The multi-objective data-driven approach: A route to drive performance optimization in the food industry
Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether,...
Saved in:
| Published in | Trends in food science & technology Vol. 152; p. 104697 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2024
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-2244 1879-3053 |
| DOI | 10.1016/j.tifs.2024.104697 |
Cover
| Abstract | Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of final product characteristics representing deviations to standard, the production yield impacting the economic performance of the food manufacturing process, and many other performance indicators. They are grossly classified as economic, quality and environmental indicators and their simultaneous consideration can be used to define the overall performance of a manufacturing process. Optimizing the overall performance of food processing requires the use of multi-objective optimization methods. Multi-objective optimization methods include five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven approach, particularly machine learning, into the multi-objective optimization offers new perspectives for optimizing and controlling food processes. The potential of this approach is still underestimated by the food industry sector.
•Definition of global performance, providing an overview of the food industry's objectives.•Introducing the multi-objective optimization approach as a powerful method for optimally balancing performance objectives.•Demonstration of the benefits of coupling multi-objective optimization with data-driven models.•Identification of the main challenges linked to the application of multi-objective optimization in the food industry.•Introducing the potential of this combined approach to optimize processes and making it a decision tool for food industry. |
|---|---|
| AbstractList | Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of final product characteristics representing deviations to standard, the production yield impacting the economic performance of the food manufacturing process, and many other performance indicators. They are grossly classified as economic, quality and environmental indicators and their simultaneous consideration can be used to define the overall performance of a manufacturing process. Optimizing the overall performance of food processing requires the use of multi-objective optimization methods. Multi-objective optimization methods include five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven approach, particularly machine learning, into the multi-objective optimization offers new perspectives for optimizing and controlling food processes. The potential of this approach is still underestimated by the food industry sector. Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials and/or ingredients, human perception and intervention in the process, capabilities of processing tools and their wear and tear, etc. Altogether, they affect the reproducibility of final product characteristics representing deviations to standard, the production yield impacting the economic performance of the food manufacturing process, and many other performance indicators. They are grossly classified as economic, quality and environmental indicators and their simultaneous consideration can be used to define the overall performance of a manufacturing process. Optimizing the overall performance of food processing requires the use of multi-objective optimization methods. Multi-objective optimization methods include five steps: defining the objectives, modelling performance indicators, formulating the problem and constraints, solving the multi-objective problem, and finally identifying an ideal solution. The integration of data-driven approach, particularly machine learning, into the multi-objective optimization offers new perspectives for optimizing and controlling food processes. The potential of this approach is still underestimated by the food industry sector. •Definition of global performance, providing an overview of the food industry's objectives.•Introducing the multi-objective optimization approach as a powerful method for optimally balancing performance objectives.•Demonstration of the benefits of coupling multi-objective optimization with data-driven models.•Identification of the main challenges linked to the application of multi-objective optimization in the food industry.•Introducing the potential of this combined approach to optimize processes and making it a decision tool for food industry. |
| ArticleNumber | 104697 |
| Author | Jeantet, Romain Perrignon, Manon Emily, Mathieu Croguennec, Thomas |
| Author_xml | – sequence: 1 givenname: Manon orcidid: 0009-0007-8155-4919 surname: Perrignon fullname: Perrignon, Manon organization: L'Institut Agro, INRAE, STLO (Science et Technologie Du Lait et de L’œuf), Rennes, France – sequence: 2 givenname: Thomas surname: Croguennec fullname: Croguennec, Thomas email: thomas.croguennec@institut-agro.fr organization: L'Institut Agro, INRAE, STLO (Science et Technologie Du Lait et de L’œuf), Rennes, France – sequence: 3 givenname: Romain surname: Jeantet fullname: Jeantet, Romain organization: L'Institut Agro, INRAE, STLO (Science et Technologie Du Lait et de L’œuf), Rennes, France – sequence: 4 givenname: Mathieu surname: Emily fullname: Emily, Mathieu organization: L'Institut Agro, Université de Rennes, CNRS, IRMAR (Institut de Recherche Mathématique de Rennes)-UMR 6625, Rennes, France |
| BackLink | https://hal.inrae.fr/hal-04703408$$DView record in HAL |
| BookMark | eNqNkT2P1DAQhl0cEvfBH6ByCUWWsZ11EkSzOgF30ko0R21NnInWqyQOtrNo-fV4L0hIFCcqj8bvMxo9c8OuJj8RY28FbAQI_eG4Sa6PGwmyzI1SN9UVu4ZGloWUZfma3cR4BICt2m6v2eHpQHxchuQK3x7JJnci3mHCogu5nDjOc_BoDx_5jge_JOLJ8-c_PlPofRhxssT9nNzofmFyfuJu4imP7b3vct0tMYXzHXvV4xDpzZ_3ln3_8vnp_qHYf_v6eL_bF7YUIhWotCQEJXSjlUWhtUZobV4culpb1E3bKgSLVUO50SL0TV9SbSvVNp2s1S1T69xlmvH8E4fBzMGNGM5GgLkIMkdzEWQugswqKFPvV-qAf_MenXnY7c2lB2UFqoT6JHL23ZrNYn4sFJMZXbQ0DDiRX6JRYquqGqSAHJVr1AYfY6D-_3ap_4GsS89iU0A3vIx-WlHKhk-OgonWUb5P50K-rem8ewn_DSKqs6o |
| CitedBy_id | crossref_primary_10_1016_j_cofs_2024_101267 |
| Cites_doi | 10.1111/j.1750-3841.2009.01348.x 10.1016/j.jclepro.2011.09.011 10.1016/j.eswa.2022.117624 10.1080/23311916.2018.1502242 10.1016/j.asoc.2016.04.034 10.1016/j.asoc.2022.109476 10.1016/j.jclepro.2019.118955 10.1016/j.compchemeng.2021.107365 10.1016/j.tifs.2019.02.002 10.1002/aic.18083 10.1016/j.cofs.2023.101042 10.1016/j.compchemeng.2023.108197 10.1016/j.ress.2005.11.018 10.1016/j.jclepro.2024.141412 10.1007/s11356-023-26023-3 10.3390/foods12244511 10.1016/j.compchemeng.2022.107945 10.3390/pr10010133 10.1016/j.tifs.2022.02.027 10.1016/j.jfoodeng.2022.111283 10.1016/j.biortech.2022.128107 10.1016/j.orp.2020.100147 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright |
| DBID | AAYXX CITATION 7S9 L.6 1XC ADTOC UNPAY |
| DOI | 10.1016/j.tifs.2024.104697 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| ExternalDocumentID | oai:HAL:hal-04703408v1 10_1016_j_tifs_2024_104697 S092422442400373X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSH SSU SSZ T5K WH7 WUQ Y6R ~G- ~KM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7S9 L.6 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c411t-a362ea0316963ca1666a0bc2440d86ca69bb3a0ca79ed86ba0f9f4e8c73b9d283 |
| IEDL.DBID | UNPAY |
| ISSN | 0924-2244 1879-3053 |
| IngestDate | Sun Oct 26 02:40:27 EDT 2025 Tue Oct 14 20:31:45 EDT 2025 Sun Sep 28 10:56:57 EDT 2025 Wed Oct 01 04:41:03 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Sun Apr 06 06:53:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Global performance Machine learning Food transformation Machine Learning Artificial intelligence |
| Language | English |
| License | Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-a362ea0316963ca1666a0bc2440d86ca69bb3a0ca79ed86ba0f9f4e8c73b9d283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0007-8155-4919 0000-0001-5405-5056 0000-0003-4720-3641 0000-0001-9101-6689 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.inrae.fr/hal-04703408/document |
| PQID | 3153780210 |
| PQPubID | 24069 |
| ParticipantIDs | unpaywall_primary_10_1016_j_tifs_2024_104697 hal_primary_oai_HAL_hal_04703408v1 proquest_miscellaneous_3153780210 crossref_primary_10_1016_j_tifs_2024_104697 crossref_citationtrail_10_1016_j_tifs_2024_104697 elsevier_sciencedirect_doi_10_1016_j_tifs_2024_104697 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Trends in food science & technology |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Shankarrao Patange, Bharatkumar Pandya (bib24) 2022; S221478532205369X Wan, Li, Xie, Wei, Wu, Wah Tong, Wang, He, Zhang (bib25) 2022; 365 Konak, Coit, Smith (bib18) 2006; 91 Ding, Tian, Yu, Wilson, Young, Cui, Xin, Wang, Li (bib6) 2023; 12 Erdogdu (bib10) 2023; 51 Gunantara (bib14) 2018; 5 Ma, Ding, Cheng, Jiang, Tan, Gan, Wan (bib20) 2020; 244 Münch, Guillard, Gaucel, Destercke, Thévenot, Buche (bib22) 2023; 340 Sansana, Joswiak, Castillo, Wang, Rendall, Chiang, Reis (bib23) 2021; 151 Wiecek, Gardenghi (bib28) 2009; 9041 Boix, Montastruc, Pibouleau, Azzaro-Pantel, Domenech (bib4) 2012; 22 Karunakaran, Mungray, Agarwal, Ali, Chandra Garg (bib17) 2021; 289 Feil, do Amaral, Walter, Bagatini, Schreiber, Maehler (bib11) 2023; 30 Ehrgott, Gandibleux (bib9) 2000; 22 Zhou, Li, Feng, Yan, Chen, Yang (bib31) 2023; 69 Li, Wu (bib19) 2022; 128 Xu, Wang, Zhang, Yang, Yuan, Lin, Yan, Zhou, Yang (bib29) 2024; 448 Garre, Ruiz, Hontoria (bib13) 2020; 7 Younsi, Louhab (bib30) 2017; 3 Ehrgott (bib8) 2005 Drofenik, Pahor, Kravanja, Pintarič (bib7) 2023; 172 Feliciano, Guzmán-Luna, Boué, Mauricio-Iglesias, Hospido, Membré (bib12) 2022; 126 Houam, Y. (2013). Commande multi-objectifs en utilisant les inégalités matricielles linéaires (LMIs) et les algorithmes génétiques [Masters, Université Mohamed Khider - Biskra]. https://doi.org/10/Liste/20des/20figures.pdf. Belna, Ndiaye, Taillandier, Fernandez, Agabriel, Gésan-Guiziou (bib3) 2022; 205 Wang, Li, Rangaiah, Wu (bib26) 2022; 165 Cerda-Flores, Rojas-Punzo, Nápoles-Rivera (bib5) 2022; 10 Jeantet, Delaplace, Brulé (bib16) 2011 Alaya, Solnon, Ghedira (bib2) 2007; 1 Madoumier, Trystram, Sébastian, Collignan (bib21) 2019; 86 Abakarov, Sushkov, Almonacid, Simpson (bib1) 2009; 74 Wari, Zhu (bib27) 2016; 46 Erdogdu (10.1016/j.tifs.2024.104697_bib10) 2023; 51 10.1016/j.tifs.2024.104697_bib15 Wang (10.1016/j.tifs.2024.104697_bib26) 2022; 165 Garre (10.1016/j.tifs.2024.104697_bib13) 2020; 7 Ma (10.1016/j.tifs.2024.104697_bib20) 2020; 244 Zhou (10.1016/j.tifs.2024.104697_bib31) 2023; 69 Abakarov (10.1016/j.tifs.2024.104697_bib1) 2009; 74 Feil (10.1016/j.tifs.2024.104697_bib11) 2023; 30 Cerda-Flores (10.1016/j.tifs.2024.104697_bib5) 2022; 10 Alaya (10.1016/j.tifs.2024.104697_bib2) 2007; 1 Ehrgott (10.1016/j.tifs.2024.104697_bib9) 2000; 22 Wan (10.1016/j.tifs.2024.104697_bib25) 2022; 365 Wari (10.1016/j.tifs.2024.104697_bib27) 2016; 46 Jeantet (10.1016/j.tifs.2024.104697_bib16) 2011 Feliciano (10.1016/j.tifs.2024.104697_bib12) 2022; 126 Boix (10.1016/j.tifs.2024.104697_bib4) 2012; 22 Karunakaran (10.1016/j.tifs.2024.104697_bib17) 2021; 289 Sansana (10.1016/j.tifs.2024.104697_bib23) 2021; 151 Drofenik (10.1016/j.tifs.2024.104697_bib7) 2023; 172 Shankarrao Patange (10.1016/j.tifs.2024.104697_bib24) 2022; S221478532205369X Belna (10.1016/j.tifs.2024.104697_bib3) 2022; 205 Younsi (10.1016/j.tifs.2024.104697_bib30) 2017; 3 Gunantara (10.1016/j.tifs.2024.104697_bib14) 2018; 5 Ehrgott (10.1016/j.tifs.2024.104697_bib8) 2005 Ding (10.1016/j.tifs.2024.104697_bib6) 2023; 12 Li (10.1016/j.tifs.2024.104697_bib19) 2022; 128 Wiecek (10.1016/j.tifs.2024.104697_bib28) 2009; 9041 Konak (10.1016/j.tifs.2024.104697_bib18) 2006; 91 Münch (10.1016/j.tifs.2024.104697_bib22) 2023; 340 Xu (10.1016/j.tifs.2024.104697_bib29) 2024; 448 Madoumier (10.1016/j.tifs.2024.104697_bib21) 2019; 86 |
| References_xml | – volume: 46 start-page: 328 year: 2016 end-page: 343 ident: bib27 article-title: A survey on metaheuristics for optimization in food manufacturing industry publication-title: Applied Soft Computing – volume: 22 start-page: 85 year: 2012 end-page: 97 ident: bib4 article-title: Industrial water management by multiobjective optimization: From individual to collective solution through eco-industrial parks publication-title: Journal of Cleaner Production – volume: 289 year: 2021 ident: bib17 article-title: Performance optimisation of forward-osmosis membrane system using machine learning for the treatment of textile industry wastewater publication-title: Journal of Cleaner Production – volume: 172 year: 2023 ident: bib7 article-title: Multi-objective scenario optimization of the food supply chain – slovenian case study publication-title: Computers & Chemical Engineering – volume: 128 year: 2022 ident: bib19 article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria publication-title: Applied Soft Computing – volume: 1 start-page: 450 year: 2007 end-page: 457 ident: bib2 article-title: Ant colony optimization for multi-objective optimization problems publication-title: 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007) – volume: 69 year: 2023 ident: bib31 article-title: A hybrid deep learning framework driven by data and reaction mechanism for predicting sustainable glycolic acid production performance publication-title: AIChE Journal – volume: 7 year: 2020 ident: bib13 article-title: Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty publication-title: Operations Research Perspectives – volume: 30 start-page: 52982 year: 2023 end-page: 52996 ident: bib11 article-title: Set of sustainability indicators for the dairy industry publication-title: Environmental Science and Pollution Research – volume: 5 year: 2018 ident: bib14 article-title: A review of multi-objective optimization: Methods and its applications publication-title: Cogent Engineering – volume: 448 year: 2024 ident: bib29 article-title: Transparent AI-assisted chemical engineering process: Machine learning modeling and multi-objective optimization for integrating process data and molecular-level reaction mechanisms publication-title: Journal of Cleaner Production – volume: 9041 year: 2009 ident: bib28 article-title: Decomposition and coordination for multiobjective complex systems publication-title: Dagstuhl Seminar Proceedings – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: bib18 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliability Engineering & System Safety – volume: 126 start-page: 180 year: 2022 end-page: 191 ident: bib12 article-title: Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change publication-title: Trends in Food Science & Technology – volume: S221478532205369X year: 2022 ident: bib24 article-title: How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers publication-title: Materials Today: Proceedings – volume: 12 start-page: 24 year: 2023 ident: bib6 article-title: The application of artificial intelligence and big data in the food industry publication-title: Foods – volume: 22 start-page: 425 year: 2000 end-page: 460 ident: bib9 article-title: A survey and annotated bibliography of multiobjective combinatorial optimization publication-title: Spectrum – volume: 51 year: 2023 ident: bib10 article-title: Mathematical modeling of food thermal processing: Current and future challenges publication-title: Current Opinion in Food Science – volume: 244 year: 2020 ident: bib20 article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques publication-title: Journal of Cleaner Production – volume: 365 year: 2022 ident: bib25 article-title: Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system publication-title: Bioresource Technology – volume: 205 year: 2022 ident: bib3 article-title: Multiobjective optimization of skim milk microfiltration based on expert knowledge publication-title: Expert Systems with Applications – volume: 340 year: 2023 ident: bib22 article-title: Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application publication-title: Journal of Food Engineering – year: 2011 ident: bib16 publication-title: Génie des procédés appliqués à l’industrie laitière – volume: 165 year: 2022 ident: bib26 article-title: Machine learning aided multi-objective optimization and multi-criteria decision making: Framework and two applications in chemical engineering publication-title: Computers & Chemical Engineering – volume: 151 year: 2021 ident: bib23 article-title: Recent trends on hybrid modeling for Industry 4.0 publication-title: Computers & Chemical Engineering – volume: 3 start-page: 401 year: 2017 end-page: 408 ident: bib30 article-title: Analyse de la consommation de l’énergie et des émissions de gaz à effet de serre associées à la production du fromage fondu par l’approche analyse de cycle de vie publication-title: Algerian J. Env. Sc. Technology – reference: Houam, Y. (2013). Commande multi-objectifs en utilisant les inégalités matricielles linéaires (LMIs) et les algorithmes génétiques [Masters, Université Mohamed Khider - Biskra]. https://doi.org/10/Liste/20des/20figures.pdf. – volume: 74 start-page: E471 year: 2009 end-page: E487 ident: bib1 article-title: Multiobjective optimization approach: Thermal food processing publication-title: Journal of Food Science – year: 2005 ident: bib8 article-title: Multicriteria optimization – volume: 10 start-page: 133 year: 2022 ident: bib5 article-title: Applications of multi-objective optimization to industrial processes: A literature review publication-title: Processes – volume: 86 start-page: 1 year: 2019 end-page: 15 ident: bib21 article-title: Towards a holistic approach for multi-objective optimization of food processes: A critical review publication-title: Trends in Food Science & Technology – volume: 74 start-page: E471 issue: 9 year: 2009 ident: 10.1016/j.tifs.2024.104697_bib1 article-title: Multiobjective optimization approach: Thermal food processing publication-title: Journal of Food Science doi: 10.1111/j.1750-3841.2009.01348.x – volume: 22 start-page: 85 issue: 1 year: 2012 ident: 10.1016/j.tifs.2024.104697_bib4 article-title: Industrial water management by multiobjective optimization: From individual to collective solution through eco-industrial parks publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2011.09.011 – ident: 10.1016/j.tifs.2024.104697_bib15 – volume: 289 year: 2021 ident: 10.1016/j.tifs.2024.104697_bib17 article-title: Performance optimisation of forward-osmosis membrane system using machine learning for the treatment of textile industry wastewater publication-title: Journal of Cleaner Production – volume: 1 start-page: 450 year: 2007 ident: 10.1016/j.tifs.2024.104697_bib2 article-title: Ant colony optimization for multi-objective optimization problems publication-title: 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007) – volume: 9041 year: 2009 ident: 10.1016/j.tifs.2024.104697_bib28 article-title: Decomposition and coordination for multiobjective complex systems publication-title: Dagstuhl Seminar Proceedings – volume: 205 year: 2022 ident: 10.1016/j.tifs.2024.104697_bib3 article-title: Multiobjective optimization of skim milk microfiltration based on expert knowledge publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117624 – volume: 5 issue: 1 year: 2018 ident: 10.1016/j.tifs.2024.104697_bib14 article-title: A review of multi-objective optimization: Methods and its applications publication-title: Cogent Engineering doi: 10.1080/23311916.2018.1502242 – volume: 46 start-page: 328 year: 2016 ident: 10.1016/j.tifs.2024.104697_bib27 article-title: A survey on metaheuristics for optimization in food manufacturing industry publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.04.034 – volume: 128 year: 2022 ident: 10.1016/j.tifs.2024.104697_bib19 article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2022.109476 – volume: 244 year: 2020 ident: 10.1016/j.tifs.2024.104697_bib20 article-title: Identification of high impact factors of air quality on a national scale using big data and machine learning techniques publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.118955 – volume: 151 year: 2021 ident: 10.1016/j.tifs.2024.104697_bib23 article-title: Recent trends on hybrid modeling for Industry 4.0 publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2021.107365 – volume: 3 start-page: 401 issue: 2 year: 2017 ident: 10.1016/j.tifs.2024.104697_bib30 article-title: Analyse de la consommation de l’énergie et des émissions de gaz à effet de serre associées à la production du fromage fondu par l’approche analyse de cycle de vie publication-title: Algerian J. Env. Sc. Technology – year: 2011 ident: 10.1016/j.tifs.2024.104697_bib16 – volume: 22 start-page: 425 issue: 4 year: 2000 ident: 10.1016/j.tifs.2024.104697_bib9 article-title: A survey and annotated bibliography of multiobjective combinatorial optimization publication-title: Spectrum – volume: 86 start-page: 1 year: 2019 ident: 10.1016/j.tifs.2024.104697_bib21 article-title: Towards a holistic approach for multi-objective optimization of food processes: A critical review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2019.02.002 – year: 2005 ident: 10.1016/j.tifs.2024.104697_bib8 – volume: 69 year: 2023 ident: 10.1016/j.tifs.2024.104697_bib31 article-title: A hybrid deep learning framework driven by data and reaction mechanism for predicting sustainable glycolic acid production performance publication-title: AIChE Journal doi: 10.1002/aic.18083 – volume: 51 year: 2023 ident: 10.1016/j.tifs.2024.104697_bib10 article-title: Mathematical modeling of food thermal processing: Current and future challenges publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2023.101042 – volume: 172 year: 2023 ident: 10.1016/j.tifs.2024.104697_bib7 article-title: Multi-objective scenario optimization of the food supply chain – slovenian case study publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2023.108197 – volume: 91 start-page: 992 issue: 9 year: 2006 ident: 10.1016/j.tifs.2024.104697_bib18 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2005.11.018 – volume: 448 year: 2024 ident: 10.1016/j.tifs.2024.104697_bib29 article-title: Transparent AI-assisted chemical engineering process: Machine learning modeling and multi-objective optimization for integrating process data and molecular-level reaction mechanisms publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2024.141412 – volume: 30 start-page: 52982 issue: 18 year: 2023 ident: 10.1016/j.tifs.2024.104697_bib11 article-title: Set of sustainability indicators for the dairy industry publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-023-26023-3 – volume: 12 start-page: 24 issue: 24 year: 2023 ident: 10.1016/j.tifs.2024.104697_bib6 article-title: The application of artificial intelligence and big data in the food industry publication-title: Foods doi: 10.3390/foods12244511 – volume: S221478532205369X year: 2022 ident: 10.1016/j.tifs.2024.104697_bib24 article-title: How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers publication-title: Materials Today: Proceedings – volume: 165 year: 2022 ident: 10.1016/j.tifs.2024.104697_bib26 article-title: Machine learning aided multi-objective optimization and multi-criteria decision making: Framework and two applications in chemical engineering publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2022.107945 – volume: 10 start-page: 133 issue: 1 year: 2022 ident: 10.1016/j.tifs.2024.104697_bib5 article-title: Applications of multi-objective optimization to industrial processes: A literature review publication-title: Processes doi: 10.3390/pr10010133 – volume: 126 start-page: 180 year: 2022 ident: 10.1016/j.tifs.2024.104697_bib12 article-title: Strategies to mitigate food safety risk while minimizing environmental impacts in the era of climate change publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2022.02.027 – volume: 340 year: 2023 ident: 10.1016/j.tifs.2024.104697_bib22 article-title: Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2022.111283 – volume: 365 year: 2022 ident: 10.1016/j.tifs.2024.104697_bib25 article-title: Machine learning framework for intelligent prediction of compost maturity towards automation of food waste composting system publication-title: Bioresource Technology doi: 10.1016/j.biortech.2022.128107 – volume: 7 year: 2020 ident: 10.1016/j.tifs.2024.104697_bib13 article-title: Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2020.100147 |
| SSID | ssj0005355 |
| Score | 2.4775069 |
| Snippet | Although standardized, food processing is subject to many sources of variability resulting from compositional and structural variabilities of raw materials... |
| SourceID | unpaywall hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104697 |
| SubjectTerms | economic performance Food engineering food industry food science Food transformation Global performance humans Life Sciences Machine learning Multi-objective optimization technology |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELaAC3BAPEVZQGbFbdfUaZw44VYhUIVYLixSb5ZfEUUlqUq6Ky7725nJo3QlhBC3xLGVkWc8M9Z8M0PIaS_NbBhzy0wiDRPSBMxouLjKKHBgQIXhFiO6v27jwb24HkbDJXLR5sIgrLLR_bVOr7R1M9JtdrM7GY26dxyuDmCABKIgQxkOMYNdSOxicPZvAeYRVp1PcTLD2U3iTI3xKkcZluzuiSrUiYWf3jdOyw-IklxwQVdn-US__NXj8YI1utokG40bSfs1pVtkyefbZLXNMn7eJusLhQZ3yANIA62wg6wwj7WOowgOZW6K6o62pcXPaZ9Oi1npaVnQ6hudvKUW0AIUzFOTuUlHOQXvkWZF4eC56gDyskvury5_XwxY02OBWREEJdNgwLyGkx3DSbQag4iaGwsbxV0SWx2nxoSaWy1TDwPAxyzNhE-sDE3qwDfZIyt5kft9Qjk3PeN07EyG6anOWFgYRSZNXMa9DDokaDdX2aYAOfbBGKsWafaokCEKGaJqhnTIj_maSV1-48PZUcsz9Z8QKbAPH677Dgye_wArbg_6NwrHuACVKHjyB8g_afmv4AhiXEXnvpg9qxCshkzw8twhP-eC8Ql6D75I7zeyhm81pvCQrJTTmT8C36g0x5XwvwIoMQu- priority: 102 providerName: Elsevier |
| Title | The multi-objective data-driven approach: A route to drive performance optimization in the food industry |
| URI | https://dx.doi.org/10.1016/j.tifs.2024.104697 https://www.proquest.com/docview/3153780210 https://hal.inrae.fr/hal-04703408 https://hal.inrae.fr/hal-04703408/document |
| UnpaywallVersion | submittedVersion |
| Volume | 152 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1879-3053 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005355 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1879-3053 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005355 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1879-3053 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005355 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ issn: 1879-3053 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005355 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1879-3053 databaseCode: AKRWK dateStart: 19900701 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005355 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdo-zB4YDBAlI_KIN7AxWm-eYsmpkKhQoiK8WT5K-q2LqnSBDQe9rfvLh-lQmgaT4kdW3F0Z9_PubufCXk1iVPtBlwzFYWKeaFymJKwcQ19x4AB9RTX6NH9PA-mC-_jsX_c0uRgLsyyRpyFtOO0wALjHuikx6O3JtcV_jDrkUHgA-7uk8Fi_iX5UZPpTTwGtqh2IUchOvN9t82QaYK5ypMUubknXu3TRIanf1uh3hLDIXew5l6VreXFL7la7Zido_3m_KJNzVaI0SZn46pUY_37Ly7Hm33RPXK3RZ80adTlPrllswOy1yUnbw7InR1-wgdkCUpE65BDlqvTZmmkGFPKTIGrJO0Yyd_RhBZ5VVpa5rR-Rtd_MhJoDuvSeZvwSU8yCqCTpnlu4L4-OOTiIVkcvf92OGXt0QxMe45TMgl2z0pYEAKYwFqi71FypUEE3ESBlkGslCu5lmFsoQLEn8apZyMduio2AGkekX6WZ_YxoZyriTIyMCrFrFajNHT0fRVHJuU2dIbE6UQldMtbjsdnrEQXoHYqULwCxSsa8Q7J622fdcPacW1rv9MA0eKOBk8IMCvX9nsJ8ty-AIm6p8kngXWdjH_C8F902iRg5qI7RmY2rzbCBWMTRrjnHpI3WzW7wXif_F_zp-Q2lpoIxGekXxaVfQ5IqlQj0htfOiMySD7MpnO8zr5-n43aiXUFwjQfKQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB615RA4ICggwnNB3GDJOl57bW5RRRUg7YVWym21L6upgh2lDqgXfjszfoQgoQpxs_Yhr3Z2XppvZgDejPPCxalw3GbKcqlsxK1Bx1UlkUcFKq1wFNE9OU2n5_LzPJnvwVGfC0Owyk72tzK9kdbdyKi7zdFqsRh9Feg6oAKShIKMVTzfh1syGSvywN7_3MF5xE3rU1rNaXmXOdOCvOpFQTW7x7KJdVLlp79rp_0Lgknu2KCDTbky1z_Mcrmjjo7vwd3OjmST9qj3YS-UhzDo04yvDuHOTqXBB3CBz4E14EFe2ctWyDFCh3K_JnnH-triH9iEratNHVhdsWaOrX7nFrAKJcy3LnWTLUqG5iMrqsrjd9MC5PohnB9_PDua8q7JAncyimpuUIMFg6ydIis6Q1FEI6zDixI-S51Jc2tjI5xRecABJGSRFzJkTsU292icPIKDsirDY2BC2LH1JvW2oPxUbx1uTBKbZ74QQUVDiPrL1a6rQE6NMJa6h5pdaiKIJoLoliBDeLvds2rrb9y4Oulppv94RRoVxI37XiOBtz-gktvTyUzTmJAoE6XIvuPxX_X018iDFFgxZag2VzpGtaEy8p6H8G77MP7hvE_-87wvYTA9O5np2afTL0_hNs20AMNncFCvN-E5Gkq1fdEwwi-oqA7h |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbKcgAOfVCqbl9yK27Ui7NxXr2tqqJVBagHVoKT5Ve00G28yiZU9Nd3Jo_tqqoQvcWJrTiasedzZuYbQg7HWW7CmBum00QzkeiAaQUH1yQKLBhQoblBj-7ZeTydia-X0WVHk4O5MPMGcZbKjfISG4wL0EnB02PrTY0_zLbIdhwB7h6Q7dn5t8lVQ6Y3FgxsUeNCThN05kdhlyHTBnNV1zlyc49F49NEhqd_W6GtOYZDbmDNnbpYqrufarHYMDsnT9r6RauGrRCjTb6P6kqPzK-_uBwf9kVPyeMOfdJJqy7PyCNX7JOdPjl5tU_2NvgJn5M5KBFtQg6Z1zft1kgxppTZEndJ2jOSf6ITWvq6crTytHlGl38yEqiHfelHl_BJrwsKoJPm3lu4bgqH3B2Q2cmXi89T1pVmYEYEQcUU2D2nYEOIYQEbhb5HxbUBEXCbxkbFmdah4kYlmYMbIP48y4VLTRLqzAKkeUEGhS_cS0I512NtVWx1jlmtVhsYGEU6S23OXRIMSdCLSpqOtxzLZyxkH6B2I1G8EsUrW_EOydF6zLJl7bi3d9RrgOxwR4snJJiVe8d9AHmuX4BE3dPJqcR7vYxvYfrve22SsHLRHaMK5-uVDMHYJCmeuYfk41rNHjDfV__X_TXZxVYbgfiGDKqydm8BSVX6XbeEfgNK1xr6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multi-objective+data-driven+approach%3A+A+route+to+drive+performance+optimization+in+the+food+industry&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Perrignon%2C+Manon&rft.au=Croguennec%2C+Thomas&rft.au=Jeantet%2C+Romain&rft.au=Emily%2C+Mathieu&rft.date=2024-10-01&rft.issn=0924-2244&rft.volume=152+p.104697-&rft_id=info:doi/10.1016%2Fj.tifs.2024.104697&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon |