An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications

A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident solar radiation, converting the spectrum to the wavelength-band of interest and concentrating the light by total internal reflection (TIR) to...

Full description

Saved in:
Bibliographic Details
Published inOptical materials Vol. 91; pp. 212 - 227
Main Authors Rafiee, Mehran, Chandra, Subhash, Ahmed, Hind, McCormack, Sarah J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text
ISSN0925-3467
1873-1252
DOI10.1016/j.optmat.2019.01.007

Cover

Abstract A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident solar radiation, converting the spectrum to the wavelength-band of interest and concentrating the light by total internal reflection (TIR) to the edge of the LSC where photovoltaic (PV) solar cell is attached. During the waveguiding process of solar radiation, a considerable proportion of photons are lost through mechanisms such as re-absorption, attenuation, scattering and escape cone losses which decrease the device optical efficiency (OE). In recent decades, various LSC generations with different configurations have been introduced and investigated to mitigate the inherent optical losses and enhance the device performance. Due to the achieved optical improvements, LSC has recently captured a significant growing interest implying its leading role as a low cost and passive technology for enhancing the power conversion efficiency (PCE) of PV systems. In this paper, large and small scale LSCs have been comprehensively reviewed to study the impact of device configuration (such as shape, geometric gain, host material, luminescent species, doping concentration and PV solar cell type) on the LSC loss mechanisms and optical performance. LSC generations are categorised and shortlisted based on their configurations; moreover, their limitations, best performance conditions, best achieved results, and their eligibility for large-scale building integrated PV (BIPV) applications are discussed. •LSCs are comprehensively reviewed.•LSC generations are categorised.•Best achieved results of various generations are discussed.
AbstractList A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident solar radiation, converting the spectrum to the wavelength-band of interest and concentrating the light by total internal reflection (TIR) to the edge of the LSC where photovoltaic (PV) solar cell is attached. During the waveguiding process of solar radiation, a considerable proportion of photons are lost through mechanisms such as re-absorption, attenuation, scattering and escape cone losses which decrease the device optical efficiency (OE). In recent decades, various LSC generations with different configurations have been introduced and investigated to mitigate the inherent optical losses and enhance the device performance. Due to the achieved optical improvements, LSC has recently captured a significant growing interest implying its leading role as a low cost and passive technology for enhancing the power conversion efficiency (PCE) of PV systems. In this paper, large and small scale LSCs have been comprehensively reviewed to study the impact of device configuration (such as shape, geometric gain, host material, luminescent species, doping concentration and PV solar cell type) on the LSC loss mechanisms and optical performance. LSC generations are categorised and shortlisted based on their configurations; moreover, their limitations, best performance conditions, best achieved results, and their eligibility for large-scale building integrated PV (BIPV) applications are discussed. •LSCs are comprehensively reviewed.•LSC generations are categorised.•Best achieved results of various generations are discussed.
Author Chandra, Subhash
McCormack, Sarah J.
Rafiee, Mehran
Ahmed, Hind
Author_xml – sequence: 1
  givenname: Mehran
  orcidid: 0000-0002-7264-5719
  surname: Rafiee
  fullname: Rafiee, Mehran
  email: rafieem@tcd.ie
– sequence: 2
  givenname: Subhash
  surname: Chandra
  fullname: Chandra, Subhash
– sequence: 3
  givenname: Hind
  surname: Ahmed
  fullname: Ahmed, Hind
– sequence: 4
  givenname: Sarah J.
  orcidid: 0000-0001-6950-9508
  surname: McCormack
  fullname: McCormack, Sarah J.
BookMark eNqFkM1OxCAUhYkZE2dG38AFL9AKlJbWhclk4l8yiQt1TSgFZdKBBpga315qXbnQ1c3Jvefknm8FFtZZBcAlRjlGuLra526IBxFzgnCTI5wjxE7AEtesyDApyQIsUUPKrKAVOwOrEPYIIVJW1RLojYVuVH406gM6DUfhjTsGKJ3V5u3oRTTOhmmzOx6MVUEqG-Gz64WHW2cnlW6cD1A7D4d3F93o-iiMhGIYeiPngHNwqkUf1MXPXIPXu9uX7UO2e7p_3G52maQYx6zWpSwoKViFdNkozRCWTaVpW7ZYqo7J9DeWqCW4062iVGhSd6yukmCUUl2sAZ1zpXcheKX54M1B-E-OEZ9Y8T2fWfGJFUeYJ1bJdv3LJk38_jy1M_1_5pvZrFKxxNHzII1KaDrjlYy8c-bvgC9RnI22
CitedBy_id crossref_primary_10_1016_j_optlastec_2022_107850
crossref_primary_10_1002_aenm_202002883
crossref_primary_10_3390_app10072337
crossref_primary_10_3390_polym13224050
crossref_primary_10_3389_fphot_2022_932913
crossref_primary_10_3390_app11041923
crossref_primary_10_3390_en16196841
crossref_primary_10_3390_ma16083112
crossref_primary_10_1016_j_dyepig_2020_108368
crossref_primary_10_1364_OE_494821
crossref_primary_10_1364_AO_393521
crossref_primary_10_1021_acsomega_3c10051
crossref_primary_10_3390_en14020455
crossref_primary_10_1039_D1EE02554F
crossref_primary_10_3390_en13030548
crossref_primary_10_1007_s10973_023_12767_0
crossref_primary_10_1016_j_optmat_2024_116133
crossref_primary_10_3390_ma14071740
crossref_primary_10_3390_su15129146
crossref_primary_10_1002_adsu_202300107
crossref_primary_10_1016_j_nanoen_2020_105551
crossref_primary_10_1002_er_6533
crossref_primary_10_1016_j_rineng_2022_100665
crossref_primary_10_1364_AO_58_009896
crossref_primary_10_1002_adom_202100754
crossref_primary_10_1039_C9NR10029F
crossref_primary_10_1002_slct_202303722
crossref_primary_10_1364_OE_418183
crossref_primary_10_1016_j_optmat_2024_116220
crossref_primary_10_1002_adpr_202400068
crossref_primary_10_1007_s11082_024_06947_x
crossref_primary_10_1016_j_optmat_2019_109404
crossref_primary_10_1021_acsnano_3c06162
crossref_primary_10_1021_acsami_9b23055
crossref_primary_10_1016_j_ceramint_2022_12_084
crossref_primary_10_1016_j_renene_2020_06_121
crossref_primary_10_1016_j_cossms_2021_100912
crossref_primary_10_1364_OE_433063
crossref_primary_10_1145_3678574
crossref_primary_10_1002_slct_202100674
crossref_primary_10_1039_D2TA05128A
crossref_primary_10_1021_acsami_9b22903
crossref_primary_10_1039_D0MA00181C
crossref_primary_10_3390_app10030871
crossref_primary_10_1021_acsami_0c12717
crossref_primary_10_1016_j_asems_2023_100060
crossref_primary_10_1109_JPHOTOV_2022_3144962
crossref_primary_10_1016_j_solener_2022_09_011
crossref_primary_10_1016_j_solener_2023_111859
crossref_primary_10_1016_j_solmat_2019_110134
crossref_primary_10_1039_D1QM01280K
crossref_primary_10_1039_D0EE02967J
crossref_primary_10_1021_acsenergylett_3c02763
crossref_primary_10_1002_pip_3546
crossref_primary_10_1016_j_optmat_2021_111397
crossref_primary_10_1038_s41377_024_01628_6
crossref_primary_10_1002_advs_202201160
crossref_primary_10_1016_j_solener_2021_01_018
crossref_primary_10_1021_acsphotonics_2c00633
crossref_primary_10_1016_j_jclepro_2020_123343
crossref_primary_10_1117_1_JPE_13_042301
crossref_primary_10_3390_en14040816
crossref_primary_10_1364_AO_384323
crossref_primary_10_18186_thermal_872184
crossref_primary_10_1002_adom_202100182
crossref_primary_10_1007_s12273_022_0896_x
crossref_primary_10_1039_D1NJ04836H
crossref_primary_10_1039_D0TC05466F
crossref_primary_10_2139_ssrn_3925255
crossref_primary_10_1016_j_jcrysgro_2023_127131
crossref_primary_10_1021_acsomega_0c01949
crossref_primary_10_1016_j_optmat_2020_110752
crossref_primary_10_1039_D1RA04537G
crossref_primary_10_1016_j_jlumin_2022_118955
crossref_primary_10_1109_JPHOTOV_2023_3323821
crossref_primary_10_1016_j_energy_2024_130643
crossref_primary_10_1063_5_0064202
crossref_primary_10_1016_j_renene_2021_12_147
crossref_primary_10_1134_S0030400X20100021
crossref_primary_10_1016_j_dyepig_2022_110094
crossref_primary_10_1002_pssa_202000015
crossref_primary_10_1021_acsphotonics_3c00788
crossref_primary_10_1002_solr_202400195
crossref_primary_10_1016_j_renene_2020_07_005
crossref_primary_10_1007_s12633_020_00551_w
crossref_primary_10_1016_j_solmat_2022_112101
crossref_primary_10_1007_s10854_024_13101_6
crossref_primary_10_1016_j_energy_2023_129237
crossref_primary_10_52547_ijop_16_2_211
crossref_primary_10_3390_electronicmat2040039
crossref_primary_10_1016_j_solmat_2024_113073
crossref_primary_10_3390_en16041869
crossref_primary_10_1038_s41597_023_02827_3
crossref_primary_10_1051_sbuild_2023007
crossref_primary_10_1016_j_enconman_2025_119751
crossref_primary_10_1051_sbuild_2023008
crossref_primary_10_1016_j_solener_2020_06_104
crossref_primary_10_1039_D4SE00806E
crossref_primary_10_3390_su162411148
crossref_primary_10_1016_j_ijleo_2021_168024
crossref_primary_10_1088_2053_1591_ab6fad
crossref_primary_10_1016_j_nanoen_2023_108269
crossref_primary_10_1021_acsphotonics_0c01772
crossref_primary_10_1039_D4CP00538D
Cites_doi 10.1016/j.jlumin.2013.04.029
10.1016/j.nanoen.2018.06.025
10.7567/JJAP.57.08RD10
10.1364/OE.19.024308
10.1016/j.renene.2017.07.025
10.1002/pip.920
10.1038/nphoton.2017.5
10.1021/ja040082h
10.1039/C5CC02007G
10.1016/j.solmat.2009.02.020
10.1115/1.2735347
10.1002/pssa.201700634
10.1063/1.3422485
10.1039/c2cp40791d
10.1063/1.2748350
10.1039/C8TC02532K
10.1039/c2jm32366d
10.1002/adom.201400103
10.1002/adma.201700821
10.1016/j.solener.2017.04.034
10.1016/j.solmat.2011.11.030
10.1016/j.optmat.2009.05.003
10.1109/JPHOTOV.2017.2668606
10.1002/anie.201611101
10.1063/1.4906460
10.1016/j.solener.2015.05.004
10.1002/pssr.200802186
10.1007/BF00885865
10.1021/acsphotonics.8b01346
10.1002/pssa.201431683
10.1016/j.solener.2013.06.014
10.1021/acs.jchemed.7b00742
10.1021/acs.nanolett.7b04263
10.3762/bjnano.1.11
10.1016/j.solmat.2004.02.046
10.1039/C5TA02417J
10.1016/j.solener.2018.05.022
10.1021/acsenergylett.7b00701
10.1021/acsami.5b01281
10.1149/1.1392651
10.1016/j.solener.2006.09.011
10.1002/adom.201500412
10.1002/pat.1842
10.1016/j.solener.2014.12.001
10.1038/srep17777
10.1364/AO.49.000745
10.1038/s41566-017-0070-7
10.1038/natrevmats.2017.72
10.1016/j.cplett.2010.03.087
10.1039/C7QM00008A
10.1016/j.solmat.2017.06.018
10.1016/j.dyepig.2015.03.035
10.1021/acsphotonics.8b00498
10.1038/nmat3539
10.1016/j.solmat.2012.12.028
10.1016/j.orgel.2018.08.020
10.1021/acsami.7b02700
10.1364/OE.16.021773
10.1134/1.1787111
10.1016/j.renene.2014.11.026
10.1364/AO.50.000163
10.1002/aenm.201300173
10.1016/j.solmat.2013.11.026
10.1364/OE.18.00A536
10.1002/aenm.201501913
10.1021/acsnano.5b06772
10.1016/j.enbuild.2015.12.022
10.1007/BF00883080
10.1002/adom.201600851
10.1021/acsphotonics.5b00334
10.1364/AO.15.002299
10.1021/acsphotonics.5b00630
10.1016/0165-1633(79)90027-3
10.1364/AO.24.002028
10.1016/j.solener.2011.07.014
10.1021/acs.jpcc.6b12379
10.1126/science.1158342
10.1039/b914978c
10.1016/S0960-1481(99)00093-2
10.1039/C1EE02376D
10.1039/C3TA14964A
10.1038/nenergy.2016.157
10.1109/JSTQE.2008.920282
10.1039/C7TA04731B
10.1016/j.materresbull.2010.07.021
10.1002/aenm.201100554
10.1002/aenm.201702922
10.1021/acsnano.6b03704
10.1063/1.125981
10.1002/adma.201000525
10.1016/S0927-0248(98)00105-6
10.1063/1.3541543
10.1016/j.solmat.2018.07.008
10.1038/370354a0
10.1364/OE.21.00A735
10.1016/j.solmat.2011.02.027
10.1364/AO.49.001651
10.1039/C7CS00701A
10.1364/OL.37.003087
10.1063/1.4871481
10.1016/j.solener.2018.12.013
10.1088/1361-6528/aa577f
10.1016/j.solener.2011.06.007
10.1016/j.tsf.2003.10.133
10.1021/nl5048779
10.1002/solr.201700041
10.1002/pip.723
10.1021/acsphotonics.6b00307
10.1016/j.solener.2009.10.004
10.1002/adma.201504358
10.1021/acs.jpclett.6b01668
10.1021/acs.jpclett.8b00275
10.1016/j.jcis.2018.09.065
10.1016/j.nanoen.2017.05.030
10.1117/1.3534864
10.1016/j.renene.2017.08.016
10.1016/j.renene.2016.10.078
10.1021/nl501627e
10.1038/ncomms1318
10.1155/2013/235875
10.1016/j.renene.2013.10.014
10.1016/j.nanoen.2017.12.017
10.1021/acsenergylett.7b01346
10.1016/j.solmat.2009.10.018
10.1021/nn406360w
10.1016/j.solmat.2018.04.004
10.1016/j.jlumin.2017.09.030
10.1016/j.nanoen.2016.11.058
10.1016/j.solmat.2017.04.010
10.1038/nphoton.2014.54
10.1038/nnano.2015.178
10.1002/adom.201600634
10.1016/j.solmat.2015.08.008
10.1016/j.solmat.2012.04.019
10.1021/nl504510t
10.1002/smll.201600945
10.1016/j.optmat.2006.11.045
10.1016/j.solmat.2008.09.048
10.1039/c3ta11463e
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optmat.2019.01.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-1252
EndPage 227
ExternalDocumentID 10_1016_j_optmat_2019_01_007
S092534671930028X
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c411t-8f5c3423760f59ef701c96f4b5b1ced7c0001c0b21dfbe44af28d786fbe7444f3
IEDL.DBID .~1
ISSN 0925-3467
IngestDate Thu Oct 16 04:42:43 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Fri Feb 23 02:16:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords EQE
Photovoltaic
Optical efficiency
Re-absorption
Luminescent solar concentrator
Power conversion efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-8f5c3423760f59ef701c96f4b5b1ced7c0001c0b21dfbe44af28d786fbe7444f3
ORCID 0000-0001-6950-9508
0000-0002-7264-5719
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_optmat_2019_01_007
crossref_citationtrail_10_1016_j_optmat_2019_01_007
elsevier_sciencedirect_doi_10_1016_j_optmat_2019_01_007
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Optical materials
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mateen (bib84) 2019; 178
Slooff (bib93) 2007; 129
Rafiee (bib112) 2018
Sharma (bib145) 2017; 29
Zhu (bib130) 2019; 534
Zhou (bib131) 2018; 44
Nikolaidou (bib73) 2016; 4
Li (bib125) 2015; 5
de Boer (bib158) 2011; 98
Mirershadi, Sattari, Saridaragh (bib46) 2018; 186
Rowan, Wilson, Richards (bib88) 2008; 14
Brennan (bib29) 2018; 6
Chatten (bib124) 2004; 38
Meinardi (bib76) 2014; 8
Waldron (bib138) 2017; 28
Sholin, Olson, Carter (bib16) 2007; 101
Meinardi (bib70) 2015; 10
Hernandez-Noyola (bib56) 2012; 5
Zhao (bib140) 2018; 50
Debije (bib159) 2010; 49
Knowles (bib144) 2015; 51
Coropceanu, Bawendi (bib63) 2014; 14
Debije (bib120) 2011; 50
Zhang (bib34) 2015; 117
Wilson, Klampaftis, Richards (bib12) 2017; 7
Coropceanu (bib151) 2016; 10
Vishwanathan (bib41) 2015; 112
El-Bashir, AlHarbi, AlSalhi (bib36) 2013; 2013
Kennedy (bib43) 2010
Chen (bib133) 2013; 12
Erickson (bib109) 2014; 8
Glassner (bib45) 1989
Nolasco (bib104) 2013; 1
Vossen, Aarts, Debije (bib17) 2016; 113
Brovelli, Meinardi, Carulli (bib28) 2018
Council (bib102) 2018
Reisfeld, Levchenko, Saraidarov (bib106) 2011; 22
Weber, Lambe (bib1) 1976; 15
Pravettoni (bib162) 2009
Albers, Bastiaansen, Debije (bib54) 2013; 95
El-Bashir (bib90) 2018; 115
Yamada, Nguyen Anh, Kambayashi (bib4) 2010; 94
Desmet (bib42) 2012; 37
Tummeltshammer (bib48) 2016; 144
Klimov (bib127) 2016; 3
Meinardi, Bruni, Brovelli (bib10) 2017; 2
Reinders (bib18) 2018; 57
Jang (bib135) 2010; 22
Krumer (bib137) 2013; 111
Correia (bib35) 2014; 2
Purcell-Milton, Gun'ko (bib53) 2012; 22
Sol (bib83) 2018; 8
Song (bib146) 2017; 18
Kerrouche (bib5) 2014; 122
Hughes, Borca-Tasciuc, Kaminski (bib156) 2017; 171
Zhao (bib26) 2014; 2
Flores Daorta (bib69) 2014; 104
Yoon (bib24) 2011; 2
Wang (bib118) 2011; 85
Giebink, Wiederrecht, Wasielewski (bib110) 2018
Buffa (bib108) 2012; 103
Needell (bib113) 2018
Aste (bib38) 2015; 76
Zhao, Lunt (bib15) 2013; 3
Tummeltshammer (bib79) 2017; 32
Connell, Pinnell, Ferry (bib157) 2018; 20
Renny (bib14) 2018; 95
Ha (bib81) 2018; 5
Debije (bib160) September 2009
Wilson (bib51) 2010; 49
Bose (bib86) 2009
Zhou (bib129) 2018; 47
Debije (bib22) 2017; 113
Chandra (bib65) 2012; 98
Inman (bib61) 2011; 19
Bomm (bib62) 2011; 95
de Cardona (bib39) 1985; 24
Wang (bib87) 2011; 1
Earp (bib13) 2004; 84
Rondão (bib105) 2017; 9
El-Bashir, Barakat, AlSalhi (bib67) 2013; 143
Sumner (bib143) 2017; 121
Kastelijn, Bastiaansen, Debije (bib85) 2009; 31
Cambié (bib19) 2017; 56
Wang (bib117) 2011; 85
Zhao (bib77) 2016; 12
LeDonne (bib96) 2008
Shcherbatyuk (bib123) 2010; 96
Norton (bib52) 2011; 85
Bronstein (bib72) 2015
Meinardi (bib20) 2017; 11
Kanellis (bib21) 2017; 103
Pravettoni (bib163) 2009
Jeong (bib147) 2016; 10
Union, T.E.P.a.t.C.o.t.E (bib11) 2010
Chen (bib25) 2017; 1
Freitas (bib107) 2015; 7
Aste, Adhikari, Del Pero (bib7) 2011
Barnham (bib122) 2000; 76
Meinardi (bib152) 2017; 2
Saraidarov (bib165) 2010; 492
Goldschmidt (bib55) 2009; 93
Yang, Lunt (bib32) 2017; 5
Inoue (bib101) 1997; 30
Eisfeld, Briggs (bib119) 2018; 215
Debije, Verbunt (bib9) 2012; 2
Currie (bib59) 2008; 321
Correia (bib50) 2016; 24
Wang (bib132) 2018; 62
Colvin, Schlamp, Alivisatos (bib136) 1994; 370
Li (bib71) 2015; 5
Geddes (bib66) 2017
Bergren (bib30) 2018; 3
Pagliaro, Ciriminna, Palmisano (bib8) 2010; 18
Protesescu (bib154) 2015; 15
Goetzberger, Greube (bib2) 1977; 14
Richards, McIntosh (bib94) 2007; 15
Mirershadi, Ahmadi-Kandjani (bib155) 2015; 120
Chandra (bib64) 2013
Vasiliev (bib31) 2018
Bose (bib148) 2008
Maruyama, Bandai (bib99) 1999; 146
Gajic (bib23) 2017; 150
Sanguineti (bib33) 2012; 14
Man (bib115) 2007; 30
Salem (bib40) 2000; 20
Kaniyoor (bib103) 2016; 4
Bradshaw (bib128) 2015; 15
Kennedy (bib44) 2015; 212
Zhou (bib75) 2016; 6
De Nisi (bib95) 2017; 1
Berends (bib134) 2016; 7
Bomm (bib149) 2010; 1
Goetzberger (bib3) 1978; 16
Klampaftis (bib89) 2009; 93
Hill (bib126) 2018; 6
Tummeltshammer (bib166) 2013; 21
Ito (bib153) 2018; 9
Wu, Li, Klimov (bib82) 2018; 12
Tsoi (bib57) 2010; 18
Švrček, Slaoui, Muller (bib97) 2004; 451
Bronstein (bib49) 2015; 2
van Sark (bib6) 2008; 16
Khan (bib116) 2010; 45
Xu (bib139) 2004; 126
Wang, Hirst, Winston (bib37) 2011
Levchenko (bib164) 2018; 193
Hovel, Hodgson, Woodall (bib91) 1979; 2
Chandra (bib121) 2018; 182
Liu (bib141) 2018; 6
Xu (bib161) 2016; 3
Chen (bib167) 2015; 3
Weber, Lambe (bib111) 1976; 15
Gallagher, Norton, Eames (bib58) 2007; 81
Moudam (bib114) 2009
Lunt, Bulovic, Barr (bib27) 2018
Maruyama, Shinyashiki, Osako (bib100) 1998; 56
Fisher (bib150) 2015; 106
Yamada, Wada, Kawano (bib98) 2000; 36
Zhao (bib47) 2017; 37
Slooff (bib60) 2008; 2
El-Bashir, Barakat, AlSalhi (bib68) 2014; 63
Li (bib78) 2016; 1
Krumer (bib142) 2017; 167
Gutierrez (bib74) 2016; 28
Kawano, Hashimoto, Nakata (bib92) 1997
Schrecengost (bib80) 2018; 170
Goldschmidt (10.1016/j.optmat.2019.01.007_bib55) 2009; 93
Maruyama (10.1016/j.optmat.2019.01.007_bib100) 1998; 56
Bose (10.1016/j.optmat.2019.01.007_bib86) 2009
Rowan (10.1016/j.optmat.2019.01.007_bib88) 2008; 14
Maruyama (10.1016/j.optmat.2019.01.007_bib99) 1999; 146
Vossen (10.1016/j.optmat.2019.01.007_bib17) 2016; 113
Wilson (10.1016/j.optmat.2019.01.007_bib51) 2010; 49
Kawano (10.1016/j.optmat.2019.01.007_bib92) 1997
Weber (10.1016/j.optmat.2019.01.007_bib1) 1976; 15
Nolasco (10.1016/j.optmat.2019.01.007_bib104) 2013; 1
Saraidarov (10.1016/j.optmat.2019.01.007_bib165) 2010; 492
Krumer (10.1016/j.optmat.2019.01.007_bib142) 2017; 167
Xu (10.1016/j.optmat.2019.01.007_bib161) 2016; 3
Song (10.1016/j.optmat.2019.01.007_bib146) 2017; 18
Bose (10.1016/j.optmat.2019.01.007_bib148) 2008
Yoon (10.1016/j.optmat.2019.01.007_bib24) 2011; 2
Zhao (10.1016/j.optmat.2019.01.007_bib26) 2014; 2
Zhao (10.1016/j.optmat.2019.01.007_bib47) 2017; 37
Li (10.1016/j.optmat.2019.01.007_bib71) 2015; 5
Bradshaw (10.1016/j.optmat.2019.01.007_bib128) 2015; 15
Chandra (10.1016/j.optmat.2019.01.007_bib64) 2013
Fisher (10.1016/j.optmat.2019.01.007_bib150) 2015; 106
Debije (10.1016/j.optmat.2019.01.007_bib160) 2009
Weber (10.1016/j.optmat.2019.01.007_bib111) 1976; 15
Vishwanathan (10.1016/j.optmat.2019.01.007_bib41) 2015; 112
Hill (10.1016/j.optmat.2019.01.007_bib126) 2018; 6
Currie (10.1016/j.optmat.2019.01.007_bib59) 2008; 321
Cambié (10.1016/j.optmat.2019.01.007_bib19) 2017; 56
LeDonne (10.1016/j.optmat.2019.01.007_bib96) 2008
Sholin (10.1016/j.optmat.2019.01.007_bib16) 2007; 101
Meinardi (10.1016/j.optmat.2019.01.007_bib70) 2015; 10
Council (10.1016/j.optmat.2019.01.007_bib102)
Gajic (10.1016/j.optmat.2019.01.007_bib23) 2017; 150
Sumner (10.1016/j.optmat.2019.01.007_bib143) 2017; 121
Buffa (10.1016/j.optmat.2019.01.007_bib108) 2012; 103
Reisfeld (10.1016/j.optmat.2019.01.007_bib106) 2011; 22
Vasiliev (10.1016/j.optmat.2019.01.007_bib31) 2018
Flores Daorta (10.1016/j.optmat.2019.01.007_bib69) 2014; 104
Bronstein (10.1016/j.optmat.2019.01.007_bib49) 2015; 2
Zhou (10.1016/j.optmat.2019.01.007_bib75) 2016; 6
Barnham (10.1016/j.optmat.2019.01.007_bib122) 2000; 76
Zhou (10.1016/j.optmat.2019.01.007_bib129) 2018; 47
Kennedy (10.1016/j.optmat.2019.01.007_bib43) 2010
Bergren (10.1016/j.optmat.2019.01.007_bib30) 2018; 3
Glassner (10.1016/j.optmat.2019.01.007_bib45) 1989
El-Bashir (10.1016/j.optmat.2019.01.007_bib90) 2018; 115
Tummeltshammer (10.1016/j.optmat.2019.01.007_bib48) 2016; 144
Chen (10.1016/j.optmat.2019.01.007_bib133) 2013; 12
Pagliaro (10.1016/j.optmat.2019.01.007_bib8) 2010; 18
El-Bashir (10.1016/j.optmat.2019.01.007_bib36) 2013; 2013
Klampaftis (10.1016/j.optmat.2019.01.007_bib89) 2009; 93
Hovel (10.1016/j.optmat.2019.01.007_bib91) 1979; 2
Union, T.E.P.a.t.C.o.t.E (10.1016/j.optmat.2019.01.007_bib11)
Colvin (10.1016/j.optmat.2019.01.007_bib136) 1994; 370
Wilson (10.1016/j.optmat.2019.01.007_bib12) 2017; 7
Tummeltshammer (10.1016/j.optmat.2019.01.007_bib79) 2017; 32
Wang (10.1016/j.optmat.2019.01.007_bib37) 2011
Purcell-Milton (10.1016/j.optmat.2019.01.007_bib53) 2012; 22
Levchenko (10.1016/j.optmat.2019.01.007_bib164) 2018; 193
Klimov (10.1016/j.optmat.2019.01.007_bib127) 2016; 3
Debije (10.1016/j.optmat.2019.01.007_bib22) 2017; 113
Needell (10.1016/j.optmat.2019.01.007_bib113) 2018
Mirershadi (10.1016/j.optmat.2019.01.007_bib155) 2015; 120
Reinders (10.1016/j.optmat.2019.01.007_bib18) 2018; 57
Pravettoni (10.1016/j.optmat.2019.01.007_bib162) 2009
Wu (10.1016/j.optmat.2019.01.007_bib82) 2018; 12
Correia (10.1016/j.optmat.2019.01.007_bib50) 2016; 24
Slooff (10.1016/j.optmat.2019.01.007_bib60) 2008; 2
El-Bashir (10.1016/j.optmat.2019.01.007_bib67) 2013; 143
Bronstein (10.1016/j.optmat.2019.01.007_bib72) 2015
Coropceanu (10.1016/j.optmat.2019.01.007_bib63) 2014; 14
Hughes (10.1016/j.optmat.2019.01.007_bib156) 2017; 171
Li (10.1016/j.optmat.2019.01.007_bib78) 2016; 1
Inman (10.1016/j.optmat.2019.01.007_bib61) 2011; 19
Inoue (10.1016/j.optmat.2019.01.007_bib101) 1997; 30
Man (10.1016/j.optmat.2019.01.007_bib115) 2007; 30
Debije (10.1016/j.optmat.2019.01.007_bib159) 2010; 49
Chen (10.1016/j.optmat.2019.01.007_bib25) 2017; 1
Krumer (10.1016/j.optmat.2019.01.007_bib137) 2013; 111
Kerrouche (10.1016/j.optmat.2019.01.007_bib5) 2014; 122
Gutierrez (10.1016/j.optmat.2019.01.007_bib74) 2016; 28
Jeong (10.1016/j.optmat.2019.01.007_bib147) 2016; 10
Ha (10.1016/j.optmat.2019.01.007_bib81) 2018; 5
Lunt (10.1016/j.optmat.2019.01.007_bib27) 2018
Giebink (10.1016/j.optmat.2019.01.007_bib110) 2018
Chatten (10.1016/j.optmat.2019.01.007_bib124) 2004; 38
Tsoi (10.1016/j.optmat.2019.01.007_bib57) 2010; 18
Meinardi (10.1016/j.optmat.2019.01.007_bib76) 2014; 8
Kanellis (10.1016/j.optmat.2019.01.007_bib21) 2017; 103
Pravettoni (10.1016/j.optmat.2019.01.007_bib163) 2009
Brennan (10.1016/j.optmat.2019.01.007_bib29) 2018; 6
Zhang (10.1016/j.optmat.2019.01.007_bib34) 2015; 117
Rondão (10.1016/j.optmat.2019.01.007_bib105) 2017; 9
Renny (10.1016/j.optmat.2019.01.007_bib14) 2018; 95
Chen (10.1016/j.optmat.2019.01.007_bib167) 2015; 3
Geddes (10.1016/j.optmat.2019.01.007_bib66) 2017
Schrecengost (10.1016/j.optmat.2019.01.007_bib80) 2018; 170
Meinardi (10.1016/j.optmat.2019.01.007_bib20) 2017; 11
Yang (10.1016/j.optmat.2019.01.007_bib32) 2017; 5
De Nisi (10.1016/j.optmat.2019.01.007_bib95) 2017; 1
Debije (10.1016/j.optmat.2019.01.007_bib120) 2011; 50
Xu (10.1016/j.optmat.2019.01.007_bib139) 2004; 126
Mirershadi (10.1016/j.optmat.2019.01.007_bib46) 2018; 186
van Sark (10.1016/j.optmat.2019.01.007_bib6) 2008; 16
Wang (10.1016/j.optmat.2019.01.007_bib132) 2018; 62
Zhao (10.1016/j.optmat.2019.01.007_bib77) 2016; 12
Aste (10.1016/j.optmat.2019.01.007_bib7) 2011
Debije (10.1016/j.optmat.2019.01.007_bib9) 2012; 2
Meinardi (10.1016/j.optmat.2019.01.007_bib10) 2017; 2
Desmet (10.1016/j.optmat.2019.01.007_bib42) 2012; 37
Wang (10.1016/j.optmat.2019.01.007_bib117) 2011; 85
Norton (10.1016/j.optmat.2019.01.007_bib52) 2011; 85
Goetzberger (10.1016/j.optmat.2019.01.007_bib3) 1978; 16
Bomm (10.1016/j.optmat.2019.01.007_bib149) 2010; 1
Sanguineti (10.1016/j.optmat.2019.01.007_bib33) 2012; 14
Chandra (10.1016/j.optmat.2019.01.007_bib65) 2012; 98
Brovelli (10.1016/j.optmat.2019.01.007_bib28) 2018
Mateen (10.1016/j.optmat.2019.01.007_bib84) 2019; 178
de Boer (10.1016/j.optmat.2019.01.007_bib158) 2011; 98
Yamada (10.1016/j.optmat.2019.01.007_bib4) 2010; 94
Shcherbatyuk (10.1016/j.optmat.2019.01.007_bib123) 2010; 96
Meinardi (10.1016/j.optmat.2019.01.007_bib152) 2017; 2
Correia (10.1016/j.optmat.2019.01.007_bib35) 2014; 2
Ito (10.1016/j.optmat.2019.01.007_bib153) 2018; 9
Coropceanu (10.1016/j.optmat.2019.01.007_bib151) 2016; 10
Richards (10.1016/j.optmat.2019.01.007_bib94) 2007; 15
Wang (10.1016/j.optmat.2019.01.007_bib87) 2011; 1
Freitas (10.1016/j.optmat.2019.01.007_bib107) 2015; 7
Hernandez-Noyola (10.1016/j.optmat.2019.01.007_bib56) 2012; 5
Protesescu (10.1016/j.optmat.2019.01.007_bib154) 2015; 15
Li (10.1016/j.optmat.2019.01.007_bib125) 2015; 5
Yamada (10.1016/j.optmat.2019.01.007_bib98) 2000; 36
Moudam (10.1016/j.optmat.2019.01.007_bib114) 2009
Sol (10.1016/j.optmat.2019.01.007_bib83) 2018; 8
Zhou (10.1016/j.optmat.2019.01.007_bib131) 2018; 44
Slooff (10.1016/j.optmat.2019.01.007_bib93) 2007; 129
Erickson (10.1016/j.optmat.2019.01.007_bib109) 2014; 8
Berends (10.1016/j.optmat.2019.01.007_bib134) 2016; 7
Jang (10.1016/j.optmat.2019.01.007_bib135) 2010; 22
Bomm (10.1016/j.optmat.2019.01.007_bib62) 2011; 95
Wang (10.1016/j.optmat.2019.01.007_bib118) 2011; 85
Zhao (10.1016/j.optmat.2019.01.007_bib140) 2018; 50
Earp (10.1016/j.optmat.2019.01.007_bib13) 2004; 84
Kennedy (10.1016/j.optmat.2019.01.007_bib44) 2015; 212
Zhu (10.1016/j.optmat.2019.01.007_bib130) 2019; 534
El-Bashir (10.1016/j.optmat.2019.01.007_bib68) 2014; 63
Albers (10.1016/j.optmat.2019.01.007_bib54) 2013; 95
Eisfeld (10.1016/j.optmat.2019.01.007_bib119) 2018; 215
Connell (10.1016/j.optmat.2019.01.007_bib157) 2018; 20
Chandra (10.1016/j.optmat.2019.01.007_bib121) 2018; 182
Zhao (10.1016/j.optmat.2019.01.007_bib15) 2013; 3
Švrček (10.1016/j.optmat.2019.01.007_bib97) 2004; 451
Kaniyoor (10.1016/j.optmat.2019.01.007_bib103) 2016; 4
Knowles (10.1016/j.optmat.2019.01.007_bib144) 2015; 51
Khan (10.1016/j.optmat.2019.01.007_bib116) 2010; 45
Tummeltshammer (10.1016/j.optmat.2019.01.007_bib166) 2013; 21
de Cardona (10.1016/j.optmat.2019.01.007_bib39) 1985; 24
Kastelijn (10.1016/j.optmat.2019.01.007_bib85) 2009; 31
Nikolaidou (10.1016/j.optmat.2019.01.007_bib73) 2016; 4
Rafiee (10.1016/j.optmat.2019.01.007_bib112) 2018
Gallagher (10.1016/j.optmat.2019.01.007_bib58) 2007; 81
Waldron (10.1016/j.optmat.2019.01.007_bib138) 2017; 28
Goetzberger (10.1016/j.optmat.2019.01.007_bib2) 1977; 14
Aste (10.1016/j.optmat.2019.01.007_bib38) 2015; 76
Liu (10.1016/j.optmat.2019.01.007_bib141) 2018; 6
Salem (10.1016/j.optmat.2019.01.007_bib40) 2000; 20
Sharma (10.1016/j.optmat.2019.01.007_bib145) 2017; 29
References_xml – volume: 12
  start-page: 5354
  year: 2016
  end-page: 5365
  ident: bib77
  article-title: Absorption enhancement in “giant” core/alloyed‐shell quantum dots for luminescent solar concentrator
  publication-title: Small
– year: 2008
  ident: bib96
  article-title: Enhancement of Solar Energy Conversion Efficiency by Light Harvesting of Organolanthanide Complexes
– volume: 37
  start-page: 214
  year: 2017
  end-page: 223
  ident: bib47
  article-title: Perovskite quantum dots integrated in large-area luminescent solar concentrators
  publication-title: Nano energy
– volume: 24
  start-page: 2028
  year: 1985
  end-page: 2032
  ident: bib39
  article-title: Outdoor evaluation of luminescent solar concentrator prototypes
  publication-title: Appl. Opt.
– volume: 81
  start-page: 813
  year: 2007
  end-page: 821
  ident: bib58
  article-title: Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices
  publication-title: Sol. Energy
– volume: 84
  start-page: 411
  year: 2004
  end-page: 426
  ident: bib13
  article-title: Optimisation of a three-colour luminescent solar concentrator daylighting system
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 95
  start-page: 216
  year: 2013
  end-page: 223
  ident: bib54
  article-title: Dual waveguide patterned luminescent solar concentrators
  publication-title: Sol. Energy
– volume: 1
  start-page: 16157
  year: 2016
  ident: bib78
  article-title: Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators
  publication-title: Nature Energy
– year: 2018
  ident: bib110
  article-title: Resonance-shifting Luminescent Solar Concentrators
– year: 2018
  ident: bib28
  article-title: Colorless Luminescent Solar Concentrator, Free of Heavy Metals, Based on at Least Ternary Chalcogenide Semiconductor Nanocrystals with Absorption Extending to the Near Infrared Region
– volume: 9
  start-page: 12540
  year: 2017
  end-page: 12546
  ident: bib105
  article-title: High-performance near-infrared luminescent solar concentrators
  publication-title: ACS Appl. Mater. Interfaces
– volume: 129
  start-page: 272
  year: 2007
  end-page: 276
  ident: bib93
  article-title: Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye
  publication-title: J. Sol. Energy Eng.
– volume: 15
  start-page: 1315
  year: 2015
  end-page: 1323
  ident: bib128
  article-title: Nanocrystals for luminescent solar concentrators
  publication-title: Nano Lett.
– volume: 144
  start-page: 40
  year: 2016
  end-page: 47
  ident: bib48
  article-title: Losses in luminescent solar concentrators unveiled
  publication-title: Sol. Energy Mater. Sol. Cell.
– year: 2018
  ident: bib27
  article-title: Visibly Transparent, Luminescent Solar Concentrator
– volume: 1
  start-page: 7339
  year: 2013
  end-page: 7350
  ident: bib104
  article-title: Engineering highly efficient Eu (III)-based tri-ureasil hybrids toward luminescent solar concentrators
  publication-title: J. Mater. Chem.
– volume: 62
  start-page: 284
  year: 2018
  end-page: 289
  ident: bib132
  article-title: Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators
  publication-title: Org. Electron.
– volume: 5
  start-page: 1600851
  year: 2017
  ident: bib32
  article-title: Limits of visibly transparent luminescent solar concentrators
  publication-title: Advanced Optical Materials
– volume: 28
  start-page: 497
  year: 2016
  end-page: 501
  ident: bib74
  article-title: A low reabsorbing luminescent solar concentrator employing π‐conjugated polymers
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8770
  year: 2015
  end-page: 8778
  ident: bib107
  article-title: Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 133
  year: 2017
  end-page: 139
  ident: bib142
  article-title: Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 8
  start-page: 392
  year: 2014
  end-page: 399
  ident: bib76
  article-title: Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix
  publication-title: Nat. Photon.
– volume: 19
  start-page: 24308
  year: 2011
  end-page: 24313
  ident: bib61
  article-title: Cylindrical luminescent solar concentrators with near-infrared quantum dots
  publication-title: Optic Express
– volume: 76
  start-page: 330
  year: 2015
  end-page: 337
  ident: bib38
  article-title: Performance analysis of a large-area luminescent solar concentrator module
  publication-title: Renew. Energy
– volume: 7
  start-page: 802
  year: 2017
  end-page: 809
  ident: bib12
  article-title: Enhancement of power output from a large-area luminescent solar concentrator with 4.8× concentration via solar cell current matching
  publication-title: IEEE Journal of Photovoltaics
– volume: 22
  start-page: 16687
  year: 2012
  end-page: 16697
  ident: bib53
  article-title: Quantum dots for luminescent solar concentrators
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 343
  year: 2011
  ident: bib24
  article-title: Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides
  publication-title: Nat. Commun.
– volume: 103
  start-page: 647
  year: 2017
  end-page: 652
  ident: bib21
  article-title: The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier
  publication-title: Renew. Energy
– volume: 104
  start-page: 153901
  year: 2014
  ident: bib69
  article-title: Cascade luminescent solar concentrators
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 1562
  year: 2010
  end-page: 1566
  ident: bib116
  article-title: Eu3+ doped silica xerogel luminescent layer having antireflection and spectrum modifying properties suitable for solar cell applications
  publication-title: Mater. Res. Bull.
– volume: 47
  year: 2018
  ident: bib129
  article-title: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators
  publication-title: Chem. Soc. Rev.
– volume: 18
  start-page: A536
  year: 2010
  end-page: A543
  ident: bib57
  article-title: Patterned dye structures limit reabsorption in luminescent solar concentrators
  publication-title: Optic Express
– volume: 24
  start-page: 1178
  year: 2016
  end-page: 1193
  ident: bib50
  article-title: Scale up the collection area of luminescent solar concentrators towards metre‐length flexible waveguiding photovoltaics
– volume: 8
  start-page: 3461
  year: 2014
  end-page: 3467
  ident: bib109
  article-title: Zero-reabsorption doped-nanocrystal luminescent solar concentrators
  publication-title: ACS Nano
– volume: 113
  start-page: 123
  year: 2016
  end-page: 132
  ident: bib17
  article-title: Visual performance of red luminescent solar concentrating windows in an office environment
  publication-title: Energy Build.
– volume: 186
  start-page: 365
  year: 2018
  end-page: 372
  ident: bib46
  article-title: Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 56
  start-page: 1050
  year: 2017
  end-page: 1054
  ident: bib19
  article-title: A leaf‐inspired luminescent solar concentrator for energy‐efficient continuous‐flow photochemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1682
  year: 2018
  end-page: 1688
  ident: bib153
  article-title: Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air
  publication-title: J. Phys. Chem. Lett.
– volume: 50
  start-page: 163
  year: 2011
  end-page: 169
  ident: bib120
  article-title: Promising fluorescent dye for solar energy conversion based on a perylene perinone
  publication-title: Appl. Opt.
– volume: 49
  start-page: 1651
  year: 2010
  end-page: 1661
  ident: bib51
  article-title: Characterization and reduction of reabsorption losses in luminescent solar concentrators
  publication-title: Appl. Opt.
– volume: 63
  start-page: 642
  year: 2014
  end-page: 649
  ident: bib68
  article-title: Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports
  publication-title: Renew. Energy
– volume: 49
  start-page: 745
  year: 2010
  end-page: 751
  ident: bib159
  article-title: Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors
  publication-title: Appl. Opt.
– year: 2009
  ident: bib162
  article-title: External quantum efficiency measurements of luminescent solar concentrators: a study of the impact of backside reflector size and shape
  publication-title: 24th European Photovoltaic Solar Energy Conference. Hamburg, Germany
– year: 1997
  ident: bib92
  article-title: Effects on solar cell efficiency of fluorescence of rare-earth ions
  publication-title: Materials Science Forum
– volume: 111
  start-page: 57
  year: 2013
  end-page: 65
  ident: bib137
  article-title: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 2
  start-page: 2368
  year: 2017
  end-page: 2377
  ident: bib152
  article-title: Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators
  publication-title: ACS Energy Letters
– volume: 146
  start-page: 4406
  year: 1999
  end-page: 4409
  ident: bib99
  article-title: Solar cell module coated with fluorescent coloring agent
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 1576
  year: 2015
  end-page: 1583
  ident: bib49
  article-title: Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration
  publication-title: ACS Photonics
– volume: 98
  start-page: 385
  year: 2012
  end-page: 390
  ident: bib65
  article-title: Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction
  publication-title: Sol. Energy Mater. Sol. Cell.
– year: 2015
  ident: bib72
  article-title: Material and Optical Design Rules for High Performance Luminescent Solar Concentrators
– volume: 18
  start-page: 395
  year: 2017
  end-page: 404
  ident: bib146
  article-title: Performance limits of luminescent solar concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity
  publication-title: Nano Lett.
– volume: 18
  start-page: 61
  year: 2010
  end-page: 72
  ident: bib8
  article-title: BIPV: merging the photovoltaic with the construction industry
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 113
  start-page: 1288
  year: 2017
  end-page: 1292
  ident: bib22
  article-title: The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype
  publication-title: Renew. Energy
– volume: 6
  year: 2018
  ident: bib126
  article-title: Silicon quantum dot-poly (methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators
  publication-title: ACS Photonics
– volume: 106
  start-page: 041110
  year: 2015
  ident: bib150
  article-title: Utilizing vertically aligned CdSe/CdS nanorods within a luminescent solar concentrator
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 105
  year: 2018
  ident: bib82
  article-title: Tandem luminescent solar concentrators based on engineered quantum dots
  publication-title: Nat. Photon.
– volume: 44
  start-page: 378
  year: 2018
  end-page: 387
  ident: bib131
  article-title: Colloidal carbon dots based highly stable luminescent solar concentrators
  publication-title: Nanomater. Energy
– volume: 85
  start-page: 1629
  year: 2011
  end-page: 1664
  ident: bib52
  article-title: Enhancing the performance of building integrated photovoltaics
  publication-title: Sol. Energy
– volume: 94
  start-page: 413
  year: 2010
  end-page: 419
  ident: bib4
  article-title: Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 5
  start-page: 17777
  year: 2015
  ident: bib71
  article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1312
  year: 2008
  end-page: 1322
  ident: bib88
  article-title: Advanced material concepts for luminescent solar concentrators
  publication-title: IEEE J. Sel. Top. Quant. Electron.
– volume: 121
  start-page: 3252
  year: 2017
  end-page: 3260
  ident: bib143
  article-title: Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 399
  year: 1978
  end-page: 404
  ident: bib3
  article-title: Fluorescent solar energy collectors: operating conditions with diffuse light
  publication-title: Appl. Phys.
– volume: 6
  start-page: 10059
  year: 2018
  end-page: 10066
  ident: bib141
  article-title: Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots
  publication-title: J. Mater. Chem. C
– volume: 22
  start-page: 3076
  year: 2010
  end-page: 3080
  ident: bib135
  article-title: White‐light‐emitting diodes with quantum dot color converters for display backlights
  publication-title: Adv. Mater.
– volume: 170
  start-page: 132
  year: 2018
  end-page: 137
  ident: bib80
  article-title: Increasing the area of a white scattering background can increase the power output of a luminescent solar concentrator
  publication-title: Sol. Energy
– volume: 534
  start-page: 509
  year: 2019
  end-page: 517
  ident: bib130
  article-title: Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 3503
  year: 2016
  end-page: 3509
  ident: bib134
  article-title: Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 015502
  year: 2011
  ident: bib87
  article-title: Size-and structure-dependent efficiency enhancement for luminescent solar concentrators
  publication-title: J. Photon. Energy
– volume: 2
  start-page: 12
  year: 2012
  end-page: 35
  ident: bib9
  article-title: Thirty years of luminescent solar concentrator research: solar energy for the built environment
  publication-title: Advanced Energy Materials
– volume: 143
  start-page: 43
  year: 2013
  end-page: 49
  ident: bib67
  article-title: Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic thin-film luminescent solar concentrator
  publication-title: J. Lumin.
– volume: 4
  start-page: 2126
  year: 2016
  end-page: 2132
  ident: bib73
  article-title: Hybrid perovskite thin films as highly efficient luminescent solar concentrators
  publication-title: Advanced Optical Materials
– year: 2009
  ident: bib163
  article-title: Outdoor characterization of luminescent solar concentrators and their possible architectural integration on a historically relevant site in Milan (Italy)
  publication-title: Photovoltaic Specialists Conference (PVSC)
– volume: 1
  start-page: 1406
  year: 2017
  end-page: 1412
  ident: bib95
  article-title: Red-emitting AIEgen for luminescent solar concentrators
  publication-title: Materials Chemistry Frontiers
– year: 2018
  ident: bib112
  article-title: Optical coupling sensitivity study of luminescent PV devices using Monte Carlo ray tracing model
  publication-title: World Renewable Energy Congress – 18
– volume: 120
  start-page: 15
  year: 2015
  end-page: 21
  ident: bib155
  article-title: Efficient thin luminescent solar concentrator based on organometal halide perovskite
  publication-title: Dyes Pigments
– start-page: 21
  year: September 2009
  end-page: 25
  ident: bib160
  article-title: The effect of an organic selectively-reflecting mirror on the performance of a luminescent solar concentrator
  publication-title: Conference; 24th European Photovoltaic Solar Energy Conference (EU PVSEC)
– volume: 15
  start-page: 27
  year: 2007
  end-page: 34
  ident: bib94
  article-title: Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down‐shifting: ray‐tracing simulations
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 50
  start-page: 756
  year: 2018
  end-page: 765
  ident: bib140
  article-title: Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots
  publication-title: Nanomater. Energy
– volume: 14
  start-page: 123
  year: 1977
  end-page: 139
  ident: bib2
  article-title: Solar energy conversion with fluorescent collectors
  publication-title: Appl. Phys.
– volume: 30
  start-page: 190
  year: 1997
  end-page: 191
  ident: bib101
  article-title: Luminescence property and application of rare earth complexes incorporated in ORMOSIL matrices
  publication-title: Kidorui
– volume: 15
  start-page: 2299
  year: 1976
  ident: bib1
  article-title: Luminescent greenhouse collector for solar radiation
  publication-title: Appl. Optic.
– volume: 51
  start-page: 9129
  year: 2015
  end-page: 9132
  ident: bib144
  article-title: Bright CuInS 2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators
  publication-title: Chem. Commun.
– volume: 126
  start-page: 12736
  year: 2004
  end-page: 12737
  ident: bib139
  article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 3692
  year: 2015
  end-page: 3696
  ident: bib154
  article-title: Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
  publication-title: Nano Lett.
– year: 2018
  ident: bib31
  article-title: Semi-transparent energy-harvesting solar concentrator windows employing infrared transmission-enhanced glass and large-area microstructured diffractive elements
  publication-title: Photonics
– volume: 2013
  year: 2013
  ident: bib36
  article-title: Thin-film LSCs based on PMMA nanohybrid coatings: device optimization and outdoor performance
  publication-title: Int. J. Photoenergy
– volume: 112
  start-page: 120
  year: 2015
  end-page: 127
  ident: bib41
  article-title: A comparison of performance of flat and bent photovoltaic luminescent solar concentrators
  publication-title: Sol. Energy
– start-page: 6649
  year: 2009
  end-page: 6651
  ident: bib114
  article-title: Europium complexes with high total photoluminescence quantum yields in solution and in PMMA
  publication-title: Chem. Commun.
– volume: 5
  start-page: 3621
  year: 2018
  end-page: 3627
  ident: bib81
  article-title: Upconversion-assisted dual-band luminescent solar concentrator coupled for high power conversion efficiency photovoltaic systems
  publication-title: ACS Photonics
– start-page: 1
  year: 2018
  end-page: 9
  ident: bib113
  article-title: Design criteria for micro-optical tandem luminescent solar concentrators
  publication-title: IEEE Journal of Photovoltaics
– volume: 1
  start-page: 1700041
  year: 2017
  ident: bib25
  article-title: Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator
  publication-title: Solar RRL
– volume: 20
  start-page: 024009
  year: 2018
  ident: bib157
  article-title: Designing spectrally-selective mirrors for use in luminescent solar concentrators
  publication-title: J. Optic.
– volume: 10
  start-page: 3295
  year: 2016
  end-page: 3301
  ident: bib151
  article-title: Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer
  publication-title: ACS Nano
– volume: 21
  start-page: A735
  year: 2013
  end-page: A749
  ident: bib166
  article-title: Efficiency and loss mechanisms of plasmonic luminescent solar concentrators
  publication-title: Optic Express
– volume: 28
  start-page: 095205
  year: 2017
  ident: bib138
  article-title: PbSe quantum dot based luminescent solar concentrators
  publication-title: Nanotechnology
– volume: 5
  start-page: 5798
  year: 2012
  end-page: 5802
  ident: bib56
  article-title: Optimizing luminescent solar concentrator design
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 94
  year: 2010
  ident: bib149
  article-title: Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites
  publication-title: Beilstein J. Nanotechnol.
– volume: 4
  start-page: 444
  year: 2016
  end-page: 456
  ident: bib103
  article-title: Design and response of high‐efficiency, planar, doped luminescent solar concentrators using organic–inorganic di‐ureasil waveguides
  publication-title: Advanced Optical Materials
– year: 2011
  ident: bib7
  article-title: Photovoltaic technology for renewable electricity production: towards net zero energy buildings
  publication-title: Clean Electrical Power (ICCEP), 2011 International Conference on
– year: 1989
  ident: bib45
  article-title: An Introduction to Ray Tracing
– volume: 6
  start-page: 1501913
  year: 2016
  ident: bib75
  article-title: Near infrared, highly efficient luminescent solar concentrators
  publication-title: Advanced Energy Materials
– volume: 76
  start-page: 1197
  year: 2000
  end-page: 1199
  ident: bib122
  article-title: Quantum-dot concentrator and thermodynamic model for the global redshift
  publication-title: Appl. Phys. Lett.
– volume: 36
  start-page: 252
  year: 2000
  end-page: 253
  ident: bib98
  article-title: Improvement of efficiency of solar cells by application of the rare earth ions doped fluorescent glass
  publication-title: Kidorui
– volume: 95
  start-page: 2087
  year: 2011
  end-page: 2094
  ident: bib62
  article-title: Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 370
  start-page: 354
  year: 1994
  end-page: 357
  ident: bib136
  article-title: Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer
  publication-title: Nature
– volume: 14
  start-page: 6452
  year: 2012
  end-page: 6455
  ident: bib33
  article-title: NIR emitting ytterbium chelates for colourless luminescent solar concentrators
  publication-title: Phys. Chem. Chem. Phys.
– volume: 85
  start-page: 2571
  year: 2011
  end-page: 2579
  ident: bib117
  article-title: Luminescent solar concentrator employing rare earth complex with zero self-absorption loss
  publication-title: Sol. Energy
– volume: 10
  start-page: 9297
  year: 2016
  end-page: 9305
  ident: bib147
  article-title: Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking
  publication-title: ACS Nano
– volume: 56
  start-page: 1
  year: 1998
  end-page: 6
  ident: bib100
  article-title: Energy conversion efficiency of solar cells coated with fluorescent coloring agent
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 3
  start-page: 1138
  year: 2016
  end-page: 1148
  ident: bib127
  article-title: Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots
  publication-title: ACS Photonics
– volume: 321
  start-page: 226
  year: 2008
  end-page: 228
  ident: bib59
  article-title: High-efficiency organic solar concentrators for photovoltaics
  publication-title: Science
– volume: 96
  start-page: 191901
  year: 2010
  ident: bib123
  article-title: Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators
  publication-title: Appl. Phys. Lett.
– volume: 122
  start-page: 99
  year: 2014
  end-page: 106
  ident: bib5
  article-title: Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV
  publication-title: Sol. Energy Mater. Sol. Cell.
– year: 2011
  ident: bib37
  article-title: Optical design and efficiency improvement for organic luminescent solar concentrators
  publication-title: SPIE Optical Engineering+ Applications
– volume: 103
  start-page: 114
  year: 2012
  end-page: 118
  ident: bib108
  article-title: Dye-doped polysiloxane rubbers for luminescent solar concentrator systems
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 178
  start-page: 48
  year: 2019
  end-page: 55
  ident: bib84
  article-title: Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum
  publication-title: Sol. Energy
– volume: 93
  start-page: 1182
  year: 2009
  end-page: 1194
  ident: bib89
  article-title: Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 85
  start-page: 2179
  year: 2011
  end-page: 2184
  ident: bib118
  article-title: Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region
  publication-title: Sol. Energy
– volume: 3
  start-page: 1143
  year: 2013
  end-page: 1148
  ident: bib15
  article-title: Transparent luminescent solar concentrators for large‐area solar windows enabled by massive Stokes‐shift nanocluster phosphors
  publication-title: Advanced Energy Materials
– volume: 117
  start-page: 260
  year: 2015
  end-page: 267
  ident: bib34
  article-title: Optimization of large-size glass laminated luminescent solar concentrators
  publication-title: Sol. Energy
– year: 2008
  ident: bib148
  article-title: The Effect of Size and Dopant Concentration on the Performance of Nanorod Luminescent Solar Concentrators
– volume: 3
  start-page: 278
  year: 2016
  end-page: 285
  ident: bib161
  article-title: Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors
  publication-title: ACS Photonics
– year: 2010
  ident: bib11
  article-title: Directive 2010/31/EU of the european parliament and of the council of 19 May 2010 on the energy performance of buildings
– volume: 37
  start-page: 3087
  year: 2012
  end-page: 3089
  ident: bib42
  article-title: Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency
  publication-title: Opt. Lett.
– volume: 16
  start-page: 21773
  year: 2008
  end-page: 21792
  ident: bib6
  article-title: Luminescent Solar Concentrators-A review of recent results
  publication-title: Optic Express
– volume: 2
  start-page: 17072
  year: 2017
  ident: bib10
  article-title: Luminescent solar concentrators for building-integrated photovoltaics
  publication-title: Nature Reviews Materials
– volume: 171
  start-page: 293
  year: 2017
  end-page: 301
  ident: bib156
  article-title: Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 3
  start-page: 520
  year: 2018
  end-page: 525
  ident: bib30
  article-title: High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows
  publication-title: ACS Energy Letters
– volume: 115
  start-page: 269
  year: 2018
  end-page: 275
  ident: bib90
  article-title: Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators
  publication-title: Renew. Energy
– volume: 193
  start-page: 5
  year: 2018
  end-page: 9
  ident: bib164
  article-title: Luminescence of Europium complex enhanced by surface plasmons of gold nanoparticles for possible application in luminescent solar concentrators
  publication-title: J. Lumin.
– year: 2009
  ident: bib86
  article-title: Luminescent solar concentrators: cylindrical design
  publication-title: 24th European Photovoltaic Conference. Hamburg, Germany
– volume: 2
  start-page: 19
  year: 1979
  end-page: 29
  ident: bib91
  article-title: The effect of fluorescent wavelength shifting on solar cell spectral response
  publication-title: Sol. Energy Mater.
– volume: 29
  start-page: 1700821
  year: 2017
  ident: bib145
  article-title: Near‐unity emitting copper‐doped colloidal semiconductor quantum wells for luminescent solar concentrators
  publication-title: Adv. Mater.
– volume: 492
  start-page: 60
  year: 2010
  end-page: 62
  ident: bib165
  article-title: Non-self-absorbing materials for luminescent solar concentrators (LSC)
  publication-title: Chem. Phys. Lett.
– volume: 2
  start-page: 5580
  year: 2014
  end-page: 5596
  ident: bib35
  article-title: Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials
  publication-title: J. Mater. Chem.
– volume: 2
  start-page: 257
  year: 2008
  end-page: 259
  ident: bib60
  article-title: A luminescent solar concentrator with 7.1% power conversion efficiency
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 38
  start-page: 909
  year: 2004
  end-page: 917
  ident: bib124
  article-title: Quantum dot solar concentrators
  publication-title: Semiconductors
– volume: 95
  year: 2018
  ident: bib14
  article-title: Luminescent solar concentrator paintings: connecting art and energy
  publication-title: J. Chem. Educ.
– year: 2018
  ident: bib102
  article-title: Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the reduction of the impact of certain plastic products on the environment
– volume: 30
  start-page: 334
  year: 2007
  end-page: 337
  ident: bib115
  article-title: Energy transfer in Pr3+/Yb3+ codoped tellurite glasses
  publication-title: Opt. Mater.
– volume: 32
  start-page: 263
  year: 2017
  end-page: 270
  ident: bib79
  article-title: On the ability of förster resonance energy transfer to enhance luminescent solar concentrator efficiency
  publication-title: Nanomater. Energy
– volume: 182
  start-page: 331
  year: 2018
  end-page: 338
  ident: bib121
  article-title: Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 150
  start-page: 30
  year: 2017
  end-page: 37
  ident: bib23
  article-title: Circular luminescent solar concentrators
  publication-title: Sol. Energy
– volume: 15
  start-page: 2299
  year: 1976
  end-page: 2300
  ident: bib111
  article-title: Luminescent greenhouse collector for solar radiation
  publication-title: Appl. Opt.
– volume: 57
  start-page: 08RD10
  year: 2018
  ident: bib18
  article-title: Luminescent solar concentrator photovoltaic designs
  publication-title: Jpn. J. Appl. Phys.
– volume: 31
  start-page: 1720
  year: 2009
  end-page: 1722
  ident: bib85
  article-title: Influence of waveguide material on light emission in luminescent solar concentrators
  publication-title: Opt. Mater.
– year: 2010
  ident: bib43
  article-title: Monte-Carlo Ray-Trace Modelling of Quantum Dot Solar Concentrators
– volume: 2
  start-page: 606
  year: 2014
  end-page: 611
  ident: bib26
  article-title: Near‐infrared harvesting transparent luminescent solar concentrators
  publication-title: Advanced Optical Materials
– volume: 11
  start-page: 177
  year: 2017
  ident: bib20
  article-title: Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots
  publication-title: Nat. Photon.
– year: 2017
  ident: bib66
  article-title: Surface Plasmon Enhanced, Coupled and Controlled Fluorescence
– volume: 98
  start-page: 021111
  year: 2011
  ident: bib158
  article-title: Polarization-independent filters for luminescent solar concentrators
  publication-title: Appl. Phys. Lett.
– volume: 451
  start-page: 384
  year: 2004
  end-page: 388
  ident: bib97
  article-title: Silicon nanocrystals as light converter for solar cells
  publication-title: Thin Solid Films
– volume: 3
  start-page: 15039
  year: 2015
  end-page: 15048
  ident: bib167
  article-title: Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells
  publication-title: J. Mater. Chem.
– volume: 93
  start-page: 176
  year: 2009
  end-page: 182
  ident: bib55
  article-title: Increasing the efficiency of fluorescent concentrator systems
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 10
  year: 2015
  ident: bib70
  article-title: Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots
  publication-title: Nat. Nanotechnol.
– volume: 101
  start-page: 123114
  year: 2007
  ident: bib16
  article-title: Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 17777
  year: 2015
  ident: bib125
  article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS 2/ZnS quantum dots
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1702922
  year: 2018
  ident: bib83
  article-title: Multistate luminescent solar concentrator “smart” windows
  publication-title: Advanced Energy Materials
– volume: 22
  start-page: 60
  year: 2011
  end-page: 64
  ident: bib106
  article-title: Interaction of luminescent dyes with noble metal nanoparticles in organic–inorganic glasses for future luminescent materials
  publication-title: Polym. Adv. Technol.
– volume: 20
  start-page: 95
  year: 2000
  end-page: 107
  ident: bib40
  article-title: Outdoor testing and solar simulation for oxazine 750 laser dye luminescent solar concentrator
  publication-title: Renew. Energy
– year: 2013
  ident: bib64
  article-title: Approach to Plasmonic Luminescent Solar Concentration
– volume: 215
  start-page: 1700634
  year: 2018
  ident: bib119
  article-title: Dye aggregates in luminescent solar concentrators
  publication-title: Phys. Status Solidi
– volume: 6
  start-page: 2671
  year: 2018
  end-page: 2680
  ident: bib29
  article-title: Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells
  publication-title: J. Mater. Chem.
– volume: 14
  start-page: 4097
  year: 2014
  end-page: 4101
  ident: bib63
  article-title: Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency
  publication-title: Nano Lett.
– volume: 212
  start-page: 203
  year: 2015
  end-page: 210
  ident: bib44
  article-title: Large Stokes shift downshifting Eu (III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells
  publication-title: Phys. Status Solidi
– volume: 12
  start-page: 445
  year: 2013
  ident: bib133
  article-title: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
  publication-title: Nat. Mater.
– volume: 143
  start-page: 43
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib67
  article-title: Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic thin-film luminescent solar concentrator
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.04.029
– volume: 50
  start-page: 756
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib140
  article-title: Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2018.06.025
– volume: 57
  start-page: 08RD10
  issue: 8S3
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib18
  article-title: Luminescent solar concentrator photovoltaic designs
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.08RD10
– volume: 19
  start-page: 24308
  issue: 24
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib61
  article-title: Cylindrical luminescent solar concentrators with near-infrared quantum dots
  publication-title: Optic Express
  doi: 10.1364/OE.19.024308
– volume: 113
  start-page: 1288
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib22
  article-title: The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.07.025
– volume: 18
  start-page: 61
  issue: 1
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib8
  article-title: BIPV: merging the photovoltaic with the construction industry
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.920
– volume: 11
  start-page: 177
  issue: 3
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib20
  article-title: Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.5
– volume: 126
  start-page: 12736
  issue: 40
  year: 2004
  ident: 10.1016/j.optmat.2019.01.007_bib139
  article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja040082h
– volume: 51
  start-page: 9129
  issue: 44
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib144
  article-title: Bright CuInS 2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC02007G
– volume: 93
  start-page: 1182
  issue: 8
  year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib89
  article-title: Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2009.02.020
– volume: 129
  start-page: 272
  issue: 3
  year: 2007
  ident: 10.1016/j.optmat.2019.01.007_bib93
  article-title: Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.2735347
– volume: 215
  start-page: 1700634
  issue: 2
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib119
  article-title: Dye aggregates in luminescent solar concentrators
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201700634
– volume: 96
  start-page: 191901
  issue: 19
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib123
  article-title: Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3422485
– year: 1989
  ident: 10.1016/j.optmat.2019.01.007_bib45
– year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib86
  article-title: Luminescent solar concentrators: cylindrical design
– volume: 14
  start-page: 6452
  issue: 18
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib33
  article-title: NIR emitting ytterbium chelates for colourless luminescent solar concentrators
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40791d
– volume: 101
  start-page: 123114
  issue: 12
  year: 2007
  ident: 10.1016/j.optmat.2019.01.007_bib16
  article-title: Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2748350
– volume: 6
  start-page: 10059
  issue: 37
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib141
  article-title: Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02532K
– volume: 22
  start-page: 16687
  issue: 33
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib53
  article-title: Quantum dots for luminescent solar concentrators
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32366d
– year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib31
  article-title: Semi-transparent energy-harvesting solar concentrator windows employing infrared transmission-enhanced glass and large-area microstructured diffractive elements
– year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib163
  article-title: Outdoor characterization of luminescent solar concentrators and their possible architectural integration on a historically relevant site in Milan (Italy)
– volume: 2
  start-page: 606
  issue: 7
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib26
  article-title: Near‐infrared harvesting transparent luminescent solar concentrators
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201400103
– year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib162
  article-title: External quantum efficiency measurements of luminescent solar concentrators: a study of the impact of backside reflector size and shape
– volume: 29
  start-page: 1700821
  issue: 30
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib145
  article-title: Near‐unity emitting copper‐doped colloidal semiconductor quantum wells for luminescent solar concentrators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700821
– volume: 150
  start-page: 30
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib23
  article-title: Circular luminescent solar concentrators
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.04.034
– volume: 98
  start-page: 385
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib65
  article-title: Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2011.11.030
– volume: 31
  start-page: 1720
  issue: 11
  year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib85
  article-title: Influence of waveguide material on light emission in luminescent solar concentrators
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2009.05.003
– year: 2008
  ident: 10.1016/j.optmat.2019.01.007_bib148
– volume: 7
  start-page: 802
  issue: 3
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib12
  article-title: Enhancement of power output from a large-area luminescent solar concentrator with 4.8× concentration via solar cell current matching
  publication-title: IEEE Journal of Photovoltaics
  doi: 10.1109/JPHOTOV.2017.2668606
– volume: 56
  start-page: 1050
  issue: 4
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib19
  article-title: A leaf‐inspired luminescent solar concentrator for energy‐efficient continuous‐flow photochemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201611101
– volume: 106
  start-page: 041110
  issue: 4
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib150
  article-title: Utilizing vertically aligned CdSe/CdS nanorods within a luminescent solar concentrator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4906460
– volume: 117
  start-page: 260
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib34
  article-title: Optimization of large-size glass laminated luminescent solar concentrators
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.05.004
– volume: 2
  start-page: 257
  issue: 6
  year: 2008
  ident: 10.1016/j.optmat.2019.01.007_bib60
  article-title: A luminescent solar concentrator with 7.1% power conversion efficiency
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.200802186
– volume: 16
  start-page: 399
  issue: 4
  year: 1978
  ident: 10.1016/j.optmat.2019.01.007_bib3
  article-title: Fluorescent solar energy collectors: operating conditions with diffuse light
  publication-title: Appl. Phys.
  doi: 10.1007/BF00885865
– volume: 6
  issue: 1
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib126
  article-title: Silicon quantum dot-poly (methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b01346
– volume: 212
  start-page: 203
  issue: 1
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib44
  article-title: Large Stokes shift downshifting Eu (III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201431683
– volume: 95
  start-page: 216
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib54
  article-title: Dual waveguide patterned luminescent solar concentrators
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.06.014
– volume: 95
  issue: 7
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib14
  article-title: Luminescent solar concentrator paintings: connecting art and energy
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.7b00742
– volume: 18
  start-page: 395
  issue: 1
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib146
  article-title: Performance limits of luminescent solar concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04263
– year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib110
– volume: 1
  start-page: 94
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib149
  article-title: Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.1.11
– volume: 84
  start-page: 411
  issue: 1–4
  year: 2004
  ident: 10.1016/j.optmat.2019.01.007_bib13
  article-title: Optimisation of a three-colour luminescent solar concentrator daylighting system
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2004.02.046
– volume: 3
  start-page: 15039
  issue: 29
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib167
  article-title: Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA02417J
– volume: 170
  start-page: 132
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib80
  article-title: Increasing the area of a white scattering background can increase the power output of a luminescent solar concentrator
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.022
– volume: 2
  start-page: 2368
  issue: 10
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib152
  article-title: Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.7b00701
– volume: 7
  start-page: 8770
  issue: 16
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib107
  article-title: Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01281
– volume: 146
  start-page: 4406
  issue: 12
  year: 1999
  ident: 10.1016/j.optmat.2019.01.007_bib99
  article-title: Solar cell module coated with fluorescent coloring agent
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392651
– volume: 81
  start-page: 813
  issue: 6
  year: 2007
  ident: 10.1016/j.optmat.2019.01.007_bib58
  article-title: Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2006.09.011
– volume: 4
  start-page: 444
  issue: 3
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib103
  article-title: Design and response of high‐efficiency, planar, doped luminescent solar concentrators using organic–inorganic di‐ureasil waveguides
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201500412
– volume: 22
  start-page: 60
  issue: 1
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib106
  article-title: Interaction of luminescent dyes with noble metal nanoparticles in organic–inorganic glasses for future luminescent materials
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.1842
– volume: 112
  start-page: 120
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib41
  article-title: A comparison of performance of flat and bent photovoltaic luminescent solar concentrators
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.12.001
– year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib43
– volume: 5
  start-page: 17777
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib71
  article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots
  publication-title: Sci. Rep.
  doi: 10.1038/srep17777
– ident: 10.1016/j.optmat.2019.01.007_bib11
– volume: 49
  start-page: 745
  issue: 4
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib159
  article-title: Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.000745
– year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib28
– volume: 12
  start-page: 105
  issue: 2
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib82
  article-title: Tandem luminescent solar concentrators based on engineered quantum dots
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-017-0070-7
– volume: 2
  start-page: 17072
  issue: 12
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib10
  article-title: Luminescent solar concentrators for building-integrated photovoltaics
  publication-title: Nature Reviews Materials
  doi: 10.1038/natrevmats.2017.72
– volume: 492
  start-page: 60
  issue: 1–3
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib165
  article-title: Non-self-absorbing materials for luminescent solar concentrators (LSC)
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.03.087
– volume: 1
  start-page: 1406
  issue: 7
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib95
  article-title: Red-emitting AIEgen for luminescent solar concentrators
  publication-title: Materials Chemistry Frontiers
  doi: 10.1039/C7QM00008A
– volume: 171
  start-page: 293
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib156
  article-title: Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2017.06.018
– volume: 120
  start-page: 15
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib155
  article-title: Efficient thin luminescent solar concentrator based on organometal halide perovskite
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2015.03.035
– volume: 5
  start-page: 3621
  issue: 9
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib81
  article-title: Upconversion-assisted dual-band luminescent solar concentrator coupled for high power conversion efficiency photovoltaic systems
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00498
– volume: 12
  start-page: 445
  issue: 5
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib133
  article-title: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3539
– volume: 111
  start-page: 57
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib137
  article-title: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2012.12.028
– year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib37
  article-title: Optical design and efficiency improvement for organic luminescent solar concentrators
– volume: 62
  start-page: 284
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib132
  article-title: Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.08.020
– volume: 9
  start-page: 12540
  issue: 14
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib105
  article-title: High-performance near-infrared luminescent solar concentrators
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02700
– volume: 16
  start-page: 21773
  issue: 26
  year: 2008
  ident: 10.1016/j.optmat.2019.01.007_bib6
  article-title: Luminescent Solar Concentrators-A review of recent results
  publication-title: Optic Express
  doi: 10.1364/OE.16.021773
– volume: 38
  start-page: 909
  issue: 8
  year: 2004
  ident: 10.1016/j.optmat.2019.01.007_bib124
  article-title: Quantum dot solar concentrators
  publication-title: Semiconductors
  doi: 10.1134/1.1787111
– volume: 76
  start-page: 330
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib38
  article-title: Performance analysis of a large-area luminescent solar concentrator module
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.11.026
– volume: 50
  start-page: 163
  issue: 2
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib120
  article-title: Promising fluorescent dye for solar energy conversion based on a perylene perinone
  publication-title: Appl. Opt.
  doi: 10.1364/AO.50.000163
– year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib7
  article-title: Photovoltaic technology for renewable electricity production: towards net zero energy buildings
– volume: 3
  start-page: 1143
  issue: 9
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib15
  article-title: Transparent luminescent solar concentrators for large‐area solar windows enabled by massive Stokes‐shift nanocluster phosphors
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201300173
– volume: 36
  start-page: 252
  year: 2000
  ident: 10.1016/j.optmat.2019.01.007_bib98
  article-title: Improvement of efficiency of solar cells by application of the rare earth ions doped fluorescent glass
  publication-title: Kidorui
– volume: 122
  start-page: 99
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib5
  article-title: Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2013.11.026
– volume: 20
  start-page: 024009
  issue: 2
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib157
  article-title: Designing spectrally-selective mirrors for use in luminescent solar concentrators
  publication-title: J. Optic.
– volume: 18
  start-page: A536
  issue: 104
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib57
  article-title: Patterned dye structures limit reabsorption in luminescent solar concentrators
  publication-title: Optic Express
  doi: 10.1364/OE.18.00A536
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib113
  article-title: Design criteria for micro-optical tandem luminescent solar concentrators
  publication-title: IEEE Journal of Photovoltaics
– volume: 6
  start-page: 1501913
  issue: 11
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib75
  article-title: Near infrared, highly efficient luminescent solar concentrators
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201501913
– volume: 10
  start-page: 3295
  issue: 3
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib151
  article-title: Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06772
– volume: 113
  start-page: 123
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib17
  article-title: Visual performance of red luminescent solar concentrating windows in an office environment
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.022
– volume: 14
  start-page: 123
  issue: 2
  year: 1977
  ident: 10.1016/j.optmat.2019.01.007_bib2
  article-title: Solar energy conversion with fluorescent collectors
  publication-title: Appl. Phys.
  doi: 10.1007/BF00883080
– volume: 5
  start-page: 1600851
  issue: 8
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib32
  article-title: Limits of visibly transparent luminescent solar concentrators
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201600851
– volume: 2
  start-page: 1576
  issue: 11
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib49
  article-title: Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00334
– volume: 15
  start-page: 2299
  issue: 10
  year: 1976
  ident: 10.1016/j.optmat.2019.01.007_bib111
  article-title: Luminescent greenhouse collector for solar radiation
  publication-title: Appl. Opt.
  doi: 10.1364/AO.15.002299
– volume: 24
  start-page: 1178
  issue: 9
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib50
  article-title: Scale up the collection area of luminescent solar concentrators towards metre‐length flexible waveguiding photovoltaics
– volume: 3
  start-page: 278
  issue: 2
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib161
  article-title: Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00630
– volume: 2
  start-page: 19
  issue: 1
  year: 1979
  ident: 10.1016/j.optmat.2019.01.007_bib91
  article-title: The effect of fluorescent wavelength shifting on solar cell spectral response
  publication-title: Sol. Energy Mater.
  doi: 10.1016/0165-1633(79)90027-3
– volume: 24
  start-page: 2028
  issue: 13
  year: 1985
  ident: 10.1016/j.optmat.2019.01.007_bib39
  article-title: Outdoor evaluation of luminescent solar concentrator prototypes
  publication-title: Appl. Opt.
  doi: 10.1364/AO.24.002028
– volume: 85
  start-page: 2571
  issue: 11
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib117
  article-title: Luminescent solar concentrator employing rare earth complex with zero self-absorption loss
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.07.014
– volume: 121
  start-page: 3252
  issue: 6
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib143
  article-title: Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b12379
– volume: 321
  start-page: 226
  issue: 5886
  year: 2008
  ident: 10.1016/j.optmat.2019.01.007_bib59
  article-title: High-efficiency organic solar concentrators for photovoltaics
  publication-title: Science
  doi: 10.1126/science.1158342
– start-page: 6649
  issue: 43
  year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib114
  article-title: Europium complexes with high total photoluminescence quantum yields in solution and in PMMA
  publication-title: Chem. Commun.
  doi: 10.1039/b914978c
– volume: 20
  start-page: 95
  issue: 1
  year: 2000
  ident: 10.1016/j.optmat.2019.01.007_bib40
  article-title: Outdoor testing and solar simulation for oxazine 750 laser dye luminescent solar concentrator
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(99)00093-2
– volume: 5
  start-page: 5798
  issue: 2
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib56
  article-title: Optimizing luminescent solar concentrator design
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE02376D
– volume: 2
  start-page: 5580
  issue: 16
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib35
  article-title: Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials
  publication-title: J. Mater. Chem.
  doi: 10.1039/C3TA14964A
– volume: 1
  start-page: 16157
  issue: 12
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib78
  article-title: Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.157
– volume: 14
  start-page: 1312
  issue: 5
  year: 2008
  ident: 10.1016/j.optmat.2019.01.007_bib88
  article-title: Advanced material concepts for luminescent solar concentrators
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2008.920282
– volume: 6
  start-page: 2671
  issue: 6
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib29
  article-title: Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA04731B
– year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib66
– volume: 45
  start-page: 1562
  issue: 11
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib116
  article-title: Eu3+ doped silica xerogel luminescent layer having antireflection and spectrum modifying properties suitable for solar cell applications
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2010.07.021
– volume: 2
  start-page: 12
  issue: 1
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib9
  article-title: Thirty years of luminescent solar concentrator research: solar energy for the built environment
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201100554
– volume: 8
  start-page: 1702922
  issue: 12
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib83
  article-title: Multistate luminescent solar concentrator “smart” windows
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.201702922
– volume: 10
  start-page: 9297
  issue: 10
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib147
  article-title: Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03704
– start-page: 21
  year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib160
  article-title: The effect of an organic selectively-reflecting mirror on the performance of a luminescent solar concentrator
– volume: 76
  start-page: 1197
  issue: 9
  year: 2000
  ident: 10.1016/j.optmat.2019.01.007_bib122
  article-title: Quantum-dot concentrator and thermodynamic model for the global redshift
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.125981
– volume: 22
  start-page: 3076
  issue: 28
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib135
  article-title: White‐light‐emitting diodes with quantum dot color converters for display backlights
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201000525
– volume: 56
  start-page: 1
  issue: 1
  year: 1998
  ident: 10.1016/j.optmat.2019.01.007_bib100
  article-title: Energy conversion efficiency of solar cells coated with fluorescent coloring agent
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/S0927-0248(98)00105-6
– volume: 98
  start-page: 021111
  issue: 2
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib158
  article-title: Polarization-independent filters for luminescent solar concentrators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3541543
– volume: 186
  start-page: 365
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib46
  article-title: Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2018.07.008
– volume: 370
  start-page: 354
  issue: 6488
  year: 1994
  ident: 10.1016/j.optmat.2019.01.007_bib136
  article-title: Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer
  publication-title: Nature
  doi: 10.1038/370354a0
– volume: 21
  start-page: A735
  issue: 105
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib166
  article-title: Efficiency and loss mechanisms of plasmonic luminescent solar concentrators
  publication-title: Optic Express
  doi: 10.1364/OE.21.00A735
– year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib112
  article-title: Optical coupling sensitivity study of luminescent PV devices using Monte Carlo ray tracing model
– volume: 95
  start-page: 2087
  issue: 8
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib62
  article-title: Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2011.02.027
– volume: 49
  start-page: 1651
  issue: 9
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib51
  article-title: Characterization and reduction of reabsorption losses in luminescent solar concentrators
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.001651
– ident: 10.1016/j.optmat.2019.01.007_bib102
– volume: 47
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib129
  article-title: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00701A
– volume: 37
  start-page: 3087
  issue: 15
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib42
  article-title: Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003087
– volume: 104
  start-page: 153901
  issue: 15
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib69
  article-title: Cascade luminescent solar concentrators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4871481
– volume: 178
  start-page: 48
  year: 2019
  ident: 10.1016/j.optmat.2019.01.007_bib84
  article-title: Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.12.013
– volume: 28
  start-page: 095205
  issue: 9
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib138
  article-title: PbSe quantum dot based luminescent solar concentrators
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa577f
– volume: 85
  start-page: 2179
  issue: 9
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib118
  article-title: Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.06.007
– year: 1997
  ident: 10.1016/j.optmat.2019.01.007_bib92
  article-title: Effects on solar cell efficiency of fluorescence of rare-earth ions
– volume: 451
  start-page: 384
  year: 2004
  ident: 10.1016/j.optmat.2019.01.007_bib97
  article-title: Silicon nanocrystals as light converter for solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.10.133
– volume: 15
  start-page: 3692
  issue: 6
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib154
  article-title: Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut
  publication-title: Nano Lett.
  doi: 10.1021/nl5048779
– volume: 30
  start-page: 190
  year: 1997
  ident: 10.1016/j.optmat.2019.01.007_bib101
  article-title: Luminescence property and application of rare earth complexes incorporated in ORMOSIL matrices
  publication-title: Kidorui
– volume: 1
  start-page: 1700041
  issue: 6
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib25
  article-title: Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator
  publication-title: Solar RRL
  doi: 10.1002/solr.201700041
– volume: 15
  start-page: 27
  issue: 1
  year: 2007
  ident: 10.1016/j.optmat.2019.01.007_bib94
  article-title: Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down‐shifting: ray‐tracing simulations
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.723
– volume: 3
  start-page: 1138
  issue: 6
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib127
  article-title: Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00307
– volume: 85
  start-page: 1629
  issue: 8
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib52
  article-title: Enhancing the performance of building integrated photovoltaics
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2009.10.004
– volume: 28
  start-page: 497
  issue: 3
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib74
  article-title: A low reabsorbing luminescent solar concentrator employing π‐conjugated polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504358
– volume: 7
  start-page: 3503
  issue: 17
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib134
  article-title: Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01668
– volume: 5
  start-page: 17777
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib125
  article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS 2/ZnS quantum dots
  publication-title: Sci. Rep.
  doi: 10.1038/srep17777
– volume: 9
  start-page: 1682
  issue: 7
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib153
  article-title: Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00275
– volume: 534
  start-page: 509
  year: 2019
  ident: 10.1016/j.optmat.2019.01.007_bib130
  article-title: Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.09.065
– volume: 37
  start-page: 214
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib47
  article-title: Perovskite quantum dots integrated in large-area luminescent solar concentrators
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2017.05.030
– volume: 1
  start-page: 015502
  issue: 1
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib87
  article-title: Size-and structure-dependent efficiency enhancement for luminescent solar concentrators
  publication-title: J. Photon. Energy
  doi: 10.1117/1.3534864
– volume: 115
  start-page: 269
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib90
  article-title: Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.08.016
– year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib27
– volume: 15
  start-page: 2299
  year: 1976
  ident: 10.1016/j.optmat.2019.01.007_bib1
  article-title: Luminescent greenhouse collector for solar radiation
  publication-title: Appl. Optic.
  doi: 10.1364/AO.15.002299
– year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib64
– volume: 103
  start-page: 647
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib21
  article-title: The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.10.078
– volume: 14
  start-page: 4097
  issue: 7
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib63
  article-title: Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency
  publication-title: Nano Lett.
  doi: 10.1021/nl501627e
– volume: 2
  start-page: 343
  year: 2011
  ident: 10.1016/j.optmat.2019.01.007_bib24
  article-title: Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1318
– volume: 2013
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib36
  article-title: Thin-film LSCs based on PMMA nanohybrid coatings: device optimization and outdoor performance
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2013/235875
– volume: 63
  start-page: 642
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib68
  article-title: Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.10.014
– volume: 44
  start-page: 378
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib131
  article-title: Colloidal carbon dots based highly stable luminescent solar concentrators
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2017.12.017
– volume: 3
  start-page: 520
  issue: 3
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib30
  article-title: High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.7b01346
– volume: 94
  start-page: 413
  issue: 3
  year: 2010
  ident: 10.1016/j.optmat.2019.01.007_bib4
  article-title: Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2009.10.018
– volume: 8
  start-page: 3461
  issue: 4
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib109
  article-title: Zero-reabsorption doped-nanocrystal luminescent solar concentrators
  publication-title: ACS Nano
  doi: 10.1021/nn406360w
– volume: 182
  start-page: 331
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib121
  article-title: Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2018.04.004
– volume: 193
  start-page: 5
  year: 2018
  ident: 10.1016/j.optmat.2019.01.007_bib164
  article-title: Luminescence of Europium complex enhanced by surface plasmons of gold nanoparticles for possible application in luminescent solar concentrators
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2017.09.030
– volume: 32
  start-page: 263
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib79
  article-title: On the ability of förster resonance energy transfer to enhance luminescent solar concentrator efficiency
  publication-title: Nanomater. Energy
  doi: 10.1016/j.nanoen.2016.11.058
– volume: 167
  start-page: 133
  year: 2017
  ident: 10.1016/j.optmat.2019.01.007_bib142
  article-title: Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2017.04.010
– year: 2008
  ident: 10.1016/j.optmat.2019.01.007_bib96
– year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib72
– volume: 8
  start-page: 392
  issue: 5
  year: 2014
  ident: 10.1016/j.optmat.2019.01.007_bib76
  article-title: Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.54
– volume: 10
  issue: 10
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib70
  article-title: Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.178
– volume: 4
  start-page: 2126
  issue: 12
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib73
  article-title: Hybrid perovskite thin films as highly efficient luminescent solar concentrators
  publication-title: Advanced Optical Materials
  doi: 10.1002/adom.201600634
– volume: 144
  start-page: 40
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib48
  article-title: Losses in luminescent solar concentrators unveiled
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2015.08.008
– volume: 103
  start-page: 114
  year: 2012
  ident: 10.1016/j.optmat.2019.01.007_bib108
  article-title: Dye-doped polysiloxane rubbers for luminescent solar concentrator systems
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2012.04.019
– volume: 15
  start-page: 1315
  issue: 2
  year: 2015
  ident: 10.1016/j.optmat.2019.01.007_bib128
  article-title: Nanocrystals for luminescent solar concentrators
  publication-title: Nano Lett.
  doi: 10.1021/nl504510t
– volume: 12
  start-page: 5354
  issue: 38
  year: 2016
  ident: 10.1016/j.optmat.2019.01.007_bib77
  article-title: Absorption enhancement in “giant” core/alloyed‐shell quantum dots for luminescent solar concentrator
  publication-title: Small
  doi: 10.1002/smll.201600945
– volume: 30
  start-page: 334
  issue: 2
  year: 2007
  ident: 10.1016/j.optmat.2019.01.007_bib115
  article-title: Energy transfer in Pr3+/Yb3+ codoped tellurite glasses
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2006.11.045
– volume: 93
  start-page: 176
  issue: 2
  year: 2009
  ident: 10.1016/j.optmat.2019.01.007_bib55
  article-title: Increasing the efficiency of fluorescent concentrator systems
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2008.09.048
– volume: 1
  start-page: 7339
  issue: 25
  year: 2013
  ident: 10.1016/j.optmat.2019.01.007_bib104
  article-title: Engineering highly efficient Eu (III)-based tri-ureasil hybrids toward luminescent solar concentrators
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta11463e
SSID ssj0002566
Score 2.569674
Snippet A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 212
SubjectTerms EQE
Luminescent solar concentrator
Optical efficiency
Photovoltaic
Power conversion efficiency
Re-absorption
Title An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications
URI https://dx.doi.org/10.1016/j.optmat.2019.01.007
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-1252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002566
  issn: 0925-3467
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-1252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002566
  issn: 0925-3467
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-1252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002566
  issn: 0925-3467
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-1252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002566
  issn: 0925-3467
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002566
  issn: 0925-3467
  databaseCode: AKRWK
  dateStart: 19920101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqIiQuiFWUpfKBa2jcOHF8rCqqsvVSKvUWxY4NRZBENOXItzOTBYqEQOKWxZaisTN-b_zGQ8g5zAOmEoy4awkERWrjSO0pJ1Es0IkQcI2hgbtJMJ7x67k_b5FhkwuDssra91c-vfTW9ZNebc1evlj0pq7s-x785wBBkDnMMYOdC6xicPH-JfOAJb3cr4TGDrZu0udKjVeWF4ALUeAly8M7sajsT8vT2pIz2iHbNVakg-pzdknLpHtks9Rs6uU-sYOUogATg_s0s_QNaC_weAoM1y4eVtXQLvHN7eoF1e0oxKRT5LJ0iNmKGNfFYjsUgCvNH7MiA19VxAtN17e1D8hsdHk_HDt12QRHc8YKJ7S-9iq1i_WlscJlWgaWK18xsKrQiOu0q_osscpwHtt-mIgwgBvBObfeIWmnWWqOCHVdo3kYB36iDVAjLxaeFqEJDYAqGFfZIV5jrUjXZ4pjaYvnqBGPPUWVjSO0ceSyCGzcIc5nr7w6U-OP9qIZiOjb3IjA7f_a8_jfPU_IFt5V0sZT0i5eV-YM4EehuuX86pKNwdXNePIB0LTdiQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKEYILYhVl9YFraBYnTo5VBSrQ9tJW6s1KHBuCIIloypFvZyYLFAmBxC2JbSka2-P3xs8eQi5hHFhRjBF3GQBBCaQyAulERhxZnow5h2cMDYzG3mDG7ubuvEX6zVkYlFXWvr_y6aW3rr90a2t28yTpTszAdh2Y5wBBkDnM18g6c22ODOzq_UvnAWt6uWEJtQ2s3pyfK0VeWV4AMESFV1De3olZZX9an1bWnJsdsl2DRdqr_meXtFS6RzZK0aZc7BPdSykqMDG6TzNN34D3ApGnQHF18rCs-naBJcPlC8rbUYlJJ0hmaR-PK2JgF7PtUECuNH_MigycVREmkq7uax-Q2c31tD8w6rwJhmSWVRi-dqVTyV20GyjNTUsGnmaRG1lgVi4R2Ekzsq1YR4qxUNt-zH0PXjhjTDuHpJ1mqToi1DSVZH7oubFUwI2ckDuS-8pXgKqgY4MOcRprCVlfKo65LZ5Fox57EpWNBdpYmJYAG3eI8dkqry7V-KM-bzpCfBscAvz-ry2P_93ygmwOpqOhGN6O70_IFpZUOsdT0i5el-oMsEgRnZdj7QMMSd8e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+various+configurations+of+Luminescent+Solar+Concentrators+for+photovoltaic+applications&rft.jtitle=Optical+materials&rft.au=Rafiee%2C+Mehran&rft.au=Chandra%2C+Subhash&rft.au=Ahmed%2C+Hind&rft.au=McCormack%2C+Sarah+J.&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0925-3467&rft.eissn=1873-1252&rft.volume=91&rft.spage=212&rft.epage=227&rft_id=info:doi/10.1016%2Fj.optmat.2019.01.007&rft.externalDocID=S092534671930028X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon