Sleep staging algorithm based on smartwatch sensors for healthy and sleep apnea populations
Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this p...
        Saved in:
      
    
          | Published in | Sleep medicine Vol. 119; pp. 535 - 548 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.07.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1389-9457 1878-5506 1878-5506  | 
| DOI | 10.1016/j.sleep.2024.05.033 | 
Cover
| Abstract | Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.
In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.
In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.
The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.
•Proposal and evaluation of a smartwatch-based solution for sleep staging.•Experimental evaluation on a large and diverse dataset of 1522 sleep recordings.•Solution based on neural networks trained on accelerometer and PPG sensor data.•71.6 % of balanced accuracy for classification of 4 sleep stages compared with PSG.•Low correlation of performance with demographic variables and sleep apnea disorder. | 
    
|---|---|
| AbstractList | Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.
In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.
In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.
The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables. Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions. In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch. In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings. The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables. •Proposal and evaluation of a smartwatch-based solution for sleep staging.•Experimental evaluation on a large and diverse dataset of 1522 sleep recordings.•Solution based on neural networks trained on accelerometer and PPG sensor data.•71.6 % of balanced accuracy for classification of 4 sleep stages compared with PSG.•Low correlation of performance with demographic variables and sleep apnea disorder. Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.OBJECTIVESleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it is possible to enable the sleep staging feature and enhance users' understanding about their sleep and health conditions.In this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.METHODIn this paper, we present and validate a recurrent neural network based model with 23 input features extracted from accelerometer and photoplethysmography sensors data for both healthy and sleep apnea populations. We designed a lightweight and fast solution to enable the prediction of sleep stages for each 30-s epoch. This solution was developed using a large dataset of 1522 night recordings collected from a highly heterogeneous population and different versions of Samsung smartwatch.In the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.RESULTSIn the classification of four sleep stages (wake, light, deep, and rapid eye movements sleep), the proposed solution achieved 71.6 % of balanced accuracy and a Cohen's kappa of 0.56 in a test set with 586 recordings.The results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.CONCLUSIONThe results presented in this paper validate our proposal as a competitive wearable solution for sleep staging. Additionally, the use of a large and diverse data set contributes to the robustness of our solution, and corroborates the validation of algorithm's performance. Some additional analysis performed for healthy and sleep apnea population demonstrated that algorithm's performance has low correlation with demographic variables.  | 
    
| Author | Tufik, Sergio Alquati, Vitor F.S. Li, Lin Tzy Penatti, Otávio A. de Aguiar, Gabriel H.M. Guimarães, João P.S. de Oliveira, Alberto A. Lee, Wonkyu Uribe, Luisa F.S. Cepeda, Felipe X. Silva, Fernanda B. Santos, Orlem L. dos Silva, Yuri G.A. Andersen, Monica L.  | 
    
| Author_xml | – sequence: 1 givenname: Fernanda B. surname: Silva fullname: Silva, Fernanda B. email: fernanda.b@samsung.com organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 2 givenname: Luisa F.S. surname: Uribe fullname: Uribe, Luisa F.S. email: luisa.s@samsung.com organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 3 givenname: Felipe X. surname: Cepeda fullname: Cepeda, Felipe X. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 4 givenname: Vitor F.S. surname: Alquati fullname: Alquati, Vitor F.S. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 5 givenname: João P.S. surname: Guimarães fullname: Guimarães, João P.S. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 6 givenname: Yuri G.A. surname: Silva fullname: Silva, Yuri G.A. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 7 givenname: Orlem L. dos surname: Santos fullname: Santos, Orlem L. dos organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 8 givenname: Alberto A. surname: de Oliveira fullname: de Oliveira, Alberto A. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 9 givenname: Gabriel H.M. surname: de Aguiar fullname: de Aguiar, Gabriel H.M. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 10 givenname: Monica L. surname: Andersen fullname: Andersen, Monica L. organization: Sleep Institute, São Paulo, SP, 04020-060, Brazil – sequence: 11 givenname: Sergio surname: Tufik fullname: Tufik, Sergio organization: Sleep Institute, São Paulo, SP, 04020-060, Brazil – sequence: 12 givenname: Wonkyu surname: Lee fullname: Lee, Wonkyu organization: Samsung Electronics, Suwon, 16677, Republic of Korea – sequence: 13 givenname: Lin Tzy surname: Li fullname: Li, Lin Tzy organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil – sequence: 14 givenname: Otávio A. surname: Penatti fullname: Penatti, Otávio A. organization: Samsung R&D Institute Brazil (SRBR), Campinas, SP, 13097-160, Brazil  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38810479$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkD1vFDEURS0URD5_ARJySTODPfasPUIUKEoCUiQKoKKw3nje7Hrx2oPtBe2_z-xu0qQglV9xz5XvOScnIQYk5C1nNWd88WFdZ4841Q1rZM3amgnxipxxrXTVtmxxMt9Cd1UnW3VKznNeM8YV1_INORVacyZVd0Z-fd930Fxg6cKSgl_G5MpqQ3vIONAYaN5AKv-g2BXNGHJMmY4x0RWCL6sdhTDQwz8oTAGBTnHaeiguhnxJXo_gM149vhfk5-3Nj-sv1f23u6_Xn-8rKzkvlUbsuUKxaKCBkTNouk51gmndD1LCCGM7qK7lXAocFGcN6BGZFmh5x9peiAvy_tg7pfhni7mYjcsWvYeAcZuNYIumFY2Sao6-e4xu-w0OZkpunrczT0LmQHcM2BRzTjga68phTkngvOHM7OWbtTmMNnv5hrVmlj-z4hn7VP9_6tORwlnRX4fJZOswWBxcQlvMEN0L_MdnvPUuOAv-N-5epB8Amj6zlw | 
    
| CitedBy_id | crossref_primary_10_3390_electronics14030629 | 
    
| Cites_doi | 10.1109/TNSRE.2020.3011181 10.1016/j.sleh.2022.04.003 10.1093/sleep/zsz306 10.1088/1361-6579/aa9047 10.1038/s41746-019-0126-9 10.1038/s41746-021-00440-5 10.3390/s23083957 10.1249/MSS.0000000000001947 10.1093/sleep/zsx097 10.3390/bios11060185 10.2147/NSS.S306808 10.1109/ACCESS.2019.2944801 10.1088/1361-6579/ac5a78 10.1378/chest.15-1010 10.1038/s41746-021-00510-8 10.3390/s21134302 10.1109/JBHI.2016.2550104 10.3390/s23187976 10.1038/s41598-019-49703-y 10.1111/jsr.12169 10.1016/j.heliyon.2019.e02529 10.1007/s00521-016-2365-x 10.1109/JBHI.2022.3225363 10.5664/jcsm.7932 10.1007/s13534-017-0044-1 10.1093/sleep/zsaa048 10.1093/sleep/27.7.1255 10.1109/TNSRE.2017.2721116  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.sleep.2024.05.033 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1878-5506 | 
    
| EndPage | 548 | 
    
| ExternalDocumentID | 38810479 10_1016_j_sleep_2024_05_033 S138994572400248X  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 6PF 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAWTL AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OJ- OV. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SEL SES SEW SJN SPCBC SSH SSN SSZ T5K UHS UNMZH UV1 Z5R ~G- ~HD ~S- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c411t-8eeb17e362a2af10a299793088bd44afaf5d7951143ed7102a8fe083ec1905b33 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1389-9457 1878-5506  | 
    
| IngestDate | Mon Sep 29 02:38:21 EDT 2025 Mon Jul 21 05:30:18 EDT 2025 Wed Oct 01 04:39:03 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Sat Feb 22 15:42:51 EST 2025 Tue Oct 14 19:32:31 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Sleep stages Sleep Wearable Smartwatch Machine learning  | 
    
| Language | English | 
    
| License | Copyright © 2024 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c411t-8eeb17e362a2af10a299793088bd44afaf5d7951143ed7102a8fe083ec1905b33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 38810479 | 
    
| PQID | 3062532747 | 
    
| PQPubID | 23479 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_3062532747 pubmed_primary_38810479 crossref_citationtrail_10_1016_j_sleep_2024_05_033 crossref_primary_10_1016_j_sleep_2024_05_033 elsevier_sciencedirect_doi_10_1016_j_sleep_2024_05_033 elsevier_clinicalkey_doi_10_1016_j_sleep_2024_05_033  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2024 2024-07-00 20240701  | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Sleep medicine | 
    
| PublicationTitleAlternate | Sleep Med | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Patel, Mehra (bib33) 2015; 148 (bib39) 2024 Supratak, Dong, Wu, Guo (bib44) 2017; 25 Chinoy, Cuellar, Huwa, Jameson, Watson, Bessman, Hirsch, Cooper, Drummond, Markwald (bib6) 2020; 44 Sun, Ganglberger, Panneerselvam, Leone, Quadri, Goparaju, Tesh, Akeju, Thomas, Westover (bib43) 2020; 43 Haghayegh, Khoshnevis, Smolensky, Diller, Castriotta (bib17) 2021; 21 de Zambotti, Cellini, Goldstone, Colrain, Baker (bib48) 2019 Sridhar, Shoeb, Stephens, Kharbouch, Shimol, Burkart, Ghoreyshi, Myers (bib42) 2020; 3 Beattie, Oyang, Statan, Ghoreyshi, Pantelopoulos, Russell, Heneghan (bib3) 2017; 38 Fallmann, Chen (bib8) 2019; 7 Guillot, Sauvet, During, Thorey (bib15) 2020; 28 Pardamean, Budiarto, Mahesworo, Hidayat, Sudigyo (bib32) 2022 Shrivastava, Jung, Saadat, Sirohi, Crewson (bib41) 2014; 4 Kamath, Watanabe, Upton (bib22) 2012 Sheth, Fusi (bib40) 2019 Guillot, Sauvet, During, Thorey (bib16) 2020; 28 Fonseca, Weysen, Goelema, Møst, Radha, Lunsingh Scheurleer, van den Heuvel, Aarts (bib11) 2017; 40 Miller, Roach, Lastella, Scanlan, Bellenger, Halson, Sargent (bib28) 2021; 11 Lin, Goyal, Girshick, He, Dollár (bib27) 2017 Garcia-Molina, Jiang (bib12) 2022; 43 Perslev, Jensen, Darkner, Jennum, Igel (bib35) 2021 Radha, Fonseca, Moreau, Ross, Cerny, Anderer, Long, Aarts (bib37) 2019; 9 O'Reilly, Gosselin, Carrier, Nielsen (bib30) 2014; 23 Chambon, Galtier, Arnal, Wainrib, Gramfort (bib5) 2017; PP Fonseca, den Teuling, Long, Aarts (bib10) 2017; 21 Wulterkens, Fonseca, Hermans, Ross, Cerny, Anderer, Long, van Dijk, Vandenbussche, Pillen, van Gilst, Overeem (bib47) 2021 Jung, Kim, Lee, Seo, Seo, Choi, Joo (bib21) 2022; 8 Ohayon, Carskadon, Guilleminault, Vitiello (bib29) 2004; 27 de Lima, Freitas, Lucafo, Fioravanti, Seidel, Penatti (bib26) 2023 Radha, Fonseca, Moreau, Ross, Cerny, Anderer, Long, Aarts (bib38) 2021; 4 Altini, Kinnunen (bib2) 2021; 21 Kheirkhahan, Chakraborty, Wanigatunga, Corbett, Manini, Ranka (bib23) 2018; 18 Phan, Andreotti, Cooray, Chén, Vos (bib36) 2018 Uçar, Bozkurt, Bilgin, Polat (bib45) 2018; 29 Falkner, Klein, Hutter (bib7) 2018 Lee, X.K., Chee, N.I., Ong, J.L., Teo, T.B., van Rijn, E., Lo, J.C., Chee, M.W., 2. Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. J Clin Sleep Med 15, 1337–1346. doi:10.5664/jcsm.7932. Iber (bib18) 2007 Fonseca, van Gilst, Radha, Ross, Moreau, Cerny, Anderer, Long, van Dijk, Overeem (bib9) 2020; 43 bib1 Casal, Di Persia, Schlotthauer (bib4) 2019; 5 Perslev, Darkner, Kempfner, Nikolic, Jennum, Igel (bib34) 2021; 4 Wei, Zhang, Wang, Dang (bib46) 2018; 8 Kotzen, Charlton, Salabi, Amar, Landesberg, Behar (bib24) 2022; 27 Jung, Kim, Choi, Joo (bib20) 2023; 23 Palotti, Mall, Aupetit, Rueschman, Singh, Sathyanarayana, Taheri, Fernandez-Luque (bib31) 2019; 2 Imtiaz (bib19) 2021 Ghassemi, Moody, Lehman, Song, Li, Sun, Mark, Westover, Clifford (bib13) 2018; 45 Graft, Romine, Watts, Schroeder, Jawad, Banerjee (bib14) 2023; 23 Sun (10.1016/j.sleep.2024.05.033_bib43) 2020; 43 Garcia-Molina (10.1016/j.sleep.2024.05.033_bib12) 2022; 43 Wulterkens (10.1016/j.sleep.2024.05.033_bib47) 2021 Fonseca (10.1016/j.sleep.2024.05.033_bib10) 2017; 21 Iber (10.1016/j.sleep.2024.05.033_bib18) 2007 Kamath (10.1016/j.sleep.2024.05.033_bib22) 2012 Radha (10.1016/j.sleep.2024.05.033_bib37) 2019; 9 Graft (10.1016/j.sleep.2024.05.033_bib14) 2023; 23 de Lima (10.1016/j.sleep.2024.05.033_bib26) 2023 Ghassemi (10.1016/j.sleep.2024.05.033_bib13) 2018; 45 Guillot (10.1016/j.sleep.2024.05.033_bib16) 2020; 28 Perslev (10.1016/j.sleep.2024.05.033_bib35) 2021 de Zambotti (10.1016/j.sleep.2024.05.033_bib48) 2019 Beattie (10.1016/j.sleep.2024.05.033_bib3) 2017; 38 Sridhar (10.1016/j.sleep.2024.05.033_bib42) 2020; 3 Ohayon (10.1016/j.sleep.2024.05.033_bib29) 2004; 27 Palotti (10.1016/j.sleep.2024.05.033_bib31) 2019; 2 Fonseca (10.1016/j.sleep.2024.05.033_bib9) 2020; 43 Miller (10.1016/j.sleep.2024.05.033_bib28) 2021; 11 Pardamean (10.1016/j.sleep.2024.05.033_bib32) 2022 Fallmann (10.1016/j.sleep.2024.05.033_bib8) 2019; 7 Supratak (10.1016/j.sleep.2024.05.033_bib44) 2017; 25 Fonseca (10.1016/j.sleep.2024.05.033_bib11) 2017; 40 O'Reilly (10.1016/j.sleep.2024.05.033_bib30) 2014; 23 Guillot (10.1016/j.sleep.2024.05.033_bib15) 2020; 28 Jung (10.1016/j.sleep.2024.05.033_bib20) 2023; 23 Kotzen (10.1016/j.sleep.2024.05.033_bib24) 2022; 27 Shrivastava (10.1016/j.sleep.2024.05.033_bib41) 2014; 4 Altini (10.1016/j.sleep.2024.05.033_bib2) 2021; 21 Chambon (10.1016/j.sleep.2024.05.033_bib5) 2017; PP 10.1016/j.sleep.2024.05.033_bib25 Perslev (10.1016/j.sleep.2024.05.033_bib34) 2021; 4 Chinoy (10.1016/j.sleep.2024.05.033_bib6) 2020; 44 Falkner (10.1016/j.sleep.2024.05.033_bib7) 2018 Radha (10.1016/j.sleep.2024.05.033_bib38) 2021; 4 Jung (10.1016/j.sleep.2024.05.033_bib21) 2022; 8 Wei (10.1016/j.sleep.2024.05.033_bib46) 2018; 8 Kheirkhahan (10.1016/j.sleep.2024.05.033_bib23) 2018; 18 Uçar (10.1016/j.sleep.2024.05.033_bib45) 2018; 29 Patel (10.1016/j.sleep.2024.05.033_bib33) 2015; 148 Sheth (10.1016/j.sleep.2024.05.033_bib40) 2019 Lin (10.1016/j.sleep.2024.05.033_bib27) Phan (10.1016/j.sleep.2024.05.033_bib36) 2018 Imtiaz (10.1016/j.sleep.2024.05.033_bib19) Casal (10.1016/j.sleep.2024.05.033_bib4) 2019; 5 Haghayegh (10.1016/j.sleep.2024.05.033_bib17) 2021; 21  | 
    
| References_xml | – volume: 3 start-page: 1 year: 2020 end-page: 10 ident: bib42 article-title: Deep learning for automated sleep staging using instantaneous heart rate publication-title: NPJ digital medicine – volume: 18 start-page: 1 year: 2018 end-page: 13 ident: bib23 article-title: Wrist accelerometer shape feature derivation methods for assessing activities of daily living publication-title: BMC Med Inf Decis Making – volume: 27 start-page: 924 year: 2022 end-page: 932 ident: bib24 article-title: Sleepppg-net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 885 year: 2021 end-page: 897doi ident: bib47 article-title: It is all in the wrist: wearable sleep staging in a clinical population versus reference polysomnography publication-title: Nat Sci Sleep – year: 2021 ident: bib19 article-title: A systematic review of sensing technologies for wearable sleep staging. Sensors 21 – volume: 23 start-page: 7976 year: 2023 ident: bib20 article-title: Validating a consumer smartwatch for nocturnal respiratory rate measurements in sleep monitoring publication-title: Sensors – volume: 11 year: 2021 ident: bib28 article-title: A validation study of a commercial wearable device to automatically detect and estimate sleep publication-title: Biosensors – volume: 43 start-page: zsz306 year: 2020 ident: bib43 article-title: Sleep staging from electrocardiography and respiration with deep learning publication-title: Sleep – year: 2018 ident: bib7 article-title: Bohb: robust and efficient hyperparameter optimization at scale – volume: 45 start-page: 1 year: 2018 end-page: 4 ident: bib13 article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018 publication-title: 2018 Computing in Cardiology Conference (CinC) – year: 2021 ident: bib35 article-title: U-time: a fully convolutional network for time series segmentation applied to sleep staging – volume: 4 year: 2021 ident: bib38 article-title: A deep transfer learning approach for wearable sleep stage classification with photoplethysmography publication-title: NPJ Digital Medicine – ident: bib1 article-title: Instituto do Sono - EPISONO – volume: 8 start-page: 420 year: 2022 end-page: 428 ident: bib21 article-title: Performance evaluation of a wrist-worn reflectance pulse oximeter during sleep publication-title: Sleep Health – volume: 25 start-page: 1998 year: 2017 end-page: 2008 ident: bib44 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 28 start-page: 1955 year: 2020 end-page: 1965 ident: bib16 article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging publication-title: IEEE Trans Neural Syst Rehabil Eng – year: 2019 ident: bib40 article-title: Feature gradients: scalable feature selection via discrete relaxation – year: 2012 ident: bib22 article-title: Heart rate variability (HRV) signal analysis: clinical applications – reference: Lee, X.K., Chee, N.I., Ong, J.L., Teo, T.B., van Rijn, E., Lo, J.C., Chee, M.W., 2. Validation of a consumer sleep wearable device with actigraphy and polysomnography in adolescents across sleep opportunity manipulations. J Clin Sleep Med 15, 1337–1346. doi:10.5664/jcsm.7932. – start-page: 1085 year: 2023 end-page: 1089 ident: bib26 article-title: Neural architecture search for tiny detectors of inter-beat intervals publication-title: 2023 31st European signal processing conference (EUSIPCO) – volume: 44 year: 2020 ident: bib6 article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography publication-title: Sleep – volume: 21 start-page: 956 year: 2017 end-page: 966 ident: bib10 article-title: Cardiorespiratory sleep stage detection using conditional random fields publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 43 year: 2022 ident: bib12 article-title: Interbeat interval-based sleep staging: work in progress toward real-time implementation publication-title: Physiol Meas – volume: 28 start-page: 1955 year: 2020 end-page: 1965 ident: bib15 article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 21 year: 2021 ident: bib17 article-title: Deep neural network sleep scoring using combined motion and heart rate variability data publication-title: Sensors – volume: 7 start-page: 142421 year: 2019 end-page: 142440 ident: bib8 article-title: Computational sleep behavior analysis: a survey publication-title: IEEE Access – volume: 27 start-page: 1255 year: 2004 end-page: 1273 ident: bib29 article-title: Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan publication-title: Sleep – year: 2024 ident: bib39 article-title: Samsung Developers samsung privileged health SDK – volume: 148 start-page: 1127 year: 2015 end-page: 1129 ident: bib33 article-title: The weighty issue of obesity management in sleep apnea publication-title: Chest – year: 2019 ident: bib48 article-title: Wearable sleep technology in clinical and research settings publication-title: Med Sci Sports Exerc – volume: 9 year: 2019 ident: bib37 article-title: Sleep stage classification from heart-rate variability using long short-term memory neural networks publication-title: Sci Rep – volume: 5 year: 2019 ident: bib4 article-title: Sleep-wake stages classification using heart rate signals from pulse oximetry publication-title: Heliyon – year: 2017 ident: bib27 article-title: Focal loss for dense object detection – volume: 4 year: 2014 ident: bib41 article-title: How to interpret the results of a sleep study publication-title: J Community Hosp Intern Med Perspect – year: 2007 ident: bib18 article-title: The aasm manual for the scoring of sleep and associated events: rules. Terminology and Technical Specification – volume: 8 start-page: 87 year: 2018 end-page: 93 ident: bib46 article-title: The research of sleep staging based on single-lead electrocardiogram and deep neural network publication-title: Biomedical engineering letters – volume: 23 year: 2023 ident: bib14 article-title: A preliminary study of the efficacy of using a wrist-worn multiparameter sensor for the prediction of cognitive flow states in university-level students publication-title: Sensors – volume: 2 start-page: 50 year: 2019 ident: bib31 article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques publication-title: NPJ digital medicine – year: 2018 ident: bib36 article-title: Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. CoRR abs/1809.10932 – volume: PP year: 2017 ident: bib5 article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 40 year: 2017 ident: bib11 article-title: Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle aged adults publication-title: Sleep – volume: 38 start-page: 1968 year: 2017 ident: bib3 article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals publication-title: Physiol Meas – volume: 4 start-page: 1 year: 2021 end-page: 12 ident: bib34 article-title: U-sleep: resilient high-frequency sleep staging publication-title: NPJ digital medicine – volume: 23 year: 2014 ident: bib30 article-title: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research publication-title: J Sleep Res – volume: 43 year: 2020 ident: bib9 article-title: Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population publication-title: Sleep – year: 2022 ident: bib32 article-title: Sleep stage classification for medical purposes: machine learning evaluation for imbalanced data – volume: 29 start-page: 1 year: 2018 end-page: 16 ident: bib45 article-title: Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques publication-title: Neural Comput Appl – volume: 21 year: 2021 ident: bib2 article-title: The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the oura ring publication-title: Sensors – volume: 28 start-page: 1955 year: 2020 ident: 10.1016/j.sleep.2024.05.033_bib15 article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3011181 – year: 2018 ident: 10.1016/j.sleep.2024.05.033_bib7 – year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib35 – ident: 10.1016/j.sleep.2024.05.033_bib19 – volume: 8 start-page: 420 year: 2022 ident: 10.1016/j.sleep.2024.05.033_bib21 article-title: Performance evaluation of a wrist-worn reflectance pulse oximeter during sleep publication-title: Sleep Health doi: 10.1016/j.sleh.2022.04.003 – volume: 43 start-page: zsz306 year: 2020 ident: 10.1016/j.sleep.2024.05.033_bib43 article-title: Sleep staging from electrocardiography and respiration with deep learning publication-title: Sleep doi: 10.1093/sleep/zsz306 – volume: 45 start-page: 1 year: 2018 ident: 10.1016/j.sleep.2024.05.033_bib13 article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018 publication-title: 2018 Computing in Cardiology Conference (CinC) – volume: 38 start-page: 1968 year: 2017 ident: 10.1016/j.sleep.2024.05.033_bib3 article-title: Estimation of sleep stages in a healthy adult population from optical plethysmography and accelerometer signals publication-title: Physiol Meas doi: 10.1088/1361-6579/aa9047 – volume: 2 start-page: 50 year: 2019 ident: 10.1016/j.sleep.2024.05.033_bib31 article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques publication-title: NPJ digital medicine doi: 10.1038/s41746-019-0126-9 – volume: 4 start-page: 1 year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib34 article-title: U-sleep: resilient high-frequency sleep staging publication-title: NPJ digital medicine doi: 10.1038/s41746-021-00440-5 – volume: PP year: 2017 ident: 10.1016/j.sleep.2024.05.033_bib5 article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 23 year: 2023 ident: 10.1016/j.sleep.2024.05.033_bib14 article-title: A preliminary study of the efficacy of using a wrist-worn multiparameter sensor for the prediction of cognitive flow states in university-level students publication-title: Sensors doi: 10.3390/s23083957 – year: 2019 ident: 10.1016/j.sleep.2024.05.033_bib48 article-title: Wearable sleep technology in clinical and research settings publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0000000000001947 – volume: 44 year: 2020 ident: 10.1016/j.sleep.2024.05.033_bib6 article-title: Performance of seven consumer sleep-tracking devices compared with polysomnography publication-title: Sleep – volume: 28 start-page: 1955 year: 2020 ident: 10.1016/j.sleep.2024.05.033_bib16 article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3011181 – volume: 40 year: 2017 ident: 10.1016/j.sleep.2024.05.033_bib11 article-title: Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle aged adults publication-title: Sleep doi: 10.1093/sleep/zsx097 – year: 2019 ident: 10.1016/j.sleep.2024.05.033_bib40 – volume: 4 year: 2014 ident: 10.1016/j.sleep.2024.05.033_bib41 article-title: How to interpret the results of a sleep study publication-title: J Community Hosp Intern Med Perspect – volume: 11 year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib28 article-title: A validation study of a commercial wearable device to automatically detect and estimate sleep publication-title: Biosensors doi: 10.3390/bios11060185 – start-page: 885 year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib47 article-title: It is all in the wrist: wearable sleep staging in a clinical population versus reference polysomnography publication-title: Nat Sci Sleep doi: 10.2147/NSS.S306808 – volume: 7 start-page: 142421 year: 2019 ident: 10.1016/j.sleep.2024.05.033_bib8 article-title: Computational sleep behavior analysis: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944801 – volume: 43 year: 2022 ident: 10.1016/j.sleep.2024.05.033_bib12 article-title: Interbeat interval-based sleep staging: work in progress toward real-time implementation publication-title: Physiol Meas doi: 10.1088/1361-6579/ac5a78 – volume: 148 start-page: 1127 year: 2015 ident: 10.1016/j.sleep.2024.05.033_bib33 article-title: The weighty issue of obesity management in sleep apnea publication-title: Chest doi: 10.1378/chest.15-1010 – volume: 21 year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib17 article-title: Deep neural network sleep scoring using combined motion and heart rate variability data publication-title: Sensors – year: 2007 ident: 10.1016/j.sleep.2024.05.033_bib18 – volume: 4 year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib38 article-title: A deep transfer learning approach for wearable sleep stage classification with photoplethysmography publication-title: NPJ Digital Medicine doi: 10.1038/s41746-021-00510-8 – volume: 21 year: 2021 ident: 10.1016/j.sleep.2024.05.033_bib2 article-title: The promise of sleep: a multi-sensor approach for accurate sleep stage detection using the oura ring publication-title: Sensors doi: 10.3390/s21134302 – volume: 21 start-page: 956 year: 2017 ident: 10.1016/j.sleep.2024.05.033_bib10 article-title: Cardiorespiratory sleep stage detection using conditional random fields publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2550104 – year: 2022 ident: 10.1016/j.sleep.2024.05.033_bib32 – volume: 23 start-page: 7976 year: 2023 ident: 10.1016/j.sleep.2024.05.033_bib20 article-title: Validating a consumer smartwatch for nocturnal respiratory rate measurements in sleep monitoring publication-title: Sensors doi: 10.3390/s23187976 – volume: 9 year: 2019 ident: 10.1016/j.sleep.2024.05.033_bib37 article-title: Sleep stage classification from heart-rate variability using long short-term memory neural networks publication-title: Sci Rep doi: 10.1038/s41598-019-49703-y – volume: 23 year: 2014 ident: 10.1016/j.sleep.2024.05.033_bib30 article-title: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research publication-title: J Sleep Res doi: 10.1111/jsr.12169 – volume: 5 year: 2019 ident: 10.1016/j.sleep.2024.05.033_bib4 article-title: Sleep-wake stages classification using heart rate signals from pulse oximetry publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02529 – volume: 3 start-page: 1 year: 2020 ident: 10.1016/j.sleep.2024.05.033_bib42 article-title: Deep learning for automated sleep staging using instantaneous heart rate publication-title: NPJ digital medicine – year: 2012 ident: 10.1016/j.sleep.2024.05.033_bib22 – volume: 29 start-page: 1 year: 2018 ident: 10.1016/j.sleep.2024.05.033_bib45 article-title: Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2365-x – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.sleep.2024.05.033_bib23 article-title: Wrist accelerometer shape feature derivation methods for assessing activities of daily living publication-title: BMC Med Inf Decis Making – volume: 27 start-page: 924 year: 2022 ident: 10.1016/j.sleep.2024.05.033_bib24 article-title: Sleepppg-net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2022.3225363 – ident: 10.1016/j.sleep.2024.05.033_bib25 doi: 10.5664/jcsm.7932 – start-page: 1085 year: 2023 ident: 10.1016/j.sleep.2024.05.033_bib26 article-title: Neural architecture search for tiny detectors of inter-beat intervals – volume: 8 start-page: 87 year: 2018 ident: 10.1016/j.sleep.2024.05.033_bib46 article-title: The research of sleep staging based on single-lead electrocardiogram and deep neural network publication-title: Biomedical engineering letters doi: 10.1007/s13534-017-0044-1 – volume: 43 year: 2020 ident: 10.1016/j.sleep.2024.05.033_bib9 article-title: Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population publication-title: Sleep doi: 10.1093/sleep/zsaa048 – year: 2018 ident: 10.1016/j.sleep.2024.05.033_bib36 – volume: 27 start-page: 1255 year: 2004 ident: 10.1016/j.sleep.2024.05.033_bib29 article-title: Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan publication-title: Sleep doi: 10.1093/sleep/27.7.1255 – volume: 25 start-page: 1998 year: 2017 ident: 10.1016/j.sleep.2024.05.033_bib44 article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2017.2721116 – ident: 10.1016/j.sleep.2024.05.033_bib27  | 
    
| SSID | ssj0017184 | 
    
| Score | 2.440367 | 
    
| Snippet | Sleep stages can provide valuable insights into an individual's sleep quality. By leveraging movement and heart rate data collected by modern smartwatches, it... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 535 | 
    
| SubjectTerms | Accelerometry - instrumentation Accelerometry - methods Adult Aged Algorithms Female Heart Rate - physiology Humans Machine learning Male Middle Aged Neural Networks, Computer Photoplethysmography - instrumentation Photoplethysmography - methods Polysomnography - instrumentation Sleep Sleep Apnea Syndromes - diagnosis Sleep stages Sleep Stages - physiology Smartwatch Wearable Wearable Electronic Devices  | 
    
| Title | Sleep staging algorithm based on smartwatch sensors for healthy and sleep apnea populations | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S138994572400248X https://dx.doi.org/10.1016/j.sleep.2024.05.033 https://www.ncbi.nlm.nih.gov/pubmed/38810479 https://www.proquest.com/docview/3062532747  | 
    
| Volume | 119 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-5506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017184 issn: 1389-9457 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-5506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017184 issn: 1389-9457 databaseCode: .~1 dateStart: 20000201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1878-5506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017184 issn: 1389-9457 databaseCode: ACRLP dateStart: 20000201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1878-5506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017184 issn: 1389-9457 databaseCode: AIKHN dateStart: 20000201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-5506 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017184 issn: 1389-9457 databaseCode: AKRWK dateStart: 20000201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX3wRxdu8jAg-Wre0yZY-juGYtyHOwcCHkLapm2ztWDfEF3-75_QGPmyCT6UloclJ8p3vkHMh5MpvhNIVIsTqZcLijGnLlaGwQLmjRtIeC_BG96nf7A35_UiMKqRTxMKgW2WO_Rmmp2idf6nn0qzPJ5P6AK_YXC5a6AVpcznCCHbewioGN9-lmwcD7M0K20rXwtZF5qHUxyuZGoNJK22epu90nHXaaR37TLVQd4_s5vSRtrMR7pOKiQ7I2wB_QIHnYcUhqqfvMZj84xlFFRXQOKLJDOb0Cag7pgnYrfEioUBWaRYE-UV1FNB0kFTPI6PpvKzqlRySYff2tdOz8qIJlg-SXlrSAPq2DOglbeuQNTToGziDACZewLkOdSiCFtAq4EkmQHqhZWiAhxkfqIHwHOeIbEVxZE4IZdIEjcDjIfI6xnyXQxOHgdZjHmOurhK7EJby84ziWNhiqgrXsQ-VDl6hhFVDKJBwlVyXneZZQo3NzXmxCqqIFQV0UwD4m7s1y26_ttPfHS-LpVZw0PD2REcmXiUKbCtbOGjEV8lxtgfKCThSYsoL9_S_vz0jO_iW-QGfk63lYmUugO0svVq6nWtku915eXzG591Dr_8DZZf-_g | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDLAgEK_yNBIjoXViN86IKlCBtgtUqsRgOYlDi9qkaooQC7-du7wkhhaJNfHJ9tn-7jv5fEfIVdCMpCdEhNXLhMUZ05YnI2GBcUeLpH0W4o1ur9_qDPjjUAxrpF2-hcGwygL7c0zP0Lr40ii02ZiNx41nvGLzuHAxCtLmcrhGNriwXfTAbr6rOA8G4JtXtpWehc3L1ENZkFc6MQazVto8y9_pOMvM0zL6mZmh-x2yXfBHepsPcZfUTLxHXp-xAwpED0sOUT15S8DnH00p2qiQJjFNpzCpT4DdEU3BcU3mKQW2SvNXkF9UxyHNBkn1LDaazqqyXuk-GdzfvbQ7VlE1wQpA1QtLGoBf14Bh0raOWFODwYFDCGjih5zrSEcidIFXAVEyIfILLSMDRMwEwA2E7zgHZD1OYnNEKJMmbIY-j5DYMRZ4HJo4DMwe8xnzdJ3YpbJUUKQUx8oWE1XGjr2rbPAKNayaQoGG6-S6EprlGTVWN-flKqjysSjAmwLEXy3WqsR-7ae_BS_LpVZw0vD6RMcm-UgVOFe2cNCLr5PDfA9UE3CkxJwX3vF_u70gm52XXld1H_pPJ2QL_-RBwadkfTH_MGdAfRb-eba1fwBHfP7- | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+staging+algorithm+based+on+smartwatch+sensors+for+healthy+and+sleep+apnea+populations&rft.jtitle=Sleep+medicine&rft.au=Silva%2C+Fernanda+B&rft.au=Uribe%2C+Luisa+F+S&rft.au=Cepeda%2C+Felipe+X&rft.au=Alquati%2C+Vitor+F+S&rft.date=2024-07-01&rft.eissn=1878-5506&rft.volume=119&rft.spage=535&rft_id=info:doi/10.1016%2Fj.sleep.2024.05.033&rft_id=info%3Apmid%2F38810479&rft.externalDocID=38810479 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-9457&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-9457&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-9457&client=summon |