An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications
A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident solar radiation, converting the spectrum to the wavelength-band of interest and concentrating the light by total internal reflection (TIR) to...
Saved in:
| Published in | Optical materials Vol. 91; pp. 212 - 227 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-3467 1873-1252 |
| DOI | 10.1016/j.optmat.2019.01.007 |
Cover
| Abstract | A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident solar radiation, converting the spectrum to the wavelength-band of interest and concentrating the light by total internal reflection (TIR) to the edge of the LSC where photovoltaic (PV) solar cell is attached. During the waveguiding process of solar radiation, a considerable proportion of photons are lost through mechanisms such as re-absorption, attenuation, scattering and escape cone losses which decrease the device optical efficiency (OE). In recent decades, various LSC generations with different configurations have been introduced and investigated to mitigate the inherent optical losses and enhance the device performance. Due to the achieved optical improvements, LSC has recently captured a significant growing interest implying its leading role as a low cost and passive technology for enhancing the power conversion efficiency (PCE) of PV systems. In this paper, large and small scale LSCs have been comprehensively reviewed to study the impact of device configuration (such as shape, geometric gain, host material, luminescent species, doping concentration and PV solar cell type) on the LSC loss mechanisms and optical performance. LSC generations are categorised and shortlisted based on their configurations; moreover, their limitations, best performance conditions, best achieved results, and their eligibility for large-scale building integrated PV (BIPV) applications are discussed.
•LSCs are comprehensively reviewed.•LSC generations are categorised.•Best achieved results of various generations are discussed. |
|---|---|
| AbstractList | A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident solar radiation, converting the spectrum to the wavelength-band of interest and concentrating the light by total internal reflection (TIR) to the edge of the LSC where photovoltaic (PV) solar cell is attached. During the waveguiding process of solar radiation, a considerable proportion of photons are lost through mechanisms such as re-absorption, attenuation, scattering and escape cone losses which decrease the device optical efficiency (OE). In recent decades, various LSC generations with different configurations have been introduced and investigated to mitigate the inherent optical losses and enhance the device performance. Due to the achieved optical improvements, LSC has recently captured a significant growing interest implying its leading role as a low cost and passive technology for enhancing the power conversion efficiency (PCE) of PV systems. In this paper, large and small scale LSCs have been comprehensively reviewed to study the impact of device configuration (such as shape, geometric gain, host material, luminescent species, doping concentration and PV solar cell type) on the LSC loss mechanisms and optical performance. LSC generations are categorised and shortlisted based on their configurations; moreover, their limitations, best performance conditions, best achieved results, and their eligibility for large-scale building integrated PV (BIPV) applications are discussed.
•LSCs are comprehensively reviewed.•LSC generations are categorised.•Best achieved results of various generations are discussed. |
| Author | Chandra, Subhash McCormack, Sarah J. Rafiee, Mehran Ahmed, Hind |
| Author_xml | – sequence: 1 givenname: Mehran orcidid: 0000-0002-7264-5719 surname: Rafiee fullname: Rafiee, Mehran email: rafieem@tcd.ie – sequence: 2 givenname: Subhash surname: Chandra fullname: Chandra, Subhash – sequence: 3 givenname: Hind surname: Ahmed fullname: Ahmed, Hind – sequence: 4 givenname: Sarah J. orcidid: 0000-0001-6950-9508 surname: McCormack fullname: McCormack, Sarah J. |
| BookMark | eNqFkM1OxCAUhYkZE2dG38AFL9AKlJbWhclk4l8yiQt1TSgFZdKBBpga315qXbnQ1c3Jvefknm8FFtZZBcAlRjlGuLra526IBxFzgnCTI5wjxE7AEtesyDApyQIsUUPKrKAVOwOrEPYIIVJW1RLojYVuVH406gM6DUfhjTsGKJ3V5u3oRTTOhmmzOx6MVUEqG-Gz64WHW2cnlW6cD1A7D4d3F93o-iiMhGIYeiPngHNwqkUf1MXPXIPXu9uX7UO2e7p_3G52maQYx6zWpSwoKViFdNkozRCWTaVpW7ZYqo7J9DeWqCW4062iVGhSd6yukmCUUl2sAZ1zpXcheKX54M1B-E-OEZ9Y8T2fWfGJFUeYJ1bJdv3LJk38_jy1M_1_5pvZrFKxxNHzII1KaDrjlYy8c-bvgC9RnI22 |
| CitedBy_id | crossref_primary_10_1016_j_optlastec_2022_107850 crossref_primary_10_1002_aenm_202002883 crossref_primary_10_3390_app10072337 crossref_primary_10_3390_polym13224050 crossref_primary_10_3389_fphot_2022_932913 crossref_primary_10_3390_app11041923 crossref_primary_10_3390_en16196841 crossref_primary_10_3390_ma16083112 crossref_primary_10_1016_j_dyepig_2020_108368 crossref_primary_10_1364_OE_494821 crossref_primary_10_1364_AO_393521 crossref_primary_10_1021_acsomega_3c10051 crossref_primary_10_3390_en14020455 crossref_primary_10_1039_D1EE02554F crossref_primary_10_3390_en13030548 crossref_primary_10_1007_s10973_023_12767_0 crossref_primary_10_1016_j_optmat_2024_116133 crossref_primary_10_3390_ma14071740 crossref_primary_10_3390_su15129146 crossref_primary_10_1002_adsu_202300107 crossref_primary_10_1016_j_nanoen_2020_105551 crossref_primary_10_1002_er_6533 crossref_primary_10_1016_j_rineng_2022_100665 crossref_primary_10_1364_AO_58_009896 crossref_primary_10_1002_adom_202100754 crossref_primary_10_1039_C9NR10029F crossref_primary_10_1002_slct_202303722 crossref_primary_10_1364_OE_418183 crossref_primary_10_1016_j_optmat_2024_116220 crossref_primary_10_1002_adpr_202400068 crossref_primary_10_1007_s11082_024_06947_x crossref_primary_10_1016_j_optmat_2019_109404 crossref_primary_10_1021_acsnano_3c06162 crossref_primary_10_1021_acsami_9b23055 crossref_primary_10_1016_j_ceramint_2022_12_084 crossref_primary_10_1016_j_renene_2020_06_121 crossref_primary_10_1016_j_cossms_2021_100912 crossref_primary_10_1364_OE_433063 crossref_primary_10_1145_3678574 crossref_primary_10_1002_slct_202100674 crossref_primary_10_1039_D2TA05128A crossref_primary_10_1021_acsami_9b22903 crossref_primary_10_1039_D0MA00181C crossref_primary_10_3390_app10030871 crossref_primary_10_1021_acsami_0c12717 crossref_primary_10_1016_j_asems_2023_100060 crossref_primary_10_1109_JPHOTOV_2022_3144962 crossref_primary_10_1016_j_solener_2022_09_011 crossref_primary_10_1016_j_solener_2023_111859 crossref_primary_10_1016_j_solmat_2019_110134 crossref_primary_10_1039_D1QM01280K crossref_primary_10_1039_D0EE02967J crossref_primary_10_1021_acsenergylett_3c02763 crossref_primary_10_1002_pip_3546 crossref_primary_10_1016_j_optmat_2021_111397 crossref_primary_10_1038_s41377_024_01628_6 crossref_primary_10_1002_advs_202201160 crossref_primary_10_1016_j_solener_2021_01_018 crossref_primary_10_1021_acsphotonics_2c00633 crossref_primary_10_1016_j_jclepro_2020_123343 crossref_primary_10_1117_1_JPE_13_042301 crossref_primary_10_3390_en14040816 crossref_primary_10_1364_AO_384323 crossref_primary_10_18186_thermal_872184 crossref_primary_10_1002_adom_202100182 crossref_primary_10_1007_s12273_022_0896_x crossref_primary_10_1039_D1NJ04836H crossref_primary_10_1039_D0TC05466F crossref_primary_10_2139_ssrn_3925255 crossref_primary_10_1016_j_jcrysgro_2023_127131 crossref_primary_10_1021_acsomega_0c01949 crossref_primary_10_1016_j_optmat_2020_110752 crossref_primary_10_1039_D1RA04537G crossref_primary_10_1016_j_jlumin_2022_118955 crossref_primary_10_1109_JPHOTOV_2023_3323821 crossref_primary_10_1016_j_energy_2024_130643 crossref_primary_10_1063_5_0064202 crossref_primary_10_1016_j_renene_2021_12_147 crossref_primary_10_1134_S0030400X20100021 crossref_primary_10_1016_j_dyepig_2022_110094 crossref_primary_10_1002_pssa_202000015 crossref_primary_10_1021_acsphotonics_3c00788 crossref_primary_10_1002_solr_202400195 crossref_primary_10_1016_j_renene_2020_07_005 crossref_primary_10_1007_s12633_020_00551_w crossref_primary_10_1016_j_solmat_2022_112101 crossref_primary_10_1007_s10854_024_13101_6 crossref_primary_10_1016_j_energy_2023_129237 crossref_primary_10_52547_ijop_16_2_211 crossref_primary_10_3390_electronicmat2040039 crossref_primary_10_1016_j_solmat_2024_113073 crossref_primary_10_3390_en16041869 crossref_primary_10_1038_s41597_023_02827_3 crossref_primary_10_1051_sbuild_2023007 crossref_primary_10_1016_j_enconman_2025_119751 crossref_primary_10_1051_sbuild_2023008 crossref_primary_10_1016_j_solener_2020_06_104 crossref_primary_10_1039_D4SE00806E crossref_primary_10_3390_su162411148 crossref_primary_10_1016_j_ijleo_2021_168024 crossref_primary_10_1088_2053_1591_ab6fad crossref_primary_10_1016_j_nanoen_2023_108269 crossref_primary_10_1021_acsphotonics_0c01772 crossref_primary_10_1039_D4CP00538D |
| Cites_doi | 10.1016/j.jlumin.2013.04.029 10.1016/j.nanoen.2018.06.025 10.7567/JJAP.57.08RD10 10.1364/OE.19.024308 10.1016/j.renene.2017.07.025 10.1002/pip.920 10.1038/nphoton.2017.5 10.1021/ja040082h 10.1039/C5CC02007G 10.1016/j.solmat.2009.02.020 10.1115/1.2735347 10.1002/pssa.201700634 10.1063/1.3422485 10.1039/c2cp40791d 10.1063/1.2748350 10.1039/C8TC02532K 10.1039/c2jm32366d 10.1002/adom.201400103 10.1002/adma.201700821 10.1016/j.solener.2017.04.034 10.1016/j.solmat.2011.11.030 10.1016/j.optmat.2009.05.003 10.1109/JPHOTOV.2017.2668606 10.1002/anie.201611101 10.1063/1.4906460 10.1016/j.solener.2015.05.004 10.1002/pssr.200802186 10.1007/BF00885865 10.1021/acsphotonics.8b01346 10.1002/pssa.201431683 10.1016/j.solener.2013.06.014 10.1021/acs.jchemed.7b00742 10.1021/acs.nanolett.7b04263 10.3762/bjnano.1.11 10.1016/j.solmat.2004.02.046 10.1039/C5TA02417J 10.1016/j.solener.2018.05.022 10.1021/acsenergylett.7b00701 10.1021/acsami.5b01281 10.1149/1.1392651 10.1016/j.solener.2006.09.011 10.1002/adom.201500412 10.1002/pat.1842 10.1016/j.solener.2014.12.001 10.1038/srep17777 10.1364/AO.49.000745 10.1038/s41566-017-0070-7 10.1038/natrevmats.2017.72 10.1016/j.cplett.2010.03.087 10.1039/C7QM00008A 10.1016/j.solmat.2017.06.018 10.1016/j.dyepig.2015.03.035 10.1021/acsphotonics.8b00498 10.1038/nmat3539 10.1016/j.solmat.2012.12.028 10.1016/j.orgel.2018.08.020 10.1021/acsami.7b02700 10.1364/OE.16.021773 10.1134/1.1787111 10.1016/j.renene.2014.11.026 10.1364/AO.50.000163 10.1002/aenm.201300173 10.1016/j.solmat.2013.11.026 10.1364/OE.18.00A536 10.1002/aenm.201501913 10.1021/acsnano.5b06772 10.1016/j.enbuild.2015.12.022 10.1007/BF00883080 10.1002/adom.201600851 10.1021/acsphotonics.5b00334 10.1364/AO.15.002299 10.1021/acsphotonics.5b00630 10.1016/0165-1633(79)90027-3 10.1364/AO.24.002028 10.1016/j.solener.2011.07.014 10.1021/acs.jpcc.6b12379 10.1126/science.1158342 10.1039/b914978c 10.1016/S0960-1481(99)00093-2 10.1039/C1EE02376D 10.1039/C3TA14964A 10.1038/nenergy.2016.157 10.1109/JSTQE.2008.920282 10.1039/C7TA04731B 10.1016/j.materresbull.2010.07.021 10.1002/aenm.201100554 10.1002/aenm.201702922 10.1021/acsnano.6b03704 10.1063/1.125981 10.1002/adma.201000525 10.1016/S0927-0248(98)00105-6 10.1063/1.3541543 10.1016/j.solmat.2018.07.008 10.1038/370354a0 10.1364/OE.21.00A735 10.1016/j.solmat.2011.02.027 10.1364/AO.49.001651 10.1039/C7CS00701A 10.1364/OL.37.003087 10.1063/1.4871481 10.1016/j.solener.2018.12.013 10.1088/1361-6528/aa577f 10.1016/j.solener.2011.06.007 10.1016/j.tsf.2003.10.133 10.1021/nl5048779 10.1002/solr.201700041 10.1002/pip.723 10.1021/acsphotonics.6b00307 10.1016/j.solener.2009.10.004 10.1002/adma.201504358 10.1021/acs.jpclett.6b01668 10.1021/acs.jpclett.8b00275 10.1016/j.jcis.2018.09.065 10.1016/j.nanoen.2017.05.030 10.1117/1.3534864 10.1016/j.renene.2017.08.016 10.1016/j.renene.2016.10.078 10.1021/nl501627e 10.1038/ncomms1318 10.1155/2013/235875 10.1016/j.renene.2013.10.014 10.1016/j.nanoen.2017.12.017 10.1021/acsenergylett.7b01346 10.1016/j.solmat.2009.10.018 10.1021/nn406360w 10.1016/j.solmat.2018.04.004 10.1016/j.jlumin.2017.09.030 10.1016/j.nanoen.2016.11.058 10.1016/j.solmat.2017.04.010 10.1038/nphoton.2014.54 10.1038/nnano.2015.178 10.1002/adom.201600634 10.1016/j.solmat.2015.08.008 10.1016/j.solmat.2012.04.019 10.1021/nl504510t 10.1002/smll.201600945 10.1016/j.optmat.2006.11.045 10.1016/j.solmat.2008.09.048 10.1039/c3ta11463e |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optmat.2019.01.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-1252 |
| EndPage | 227 |
| ExternalDocumentID | 10_1016_j_optmat_2019_01_007 S092534671930028X |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SPD SPG SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c411t-8f5c3423760f59ef701c96f4b5b1ced7c0001c0b21dfbe44af28d786fbe7444f3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-3467 |
| IngestDate | Thu Oct 16 04:42:43 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Fri Feb 23 02:16:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | EQE Photovoltaic Optical efficiency Re-absorption Luminescent solar concentrator Power conversion efficiency |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-8f5c3423760f59ef701c96f4b5b1ced7c0001c0b21dfbe44af28d786fbe7444f3 |
| ORCID | 0000-0001-6950-9508 0000-0002-7264-5719 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1016_j_optmat_2019_01_007 crossref_citationtrail_10_1016_j_optmat_2019_01_007 elsevier_sciencedirect_doi_10_1016_j_optmat_2019_01_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Optical materials |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mateen (bib84) 2019; 178 Slooff (bib93) 2007; 129 Rafiee (bib112) 2018 Sharma (bib145) 2017; 29 Zhu (bib130) 2019; 534 Zhou (bib131) 2018; 44 Nikolaidou (bib73) 2016; 4 Li (bib125) 2015; 5 de Boer (bib158) 2011; 98 Mirershadi, Sattari, Saridaragh (bib46) 2018; 186 Rowan, Wilson, Richards (bib88) 2008; 14 Brennan (bib29) 2018; 6 Chatten (bib124) 2004; 38 Meinardi (bib76) 2014; 8 Waldron (bib138) 2017; 28 Sholin, Olson, Carter (bib16) 2007; 101 Meinardi (bib70) 2015; 10 Hernandez-Noyola (bib56) 2012; 5 Zhao (bib140) 2018; 50 Debije (bib159) 2010; 49 Knowles (bib144) 2015; 51 Coropceanu, Bawendi (bib63) 2014; 14 Debije (bib120) 2011; 50 Zhang (bib34) 2015; 117 Wilson, Klampaftis, Richards (bib12) 2017; 7 Coropceanu (bib151) 2016; 10 Vishwanathan (bib41) 2015; 112 El-Bashir, AlHarbi, AlSalhi (bib36) 2013; 2013 Kennedy (bib43) 2010 Chen (bib133) 2013; 12 Erickson (bib109) 2014; 8 Glassner (bib45) 1989 Nolasco (bib104) 2013; 1 Vossen, Aarts, Debije (bib17) 2016; 113 Brovelli, Meinardi, Carulli (bib28) 2018 Council (bib102) 2018 Reisfeld, Levchenko, Saraidarov (bib106) 2011; 22 Weber, Lambe (bib1) 1976; 15 Pravettoni (bib162) 2009 Albers, Bastiaansen, Debije (bib54) 2013; 95 El-Bashir (bib90) 2018; 115 Yamada, Nguyen Anh, Kambayashi (bib4) 2010; 94 Desmet (bib42) 2012; 37 Tummeltshammer (bib48) 2016; 144 Klimov (bib127) 2016; 3 Meinardi, Bruni, Brovelli (bib10) 2017; 2 Reinders (bib18) 2018; 57 Jang (bib135) 2010; 22 Krumer (bib137) 2013; 111 Correia (bib35) 2014; 2 Purcell-Milton, Gun'ko (bib53) 2012; 22 Sol (bib83) 2018; 8 Song (bib146) 2017; 18 Kerrouche (bib5) 2014; 122 Hughes, Borca-Tasciuc, Kaminski (bib156) 2017; 171 Zhao (bib26) 2014; 2 Flores Daorta (bib69) 2014; 104 Yoon (bib24) 2011; 2 Wang (bib118) 2011; 85 Giebink, Wiederrecht, Wasielewski (bib110) 2018 Buffa (bib108) 2012; 103 Needell (bib113) 2018 Aste (bib38) 2015; 76 Zhao, Lunt (bib15) 2013; 3 Tummeltshammer (bib79) 2017; 32 Connell, Pinnell, Ferry (bib157) 2018; 20 Renny (bib14) 2018; 95 Ha (bib81) 2018; 5 Debije (bib160) September 2009 Wilson (bib51) 2010; 49 Bose (bib86) 2009 Zhou (bib129) 2018; 47 Debije (bib22) 2017; 113 Chandra (bib65) 2012; 98 Inman (bib61) 2011; 19 Bomm (bib62) 2011; 95 de Cardona (bib39) 1985; 24 Wang (bib87) 2011; 1 Earp (bib13) 2004; 84 Rondão (bib105) 2017; 9 El-Bashir, Barakat, AlSalhi (bib67) 2013; 143 Sumner (bib143) 2017; 121 Kastelijn, Bastiaansen, Debije (bib85) 2009; 31 Cambié (bib19) 2017; 56 Wang (bib117) 2011; 85 Zhao (bib77) 2016; 12 LeDonne (bib96) 2008 Shcherbatyuk (bib123) 2010; 96 Norton (bib52) 2011; 85 Bronstein (bib72) 2015 Meinardi (bib20) 2017; 11 Kanellis (bib21) 2017; 103 Pravettoni (bib163) 2009 Jeong (bib147) 2016; 10 Union, T.E.P.a.t.C.o.t.E (bib11) 2010 Chen (bib25) 2017; 1 Freitas (bib107) 2015; 7 Aste, Adhikari, Del Pero (bib7) 2011 Barnham (bib122) 2000; 76 Meinardi (bib152) 2017; 2 Saraidarov (bib165) 2010; 492 Goldschmidt (bib55) 2009; 93 Yang, Lunt (bib32) 2017; 5 Inoue (bib101) 1997; 30 Eisfeld, Briggs (bib119) 2018; 215 Debije, Verbunt (bib9) 2012; 2 Currie (bib59) 2008; 321 Correia (bib50) 2016; 24 Wang (bib132) 2018; 62 Colvin, Schlamp, Alivisatos (bib136) 1994; 370 Li (bib71) 2015; 5 Geddes (bib66) 2017 Bergren (bib30) 2018; 3 Pagliaro, Ciriminna, Palmisano (bib8) 2010; 18 Protesescu (bib154) 2015; 15 Goetzberger, Greube (bib2) 1977; 14 Richards, McIntosh (bib94) 2007; 15 Mirershadi, Ahmadi-Kandjani (bib155) 2015; 120 Chandra (bib64) 2013 Vasiliev (bib31) 2018 Bose (bib148) 2008 Maruyama, Bandai (bib99) 1999; 146 Gajic (bib23) 2017; 150 Sanguineti (bib33) 2012; 14 Man (bib115) 2007; 30 Salem (bib40) 2000; 20 Kaniyoor (bib103) 2016; 4 Bradshaw (bib128) 2015; 15 Kennedy (bib44) 2015; 212 Zhou (bib75) 2016; 6 De Nisi (bib95) 2017; 1 Berends (bib134) 2016; 7 Bomm (bib149) 2010; 1 Goetzberger (bib3) 1978; 16 Klampaftis (bib89) 2009; 93 Hill (bib126) 2018; 6 Tummeltshammer (bib166) 2013; 21 Ito (bib153) 2018; 9 Wu, Li, Klimov (bib82) 2018; 12 Tsoi (bib57) 2010; 18 Švrček, Slaoui, Muller (bib97) 2004; 451 Bronstein (bib49) 2015; 2 van Sark (bib6) 2008; 16 Khan (bib116) 2010; 45 Xu (bib139) 2004; 126 Wang, Hirst, Winston (bib37) 2011 Levchenko (bib164) 2018; 193 Hovel, Hodgson, Woodall (bib91) 1979; 2 Chandra (bib121) 2018; 182 Liu (bib141) 2018; 6 Xu (bib161) 2016; 3 Chen (bib167) 2015; 3 Weber, Lambe (bib111) 1976; 15 Gallagher, Norton, Eames (bib58) 2007; 81 Moudam (bib114) 2009 Lunt, Bulovic, Barr (bib27) 2018 Maruyama, Shinyashiki, Osako (bib100) 1998; 56 Fisher (bib150) 2015; 106 Yamada, Wada, Kawano (bib98) 2000; 36 Zhao (bib47) 2017; 37 Slooff (bib60) 2008; 2 El-Bashir, Barakat, AlSalhi (bib68) 2014; 63 Li (bib78) 2016; 1 Krumer (bib142) 2017; 167 Gutierrez (bib74) 2016; 28 Kawano, Hashimoto, Nakata (bib92) 1997 Schrecengost (bib80) 2018; 170 Goldschmidt (10.1016/j.optmat.2019.01.007_bib55) 2009; 93 Maruyama (10.1016/j.optmat.2019.01.007_bib100) 1998; 56 Bose (10.1016/j.optmat.2019.01.007_bib86) 2009 Rowan (10.1016/j.optmat.2019.01.007_bib88) 2008; 14 Maruyama (10.1016/j.optmat.2019.01.007_bib99) 1999; 146 Vossen (10.1016/j.optmat.2019.01.007_bib17) 2016; 113 Wilson (10.1016/j.optmat.2019.01.007_bib51) 2010; 49 Kawano (10.1016/j.optmat.2019.01.007_bib92) 1997 Weber (10.1016/j.optmat.2019.01.007_bib1) 1976; 15 Nolasco (10.1016/j.optmat.2019.01.007_bib104) 2013; 1 Saraidarov (10.1016/j.optmat.2019.01.007_bib165) 2010; 492 Krumer (10.1016/j.optmat.2019.01.007_bib142) 2017; 167 Xu (10.1016/j.optmat.2019.01.007_bib161) 2016; 3 Song (10.1016/j.optmat.2019.01.007_bib146) 2017; 18 Bose (10.1016/j.optmat.2019.01.007_bib148) 2008 Yoon (10.1016/j.optmat.2019.01.007_bib24) 2011; 2 Zhao (10.1016/j.optmat.2019.01.007_bib26) 2014; 2 Zhao (10.1016/j.optmat.2019.01.007_bib47) 2017; 37 Li (10.1016/j.optmat.2019.01.007_bib71) 2015; 5 Bradshaw (10.1016/j.optmat.2019.01.007_bib128) 2015; 15 Chandra (10.1016/j.optmat.2019.01.007_bib64) 2013 Fisher (10.1016/j.optmat.2019.01.007_bib150) 2015; 106 Debije (10.1016/j.optmat.2019.01.007_bib160) 2009 Weber (10.1016/j.optmat.2019.01.007_bib111) 1976; 15 Vishwanathan (10.1016/j.optmat.2019.01.007_bib41) 2015; 112 Hill (10.1016/j.optmat.2019.01.007_bib126) 2018; 6 Currie (10.1016/j.optmat.2019.01.007_bib59) 2008; 321 Cambié (10.1016/j.optmat.2019.01.007_bib19) 2017; 56 LeDonne (10.1016/j.optmat.2019.01.007_bib96) 2008 Sholin (10.1016/j.optmat.2019.01.007_bib16) 2007; 101 Meinardi (10.1016/j.optmat.2019.01.007_bib70) 2015; 10 Council (10.1016/j.optmat.2019.01.007_bib102) Gajic (10.1016/j.optmat.2019.01.007_bib23) 2017; 150 Sumner (10.1016/j.optmat.2019.01.007_bib143) 2017; 121 Buffa (10.1016/j.optmat.2019.01.007_bib108) 2012; 103 Reisfeld (10.1016/j.optmat.2019.01.007_bib106) 2011; 22 Vasiliev (10.1016/j.optmat.2019.01.007_bib31) 2018 Flores Daorta (10.1016/j.optmat.2019.01.007_bib69) 2014; 104 Bronstein (10.1016/j.optmat.2019.01.007_bib49) 2015; 2 Zhou (10.1016/j.optmat.2019.01.007_bib75) 2016; 6 Barnham (10.1016/j.optmat.2019.01.007_bib122) 2000; 76 Zhou (10.1016/j.optmat.2019.01.007_bib129) 2018; 47 Kennedy (10.1016/j.optmat.2019.01.007_bib43) 2010 Bergren (10.1016/j.optmat.2019.01.007_bib30) 2018; 3 Glassner (10.1016/j.optmat.2019.01.007_bib45) 1989 El-Bashir (10.1016/j.optmat.2019.01.007_bib90) 2018; 115 Tummeltshammer (10.1016/j.optmat.2019.01.007_bib48) 2016; 144 Chen (10.1016/j.optmat.2019.01.007_bib133) 2013; 12 Pagliaro (10.1016/j.optmat.2019.01.007_bib8) 2010; 18 El-Bashir (10.1016/j.optmat.2019.01.007_bib36) 2013; 2013 Klampaftis (10.1016/j.optmat.2019.01.007_bib89) 2009; 93 Hovel (10.1016/j.optmat.2019.01.007_bib91) 1979; 2 Union, T.E.P.a.t.C.o.t.E (10.1016/j.optmat.2019.01.007_bib11) Colvin (10.1016/j.optmat.2019.01.007_bib136) 1994; 370 Wilson (10.1016/j.optmat.2019.01.007_bib12) 2017; 7 Tummeltshammer (10.1016/j.optmat.2019.01.007_bib79) 2017; 32 Wang (10.1016/j.optmat.2019.01.007_bib37) 2011 Purcell-Milton (10.1016/j.optmat.2019.01.007_bib53) 2012; 22 Levchenko (10.1016/j.optmat.2019.01.007_bib164) 2018; 193 Klimov (10.1016/j.optmat.2019.01.007_bib127) 2016; 3 Debije (10.1016/j.optmat.2019.01.007_bib22) 2017; 113 Needell (10.1016/j.optmat.2019.01.007_bib113) 2018 Mirershadi (10.1016/j.optmat.2019.01.007_bib155) 2015; 120 Reinders (10.1016/j.optmat.2019.01.007_bib18) 2018; 57 Pravettoni (10.1016/j.optmat.2019.01.007_bib162) 2009 Wu (10.1016/j.optmat.2019.01.007_bib82) 2018; 12 Correia (10.1016/j.optmat.2019.01.007_bib50) 2016; 24 Slooff (10.1016/j.optmat.2019.01.007_bib60) 2008; 2 El-Bashir (10.1016/j.optmat.2019.01.007_bib67) 2013; 143 Bronstein (10.1016/j.optmat.2019.01.007_bib72) 2015 Coropceanu (10.1016/j.optmat.2019.01.007_bib63) 2014; 14 Hughes (10.1016/j.optmat.2019.01.007_bib156) 2017; 171 Li (10.1016/j.optmat.2019.01.007_bib78) 2016; 1 Inman (10.1016/j.optmat.2019.01.007_bib61) 2011; 19 Inoue (10.1016/j.optmat.2019.01.007_bib101) 1997; 30 Man (10.1016/j.optmat.2019.01.007_bib115) 2007; 30 Debije (10.1016/j.optmat.2019.01.007_bib159) 2010; 49 Chen (10.1016/j.optmat.2019.01.007_bib25) 2017; 1 Krumer (10.1016/j.optmat.2019.01.007_bib137) 2013; 111 Kerrouche (10.1016/j.optmat.2019.01.007_bib5) 2014; 122 Gutierrez (10.1016/j.optmat.2019.01.007_bib74) 2016; 28 Jeong (10.1016/j.optmat.2019.01.007_bib147) 2016; 10 Ha (10.1016/j.optmat.2019.01.007_bib81) 2018; 5 Lunt (10.1016/j.optmat.2019.01.007_bib27) 2018 Giebink (10.1016/j.optmat.2019.01.007_bib110) 2018 Chatten (10.1016/j.optmat.2019.01.007_bib124) 2004; 38 Tsoi (10.1016/j.optmat.2019.01.007_bib57) 2010; 18 Meinardi (10.1016/j.optmat.2019.01.007_bib76) 2014; 8 Kanellis (10.1016/j.optmat.2019.01.007_bib21) 2017; 103 Pravettoni (10.1016/j.optmat.2019.01.007_bib163) 2009 Brennan (10.1016/j.optmat.2019.01.007_bib29) 2018; 6 Zhang (10.1016/j.optmat.2019.01.007_bib34) 2015; 117 Rondão (10.1016/j.optmat.2019.01.007_bib105) 2017; 9 Renny (10.1016/j.optmat.2019.01.007_bib14) 2018; 95 Chen (10.1016/j.optmat.2019.01.007_bib167) 2015; 3 Geddes (10.1016/j.optmat.2019.01.007_bib66) 2017 Schrecengost (10.1016/j.optmat.2019.01.007_bib80) 2018; 170 Meinardi (10.1016/j.optmat.2019.01.007_bib20) 2017; 11 Yang (10.1016/j.optmat.2019.01.007_bib32) 2017; 5 De Nisi (10.1016/j.optmat.2019.01.007_bib95) 2017; 1 Debije (10.1016/j.optmat.2019.01.007_bib120) 2011; 50 Xu (10.1016/j.optmat.2019.01.007_bib139) 2004; 126 Mirershadi (10.1016/j.optmat.2019.01.007_bib46) 2018; 186 van Sark (10.1016/j.optmat.2019.01.007_bib6) 2008; 16 Wang (10.1016/j.optmat.2019.01.007_bib132) 2018; 62 Zhao (10.1016/j.optmat.2019.01.007_bib77) 2016; 12 Aste (10.1016/j.optmat.2019.01.007_bib7) 2011 Debije (10.1016/j.optmat.2019.01.007_bib9) 2012; 2 Meinardi (10.1016/j.optmat.2019.01.007_bib10) 2017; 2 Desmet (10.1016/j.optmat.2019.01.007_bib42) 2012; 37 Wang (10.1016/j.optmat.2019.01.007_bib117) 2011; 85 Norton (10.1016/j.optmat.2019.01.007_bib52) 2011; 85 Goetzberger (10.1016/j.optmat.2019.01.007_bib3) 1978; 16 Bomm (10.1016/j.optmat.2019.01.007_bib149) 2010; 1 Sanguineti (10.1016/j.optmat.2019.01.007_bib33) 2012; 14 Chandra (10.1016/j.optmat.2019.01.007_bib65) 2012; 98 Brovelli (10.1016/j.optmat.2019.01.007_bib28) 2018 Mateen (10.1016/j.optmat.2019.01.007_bib84) 2019; 178 de Boer (10.1016/j.optmat.2019.01.007_bib158) 2011; 98 Yamada (10.1016/j.optmat.2019.01.007_bib4) 2010; 94 Shcherbatyuk (10.1016/j.optmat.2019.01.007_bib123) 2010; 96 Meinardi (10.1016/j.optmat.2019.01.007_bib152) 2017; 2 Correia (10.1016/j.optmat.2019.01.007_bib35) 2014; 2 Ito (10.1016/j.optmat.2019.01.007_bib153) 2018; 9 Coropceanu (10.1016/j.optmat.2019.01.007_bib151) 2016; 10 Richards (10.1016/j.optmat.2019.01.007_bib94) 2007; 15 Wang (10.1016/j.optmat.2019.01.007_bib87) 2011; 1 Freitas (10.1016/j.optmat.2019.01.007_bib107) 2015; 7 Hernandez-Noyola (10.1016/j.optmat.2019.01.007_bib56) 2012; 5 Protesescu (10.1016/j.optmat.2019.01.007_bib154) 2015; 15 Li (10.1016/j.optmat.2019.01.007_bib125) 2015; 5 Yamada (10.1016/j.optmat.2019.01.007_bib98) 2000; 36 Moudam (10.1016/j.optmat.2019.01.007_bib114) 2009 Sol (10.1016/j.optmat.2019.01.007_bib83) 2018; 8 Zhou (10.1016/j.optmat.2019.01.007_bib131) 2018; 44 Slooff (10.1016/j.optmat.2019.01.007_bib93) 2007; 129 Erickson (10.1016/j.optmat.2019.01.007_bib109) 2014; 8 Berends (10.1016/j.optmat.2019.01.007_bib134) 2016; 7 Jang (10.1016/j.optmat.2019.01.007_bib135) 2010; 22 Bomm (10.1016/j.optmat.2019.01.007_bib62) 2011; 95 Wang (10.1016/j.optmat.2019.01.007_bib118) 2011; 85 Zhao (10.1016/j.optmat.2019.01.007_bib140) 2018; 50 Earp (10.1016/j.optmat.2019.01.007_bib13) 2004; 84 Kennedy (10.1016/j.optmat.2019.01.007_bib44) 2015; 212 Zhu (10.1016/j.optmat.2019.01.007_bib130) 2019; 534 El-Bashir (10.1016/j.optmat.2019.01.007_bib68) 2014; 63 Albers (10.1016/j.optmat.2019.01.007_bib54) 2013; 95 Eisfeld (10.1016/j.optmat.2019.01.007_bib119) 2018; 215 Connell (10.1016/j.optmat.2019.01.007_bib157) 2018; 20 Chandra (10.1016/j.optmat.2019.01.007_bib121) 2018; 182 Zhao (10.1016/j.optmat.2019.01.007_bib15) 2013; 3 Švrček (10.1016/j.optmat.2019.01.007_bib97) 2004; 451 Kaniyoor (10.1016/j.optmat.2019.01.007_bib103) 2016; 4 Knowles (10.1016/j.optmat.2019.01.007_bib144) 2015; 51 Khan (10.1016/j.optmat.2019.01.007_bib116) 2010; 45 Tummeltshammer (10.1016/j.optmat.2019.01.007_bib166) 2013; 21 de Cardona (10.1016/j.optmat.2019.01.007_bib39) 1985; 24 Kastelijn (10.1016/j.optmat.2019.01.007_bib85) 2009; 31 Nikolaidou (10.1016/j.optmat.2019.01.007_bib73) 2016; 4 Rafiee (10.1016/j.optmat.2019.01.007_bib112) 2018 Gallagher (10.1016/j.optmat.2019.01.007_bib58) 2007; 81 Waldron (10.1016/j.optmat.2019.01.007_bib138) 2017; 28 Goetzberger (10.1016/j.optmat.2019.01.007_bib2) 1977; 14 Aste (10.1016/j.optmat.2019.01.007_bib38) 2015; 76 Liu (10.1016/j.optmat.2019.01.007_bib141) 2018; 6 Salem (10.1016/j.optmat.2019.01.007_bib40) 2000; 20 Sharma (10.1016/j.optmat.2019.01.007_bib145) 2017; 29 |
| References_xml | – volume: 12 start-page: 5354 year: 2016 end-page: 5365 ident: bib77 article-title: Absorption enhancement in “giant” core/alloyed‐shell quantum dots for luminescent solar concentrator publication-title: Small – year: 2008 ident: bib96 article-title: Enhancement of Solar Energy Conversion Efficiency by Light Harvesting of Organolanthanide Complexes – volume: 37 start-page: 214 year: 2017 end-page: 223 ident: bib47 article-title: Perovskite quantum dots integrated in large-area luminescent solar concentrators publication-title: Nano energy – volume: 24 start-page: 2028 year: 1985 end-page: 2032 ident: bib39 article-title: Outdoor evaluation of luminescent solar concentrator prototypes publication-title: Appl. Opt. – volume: 81 start-page: 813 year: 2007 end-page: 821 ident: bib58 article-title: Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices publication-title: Sol. Energy – volume: 84 start-page: 411 year: 2004 end-page: 426 ident: bib13 article-title: Optimisation of a three-colour luminescent solar concentrator daylighting system publication-title: Sol. Energy Mater. Sol. Cell. – volume: 95 start-page: 216 year: 2013 end-page: 223 ident: bib54 article-title: Dual waveguide patterned luminescent solar concentrators publication-title: Sol. Energy – volume: 1 start-page: 16157 year: 2016 ident: bib78 article-title: Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators publication-title: Nature Energy – year: 2018 ident: bib110 article-title: Resonance-shifting Luminescent Solar Concentrators – year: 2018 ident: bib28 article-title: Colorless Luminescent Solar Concentrator, Free of Heavy Metals, Based on at Least Ternary Chalcogenide Semiconductor Nanocrystals with Absorption Extending to the Near Infrared Region – volume: 9 start-page: 12540 year: 2017 end-page: 12546 ident: bib105 article-title: High-performance near-infrared luminescent solar concentrators publication-title: ACS Appl. Mater. Interfaces – volume: 129 start-page: 272 year: 2007 end-page: 276 ident: bib93 article-title: Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye publication-title: J. Sol. Energy Eng. – volume: 15 start-page: 1315 year: 2015 end-page: 1323 ident: bib128 article-title: Nanocrystals for luminescent solar concentrators publication-title: Nano Lett. – volume: 144 start-page: 40 year: 2016 end-page: 47 ident: bib48 article-title: Losses in luminescent solar concentrators unveiled publication-title: Sol. Energy Mater. Sol. Cell. – year: 2018 ident: bib27 article-title: Visibly Transparent, Luminescent Solar Concentrator – volume: 1 start-page: 7339 year: 2013 end-page: 7350 ident: bib104 article-title: Engineering highly efficient Eu (III)-based tri-ureasil hybrids toward luminescent solar concentrators publication-title: J. Mater. Chem. – volume: 62 start-page: 284 year: 2018 end-page: 289 ident: bib132 article-title: Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators publication-title: Org. Electron. – volume: 5 start-page: 1600851 year: 2017 ident: bib32 article-title: Limits of visibly transparent luminescent solar concentrators publication-title: Advanced Optical Materials – volume: 28 start-page: 497 year: 2016 end-page: 501 ident: bib74 article-title: A low reabsorbing luminescent solar concentrator employing π‐conjugated polymers publication-title: Adv. Mater. – volume: 7 start-page: 8770 year: 2015 end-page: 8778 ident: bib107 article-title: Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators publication-title: ACS Appl. Mater. Interfaces – volume: 167 start-page: 133 year: 2017 end-page: 139 ident: bib142 article-title: Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration publication-title: Sol. Energy Mater. Sol. Cell. – volume: 8 start-page: 392 year: 2014 end-page: 399 ident: bib76 article-title: Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix publication-title: Nat. Photon. – volume: 19 start-page: 24308 year: 2011 end-page: 24313 ident: bib61 article-title: Cylindrical luminescent solar concentrators with near-infrared quantum dots publication-title: Optic Express – volume: 76 start-page: 330 year: 2015 end-page: 337 ident: bib38 article-title: Performance analysis of a large-area luminescent solar concentrator module publication-title: Renew. Energy – volume: 7 start-page: 802 year: 2017 end-page: 809 ident: bib12 article-title: Enhancement of power output from a large-area luminescent solar concentrator with 4.8× concentration via solar cell current matching publication-title: IEEE Journal of Photovoltaics – volume: 22 start-page: 16687 year: 2012 end-page: 16697 ident: bib53 article-title: Quantum dots for luminescent solar concentrators publication-title: J. Mater. Chem. – volume: 2 start-page: 343 year: 2011 ident: bib24 article-title: Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides publication-title: Nat. Commun. – volume: 103 start-page: 647 year: 2017 end-page: 652 ident: bib21 article-title: The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier publication-title: Renew. Energy – volume: 104 start-page: 153901 year: 2014 ident: bib69 article-title: Cascade luminescent solar concentrators publication-title: Appl. Phys. Lett. – volume: 45 start-page: 1562 year: 2010 end-page: 1566 ident: bib116 article-title: Eu3+ doped silica xerogel luminescent layer having antireflection and spectrum modifying properties suitable for solar cell applications publication-title: Mater. Res. Bull. – volume: 47 year: 2018 ident: bib129 article-title: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators publication-title: Chem. Soc. Rev. – volume: 18 start-page: A536 year: 2010 end-page: A543 ident: bib57 article-title: Patterned dye structures limit reabsorption in luminescent solar concentrators publication-title: Optic Express – volume: 24 start-page: 1178 year: 2016 end-page: 1193 ident: bib50 article-title: Scale up the collection area of luminescent solar concentrators towards metre‐length flexible waveguiding photovoltaics – volume: 8 start-page: 3461 year: 2014 end-page: 3467 ident: bib109 article-title: Zero-reabsorption doped-nanocrystal luminescent solar concentrators publication-title: ACS Nano – volume: 113 start-page: 123 year: 2016 end-page: 132 ident: bib17 article-title: Visual performance of red luminescent solar concentrating windows in an office environment publication-title: Energy Build. – volume: 186 start-page: 365 year: 2018 end-page: 372 ident: bib46 article-title: Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite publication-title: Sol. Energy Mater. Sol. Cell. – volume: 56 start-page: 1050 year: 2017 end-page: 1054 ident: bib19 article-title: A leaf‐inspired luminescent solar concentrator for energy‐efficient continuous‐flow photochemistry publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 1682 year: 2018 end-page: 1688 ident: bib153 article-title: Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air publication-title: J. Phys. Chem. Lett. – volume: 50 start-page: 163 year: 2011 end-page: 169 ident: bib120 article-title: Promising fluorescent dye for solar energy conversion based on a perylene perinone publication-title: Appl. Opt. – volume: 49 start-page: 1651 year: 2010 end-page: 1661 ident: bib51 article-title: Characterization and reduction of reabsorption losses in luminescent solar concentrators publication-title: Appl. Opt. – volume: 63 start-page: 642 year: 2014 end-page: 649 ident: bib68 article-title: Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports publication-title: Renew. Energy – volume: 49 start-page: 745 year: 2010 end-page: 751 ident: bib159 article-title: Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors publication-title: Appl. Opt. – year: 2009 ident: bib162 article-title: External quantum efficiency measurements of luminescent solar concentrators: a study of the impact of backside reflector size and shape publication-title: 24th European Photovoltaic Solar Energy Conference. Hamburg, Germany – year: 1997 ident: bib92 article-title: Effects on solar cell efficiency of fluorescence of rare-earth ions publication-title: Materials Science Forum – volume: 111 start-page: 57 year: 2013 end-page: 65 ident: bib137 article-title: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots publication-title: Sol. Energy Mater. Sol. Cell. – volume: 2 start-page: 2368 year: 2017 end-page: 2377 ident: bib152 article-title: Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators publication-title: ACS Energy Letters – volume: 146 start-page: 4406 year: 1999 end-page: 4409 ident: bib99 article-title: Solar cell module coated with fluorescent coloring agent publication-title: J. Electrochem. Soc. – volume: 2 start-page: 1576 year: 2015 end-page: 1583 ident: bib49 article-title: Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration publication-title: ACS Photonics – volume: 98 start-page: 385 year: 2012 end-page: 390 ident: bib65 article-title: Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction publication-title: Sol. Energy Mater. Sol. Cell. – year: 2015 ident: bib72 article-title: Material and Optical Design Rules for High Performance Luminescent Solar Concentrators – volume: 18 start-page: 395 year: 2017 end-page: 404 ident: bib146 article-title: Performance limits of luminescent solar concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity publication-title: Nano Lett. – volume: 18 start-page: 61 year: 2010 end-page: 72 ident: bib8 article-title: BIPV: merging the photovoltaic with the construction industry publication-title: Prog. Photovoltaics Res. Appl. – volume: 113 start-page: 1288 year: 2017 end-page: 1292 ident: bib22 article-title: The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype publication-title: Renew. Energy – volume: 6 year: 2018 ident: bib126 article-title: Silicon quantum dot-poly (methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators publication-title: ACS Photonics – volume: 106 start-page: 041110 year: 2015 ident: bib150 article-title: Utilizing vertically aligned CdSe/CdS nanorods within a luminescent solar concentrator publication-title: Appl. Phys. Lett. – volume: 12 start-page: 105 year: 2018 ident: bib82 article-title: Tandem luminescent solar concentrators based on engineered quantum dots publication-title: Nat. Photon. – volume: 44 start-page: 378 year: 2018 end-page: 387 ident: bib131 article-title: Colloidal carbon dots based highly stable luminescent solar concentrators publication-title: Nanomater. Energy – volume: 85 start-page: 1629 year: 2011 end-page: 1664 ident: bib52 article-title: Enhancing the performance of building integrated photovoltaics publication-title: Sol. Energy – volume: 94 start-page: 413 year: 2010 end-page: 419 ident: bib4 article-title: Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems publication-title: Sol. Energy Mater. Sol. Cell. – volume: 5 start-page: 17777 year: 2015 ident: bib71 article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots publication-title: Sci. Rep. – volume: 14 start-page: 1312 year: 2008 end-page: 1322 ident: bib88 article-title: Advanced material concepts for luminescent solar concentrators publication-title: IEEE J. Sel. Top. Quant. Electron. – volume: 121 start-page: 3252 year: 2017 end-page: 3260 ident: bib143 article-title: Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering publication-title: J. Phys. Chem. C – volume: 16 start-page: 399 year: 1978 end-page: 404 ident: bib3 article-title: Fluorescent solar energy collectors: operating conditions with diffuse light publication-title: Appl. Phys. – volume: 6 start-page: 10059 year: 2018 end-page: 10066 ident: bib141 article-title: Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots publication-title: J. Mater. Chem. C – volume: 22 start-page: 3076 year: 2010 end-page: 3080 ident: bib135 article-title: White‐light‐emitting diodes with quantum dot color converters for display backlights publication-title: Adv. Mater. – volume: 170 start-page: 132 year: 2018 end-page: 137 ident: bib80 article-title: Increasing the area of a white scattering background can increase the power output of a luminescent solar concentrator publication-title: Sol. Energy – volume: 534 start-page: 509 year: 2019 end-page: 517 ident: bib130 article-title: Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 3503 year: 2016 end-page: 3509 ident: bib134 article-title: Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 015502 year: 2011 ident: bib87 article-title: Size-and structure-dependent efficiency enhancement for luminescent solar concentrators publication-title: J. Photon. Energy – volume: 2 start-page: 12 year: 2012 end-page: 35 ident: bib9 article-title: Thirty years of luminescent solar concentrator research: solar energy for the built environment publication-title: Advanced Energy Materials – volume: 143 start-page: 43 year: 2013 end-page: 49 ident: bib67 article-title: Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic thin-film luminescent solar concentrator publication-title: J. Lumin. – volume: 4 start-page: 2126 year: 2016 end-page: 2132 ident: bib73 article-title: Hybrid perovskite thin films as highly efficient luminescent solar concentrators publication-title: Advanced Optical Materials – year: 2009 ident: bib163 article-title: Outdoor characterization of luminescent solar concentrators and their possible architectural integration on a historically relevant site in Milan (Italy) publication-title: Photovoltaic Specialists Conference (PVSC) – volume: 1 start-page: 1406 year: 2017 end-page: 1412 ident: bib95 article-title: Red-emitting AIEgen for luminescent solar concentrators publication-title: Materials Chemistry Frontiers – year: 2018 ident: bib112 article-title: Optical coupling sensitivity study of luminescent PV devices using Monte Carlo ray tracing model publication-title: World Renewable Energy Congress – 18 – volume: 120 start-page: 15 year: 2015 end-page: 21 ident: bib155 article-title: Efficient thin luminescent solar concentrator based on organometal halide perovskite publication-title: Dyes Pigments – start-page: 21 year: September 2009 end-page: 25 ident: bib160 article-title: The effect of an organic selectively-reflecting mirror on the performance of a luminescent solar concentrator publication-title: Conference; 24th European Photovoltaic Solar Energy Conference (EU PVSEC) – volume: 15 start-page: 27 year: 2007 end-page: 34 ident: bib94 article-title: Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down‐shifting: ray‐tracing simulations publication-title: Prog. Photovoltaics Res. Appl. – volume: 50 start-page: 756 year: 2018 end-page: 765 ident: bib140 article-title: Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots publication-title: Nanomater. Energy – volume: 14 start-page: 123 year: 1977 end-page: 139 ident: bib2 article-title: Solar energy conversion with fluorescent collectors publication-title: Appl. Phys. – volume: 30 start-page: 190 year: 1997 end-page: 191 ident: bib101 article-title: Luminescence property and application of rare earth complexes incorporated in ORMOSIL matrices publication-title: Kidorui – volume: 15 start-page: 2299 year: 1976 ident: bib1 article-title: Luminescent greenhouse collector for solar radiation publication-title: Appl. Optic. – volume: 51 start-page: 9129 year: 2015 end-page: 9132 ident: bib144 article-title: Bright CuInS 2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators publication-title: Chem. Commun. – volume: 126 start-page: 12736 year: 2004 end-page: 12737 ident: bib139 article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3692 year: 2015 end-page: 3696 ident: bib154 article-title: Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut publication-title: Nano Lett. – year: 2018 ident: bib31 article-title: Semi-transparent energy-harvesting solar concentrator windows employing infrared transmission-enhanced glass and large-area microstructured diffractive elements publication-title: Photonics – volume: 2013 year: 2013 ident: bib36 article-title: Thin-film LSCs based on PMMA nanohybrid coatings: device optimization and outdoor performance publication-title: Int. J. Photoenergy – volume: 112 start-page: 120 year: 2015 end-page: 127 ident: bib41 article-title: A comparison of performance of flat and bent photovoltaic luminescent solar concentrators publication-title: Sol. Energy – start-page: 6649 year: 2009 end-page: 6651 ident: bib114 article-title: Europium complexes with high total photoluminescence quantum yields in solution and in PMMA publication-title: Chem. Commun. – volume: 5 start-page: 3621 year: 2018 end-page: 3627 ident: bib81 article-title: Upconversion-assisted dual-band luminescent solar concentrator coupled for high power conversion efficiency photovoltaic systems publication-title: ACS Photonics – start-page: 1 year: 2018 end-page: 9 ident: bib113 article-title: Design criteria for micro-optical tandem luminescent solar concentrators publication-title: IEEE Journal of Photovoltaics – volume: 1 start-page: 1700041 year: 2017 ident: bib25 article-title: Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator publication-title: Solar RRL – volume: 20 start-page: 024009 year: 2018 ident: bib157 article-title: Designing spectrally-selective mirrors for use in luminescent solar concentrators publication-title: J. Optic. – volume: 10 start-page: 3295 year: 2016 end-page: 3301 ident: bib151 article-title: Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer publication-title: ACS Nano – volume: 21 start-page: A735 year: 2013 end-page: A749 ident: bib166 article-title: Efficiency and loss mechanisms of plasmonic luminescent solar concentrators publication-title: Optic Express – volume: 28 start-page: 095205 year: 2017 ident: bib138 article-title: PbSe quantum dot based luminescent solar concentrators publication-title: Nanotechnology – volume: 5 start-page: 5798 year: 2012 end-page: 5802 ident: bib56 article-title: Optimizing luminescent solar concentrator design publication-title: Energy Environ. Sci. – volume: 1 start-page: 94 year: 2010 ident: bib149 article-title: Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites publication-title: Beilstein J. Nanotechnol. – volume: 4 start-page: 444 year: 2016 end-page: 456 ident: bib103 article-title: Design and response of high‐efficiency, planar, doped luminescent solar concentrators using organic–inorganic di‐ureasil waveguides publication-title: Advanced Optical Materials – year: 2011 ident: bib7 article-title: Photovoltaic technology for renewable electricity production: towards net zero energy buildings publication-title: Clean Electrical Power (ICCEP), 2011 International Conference on – year: 1989 ident: bib45 article-title: An Introduction to Ray Tracing – volume: 6 start-page: 1501913 year: 2016 ident: bib75 article-title: Near infrared, highly efficient luminescent solar concentrators publication-title: Advanced Energy Materials – volume: 76 start-page: 1197 year: 2000 end-page: 1199 ident: bib122 article-title: Quantum-dot concentrator and thermodynamic model for the global redshift publication-title: Appl. Phys. Lett. – volume: 36 start-page: 252 year: 2000 end-page: 253 ident: bib98 article-title: Improvement of efficiency of solar cells by application of the rare earth ions doped fluorescent glass publication-title: Kidorui – volume: 95 start-page: 2087 year: 2011 end-page: 2094 ident: bib62 article-title: Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators publication-title: Sol. Energy Mater. Sol. Cell. – volume: 370 start-page: 354 year: 1994 end-page: 357 ident: bib136 article-title: Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer publication-title: Nature – volume: 14 start-page: 6452 year: 2012 end-page: 6455 ident: bib33 article-title: NIR emitting ytterbium chelates for colourless luminescent solar concentrators publication-title: Phys. Chem. Chem. Phys. – volume: 85 start-page: 2571 year: 2011 end-page: 2579 ident: bib117 article-title: Luminescent solar concentrator employing rare earth complex with zero self-absorption loss publication-title: Sol. Energy – volume: 10 start-page: 9297 year: 2016 end-page: 9305 ident: bib147 article-title: Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking publication-title: ACS Nano – volume: 56 start-page: 1 year: 1998 end-page: 6 ident: bib100 article-title: Energy conversion efficiency of solar cells coated with fluorescent coloring agent publication-title: Sol. Energy Mater. Sol. Cell. – volume: 3 start-page: 1138 year: 2016 end-page: 1148 ident: bib127 article-title: Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots publication-title: ACS Photonics – volume: 321 start-page: 226 year: 2008 end-page: 228 ident: bib59 article-title: High-efficiency organic solar concentrators for photovoltaics publication-title: Science – volume: 96 start-page: 191901 year: 2010 ident: bib123 article-title: Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators publication-title: Appl. Phys. Lett. – volume: 122 start-page: 99 year: 2014 end-page: 106 ident: bib5 article-title: Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV publication-title: Sol. Energy Mater. Sol. Cell. – year: 2011 ident: bib37 article-title: Optical design and efficiency improvement for organic luminescent solar concentrators publication-title: SPIE Optical Engineering+ Applications – volume: 103 start-page: 114 year: 2012 end-page: 118 ident: bib108 article-title: Dye-doped polysiloxane rubbers for luminescent solar concentrator systems publication-title: Sol. Energy Mater. Sol. Cell. – volume: 178 start-page: 48 year: 2019 end-page: 55 ident: bib84 article-title: Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum publication-title: Sol. Energy – volume: 93 start-page: 1182 year: 2009 end-page: 1194 ident: bib89 article-title: Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review publication-title: Sol. Energy Mater. Sol. Cell. – volume: 85 start-page: 2179 year: 2011 end-page: 2184 ident: bib118 article-title: Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region publication-title: Sol. Energy – volume: 3 start-page: 1143 year: 2013 end-page: 1148 ident: bib15 article-title: Transparent luminescent solar concentrators for large‐area solar windows enabled by massive Stokes‐shift nanocluster phosphors publication-title: Advanced Energy Materials – volume: 117 start-page: 260 year: 2015 end-page: 267 ident: bib34 article-title: Optimization of large-size glass laminated luminescent solar concentrators publication-title: Sol. Energy – year: 2008 ident: bib148 article-title: The Effect of Size and Dopant Concentration on the Performance of Nanorod Luminescent Solar Concentrators – volume: 3 start-page: 278 year: 2016 end-page: 285 ident: bib161 article-title: Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors publication-title: ACS Photonics – year: 2010 ident: bib11 article-title: Directive 2010/31/EU of the european parliament and of the council of 19 May 2010 on the energy performance of buildings – volume: 37 start-page: 3087 year: 2012 end-page: 3089 ident: bib42 article-title: Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency publication-title: Opt. Lett. – volume: 16 start-page: 21773 year: 2008 end-page: 21792 ident: bib6 article-title: Luminescent Solar Concentrators-A review of recent results publication-title: Optic Express – volume: 2 start-page: 17072 year: 2017 ident: bib10 article-title: Luminescent solar concentrators for building-integrated photovoltaics publication-title: Nature Reviews Materials – volume: 171 start-page: 293 year: 2017 end-page: 301 ident: bib156 article-title: Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors publication-title: Sol. Energy Mater. Sol. Cell. – volume: 3 start-page: 520 year: 2018 end-page: 525 ident: bib30 article-title: High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows publication-title: ACS Energy Letters – volume: 115 start-page: 269 year: 2018 end-page: 275 ident: bib90 article-title: Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators publication-title: Renew. Energy – volume: 193 start-page: 5 year: 2018 end-page: 9 ident: bib164 article-title: Luminescence of Europium complex enhanced by surface plasmons of gold nanoparticles for possible application in luminescent solar concentrators publication-title: J. Lumin. – year: 2009 ident: bib86 article-title: Luminescent solar concentrators: cylindrical design publication-title: 24th European Photovoltaic Conference. Hamburg, Germany – volume: 2 start-page: 19 year: 1979 end-page: 29 ident: bib91 article-title: The effect of fluorescent wavelength shifting on solar cell spectral response publication-title: Sol. Energy Mater. – volume: 29 start-page: 1700821 year: 2017 ident: bib145 article-title: Near‐unity emitting copper‐doped colloidal semiconductor quantum wells for luminescent solar concentrators publication-title: Adv. Mater. – volume: 492 start-page: 60 year: 2010 end-page: 62 ident: bib165 article-title: Non-self-absorbing materials for luminescent solar concentrators (LSC) publication-title: Chem. Phys. Lett. – volume: 2 start-page: 5580 year: 2014 end-page: 5596 ident: bib35 article-title: Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials publication-title: J. Mater. Chem. – volume: 2 start-page: 257 year: 2008 end-page: 259 ident: bib60 article-title: A luminescent solar concentrator with 7.1% power conversion efficiency publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 38 start-page: 909 year: 2004 end-page: 917 ident: bib124 article-title: Quantum dot solar concentrators publication-title: Semiconductors – volume: 95 year: 2018 ident: bib14 article-title: Luminescent solar concentrator paintings: connecting art and energy publication-title: J. Chem. Educ. – year: 2018 ident: bib102 article-title: Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the reduction of the impact of certain plastic products on the environment – volume: 30 start-page: 334 year: 2007 end-page: 337 ident: bib115 article-title: Energy transfer in Pr3+/Yb3+ codoped tellurite glasses publication-title: Opt. Mater. – volume: 32 start-page: 263 year: 2017 end-page: 270 ident: bib79 article-title: On the ability of förster resonance energy transfer to enhance luminescent solar concentrator efficiency publication-title: Nanomater. Energy – volume: 182 start-page: 331 year: 2018 end-page: 338 ident: bib121 article-title: Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators publication-title: Sol. Energy Mater. Sol. Cell. – volume: 150 start-page: 30 year: 2017 end-page: 37 ident: bib23 article-title: Circular luminescent solar concentrators publication-title: Sol. Energy – volume: 15 start-page: 2299 year: 1976 end-page: 2300 ident: bib111 article-title: Luminescent greenhouse collector for solar radiation publication-title: Appl. Opt. – volume: 57 start-page: 08RD10 year: 2018 ident: bib18 article-title: Luminescent solar concentrator photovoltaic designs publication-title: Jpn. J. Appl. Phys. – volume: 31 start-page: 1720 year: 2009 end-page: 1722 ident: bib85 article-title: Influence of waveguide material on light emission in luminescent solar concentrators publication-title: Opt. Mater. – year: 2010 ident: bib43 article-title: Monte-Carlo Ray-Trace Modelling of Quantum Dot Solar Concentrators – volume: 2 start-page: 606 year: 2014 end-page: 611 ident: bib26 article-title: Near‐infrared harvesting transparent luminescent solar concentrators publication-title: Advanced Optical Materials – volume: 11 start-page: 177 year: 2017 ident: bib20 article-title: Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots publication-title: Nat. Photon. – year: 2017 ident: bib66 article-title: Surface Plasmon Enhanced, Coupled and Controlled Fluorescence – volume: 98 start-page: 021111 year: 2011 ident: bib158 article-title: Polarization-independent filters for luminescent solar concentrators publication-title: Appl. Phys. Lett. – volume: 451 start-page: 384 year: 2004 end-page: 388 ident: bib97 article-title: Silicon nanocrystals as light converter for solar cells publication-title: Thin Solid Films – volume: 3 start-page: 15039 year: 2015 end-page: 15048 ident: bib167 article-title: Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells publication-title: J. Mater. Chem. – volume: 93 start-page: 176 year: 2009 end-page: 182 ident: bib55 article-title: Increasing the efficiency of fluorescent concentrator systems publication-title: Sol. Energy Mater. Sol. Cell. – volume: 10 year: 2015 ident: bib70 article-title: Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots publication-title: Nat. Nanotechnol. – volume: 101 start-page: 123114 year: 2007 ident: bib16 article-title: Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting publication-title: J. Appl. Phys. – volume: 5 start-page: 17777 year: 2015 ident: bib125 article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS 2/ZnS quantum dots publication-title: Sci. Rep. – volume: 8 start-page: 1702922 year: 2018 ident: bib83 article-title: Multistate luminescent solar concentrator “smart” windows publication-title: Advanced Energy Materials – volume: 22 start-page: 60 year: 2011 end-page: 64 ident: bib106 article-title: Interaction of luminescent dyes with noble metal nanoparticles in organic–inorganic glasses for future luminescent materials publication-title: Polym. Adv. Technol. – volume: 20 start-page: 95 year: 2000 end-page: 107 ident: bib40 article-title: Outdoor testing and solar simulation for oxazine 750 laser dye luminescent solar concentrator publication-title: Renew. Energy – year: 2013 ident: bib64 article-title: Approach to Plasmonic Luminescent Solar Concentration – volume: 215 start-page: 1700634 year: 2018 ident: bib119 article-title: Dye aggregates in luminescent solar concentrators publication-title: Phys. Status Solidi – volume: 6 start-page: 2671 year: 2018 end-page: 2680 ident: bib29 article-title: Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells publication-title: J. Mater. Chem. – volume: 14 start-page: 4097 year: 2014 end-page: 4101 ident: bib63 article-title: Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency publication-title: Nano Lett. – volume: 212 start-page: 203 year: 2015 end-page: 210 ident: bib44 article-title: Large Stokes shift downshifting Eu (III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells publication-title: Phys. Status Solidi – volume: 12 start-page: 445 year: 2013 ident: bib133 article-title: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking publication-title: Nat. Mater. – volume: 143 start-page: 43 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib67 article-title: Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic thin-film luminescent solar concentrator publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.04.029 – volume: 50 start-page: 756 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib140 article-title: Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2018.06.025 – volume: 57 start-page: 08RD10 issue: 8S3 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib18 article-title: Luminescent solar concentrator photovoltaic designs publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.08RD10 – volume: 19 start-page: 24308 issue: 24 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib61 article-title: Cylindrical luminescent solar concentrators with near-infrared quantum dots publication-title: Optic Express doi: 10.1364/OE.19.024308 – volume: 113 start-page: 1288 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib22 article-title: The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype publication-title: Renew. Energy doi: 10.1016/j.renene.2017.07.025 – volume: 18 start-page: 61 issue: 1 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib8 article-title: BIPV: merging the photovoltaic with the construction industry publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.920 – volume: 11 start-page: 177 issue: 3 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib20 article-title: Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots publication-title: Nat. Photon. doi: 10.1038/nphoton.2017.5 – volume: 126 start-page: 12736 issue: 40 year: 2004 ident: 10.1016/j.optmat.2019.01.007_bib139 article-title: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments publication-title: J. Am. Chem. Soc. doi: 10.1021/ja040082h – volume: 51 start-page: 9129 issue: 44 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib144 article-title: Bright CuInS 2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators publication-title: Chem. Commun. doi: 10.1039/C5CC02007G – volume: 93 start-page: 1182 issue: 8 year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib89 article-title: Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2009.02.020 – volume: 129 start-page: 272 issue: 3 year: 2007 ident: 10.1016/j.optmat.2019.01.007_bib93 article-title: Efficiency enhancement of solar cells by application of a polymer coating containing a luminescent dye publication-title: J. Sol. Energy Eng. doi: 10.1115/1.2735347 – volume: 215 start-page: 1700634 issue: 2 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib119 article-title: Dye aggregates in luminescent solar concentrators publication-title: Phys. Status Solidi doi: 10.1002/pssa.201700634 – volume: 96 start-page: 191901 issue: 19 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib123 article-title: Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators publication-title: Appl. Phys. Lett. doi: 10.1063/1.3422485 – year: 1989 ident: 10.1016/j.optmat.2019.01.007_bib45 – year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib86 article-title: Luminescent solar concentrators: cylindrical design – volume: 14 start-page: 6452 issue: 18 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib33 article-title: NIR emitting ytterbium chelates for colourless luminescent solar concentrators publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40791d – volume: 101 start-page: 123114 issue: 12 year: 2007 ident: 10.1016/j.optmat.2019.01.007_bib16 article-title: Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting publication-title: J. Appl. Phys. doi: 10.1063/1.2748350 – volume: 6 start-page: 10059 issue: 37 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib141 article-title: Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02532K – volume: 22 start-page: 16687 issue: 33 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib53 article-title: Quantum dots for luminescent solar concentrators publication-title: J. Mater. Chem. doi: 10.1039/c2jm32366d – year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib31 article-title: Semi-transparent energy-harvesting solar concentrator windows employing infrared transmission-enhanced glass and large-area microstructured diffractive elements – year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib163 article-title: Outdoor characterization of luminescent solar concentrators and their possible architectural integration on a historically relevant site in Milan (Italy) – volume: 2 start-page: 606 issue: 7 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib26 article-title: Near‐infrared harvesting transparent luminescent solar concentrators publication-title: Advanced Optical Materials doi: 10.1002/adom.201400103 – year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib162 article-title: External quantum efficiency measurements of luminescent solar concentrators: a study of the impact of backside reflector size and shape – volume: 29 start-page: 1700821 issue: 30 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib145 article-title: Near‐unity emitting copper‐doped colloidal semiconductor quantum wells for luminescent solar concentrators publication-title: Adv. Mater. doi: 10.1002/adma.201700821 – volume: 150 start-page: 30 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib23 article-title: Circular luminescent solar concentrators publication-title: Sol. Energy doi: 10.1016/j.solener.2017.04.034 – volume: 98 start-page: 385 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib65 article-title: Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2011.11.030 – volume: 31 start-page: 1720 issue: 11 year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib85 article-title: Influence of waveguide material on light emission in luminescent solar concentrators publication-title: Opt. Mater. doi: 10.1016/j.optmat.2009.05.003 – year: 2008 ident: 10.1016/j.optmat.2019.01.007_bib148 – volume: 7 start-page: 802 issue: 3 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib12 article-title: Enhancement of power output from a large-area luminescent solar concentrator with 4.8× concentration via solar cell current matching publication-title: IEEE Journal of Photovoltaics doi: 10.1109/JPHOTOV.2017.2668606 – volume: 56 start-page: 1050 issue: 4 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib19 article-title: A leaf‐inspired luminescent solar concentrator for energy‐efficient continuous‐flow photochemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201611101 – volume: 106 start-page: 041110 issue: 4 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib150 article-title: Utilizing vertically aligned CdSe/CdS nanorods within a luminescent solar concentrator publication-title: Appl. Phys. Lett. doi: 10.1063/1.4906460 – volume: 117 start-page: 260 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib34 article-title: Optimization of large-size glass laminated luminescent solar concentrators publication-title: Sol. Energy doi: 10.1016/j.solener.2015.05.004 – volume: 2 start-page: 257 issue: 6 year: 2008 ident: 10.1016/j.optmat.2019.01.007_bib60 article-title: A luminescent solar concentrator with 7.1% power conversion efficiency publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.200802186 – volume: 16 start-page: 399 issue: 4 year: 1978 ident: 10.1016/j.optmat.2019.01.007_bib3 article-title: Fluorescent solar energy collectors: operating conditions with diffuse light publication-title: Appl. Phys. doi: 10.1007/BF00885865 – volume: 6 issue: 1 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib126 article-title: Silicon quantum dot-poly (methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b01346 – volume: 212 start-page: 203 issue: 1 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib44 article-title: Large Stokes shift downshifting Eu (III) films as efficiency enhancing UV blocking layers for dye sensitized solar cells publication-title: Phys. Status Solidi doi: 10.1002/pssa.201431683 – volume: 95 start-page: 216 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib54 article-title: Dual waveguide patterned luminescent solar concentrators publication-title: Sol. Energy doi: 10.1016/j.solener.2013.06.014 – volume: 95 issue: 7 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib14 article-title: Luminescent solar concentrator paintings: connecting art and energy publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.7b00742 – volume: 18 start-page: 395 issue: 1 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib146 article-title: Performance limits of luminescent solar concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04263 – year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib110 – volume: 1 start-page: 94 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib149 article-title: Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.1.11 – volume: 84 start-page: 411 issue: 1–4 year: 2004 ident: 10.1016/j.optmat.2019.01.007_bib13 article-title: Optimisation of a three-colour luminescent solar concentrator daylighting system publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2004.02.046 – volume: 3 start-page: 15039 issue: 29 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib167 article-title: Electrospun nanofibers with dual plasmonic-enhanced luminescent solar concentrator effects for high-performance organic photovoltaic cells publication-title: J. Mater. Chem. doi: 10.1039/C5TA02417J – volume: 170 start-page: 132 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib80 article-title: Increasing the area of a white scattering background can increase the power output of a luminescent solar concentrator publication-title: Sol. Energy doi: 10.1016/j.solener.2018.05.022 – volume: 2 start-page: 2368 issue: 10 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib152 article-title: Doped halide perovskite nanocrystals for reabsorption-free luminescent solar concentrators publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.7b00701 – volume: 7 start-page: 8770 issue: 16 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib107 article-title: Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01281 – volume: 146 start-page: 4406 issue: 12 year: 1999 ident: 10.1016/j.optmat.2019.01.007_bib99 article-title: Solar cell module coated with fluorescent coloring agent publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392651 – volume: 81 start-page: 813 issue: 6 year: 2007 ident: 10.1016/j.optmat.2019.01.007_bib58 article-title: Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices publication-title: Sol. Energy doi: 10.1016/j.solener.2006.09.011 – volume: 4 start-page: 444 issue: 3 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib103 article-title: Design and response of high‐efficiency, planar, doped luminescent solar concentrators using organic–inorganic di‐ureasil waveguides publication-title: Advanced Optical Materials doi: 10.1002/adom.201500412 – volume: 22 start-page: 60 issue: 1 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib106 article-title: Interaction of luminescent dyes with noble metal nanoparticles in organic–inorganic glasses for future luminescent materials publication-title: Polym. Adv. Technol. doi: 10.1002/pat.1842 – volume: 112 start-page: 120 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib41 article-title: A comparison of performance of flat and bent photovoltaic luminescent solar concentrators publication-title: Sol. Energy doi: 10.1016/j.solener.2014.12.001 – year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib43 – volume: 5 start-page: 17777 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib71 article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots publication-title: Sci. Rep. doi: 10.1038/srep17777 – ident: 10.1016/j.optmat.2019.01.007_bib11 – volume: 49 start-page: 745 issue: 4 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib159 article-title: Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors publication-title: Appl. Opt. doi: 10.1364/AO.49.000745 – year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib28 – volume: 12 start-page: 105 issue: 2 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib82 article-title: Tandem luminescent solar concentrators based on engineered quantum dots publication-title: Nat. Photon. doi: 10.1038/s41566-017-0070-7 – volume: 2 start-page: 17072 issue: 12 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib10 article-title: Luminescent solar concentrators for building-integrated photovoltaics publication-title: Nature Reviews Materials doi: 10.1038/natrevmats.2017.72 – volume: 492 start-page: 60 issue: 1–3 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib165 article-title: Non-self-absorbing materials for luminescent solar concentrators (LSC) publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.03.087 – volume: 1 start-page: 1406 issue: 7 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib95 article-title: Red-emitting AIEgen for luminescent solar concentrators publication-title: Materials Chemistry Frontiers doi: 10.1039/C7QM00008A – volume: 171 start-page: 293 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib156 article-title: Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2017.06.018 – volume: 120 start-page: 15 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib155 article-title: Efficient thin luminescent solar concentrator based on organometal halide perovskite publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2015.03.035 – volume: 5 start-page: 3621 issue: 9 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib81 article-title: Upconversion-assisted dual-band luminescent solar concentrator coupled for high power conversion efficiency photovoltaic systems publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00498 – volume: 12 start-page: 445 issue: 5 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib133 article-title: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking publication-title: Nat. Mater. doi: 10.1038/nmat3539 – volume: 111 start-page: 57 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib137 article-title: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2012.12.028 – year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib37 article-title: Optical design and efficiency improvement for organic luminescent solar concentrators – volume: 62 start-page: 284 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib132 article-title: Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators publication-title: Org. Electron. doi: 10.1016/j.orgel.2018.08.020 – volume: 9 start-page: 12540 issue: 14 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib105 article-title: High-performance near-infrared luminescent solar concentrators publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02700 – volume: 16 start-page: 21773 issue: 26 year: 2008 ident: 10.1016/j.optmat.2019.01.007_bib6 article-title: Luminescent Solar Concentrators-A review of recent results publication-title: Optic Express doi: 10.1364/OE.16.021773 – volume: 38 start-page: 909 issue: 8 year: 2004 ident: 10.1016/j.optmat.2019.01.007_bib124 article-title: Quantum dot solar concentrators publication-title: Semiconductors doi: 10.1134/1.1787111 – volume: 76 start-page: 330 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib38 article-title: Performance analysis of a large-area luminescent solar concentrator module publication-title: Renew. Energy doi: 10.1016/j.renene.2014.11.026 – volume: 50 start-page: 163 issue: 2 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib120 article-title: Promising fluorescent dye for solar energy conversion based on a perylene perinone publication-title: Appl. Opt. doi: 10.1364/AO.50.000163 – year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib7 article-title: Photovoltaic technology for renewable electricity production: towards net zero energy buildings – volume: 3 start-page: 1143 issue: 9 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib15 article-title: Transparent luminescent solar concentrators for large‐area solar windows enabled by massive Stokes‐shift nanocluster phosphors publication-title: Advanced Energy Materials doi: 10.1002/aenm.201300173 – volume: 36 start-page: 252 year: 2000 ident: 10.1016/j.optmat.2019.01.007_bib98 article-title: Improvement of efficiency of solar cells by application of the rare earth ions doped fluorescent glass publication-title: Kidorui – volume: 122 start-page: 99 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib5 article-title: Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2013.11.026 – volume: 20 start-page: 024009 issue: 2 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib157 article-title: Designing spectrally-selective mirrors for use in luminescent solar concentrators publication-title: J. Optic. – volume: 18 start-page: A536 issue: 104 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib57 article-title: Patterned dye structures limit reabsorption in luminescent solar concentrators publication-title: Optic Express doi: 10.1364/OE.18.00A536 – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib113 article-title: Design criteria for micro-optical tandem luminescent solar concentrators publication-title: IEEE Journal of Photovoltaics – volume: 6 start-page: 1501913 issue: 11 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib75 article-title: Near infrared, highly efficient luminescent solar concentrators publication-title: Advanced Energy Materials doi: 10.1002/aenm.201501913 – volume: 10 start-page: 3295 issue: 3 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib151 article-title: Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer publication-title: ACS Nano doi: 10.1021/acsnano.5b06772 – volume: 113 start-page: 123 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib17 article-title: Visual performance of red luminescent solar concentrating windows in an office environment publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.022 – volume: 14 start-page: 123 issue: 2 year: 1977 ident: 10.1016/j.optmat.2019.01.007_bib2 article-title: Solar energy conversion with fluorescent collectors publication-title: Appl. Phys. doi: 10.1007/BF00883080 – volume: 5 start-page: 1600851 issue: 8 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib32 article-title: Limits of visibly transparent luminescent solar concentrators publication-title: Advanced Optical Materials doi: 10.1002/adom.201600851 – volume: 2 start-page: 1576 issue: 11 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib49 article-title: Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00334 – volume: 15 start-page: 2299 issue: 10 year: 1976 ident: 10.1016/j.optmat.2019.01.007_bib111 article-title: Luminescent greenhouse collector for solar radiation publication-title: Appl. Opt. doi: 10.1364/AO.15.002299 – volume: 24 start-page: 1178 issue: 9 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib50 article-title: Scale up the collection area of luminescent solar concentrators towards metre‐length flexible waveguiding photovoltaics – volume: 3 start-page: 278 issue: 2 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib161 article-title: Enhanced photon collection in luminescent solar concentrators with distributed Bragg reflectors publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00630 – volume: 2 start-page: 19 issue: 1 year: 1979 ident: 10.1016/j.optmat.2019.01.007_bib91 article-title: The effect of fluorescent wavelength shifting on solar cell spectral response publication-title: Sol. Energy Mater. doi: 10.1016/0165-1633(79)90027-3 – volume: 24 start-page: 2028 issue: 13 year: 1985 ident: 10.1016/j.optmat.2019.01.007_bib39 article-title: Outdoor evaluation of luminescent solar concentrator prototypes publication-title: Appl. Opt. doi: 10.1364/AO.24.002028 – volume: 85 start-page: 2571 issue: 11 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib117 article-title: Luminescent solar concentrator employing rare earth complex with zero self-absorption loss publication-title: Sol. Energy doi: 10.1016/j.solener.2011.07.014 – volume: 121 start-page: 3252 issue: 6 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib143 article-title: Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b12379 – volume: 321 start-page: 226 issue: 5886 year: 2008 ident: 10.1016/j.optmat.2019.01.007_bib59 article-title: High-efficiency organic solar concentrators for photovoltaics publication-title: Science doi: 10.1126/science.1158342 – start-page: 6649 issue: 43 year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib114 article-title: Europium complexes with high total photoluminescence quantum yields in solution and in PMMA publication-title: Chem. Commun. doi: 10.1039/b914978c – volume: 20 start-page: 95 issue: 1 year: 2000 ident: 10.1016/j.optmat.2019.01.007_bib40 article-title: Outdoor testing and solar simulation for oxazine 750 laser dye luminescent solar concentrator publication-title: Renew. Energy doi: 10.1016/S0960-1481(99)00093-2 – volume: 5 start-page: 5798 issue: 2 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib56 article-title: Optimizing luminescent solar concentrator design publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02376D – volume: 2 start-page: 5580 issue: 16 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib35 article-title: Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials publication-title: J. Mater. Chem. doi: 10.1039/C3TA14964A – volume: 1 start-page: 16157 issue: 12 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib78 article-title: Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators publication-title: Nature Energy doi: 10.1038/nenergy.2016.157 – volume: 14 start-page: 1312 issue: 5 year: 2008 ident: 10.1016/j.optmat.2019.01.007_bib88 article-title: Advanced material concepts for luminescent solar concentrators publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2008.920282 – volume: 6 start-page: 2671 issue: 6 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib29 article-title: Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells publication-title: J. Mater. Chem. doi: 10.1039/C7TA04731B – year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib66 – volume: 45 start-page: 1562 issue: 11 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib116 article-title: Eu3+ doped silica xerogel luminescent layer having antireflection and spectrum modifying properties suitable for solar cell applications publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2010.07.021 – volume: 2 start-page: 12 issue: 1 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib9 article-title: Thirty years of luminescent solar concentrator research: solar energy for the built environment publication-title: Advanced Energy Materials doi: 10.1002/aenm.201100554 – volume: 8 start-page: 1702922 issue: 12 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib83 article-title: Multistate luminescent solar concentrator “smart” windows publication-title: Advanced Energy Materials doi: 10.1002/aenm.201702922 – volume: 10 start-page: 9297 issue: 10 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib147 article-title: Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking publication-title: ACS Nano doi: 10.1021/acsnano.6b03704 – start-page: 21 year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib160 article-title: The effect of an organic selectively-reflecting mirror on the performance of a luminescent solar concentrator – volume: 76 start-page: 1197 issue: 9 year: 2000 ident: 10.1016/j.optmat.2019.01.007_bib122 article-title: Quantum-dot concentrator and thermodynamic model for the global redshift publication-title: Appl. Phys. Lett. doi: 10.1063/1.125981 – volume: 22 start-page: 3076 issue: 28 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib135 article-title: White‐light‐emitting diodes with quantum dot color converters for display backlights publication-title: Adv. Mater. doi: 10.1002/adma.201000525 – volume: 56 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.optmat.2019.01.007_bib100 article-title: Energy conversion efficiency of solar cells coated with fluorescent coloring agent publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/S0927-0248(98)00105-6 – volume: 98 start-page: 021111 issue: 2 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib158 article-title: Polarization-independent filters for luminescent solar concentrators publication-title: Appl. Phys. Lett. doi: 10.1063/1.3541543 – volume: 186 start-page: 365 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib46 article-title: Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2018.07.008 – volume: 370 start-page: 354 issue: 6488 year: 1994 ident: 10.1016/j.optmat.2019.01.007_bib136 article-title: Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer publication-title: Nature doi: 10.1038/370354a0 – volume: 21 start-page: A735 issue: 105 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib166 article-title: Efficiency and loss mechanisms of plasmonic luminescent solar concentrators publication-title: Optic Express doi: 10.1364/OE.21.00A735 – year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib112 article-title: Optical coupling sensitivity study of luminescent PV devices using Monte Carlo ray tracing model – volume: 95 start-page: 2087 issue: 8 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib62 article-title: Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2011.02.027 – volume: 49 start-page: 1651 issue: 9 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib51 article-title: Characterization and reduction of reabsorption losses in luminescent solar concentrators publication-title: Appl. Opt. doi: 10.1364/AO.49.001651 – ident: 10.1016/j.optmat.2019.01.007_bib102 – volume: 47 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib129 article-title: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00701A – volume: 37 start-page: 3087 issue: 15 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib42 article-title: Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency publication-title: Opt. Lett. doi: 10.1364/OL.37.003087 – volume: 104 start-page: 153901 issue: 15 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib69 article-title: Cascade luminescent solar concentrators publication-title: Appl. Phys. Lett. doi: 10.1063/1.4871481 – volume: 178 start-page: 48 year: 2019 ident: 10.1016/j.optmat.2019.01.007_bib84 article-title: Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum publication-title: Sol. Energy doi: 10.1016/j.solener.2018.12.013 – volume: 28 start-page: 095205 issue: 9 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib138 article-title: PbSe quantum dot based luminescent solar concentrators publication-title: Nanotechnology doi: 10.1088/1361-6528/aa577f – volume: 85 start-page: 2179 issue: 9 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib118 article-title: Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region publication-title: Sol. Energy doi: 10.1016/j.solener.2011.06.007 – year: 1997 ident: 10.1016/j.optmat.2019.01.007_bib92 article-title: Effects on solar cell efficiency of fluorescence of rare-earth ions – volume: 451 start-page: 384 year: 2004 ident: 10.1016/j.optmat.2019.01.007_bib97 article-title: Silicon nanocrystals as light converter for solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.10.133 – volume: 15 start-page: 3692 issue: 6 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib154 article-title: Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut publication-title: Nano Lett. doi: 10.1021/nl5048779 – volume: 30 start-page: 190 year: 1997 ident: 10.1016/j.optmat.2019.01.007_bib101 article-title: Luminescence property and application of rare earth complexes incorporated in ORMOSIL matrices publication-title: Kidorui – volume: 1 start-page: 1700041 issue: 6 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib25 article-title: Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator publication-title: Solar RRL doi: 10.1002/solr.201700041 – volume: 15 start-page: 27 issue: 1 year: 2007 ident: 10.1016/j.optmat.2019.01.007_bib94 article-title: Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down‐shifting: ray‐tracing simulations publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.723 – volume: 3 start-page: 1138 issue: 6 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib127 article-title: Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00307 – volume: 85 start-page: 1629 issue: 8 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib52 article-title: Enhancing the performance of building integrated photovoltaics publication-title: Sol. Energy doi: 10.1016/j.solener.2009.10.004 – volume: 28 start-page: 497 issue: 3 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib74 article-title: A low reabsorbing luminescent solar concentrator employing π‐conjugated polymers publication-title: Adv. Mater. doi: 10.1002/adma.201504358 – volume: 7 start-page: 3503 issue: 17 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib134 article-title: Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01668 – volume: 5 start-page: 17777 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib125 article-title: Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS 2/ZnS quantum dots publication-title: Sci. Rep. doi: 10.1038/srep17777 – volume: 9 start-page: 1682 issue: 7 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib153 article-title: Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00275 – volume: 534 start-page: 509 year: 2019 ident: 10.1016/j.optmat.2019.01.007_bib130 article-title: Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.09.065 – volume: 37 start-page: 214 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib47 article-title: Perovskite quantum dots integrated in large-area luminescent solar concentrators publication-title: Nano energy doi: 10.1016/j.nanoen.2017.05.030 – volume: 1 start-page: 015502 issue: 1 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib87 article-title: Size-and structure-dependent efficiency enhancement for luminescent solar concentrators publication-title: J. Photon. Energy doi: 10.1117/1.3534864 – volume: 115 start-page: 269 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib90 article-title: Enhanced fluorescence polarization of fluorescent polycarbonate/zirconia nanocomposites for second generation luminescent solar concentrators publication-title: Renew. Energy doi: 10.1016/j.renene.2017.08.016 – year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib27 – volume: 15 start-page: 2299 year: 1976 ident: 10.1016/j.optmat.2019.01.007_bib1 article-title: Luminescent greenhouse collector for solar radiation publication-title: Appl. Optic. doi: 10.1364/AO.15.002299 – year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib64 – volume: 103 start-page: 647 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib21 article-title: The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier publication-title: Renew. Energy doi: 10.1016/j.renene.2016.10.078 – volume: 14 start-page: 4097 issue: 7 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib63 article-title: Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency publication-title: Nano Lett. doi: 10.1021/nl501627e – volume: 2 start-page: 343 year: 2011 ident: 10.1016/j.optmat.2019.01.007_bib24 article-title: Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides publication-title: Nat. Commun. doi: 10.1038/ncomms1318 – volume: 2013 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib36 article-title: Thin-film LSCs based on PMMA nanohybrid coatings: device optimization and outdoor performance publication-title: Int. J. Photoenergy doi: 10.1155/2013/235875 – volume: 63 start-page: 642 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib68 article-title: Double layered plasmonic thin-film luminescent solar concentrators based on polycarbonate supports publication-title: Renew. Energy doi: 10.1016/j.renene.2013.10.014 – volume: 44 start-page: 378 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib131 article-title: Colloidal carbon dots based highly stable luminescent solar concentrators publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2017.12.017 – volume: 3 start-page: 520 issue: 3 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib30 article-title: High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.7b01346 – volume: 94 start-page: 413 issue: 3 year: 2010 ident: 10.1016/j.optmat.2019.01.007_bib4 article-title: Escaping losses of diffuse light emitted by luminescent dyes doped in micro/nanostructured solar cell systems publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2009.10.018 – volume: 8 start-page: 3461 issue: 4 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib109 article-title: Zero-reabsorption doped-nanocrystal luminescent solar concentrators publication-title: ACS Nano doi: 10.1021/nn406360w – volume: 182 start-page: 331 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib121 article-title: Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2018.04.004 – volume: 193 start-page: 5 year: 2018 ident: 10.1016/j.optmat.2019.01.007_bib164 article-title: Luminescence of Europium complex enhanced by surface plasmons of gold nanoparticles for possible application in luminescent solar concentrators publication-title: J. Lumin. doi: 10.1016/j.jlumin.2017.09.030 – volume: 32 start-page: 263 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib79 article-title: On the ability of förster resonance energy transfer to enhance luminescent solar concentrator efficiency publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2016.11.058 – volume: 167 start-page: 133 year: 2017 ident: 10.1016/j.optmat.2019.01.007_bib142 article-title: Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2017.04.010 – year: 2008 ident: 10.1016/j.optmat.2019.01.007_bib96 – year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib72 – volume: 8 start-page: 392 issue: 5 year: 2014 ident: 10.1016/j.optmat.2019.01.007_bib76 article-title: Large-area luminescent solar concentrators based on/Stokes-shift-engineered/'nanocrystals in a mass-polymerized PMMA matrix publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.54 – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib70 article-title: Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.178 – volume: 4 start-page: 2126 issue: 12 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib73 article-title: Hybrid perovskite thin films as highly efficient luminescent solar concentrators publication-title: Advanced Optical Materials doi: 10.1002/adom.201600634 – volume: 144 start-page: 40 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib48 article-title: Losses in luminescent solar concentrators unveiled publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2015.08.008 – volume: 103 start-page: 114 year: 2012 ident: 10.1016/j.optmat.2019.01.007_bib108 article-title: Dye-doped polysiloxane rubbers for luminescent solar concentrator systems publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2012.04.019 – volume: 15 start-page: 1315 issue: 2 year: 2015 ident: 10.1016/j.optmat.2019.01.007_bib128 article-title: Nanocrystals for luminescent solar concentrators publication-title: Nano Lett. doi: 10.1021/nl504510t – volume: 12 start-page: 5354 issue: 38 year: 2016 ident: 10.1016/j.optmat.2019.01.007_bib77 article-title: Absorption enhancement in “giant” core/alloyed‐shell quantum dots for luminescent solar concentrator publication-title: Small doi: 10.1002/smll.201600945 – volume: 30 start-page: 334 issue: 2 year: 2007 ident: 10.1016/j.optmat.2019.01.007_bib115 article-title: Energy transfer in Pr3+/Yb3+ codoped tellurite glasses publication-title: Opt. Mater. doi: 10.1016/j.optmat.2006.11.045 – volume: 93 start-page: 176 issue: 2 year: 2009 ident: 10.1016/j.optmat.2019.01.007_bib55 article-title: Increasing the efficiency of fluorescent concentrator systems publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2008.09.048 – volume: 1 start-page: 7339 issue: 25 year: 2013 ident: 10.1016/j.optmat.2019.01.007_bib104 article-title: Engineering highly efficient Eu (III)-based tri-ureasil hybrids toward luminescent solar concentrators publication-title: J. Mater. Chem. doi: 10.1039/c3ta11463e |
| SSID | ssj0002566 |
| Score | 2.569674 |
| Snippet | A Luminescent Solar Concentrator (LSC) is an optical waveguide of transparent host material doped with luminophores. LSC technology works by trapping incident... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 212 |
| SubjectTerms | EQE Luminescent solar concentrator Optical efficiency Photovoltaic Power conversion efficiency Re-absorption |
| Title | An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications |
| URI | https://dx.doi.org/10.1016/j.optmat.2019.01.007 |
| Volume | 91 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-1252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002566 issn: 0925-3467 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-1252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002566 issn: 0925-3467 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-1252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002566 issn: 0925-3467 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-1252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002566 issn: 0925-3467 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-1252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002566 issn: 0925-3467 databaseCode: AKRWK dateStart: 19920101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqIiQuiFWUpfKBa2jcOHF8rCqqsvVSKvUWxY4NRZBENOXItzOTBYqEQOKWxZaisTN-b_zGQ8g5zAOmEoy4awkERWrjSO0pJ1Es0IkQcI2hgbtJMJ7x67k_b5FhkwuDssra91c-vfTW9ZNebc1evlj0pq7s-x785wBBkDnMMYOdC6xicPH-JfOAJb3cr4TGDrZu0udKjVeWF4ALUeAly8M7sajsT8vT2pIz2iHbNVakg-pzdknLpHtks9Rs6uU-sYOUogATg_s0s_QNaC_weAoM1y4eVtXQLvHN7eoF1e0oxKRT5LJ0iNmKGNfFYjsUgCvNH7MiA19VxAtN17e1D8hsdHk_HDt12QRHc8YKJ7S-9iq1i_WlscJlWgaWK18xsKrQiOu0q_osscpwHtt-mIgwgBvBObfeIWmnWWqOCHVdo3kYB36iDVAjLxaeFqEJDYAqGFfZIV5jrUjXZ4pjaYvnqBGPPUWVjSO0ceSyCGzcIc5nr7w6U-OP9qIZiOjb3IjA7f_a8_jfPU_IFt5V0sZT0i5eV-YM4EehuuX86pKNwdXNePIB0LTdiQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKEYILYhVl9YFraBYnTo5VBSrQ9tJW6s1KHBuCIIloypFvZyYLFAmBxC2JbSka2-P3xs8eQi5hHFhRjBF3GQBBCaQyAulERhxZnow5h2cMDYzG3mDG7ubuvEX6zVkYlFXWvr_y6aW3rr90a2t28yTpTszAdh2Y5wBBkDnM18g6c22ODOzq_UvnAWt6uWEJtQ2s3pyfK0VeWV4AMESFV1De3olZZX9an1bWnJsdsl2DRdqr_meXtFS6RzZK0aZc7BPdSykqMDG6TzNN34D3ApGnQHF18rCs-naBJcPlC8rbUYlJJ0hmaR-PK2JgF7PtUECuNH_MigycVREmkq7uax-Q2c31tD8w6rwJhmSWVRi-dqVTyV20GyjNTUsGnmaRG1lgVi4R2Ekzsq1YR4qxUNt-zH0PXjhjTDuHpJ1mqToi1DSVZH7oubFUwI2ckDuS-8pXgKqgY4MOcRprCVlfKo65LZ5Fox57EpWNBdpYmJYAG3eI8dkqry7V-KM-bzpCfBscAvz-ry2P_93ygmwOpqOhGN6O70_IFpZUOsdT0i5el-oMsEgRnZdj7QMMSd8e |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+various+configurations+of+Luminescent+Solar+Concentrators+for+photovoltaic+applications&rft.jtitle=Optical+materials&rft.au=Rafiee%2C+Mehran&rft.au=Chandra%2C+Subhash&rft.au=Ahmed%2C+Hind&rft.au=McCormack%2C+Sarah+J.&rft.date=2019-05-01&rft.pub=Elsevier+B.V&rft.issn=0925-3467&rft.eissn=1873-1252&rft.volume=91&rft.spage=212&rft.epage=227&rft_id=info:doi/10.1016%2Fj.optmat.2019.01.007&rft.externalDocID=S092534671930028X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon |