-title: Towards a holistic approach for multi-objective optimization of food processes: A critical review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2019.02.002
– year: 2005
  ident: 10.1016/j.tifs.2024.104697_bib8
– volume: 69
  year: 2023
  ident: 10.1016/j.tifs.2024.104697_bib31
  article-title: A hybrid deep learning framework driven by data and reaction mechanism for predicting sustainable glycolic acid production performance
  publication-title: AIChE Journal
  doi: 10.1002/aic.18083
– volume: 51
  year: 2023
  ident: 10.1016/j.tifs.2024.104697_bib10
  article-title: Mathematical modeling of food thermal processing: Current and future challenges
  publication-title: Current Opinion in Food Science
  doi: 10.1016/j.cofs.2023.101042
– volume: 172
  year: 2023
  ident: 10.1016/j.tifs.2024.104697_bib7
  article-title: Multi-objective scenario optimization of the food supply chain – slovenian case study
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2023.108197
– volume: 91
  start-page: 992
  issue: 9
  year: 2006
  ident: 10.1016/j.tifs.2024.104697_bib18
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.11.018
– volume: 448
  year: 2024
  ident: 10.1016/j.tifs.2024.104697_bib29
  article-title: Transparent AI-assisted chemical engineering process: Machine learning modeling and multi-objective optimization for integrating process data and molecular-level reaction mechanisms
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2024.141412
– volume: 30
  start-page: 52982
  issue: 18
  year: 2023
  ident: 10.1016/j.tifs.2024.104697_bib11
  article-title: Set of sustainability indicators for the dairy industry
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-023-26023-3
– volume: 12
  start-page: 24
  issue: 24
  year: 2023
  ident: 10.1016/j.tifs.2024.104697_bib6
  article-title: The application of artificial intelligence and big data in the food industry
  publication-title: Foods
  doi: 10.3390/foods12244511
– volume: S221478532205369X
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib24
  article-title: How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers
  publication-title: Materials Today: Proceedings
– volume: 165
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib26
  article-title: Machine learning aided multi-objective optimization and multi-criteria decision making: Framework and two applications in chemical engineering
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2022.107945
– volume: 10
  start-page: 133
  issue: 1
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib5
  article-title: Applications of multi-objective optimization to industrial processes: A literature review
  publication-title: Processes
  doi: 10.3390/pr10010133
– volume: 126
  start-page: 180
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib12
  article-title: Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2022.02.027
– volume: 340
  year: 2023
  ident: 10.1016/j.tifs.2024.104697_bib22
  article-title: Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2022.111283
– volume: 365
  year: 2022
  ident: 10.1016/j.tifs.2024.104697_bib25
  article-title: Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2022.128107
– volume: 7
  year: 2020
  ident: 10.1016/j.tifs.2024.104697_bib13
  article-title: Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2020.100147
SSID ssj0005355
Score 2.4775069
Snippet Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104697
SubjectTerms economic performance
Food engineering
food industry
food science
Food transformation
Global performance
humans
Life Sciences
Machine learning
Multi-objective optimization
technology
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELaAC3BAPEVZQGbFbdfUaZw44VYhUIVYLixSb5ZfEUUlqUq6Ky7725nJo3QlhBC3xLGVkWc8M9Z8M0PIaS_NbBhzy0wiDRPSBMxouLjKKHBgQIXhFiO6v27jwb24HkbDJXLR5sIgrLLR_bVOr7R1M9JtdrM7GY26dxyuDmCABKIgQxkOMYNdSOxicPZvAeYRVp1PcTLD2U3iTI3xKkcZluzuiSrUiYWf3jdOyw-IklxwQVdn-US__NXj8YI1utokG40bSfs1pVtkyefbZLXNMn7eJusLhQZ3yANIA62wg6wwj7WOowgOZW6K6o62pcXPaZ9Oi1npaVnQ6hudvKUW0AIUzFOTuUlHOQXvkWZF4eC56gDyskvury5_XwxY02OBWREEJdNgwLyGkx3DSbQag4iaGwsbxV0SWx2nxoSaWy1TDwPAxyzNhE-sDE3qwDfZIyt5kft9Qjk3PeN07EyG6anOWFgYRSZNXMa9DDokaDdX2aYAOfbBGKsWafaokCEKGaJqhnTIj_maSV1-48PZUcsz9Z8QKbAPH677Dgye_wArbg_6NwrHuACVKHjyB8g_afmv4AhiXEXnvpg9qxCshkzw8twhP-eC8Ql6D75I7zeyhm81pvCQrJTTmT8C36g0x5XwvwIoMQu-
  priority: 102
  providerName: Elsevier
Title The multi-objective data-driven approach: A route to drive performance optimization in the food industry
URI https://dx.doi.org/10.1016/j.tifs.2024.104697
https://www.proquest.com/docview/3153780210
https://hal.inrae.fr/hal-04703408
https://hal.inrae.fr/hal-04703408/document
UnpaywallVersion submittedVersion
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1879-3053
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005355
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1879-3053
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005355
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1879-3053
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005355
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  issn: 1879-3053
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005355
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1879-3053
  databaseCode: AKRWK
  dateStart: 19900701
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005355
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdo-zB4YDBAlI_KIN7AxWm-eYsmpkKhQoiK8WT5K-q2LqnSBDQe9rfvLh-lQmgaT4kdW3F0Z9_PubufCXk1iVPtBlwzFYWKeaFymJKwcQ19x4AB9RTX6NH9PA-mC-_jsX_c0uRgLsyyRpyFtOO0wALjHuikx6O3JtcV_jDrkUHgA-7uk8Fi_iX5UZPpTTwGtqh2IUchOvN9t82QaYK5ypMUubknXu3TRIanf1uh3hLDIXew5l6VreXFL7la7Zido_3m_KJNzVaI0SZn46pUY_37Ly7Hm33RPXK3RZ80adTlPrllswOy1yUnbw7InR1-wgdkCUpE65BDlqvTZmmkGFPKTIGrJO0Yyd_RhBZ5VVpa5rR-Rtd_MhJoDuvSeZvwSU8yCqCTpnlu4L4-OOTiIVkcvf92OGXt0QxMe45TMgl2z0pYEAKYwFqi71FypUEE3ESBlkGslCu5lmFsoQLEn8apZyMduio2AGkekX6WZ_YxoZyriTIyMCrFrFajNHT0fRVHJuU2dIbE6UQldMtbjsdnrEQXoHYqULwCxSsa8Q7J622fdcPacW1rv9MA0eKOBk8IMCvX9nsJ8ty-AIm6p8kngXWdjH_C8F902iRg5qI7RmY2rzbCBWMTRrjnHpI3WzW7wXif_F_zp-Q2lpoIxGekXxaVfQ5IqlQj0htfOiMySD7MpnO8zr5-n43aiXUFwjQfKQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB615RA4ICggwnNB3GDJOl57bW5RRRUg7YVWym21L6upgh2lDqgXfjszfoQgoQpxs_Yhr3Z2XppvZgDejPPCxalw3GbKcqlsxK1Bx1UlkUcFKq1wFNE9OU2n5_LzPJnvwVGfC0Owyk72tzK9kdbdyKi7zdFqsRh9Feg6oAKShIKMVTzfh1syGSvywN7_3MF5xE3rU1rNaXmXOdOCvOpFQTW7x7KJdVLlp79rp_0Lgknu2KCDTbky1z_Mcrmjjo7vwd3OjmST9qj3YS-UhzDo04yvDuHOTqXBB3CBz4E14EFe2ctWyDFCh3K_JnnH-triH9iEratNHVhdsWaOrX7nFrAKJcy3LnWTLUqG5iMrqsrjd9MC5PohnB9_PDua8q7JAncyimpuUIMFg6ydIis6Q1FEI6zDixI-S51Jc2tjI5xRecABJGSRFzJkTsU292icPIKDsirDY2BC2LH1JvW2oPxUbx1uTBKbZ74QQUVDiPrL1a6rQE6NMJa6h5pdaiKIJoLoliBDeLvds2rrb9y4Oulppv94RRoVxI37XiOBtz-gktvTyUzTmJAoE6XIvuPxX_X018iDFFgxZag2VzpGtaEy8p6H8G77MP7hvE_-87wvYTA9O5np2afTL0_hNs20AMNncFCvN-E5Gkq1fdEwwi-oqA7h
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbKcgAOfVCqbl9yK27Ui7NxXr2tqqJVBagHVoKT5Ve00G28yiZU9Nd3Jo_tqqoQvcWJrTiasedzZuYbQg7HWW7CmBum00QzkeiAaQUH1yQKLBhQoblBj-7ZeTydia-X0WVHk4O5MPMGcZbKjfISG4wL0EnB02PrTY0_zLbIdhwB7h6Q7dn5t8lVQ6Y3FgxsUeNCThN05kdhlyHTBnNV1zlyc49F49NEhqd_W6GtOYZDbmDNnbpYqrufarHYMDsnT9r6RauGrRCjTb6P6kqPzK-_uBwf9kVPyeMOfdJJqy7PyCNX7JOdPjl5tU_2NvgJn5M5KBFtQg6Z1zft1kgxppTZEndJ2jOSf6ITWvq6crTytHlGl38yEqiHfelHl_BJrwsKoJPm3lu4bgqH3B2Q2cmXi89T1pVmYEYEQcUU2D2nYEOIYQEbhb5HxbUBEXCbxkbFmdah4kYlmYMbIP48y4VLTRLqzAKkeUEGhS_cS0I512NtVWx1jlmtVhsYGEU6S23OXRIMSdCLSpqOtxzLZyxkH6B2I1G8EsUrW_EOydF6zLJl7bi3d9RrgOxwR4snJJiVe8d9AHmuX4BE3dPJqcR7vYxvYfrve22SsHLRHaMK5-uVDMHYJCmeuYfk41rNHjDfV__X_TXZxVYbgfiGDKqydm8BSVX6XbeEfgNK1xr6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multi-objective+data-driven+approach%3A+A+route+to+drive+performance+optimization+in+the+food+industry&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Perrignon%2C+Manon&rft.au=Croguennec%2C+Thomas&rft.au=Jeantet%2C+Romain&rft.au=Emily%2C+Mathieu&rft.date=2024-10-01&rft.issn=0924-2244&rft.volume=152+p.104697-&rft_id=info:doi/10.1016%2Fj.tifs.2024.104697&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon