Sleep staging algorithm based on smartwatch sensors for healthy and sleep apnea populations

Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this p...

Full description

Saved in:
Bibliographic Details
Published inSleep medicine Vol. 119; pp. 535 - 548
Main Authors Silva, Fernanda B., Uribe, Luisa F.S., Cepeda, Felipe X., Alquati, Vitor F.S., Guimarães, João P.S., Silva, Yuri G.A., Santos, Orlem L. dos, de Oliveira, Alberto A., de Aguiar, Gabriel H.M., Andersen, Monica L., Tufik, Sergio, Lee, Wonkyu, Li, Lin Tzy, Penatti, Otávio A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text
ISSN1389-9457
1878-5506
1878-5506
DOI10.1016/j.sleep.2024.05.033

Cover

Abstract Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch. In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings. The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables. •Proposal and evaluation of a smartwatch-based solution for sleep staging.•Experimental evaluation on a large and diverse dataset of 1522 sleep recordings.•Solution based on neural networks trained on accelerometer and PPG sensor data.•71.6 % of balanced accuracy for classification of 4 sleep stages compared with PSG.•Low correlation of performance with demographic variables and sleep apnea disorder.
AbstractList Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch. In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings. The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.
Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch. In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings. The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables. •Proposal and evaluation of a smartwatch-based solution for sleep staging.•Experimental evaluation on a large and diverse dataset of 1522 sleep recordings.•Solution based on neural networks trained on accelerometer and PPG sensor data.•71.6 % of balanced accuracy for classification of 4 sleep stages compared with PSG.•Low correlation of performance with demographic variables and sleep apnea disorder.
Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.OBJECTIVESleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.METHODIn this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.RESULTSIn the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.CONCLUSIONThe results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.
Author Tufik, Sergio
Alquati, Vitor F.S.
Li, Lin Tzy
Penatti, Otávio A.
de Aguiar, Gabriel H.M.
Guimarães, João P.S.
de Oliveira, Alberto A.
Lee, Wonkyu
Uribe, Luisa F.S.
Cepeda, Felipe X.
Silva, Fernanda B.
Santos, Orlem L. dos
Silva, Yuri G.A.
Andersen, Monica L.
Author_xml – sequence: 1
  givenname: Fernanda B.
  surname: Silva
  fullname: Silva, Fernanda B.
  email: fernanda.b@samsung.com
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 2
  givenname: Luisa F.S.
  surname: Uribe
  fullname: Uribe, Luisa F.S.
  email: luisa.s@samsung.com
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 3
  givenname: Felipe X.
  surname: Cepeda
  fullname: Cepeda, Felipe X.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 4
  givenname: Vitor F.S.
  surname: Alquati
  fullname: Alquati, Vitor F.S.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 5
  givenname: João P.S.
  surname: Guimarães
  fullname: Guimarães, João P.S.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 6
  givenname: Yuri G.A.
  surname: Silva
  fullname: Silva, Yuri G.A.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 7
  givenname: Orlem L. dos
  surname: Santos
  fullname: Santos, Orlem L. dos
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 8
  givenname: Alberto A.
  surname: de Oliveira
  fullname: de Oliveira, Alberto A.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 9
  givenname: Gabriel H.M.
  surname: de Aguiar
  fullname: de Aguiar, Gabriel H.M.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 10
  givenname: Monica L.
  surname: Andersen
  fullname: Andersen, Monica L.
  organization: Sleep Institute, São Paulo, SP, 04020-060, Brazil
– sequence: 11
  givenname: Sergio
  surname: Tufik
  fullname: Tufik, Sergio
  organization: Sleep Institute, São Paulo, SP, 04020-060, Brazil
– sequence: 12
  givenname: Wonkyu
  surname: Lee
  fullname: Lee, Wonkyu
  organization: Samsung Electronics, Suwon, 16677, Republic of Korea
– sequence: 13
  givenname: Lin Tzy
  surname: Li
  fullname: Li, Lin Tzy
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
– sequence: 14
  givenname: Otávio A.
  surname: Penatti
  fullname: Penatti, Otávio A.
  organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38810479$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1vFDEURS0URD5_ARJySTODPfasPUIUKEoCUiQKoKKw3nje7Hrx2oPtBe2_z-xu0qQglV9xz5XvOScnIQYk5C1nNWd88WFdZ4841Q1rZM3amgnxipxxrXTVtmxxMt9Cd1UnW3VKznNeM8YV1_INORVacyZVd0Z-fd930Fxg6cKSgl_G5MpqQ3vIONAYaN5AKv-g2BXNGHJMmY4x0RWCL6sdhTDQwz8oTAGBTnHaeiguhnxJXo_gM149vhfk5-3Nj-sv1f23u6_Xn-8rKzkvlUbsuUKxaKCBkTNouk51gmndD1LCCGM7qK7lXAocFGcN6BGZFmh5x9peiAvy_tg7pfhni7mYjcsWvYeAcZuNYIumFY2Sao6-e4xu-w0OZkpunrczT0LmQHcM2BRzTjga68phTkngvOHM7OWbtTmMNnv5hrVmlj-z4hn7VP9_6tORwlnRX4fJZOswWBxcQlvMEN0L_MdnvPUuOAv-N-5epB8Amj6zlw
CitedBy_id crossref_primary_10_3390_electronics14030629
Cites_doi 10.1109/TNSRE.2020.3011181
10.1016/j.sleh.2022.04.003
10.1093/sleep/zsz306
10.1088/1361-6579/aa9047
10.1038/s41746-019-0126-9
10.1038/s41746-021-00440-5
10.3390/s23083957
10.1249/MSS.0000000000001947
10.1093/sleep/zsx097
10.3390/bios11060185
10.2147/NSS.S306808
10.1109/ACCESS.2019.2944801
10.1088/1361-6579/ac5a78
10.1378/chest.15-1010
10.1038/s41746-021-00510-8
10.3390/s21134302
10.1109/JBHI.2016.2550104
10.3390/s23187976
10.1038/s41598-019-49703-y
10.1111/jsr.12169
10.1016/j.heliyon.2019.e02529
10.1007/s00521-016-2365-x
10.1109/JBHI.2022.3225363
10.5664/jcsm.7932
10.1007/s13534-017-0044-1
10.1093/sleep/zsaa048
10.1093/sleep/27.7.1255
10.1109/TNSRE.2017.2721116
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.sleep.2024.05.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1878-5506
EndPage 548
ExternalDocumentID 38810479
10_1016_j_sleep_2024_05_033
S138994572400248X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
6PF
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OJ-
OV.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSN
SSZ
T5K
UHS
UNMZH
UV1
Z5R
~G-
~HD
~S-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c411t-8eeb17e362a2af10a299793088bd44afaf5d7951143ed7102a8fe083ec1905b33
IEDL.DBID .~1
ISSN 1389-9457
1878-5506
IngestDate Mon Sep 29 02:38:21 EDT 2025
Mon Jul 21 05:30:18 EDT 2025
Wed Oct 01 04:39:03 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Sat Feb 22 15:42:51 EST 2025
Tue Oct 14 19:32:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sleep stages
Sleep
Wearable
Smartwatch
Machine learning
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-8eeb17e362a2af10a299793088bd44afaf5d7951143ed7102a8fe083ec1905b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38810479
PQID 3062532747
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3062532747
pubmed_primary_38810479
crossref_citationtrail_10_1016_j_sleep_2024_05_033
crossref_primary_10_1016_j_sleep_2024_05_033
elsevier_sciencedirect_doi_10_1016_j_sleep_2024_05_033
elsevier_clinicalkey_doi_10_1016_j_sleep_2024_05_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Sleep medicine
PublicationTitleAlternate Sleep Med
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Patel, Mehra (bib33) 2015; 148
(bib39) 2024
Supratak, Dong, Wu, Guo (bib44) 2017; 25
Chinoy, Cuellar, Huwa, Jameson, Watson, Bessman, Hirsch, Cooper, Drummond, Markwald (bib6) 2020; 44
Sun, Ganglberger, Panneerselvam, Leone, Quadri, Goparaju, Tesh, Akeju, Thomas, Westover (bib43) 2020; 43
Haghayegh, Khoshnevis, Smolensky, Diller, Castriotta (bib17) 2021; 21
de Zambotti, Cellini, Goldstone, Colrain, Baker (bib48) 2019
Sridhar, Shoeb, Stephens, Kharbouch, Shimol, Burkart, Ghoreyshi, Myers (bib42) 2020; 3
Beattie, Oyang, Statan, Ghoreyshi, Pantelopoulos, Russell, Heneghan (bib3) 2017; 38
Fallmann, Chen (bib8) 2019; 7
Guillot, Sauvet, During, Thorey (bib15) 2020; 28
Pardamean, Budiarto, Mahesworo, Hidayat, Sudigyo (bib32) 2022
Shrivastava, Jung, Saadat, Sirohi, Crewson (bib41) 2014; 4
Kamath, Watanabe, Upton (bib22) 2012
Sheth, Fusi (bib40) 2019
Guillot, Sauvet, During, Thorey (bib16) 2020; 28
Fonseca, Weysen, Goelema, Møst, Radha, Lunsingh Scheurleer, van den Heuvel, Aarts (bib11) 2017; 40
Miller, Roach, Lastella, Scanlan, Bellenger, Halson, Sargent (bib28) 2021; 11
Lin, Goyal, Girshick, He, Dollár (bib27) 2017
Garcia-Molina, Jiang (bib12) 2022; 43
Perslev, Jensen, Darkner, Jennum, Igel (bib35) 2021
Radha, Fonseca, Moreau, Ross, Cerny, Anderer, Long, Aarts (bib37) 2019; 9
O'Reilly, Gosselin, Carrier, Nielsen (bib30) 2014; 23
Chambon, Galtier, Arnal, Wainrib, Gramfort (bib5) 2017; PP
Fonseca, den Teuling, Long, Aarts (bib10) 2017; 21
Wulterkens, Fonseca, Hermans, Ross, Cerny, Anderer, Long, van Dijk, Vandenbussche, Pillen, van Gilst, Overeem (bib47) 2021
Jung, Kim, Lee, Seo, Seo, Choi, Joo (bib21) 2022; 8
Ohayon, Carskadon, Guilleminault, Vitiello (bib29) 2004; 27
de Lima, Freitas, Lucafo, Fioravanti, Seidel, Penatti (bib26) 2023
Radha, Fonseca, Moreau, Ross, Cerny, Anderer, Long, Aarts (bib38) 2021; 4
Altini, Kinnunen (bib2) 2021; 21
Kheirkhahan, Chakraborty, Wanigatunga, Corbett, Manini, Ranka (bib23) 2018; 18
Phan, Andreotti, Cooray, Chén, Vos (bib36) 2018
Uçar, Bozkurt, Bilgin, Polat (bib45) 2018; 29
Falkner, Klein, Hutter (bib7) 2018
Lee, X.K., Chee, N.I., Ong, J.L., Teo, T.B., van Rijn, E., Lo, J.C., Chee, M.W., 2. Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. J Clin Sleep Med 15, 1337–1346. doi:10.5664/jcsm.7932.
Iber (bib18) 2007
Fonseca, van Gilst, Radha, Ross, Moreau, Cerny, Anderer, Long, van Dijk, Overeem (bib9) 2020; 43
bib1
Casal, Di Persia, Schlotthauer (bib4) 2019; 5
Perslev, Darkner, Kempfner, Nikolic, Jennum, Igel (bib34) 2021; 4
Wei, Zhang, Wang, Dang (bib46) 2018; 8
Kotzen, Charlton, Salabi, Amar, Landesberg, Behar (bib24) 2022; 27
Jung, Kim, Choi, Joo (bib20) 2023; 23
Palotti, Mall, Aupetit, Rueschman, Singh, Sathyanarayana, Taheri, Fernandez-Luque (bib31) 2019; 2
Imtiaz (bib19) 2021
Ghassemi, Moody, Lehman, Song, Li, Sun, Mark, Westover, Clifford (bib13) 2018; 45
Graft, Romine, Watts, Schroeder, Jawad, Banerjee (bib14) 2023; 23
Sun (10.1016/j.sleep.2024.05.033_bib43) 2020; 43
Garcia-Molina (10.1016/j.sleep.2024.05.033_bib12) 2022; 43
Wulterkens (10.1016/j.sleep.2024.05.033_bib47) 2021
Fonseca (10.1016/j.sleep.2024.05.033_bib10) 2017; 21
Iber (10.1016/j.sleep.2024.05.033_bib18) 2007
Kamath (10.1016/j.sleep.2024.05.033_bib22) 2012
Radha (10.1016/j.sleep.2024.05.033_bib37) 2019; 9
Graft (10.1016/j.sleep.2024.05.033_bib14) 2023; 23
de Lima (10.1016/j.sleep.2024.05.033_bib26) 2023
Ghassemi (10.1016/j.sleep.2024.05.033_bib13) 2018; 45
Guillot (10.1016/j.sleep.2024.05.033_bib16) 2020; 28
Perslev (10.1016/j.sleep.2024.05.033_bib35) 2021
de Zambotti (10.1016/j.sleep.2024.05.033_bib48) 2019
Beattie (10.1016/j.sleep.2024.05.033_bib3) 2017; 38
Sridhar (10.1016/j.sleep.2024.05.033_bib42) 2020; 3
Ohayon (10.1016/j.sleep.2024.05.033_bib29) 2004; 27
Palotti (10.1016/j.sleep.2024.05.033_bib31) 2019; 2
Fonseca (10.1016/j.sleep.2024.05.033_bib9) 2020; 43
Miller (10.1016/j.sleep.2024.05.033_bib28) 2021; 11
Pardamean (10.1016/j.sleep.2024.05.033_bib32) 2022
Fallmann (10.1016/j.sleep.2024.05.033_bib8) 2019; 7
Supratak (10.1016/j.sleep.2024.05.033_bib44) 2017; 25
Fonseca (10.1016/j.sleep.2024.05.033_bib11) 2017; 40
O'Reilly (10.1016/j.sleep.2024.05.033_bib30) 2014; 23
Guillot (10.1016/j.sleep.2024.05.033_bib15) 2020; 28
Jung (10.1016/j.sleep.2024.05.033_bib20) 2023; 23
Kotzen (10.1016/j.sleep.2024.05.033_bib24) 2022; 27
Shrivastava (10.1016/j.sleep.2024.05.033_bib41) 2014; 4
Altini (10.1016/j.sleep.2024.05.033_bib2) 2021; 21
Chambon (10.1016/j.sleep.2024.05.033_bib5) 2017; PP
10.1016/j.sleep.2024.05.033_bib25
Perslev (10.1016/j.sleep.2024.05.033_bib34) 2021; 4
Chinoy (10.1016/j.sleep.2024.05.033_bib6) 2020; 44
Falkner (10.1016/j.sleep.2024.05.033_bib7) 2018
Radha (10.1016/j.sleep.2024.05.033_bib38) 2021; 4
Jung (10.1016/j.sleep.2024.05.033_bib21) 2022; 8
Wei (10.1016/j.sleep.2024.05.033_bib46) 2018; 8
Kheirkhahan (10.1016/j.sleep.2024.05.033_bib23) 2018; 18
Uçar (10.1016/j.sleep.2024.05.033_bib45) 2018; 29
Patel (10.1016/j.sleep.2024.05.033_bib33) 2015; 148
Sheth (10.1016/j.sleep.2024.05.033_bib40) 2019
Lin (10.1016/j.sleep.2024.05.033_bib27)
Phan (10.1016/j.sleep.2024.05.033_bib36) 2018
Imtiaz (10.1016/j.sleep.2024.05.033_bib19)
Casal (10.1016/j.sleep.2024.05.033_bib4) 2019; 5
Haghayegh (10.1016/j.sleep.2024.05.033_bib17) 2021; 21
References_xml – volume: 3
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib42
  article-title: Deep learning for automated sleep staging using instantaneous heart rate
  publication-title: NPJ digital medicine
– volume: 18
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib23
  article-title: Wrist accelerometer shape feature derivation methods for assessing activities of daily living
  publication-title: BMC Med Inf Decis Making
– volume: 27
  start-page: 924
  year: 2022
  end-page: 932
  ident: bib24
  article-title: Sleepppg-net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 885
  year: 2021
  end-page: 897doi
  ident: bib47
  article-title: It is all in the wrist: wearable sleep staging in a clinical population versus reference polysomnography
  publication-title: Nat Sci Sleep
– year: 2021
  ident: bib19
  article-title: A systematic review of sensing technologies for wearable sleep staging. Sensors 21
– volume: 23
  start-page: 7976
  year: 2023
  ident: bib20
  article-title: Validating a consumer smartwatch for nocturnal respiratory rate measurements in sleep monitoring
  publication-title: Sensors
– volume: 11
  year: 2021
  ident: bib28
  article-title: A validation study of a commercial wearable device to automatically detect and estimate sleep
  publication-title: Biosensors
– volume: 43
  start-page: zsz306
  year: 2020
  ident: bib43
  article-title: Sleep staging from electrocardiography and respiration with deep learning
  publication-title: Sleep
– year: 2018
  ident: bib7
  article-title: Bohb: robust and efficient hyperparameter optimization at scale
– volume: 45
  start-page: 1
  year: 2018
  end-page: 4
  ident: bib13
  article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– year: 2021
  ident: bib35
  article-title: U-time: a fully convolutional network for time series segmentation applied to sleep staging
– volume: 4
  year: 2021
  ident: bib38
  article-title: A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
  publication-title: NPJ Digital Medicine
– ident: bib1
  article-title: Instituto do Sono - EPISONO
– volume: 8
  start-page: 420
  year: 2022
  end-page: 428
  ident: bib21
  article-title: Performance evaluation of a wrist-worn reflectance pulse oximeter during sleep
  publication-title: Sleep Health
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: bib44
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 28
  start-page: 1955
  year: 2020
  end-page: 1965
  ident: bib16
  article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– year: 2019
  ident: bib40
  article-title: Feature gradients: scalable feature selection via discrete relaxation
– year: 2012
  ident: bib22
  article-title: Heart rate variability (HRV) signal analysis: clinical applications
– reference: Lee, X.K., Chee, N.I., Ong, J.L., Teo, T.B., van Rijn, E., Lo, J.C., Chee, M.W., 2. Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. J Clin Sleep Med 15, 1337–1346. doi:10.5664/jcsm.7932.
– start-page: 1085
  year: 2023
  end-page: 1089
  ident: bib26
  article-title: Neural architecture search for tiny detectors of inter-beat intervals
  publication-title: 2023 31st European signal processing conference (EUSIPCO)
– volume: 44
  year: 2020
  ident: bib6
  article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography
  publication-title: Sleep
– volume: 21
  start-page: 956
  year: 2017
  end-page: 966
  ident: bib10
  article-title: Cardiorespiratory sleep stage detection using conditional random fields
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 43
  year: 2022
  ident: bib12
  article-title: Interbeat interval-based sleep staging: work in progress toward real-time implementation
  publication-title: Physiol Meas
– volume: 28
  start-page: 1955
  year: 2020
  end-page: 1965
  ident: bib15
  article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 21
  year: 2021
  ident: bib17
  article-title: Deep neural network sleep scoring using combined motion and heart rate variability data
  publication-title: Sensors
– volume: 7
  start-page: 142421
  year: 2019
  end-page: 142440
  ident: bib8
  article-title: Computational sleep behavior analysis: a survey
  publication-title: IEEE Access
– volume: 27
  start-page: 1255
  year: 2004
  end-page: 1273
  ident: bib29
  article-title: Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan
  publication-title: Sleep
– year: 2024
  ident: bib39
  article-title: Samsung Developers samsung privileged health SDK
– volume: 148
  start-page: 1127
  year: 2015
  end-page: 1129
  ident: bib33
  article-title: The weighty issue of obesity management in sleep apnea
  publication-title: Chest
– year: 2019
  ident: bib48
  article-title: Wearable sleep technology in clinical and research settings
  publication-title: Med Sci Sports Exerc
– volume: 9
  year: 2019
  ident: bib37
  article-title: Sleep stage classification from heart-rate variability using long short-term memory neural networks
  publication-title: Sci Rep
– volume: 5
  year: 2019
  ident: bib4
  article-title: Sleep-wake stages classification using heart rate signals from pulse oximetry
  publication-title: Heliyon
– year: 2017
  ident: bib27
  article-title: Focal loss for dense object detection
– volume: 4
  year: 2014
  ident: bib41
  article-title: How to interpret the results of a sleep study
  publication-title: J Community Hosp Intern Med Perspect
– year: 2007
  ident: bib18
  article-title: The aasm manual for the scoring of sleep and associated events: rules. Terminology and Technical Specification
– volume: 8
  start-page: 87
  year: 2018
  end-page: 93
  ident: bib46
  article-title: The research of sleep staging based on single-lead electrocardiogram and deep neural network
  publication-title: Biomedical engineering letters
– volume: 23
  year: 2023
  ident: bib14
  article-title: A preliminary study of the efficacy of using a wrist-worn multiparameter sensor for the prediction of cognitive flow states in university-level students
  publication-title: Sensors
– volume: 2
  start-page: 50
  year: 2019
  ident: bib31
  article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques
  publication-title: NPJ digital medicine
– year: 2018
  ident: bib36
  article-title: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. CoRR abs/1809.10932
– volume: PP
  year: 2017
  ident: bib5
  article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 40
  year: 2017
  ident: bib11
  article-title: Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle aged adults
  publication-title: Sleep
– volume: 38
  start-page: 1968
  year: 2017
  ident: bib3
  article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals
  publication-title: Physiol Meas
– volume: 4
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib34
  article-title: U-sleep: resilient high-frequency sleep staging
  publication-title: NPJ digital medicine
– volume: 23
  year: 2014
  ident: bib30
  article-title: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research
  publication-title: J Sleep Res
– volume: 43
  year: 2020
  ident: bib9
  article-title: Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population
  publication-title: Sleep
– year: 2022
  ident: bib32
  article-title: Sleep stage classification for medical purposes: machine learning evaluation for imbalanced data
– volume: 29
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib45
  article-title: Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques
  publication-title: Neural Comput Appl
– volume: 21
  year: 2021
  ident: bib2
  article-title: The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the oura ring
  publication-title: Sensors
– volume: 28
  start-page: 1955
  year: 2020
  ident: 10.1016/j.sleep.2024.05.033_bib15
  article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3011181
– year: 2018
  ident: 10.1016/j.sleep.2024.05.033_bib7
– year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib35
– ident: 10.1016/j.sleep.2024.05.033_bib19
– volume: 8
  start-page: 420
  year: 2022
  ident: 10.1016/j.sleep.2024.05.033_bib21
  article-title: Performance evaluation of a wrist-worn reflectance pulse oximeter during sleep
  publication-title: Sleep Health
  doi: 10.1016/j.sleh.2022.04.003
– volume: 43
  start-page: zsz306
  year: 2020
  ident: 10.1016/j.sleep.2024.05.033_bib43
  article-title: Sleep staging from electrocardiography and respiration with deep learning
  publication-title: Sleep
  doi: 10.1093/sleep/zsz306
– volume: 45
  start-page: 1
  year: 2018
  ident: 10.1016/j.sleep.2024.05.033_bib13
  article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018
  publication-title: 2018 Computing in Cardiology Conference (CinC)
– volume: 38
  start-page: 1968
  year: 2017
  ident: 10.1016/j.sleep.2024.05.033_bib3
  article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/aa9047
– volume: 2
  start-page: 50
  year: 2019
  ident: 10.1016/j.sleep.2024.05.033_bib31
  article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-019-0126-9
– volume: 4
  start-page: 1
  year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib34
  article-title: U-sleep: resilient high-frequency sleep staging
  publication-title: NPJ digital medicine
  doi: 10.1038/s41746-021-00440-5
– volume: PP
  year: 2017
  ident: 10.1016/j.sleep.2024.05.033_bib5
  article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 23
  year: 2023
  ident: 10.1016/j.sleep.2024.05.033_bib14
  article-title: A preliminary study of the efficacy of using a wrist-worn multiparameter sensor for the prediction of cognitive flow states in university-level students
  publication-title: Sensors
  doi: 10.3390/s23083957
– year: 2019
  ident: 10.1016/j.sleep.2024.05.033_bib48
  article-title: Wearable sleep technology in clinical and research settings
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000001947
– volume: 44
  year: 2020
  ident: 10.1016/j.sleep.2024.05.033_bib6
  article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography
  publication-title: Sleep
– volume: 28
  start-page: 1955
  year: 2020
  ident: 10.1016/j.sleep.2024.05.033_bib16
  article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3011181
– volume: 40
  year: 2017
  ident: 10.1016/j.sleep.2024.05.033_bib11
  article-title: Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle aged adults
  publication-title: Sleep
  doi: 10.1093/sleep/zsx097
– year: 2019
  ident: 10.1016/j.sleep.2024.05.033_bib40
– volume: 4
  year: 2014
  ident: 10.1016/j.sleep.2024.05.033_bib41
  article-title: How to interpret the results of a sleep study
  publication-title: J Community Hosp Intern Med Perspect
– volume: 11
  year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib28
  article-title: A validation study of a commercial wearable device to automatically detect and estimate sleep
  publication-title: Biosensors
  doi: 10.3390/bios11060185
– start-page: 885
  year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib47
  article-title: It is all in the wrist: wearable sleep staging in a clinical population versus reference polysomnography
  publication-title: Nat Sci Sleep
  doi: 10.2147/NSS.S306808
– volume: 7
  start-page: 142421
  year: 2019
  ident: 10.1016/j.sleep.2024.05.033_bib8
  article-title: Computational sleep behavior analysis: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944801
– volume: 43
  year: 2022
  ident: 10.1016/j.sleep.2024.05.033_bib12
  article-title: Interbeat interval-based sleep staging: work in progress toward real-time implementation
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/ac5a78
– volume: 148
  start-page: 1127
  year: 2015
  ident: 10.1016/j.sleep.2024.05.033_bib33
  article-title: The weighty issue of obesity management in sleep apnea
  publication-title: Chest
  doi: 10.1378/chest.15-1010
– volume: 21
  year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib17
  article-title: Deep neural network sleep scoring using combined motion and heart rate variability data
  publication-title: Sensors
– year: 2007
  ident: 10.1016/j.sleep.2024.05.033_bib18
– volume: 4
  year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib38
  article-title: A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
  publication-title: NPJ Digital Medicine
  doi: 10.1038/s41746-021-00510-8
– volume: 21
  year: 2021
  ident: 10.1016/j.sleep.2024.05.033_bib2
  article-title: The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the oura ring
  publication-title: Sensors
  doi: 10.3390/s21134302
– volume: 21
  start-page: 956
  year: 2017
  ident: 10.1016/j.sleep.2024.05.033_bib10
  article-title: Cardiorespiratory sleep stage detection using conditional random fields
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2550104
– year: 2022
  ident: 10.1016/j.sleep.2024.05.033_bib32
– volume: 23
  start-page: 7976
  year: 2023
  ident: 10.1016/j.sleep.2024.05.033_bib20
  article-title: Validating a consumer smartwatch for nocturnal respiratory rate measurements in sleep monitoring
  publication-title: Sensors
  doi: 10.3390/s23187976
– volume: 9
  year: 2019
  ident: 10.1016/j.sleep.2024.05.033_bib37
  article-title: Sleep stage classification from heart-rate variability using long short-term memory neural networks
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49703-y
– volume: 23
  year: 2014
  ident: 10.1016/j.sleep.2024.05.033_bib30
  article-title: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research
  publication-title: J Sleep Res
  doi: 10.1111/jsr.12169
– volume: 5
  year: 2019
  ident: 10.1016/j.sleep.2024.05.033_bib4
  article-title: Sleep-wake stages classification using heart rate signals from pulse oximetry
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02529
– volume: 3
  start-page: 1
  year: 2020
  ident: 10.1016/j.sleep.2024.05.033_bib42
  article-title: Deep learning for automated sleep staging using instantaneous heart rate
  publication-title: NPJ digital medicine
– year: 2012
  ident: 10.1016/j.sleep.2024.05.033_bib22
– volume: 29
  start-page: 1
  year: 2018
  ident: 10.1016/j.sleep.2024.05.033_bib45
  article-title: Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2365-x
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.sleep.2024.05.033_bib23
  article-title: Wrist accelerometer shape feature derivation methods for assessing activities of daily living
  publication-title: BMC Med Inf Decis Making
– volume: 27
  start-page: 924
  year: 2022
  ident: 10.1016/j.sleep.2024.05.033_bib24
  article-title: Sleepppg-net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3225363
– ident: 10.1016/j.sleep.2024.05.033_bib25
  doi: 10.5664/jcsm.7932
– start-page: 1085
  year: 2023
  ident: 10.1016/j.sleep.2024.05.033_bib26
  article-title: Neural architecture search for tiny detectors of inter-beat intervals
– volume: 8
  start-page: 87
  year: 2018
  ident: 10.1016/j.sleep.2024.05.033_bib46
  article-title: The research of sleep staging based on single-lead electrocardiogram and deep neural network
  publication-title: Biomedical engineering letters
  doi: 10.1007/s13534-017-0044-1
– volume: 43
  year: 2020
  ident: 10.1016/j.sleep.2024.05.033_bib9
  article-title: Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population
  publication-title: Sleep
  doi: 10.1093/sleep/zsaa048
– year: 2018
  ident: 10.1016/j.sleep.2024.05.033_bib36
– volume: 27
  start-page: 1255
  year: 2004
  ident: 10.1016/j.sleep.2024.05.033_bib29
  article-title: Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan
  publication-title: Sleep
  doi: 10.1093/sleep/27.7.1255
– volume: 25
  start-page: 1998
  year: 2017
  ident: 10.1016/j.sleep.2024.05.033_bib44
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2721116
– ident: 10.1016/j.sleep.2024.05.033_bib27
SSID ssj0017184
Score 2.440367
Snippet Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 535
SubjectTerms Accelerometry - instrumentation
Accelerometry - methods
Adult
Aged
Algorithms
Female
Heart Rate - physiology
Humans
Machine learning
Male
Middle Aged
Neural Networks, Computer
Photoplethysmography - instrumentation
Photoplethysmography - methods
Polysomnography - instrumentation
Sleep
Sleep Apnea Syndromes - diagnosis
Sleep stages
Sleep Stages - physiology
Smartwatch
Wearable
Wearable Electronic Devices
Title Sleep staging algorithm based on smartwatch sensors for healthy and sleep apnea populations
URI https://www.clinicalkey.com/#!/content/1-s2.0-S138994572400248X
https://dx.doi.org/10.1016/j.sleep.2024.05.033
https://www.ncbi.nlm.nih.gov/pubmed/38810479
https://www.proquest.com/docview/3062532747
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-5506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017184
  issn: 1389-9457
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-5506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017184
  issn: 1389-9457
  databaseCode: .~1
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1878-5506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017184
  issn: 1389-9457
  databaseCode: ACRLP
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1878-5506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017184
  issn: 1389-9457
  databaseCode: AIKHN
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-5506
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017184
  issn: 1389-9457
  databaseCode: AKRWK
  dateStart: 20000201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX3wRxdu8jAg-Wre0yZY-juGYtyHOwcCHkLapm2ztWDfEF3-75_QGPmyCT6UloclJ8p3vkHMh5MpvhNIVIsTqZcLijGnLlaGwQLmjRtIeC_BG96nf7A35_UiMKqRTxMKgW2WO_Rmmp2idf6nn0qzPJ5P6AK_YXC5a6AVpcznCCHbewioGN9-lmwcD7M0K20rXwtZF5qHUxyuZGoNJK22epu90nHXaaR37TLVQd4_s5vSRtrMR7pOKiQ7I2wB_QIHnYcUhqqfvMZj84xlFFRXQOKLJDOb0Cag7pgnYrfEioUBWaRYE-UV1FNB0kFTPI6PpvKzqlRySYff2tdOz8qIJlg-SXlrSAPq2DOglbeuQNTToGziDACZewLkOdSiCFtAq4EkmQHqhZWiAhxkfqIHwHOeIbEVxZE4IZdIEjcDjIfI6xnyXQxOHgdZjHmOurhK7EJby84ziWNhiqgrXsQ-VDl6hhFVDKJBwlVyXneZZQo3NzXmxCqqIFQV0UwD4m7s1y26_ttPfHS-LpVZw0PD2REcmXiUKbCtbOGjEV8lxtgfKCThSYsoL9_S_vz0jO_iW-QGfk63lYmUugO0svVq6nWtku915eXzG591Dr_8DZZf-_g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDLAgEK_yNBIjoXViN86IKlCBtgtUqsRgOYlDi9qkaooQC7-du7wkhhaJNfHJ9tn-7jv5fEfIVdCMpCdEhNXLhMUZ05YnI2GBcUeLpH0W4o1ur9_qDPjjUAxrpF2-hcGwygL7c0zP0Lr40ii02ZiNx41nvGLzuHAxCtLmcrhGNriwXfTAbr6rOA8G4JtXtpWehc3L1ENZkFc6MQazVto8y9_pOMvM0zL6mZmh-x2yXfBHepsPcZfUTLxHXp-xAwpED0sOUT15S8DnH00p2qiQJjFNpzCpT4DdEU3BcU3mKQW2SvNXkF9UxyHNBkn1LDaazqqyXuk-GdzfvbQ7VlE1wQpA1QtLGoBf14Bh0raOWFODwYFDCGjih5zrSEcidIFXAVEyIfILLSMDRMwEwA2E7zgHZD1OYnNEKJMmbIY-j5DYMRZ4HJo4DMwe8xnzdJ3YpbJUUKQUx8oWE1XGjr2rbPAKNayaQoGG6-S6EprlGTVWN-flKqjysSjAmwLEXy3WqsR-7ae_BS_LpVZw0vD6RMcm-UgVOFe2cNCLr5PDfA9UE3CkxJwX3vF_u70gm52XXld1H_pPJ2QL_-RBwadkfTH_MGdAfRb-eba1fwBHfP7-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+staging+algorithm+based+on+smartwatch+sensors+for+healthy+and+sleep+apnea+populations&rft.jtitle=Sleep+medicine&rft.au=Silva%2C+Fernanda+B&rft.au=Uribe%2C+Luisa+F+S&rft.au=Cepeda%2C+Felipe+X&rft.au=Alquati%2C+Vitor+F+S&rft.date=2024-07-01&rft.eissn=1878-5506&rft.volume=119&rft.spage=535&rft_id=info:doi/10.1016%2Fj.sleep.2024.05.033&rft_id=info%3Apmid%2F38810479&rft.externalDocID=38810479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-9457&client=summon