Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching

Objective. P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain–computer interfaces (BCIs). Thus, fast and accurate recognition of P300s is an important issue for BCI study. Recently, there emerges a lot of novel classification algorithms for P300-...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 18; no. 4; pp. 46079 - 46092
Main Authors Xiao, Xiaolin, Xu, Minpeng, Han, Jin, Yin, Erwei, Liu, Shuang, Zhang, Xin, Jung, Tzyy-Ping, Ming, Dong
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2021
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ac028b

Cover

Abstract Objective. P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain–computer interfaces (BCIs). Thus, fast and accurate recognition of P300s is an important issue for BCI study. Recently, there emerges a lot of novel classification algorithms for P300-speller. Among them, discriminative canonical pattern matching (DCPM) has been proven to work effectively, in which discriminative spatial pattern (DSP) filter can significantly enhance the spatial features of P300s. However, the pattern of ERPs in space varies with time, which was not taken into consideration in the traditional DCPM algorithm. Approach. In this study, we developed an advanced version of DCPM, i.e. multi-window DCPM, which contained a series of time-dependent DSP filters to fine-tune the extraction of spatial ERP features. To verify its effectiveness, 25 subjects were recruited and they were asked to conduct the typical P300-speller experiment. Main results. As a result, multi-window DCPM achieved the character recognition accuracy of 91.84% with only five training characters, which was significantly better than the traditional DCPM algorithm. Furthermore, it was also compared with eight other popular methods, including SWLDA, SKLDA, STDA, BLDA, xDAWN, HDCA, sHDCA and EEGNet. The results showed multi-window DCPM preformed the best, especially using a small calibration dataset. The proposed algorithm was applied to the BCI Controlled Robot Contest of P300 paradigm in 2019 World Robot Conference, and won the first place. Significance. These results demonstrate that multi-window DCPM is a promising method for improving the performance and enhancing the practicability of P300-speller.
AbstractList Objective.P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain-computer interfaces (BCIs). Thus, fast and accurate recognition of P300s is an important issue for BCI study. Recently, there emerges a lot of novel classification algorithms for P300-speller. Among them, discriminative canonical pattern matching (DCPM) has been proven to work effectively, in which discriminative spatial pattern (DSP) filter can significantly enhance the spatial features of P300s. However, the pattern of ERPs in space varies with time, which was not taken into consideration in the traditional DCPM algorithm.Approach.In this study, we developed an advanced version of DCPM, i.e. multi-window DCPM, which contained a series of time-dependent DSP filters to fine-tune the extraction of spatial ERP features. To verify its effectiveness, 25 subjects were recruited and they were asked to conduct the typical P300-speller experiment.Main results.As a result, multi-window DCPM achieved the character recognition accuracy of 91.84% with only five training characters, which was significantly better than the traditional DCPM algorithm. Furthermore, it was also compared with eight other popular methods, including SWLDA, SKLDA, STDA, BLDA, xDAWN, HDCA, sHDCA and EEGNet. The results showed multi-window DCPM preformed the best, especially using a small calibration dataset. The proposed algorithm was applied to the BCI Controlled Robot Contest of P300 paradigm in 2019 World Robot Conference, and won the first place.Significance.These results demonstrate that multi-window DCPM is a promising method for improving the performance and enhancing the practicability of P300-speller.Objective.P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain-computer interfaces (BCIs). Thus, fast and accurate recognition of P300s is an important issue for BCI study. Recently, there emerges a lot of novel classification algorithms for P300-speller. Among them, discriminative canonical pattern matching (DCPM) has been proven to work effectively, in which discriminative spatial pattern (DSP) filter can significantly enhance the spatial features of P300s. However, the pattern of ERPs in space varies with time, which was not taken into consideration in the traditional DCPM algorithm.Approach.In this study, we developed an advanced version of DCPM, i.e. multi-window DCPM, which contained a series of time-dependent DSP filters to fine-tune the extraction of spatial ERP features. To verify its effectiveness, 25 subjects were recruited and they were asked to conduct the typical P300-speller experiment.Main results.As a result, multi-window DCPM achieved the character recognition accuracy of 91.84% with only five training characters, which was significantly better than the traditional DCPM algorithm. Furthermore, it was also compared with eight other popular methods, including SWLDA, SKLDA, STDA, BLDA, xDAWN, HDCA, sHDCA and EEGNet. The results showed multi-window DCPM preformed the best, especially using a small calibration dataset. The proposed algorithm was applied to the BCI Controlled Robot Contest of P300 paradigm in 2019 World Robot Conference, and won the first place.Significance.These results demonstrate that multi-window DCPM is a promising method for improving the performance and enhancing the practicability of P300-speller.
Objective. P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain–computer interfaces (BCIs). Thus, fast and accurate recognition of P300s is an important issue for BCI study. Recently, there emerges a lot of novel classification algorithms for P300-speller. Among them, discriminative canonical pattern matching (DCPM) has been proven to work effectively, in which discriminative spatial pattern (DSP) filter can significantly enhance the spatial features of P300s. However, the pattern of ERPs in space varies with time, which was not taken into consideration in the traditional DCPM algorithm. Approach. In this study, we developed an advanced version of DCPM, i.e. multi-window DCPM, which contained a series of time-dependent DSP filters to fine-tune the extraction of spatial ERP features. To verify its effectiveness, 25 subjects were recruited and they were asked to conduct the typical P300-speller experiment. Main results. As a result, multi-window DCPM achieved the character recognition accuracy of 91.84% with only five training characters, which was significantly better than the traditional DCPM algorithm. Furthermore, it was also compared with eight other popular methods, including SWLDA, SKLDA, STDA, BLDA, xDAWN, HDCA, sHDCA and EEGNet. The results showed multi-window DCPM preformed the best, especially using a small calibration dataset. The proposed algorithm was applied to the BCI Controlled Robot Contest of P300 paradigm in 2019 World Robot Conference, and won the first place. Significance. These results demonstrate that multi-window DCPM is a promising method for improving the performance and enhancing the practicability of P300-speller.
Author Zhang, Xin
Xiao, Xiaolin
Yin, Erwei
Han, Jin
Xu, Minpeng
Ming, Dong
Jung, Tzyy-Ping
Liu, Shuang
Author_xml – sequence: 1
  givenname: Xiaolin
  orcidid: 0000-0002-3516-561X
  surname: Xiao
  fullname: Xiao, Xiaolin
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin, People’s Republic of China
– sequence: 2
  givenname: Minpeng
  surname: Xu
  fullname: Xu, Minpeng
  organization: Tianjin Artificial Intelligence Innovation Center (TAIIC) , Tianjin, People’s Republic of China
– sequence: 3
  givenname: Jin
  surname: Han
  fullname: Han, Jin
  organization: College of Precision Instruments and Optoelectronics Engineering, Tianjin University , Tianjin, People’s Republic of China
– sequence: 4
  givenname: Erwei
  orcidid: 0000-0002-2147-9888
  surname: Yin
  fullname: Yin, Erwei
  organization: Tianjin Artificial Intelligence Innovation Center (TAIIC) , Tianjin, People’s Republic of China
– sequence: 5
  givenname: Shuang
  surname: Liu
  fullname: Liu, Shuang
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin, People’s Republic of China
– sequence: 6
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin, People’s Republic of China
– sequence: 7
  givenname: Tzyy-Ping
  surname: Jung
  fullname: Jung, Tzyy-Ping
  organization: The Swartz Centre for Computational Neuroscience, University of California , San Diego, CA, United States of America
– sequence: 8
  givenname: Dong
  surname: Ming
  fullname: Ming, Dong
  organization: Academy of Medical Engineering and Translational Medicine, Tianjin University , Tianjin, People’s Republic of China
BookMark eNp9kMtP7CAchYnRxOfeJTtd3OqPUlq6NMZXYqILXROGh8OkhV6gd-J_L-MYFzfGFYR8h5zzHaJdH7xB6JTABQHOL0nXkKpmrL6UCmq-2EEH30-73_cW9tFhSisASroeDtDyxi-lV2Y0PmMbIn6mAFWazDCYiNUgU3LWKZld8HhOzr_hcR6yq9bO67DG2iUV3eh8If4ZrGSpVfABTzJnEz0eZVbLEjtGe1YOyZx8nUfo9fbm5fq-eny6e7i-eqxUQ0iueCetLO2Ad5QurGprzcEyrS0zTBtVSzCWcU5rbTrWLNre9rKlBHrdyLKbHqHz7b9TDH9nk7IYS8UyR3oT5iRqRjkwgLYpKGxRFUNK0VgxlSkyvgsCYiNVbKyJjUGxlVoi7X8R5fKnnBylG34L_tkGXZjEKszRFwm_4Wc_4CtvBOGiEdC00PVi0pZ-ACiamq4
CODEN JNEIEZ
CitedBy_id crossref_primary_10_3389_fnins_2024_1367932
crossref_primary_10_1109_TNSRE_2025_3526950
crossref_primary_10_1080_27706710_2024_2305962
crossref_primary_10_1088_1741_2552_ac42b4
crossref_primary_10_3389_fncom_2022_1006361
crossref_primary_10_3390_app12052598
crossref_primary_10_11834_jig_230031
crossref_primary_10_1109_TBME_2024_3439820
crossref_primary_10_1016_j_neuropsychologia_2022_108289
crossref_primary_10_1109_THMS_2022_3168421
crossref_primary_10_1016_j_bspc_2023_104924
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_3389_fnins_2024_1402154
crossref_primary_10_1088_1741_2552_acd95d
crossref_primary_10_1109_TNSRE_2022_3162029
crossref_primary_10_1016_j_jneumeth_2022_109535
crossref_primary_10_3390_mi14050976
crossref_primary_10_1088_1741_2552_ad558a
crossref_primary_10_1109_RBME_2024_3449790
Cites_doi 10.1088/1741-2560/3/4/007
10.1109/TNSRE.2009.2027705
10.1088/1741-2552/aace8c
10.1109/TBME.2019.2958641
10.1109/TNSRE.2013.2243471
10.1109/TBME.2009.2012869
10.1142/S0129065714500270
10.1016/0013-4694(88)90149-6
10.1088/1741-2560/11/6/066010
10.1016/j.tins.2006.07.004
10.1109/TNSRE.2004.827220
10.1177/155005941104200406
10.1007/s11517-012-1018-1
10.1109/TBME.2007.897815
10.1109/TBME.2018.2799661
10.1109/TNSRE.2006.875550
10.1088/1741-2560/4/2/R01
10.1088/1741-2560/8/5/056016
10.1016/j.jneumeth.2007.03.005
10.1088/1741-2560/8/3/036006
10.1016/j.neuroimage.2011.07.047
10.1109/TRE.2000.847807
10.1016/j.neuroimage.2010.06.048
10.1016/j.jneumeth.2007.07.017
10.1109/TNSRE.2015.2501378
10.1088/1741-2560/9/4/045006
10.1016/j.neulet.2009.06.045
10.1001/jamaophthalmol.2017.0738
10.1109/TBME.2004.826698
10.1212/01.wnl.0000243257.85592.9a
10.1109/TBME.2014.2320948
10.1109/TNSRE.2014.2304884
10.1088/1741-2560/12/4/046008
10.1016/j.clinph.2009.06.026
10.1016/s1567-424x(09)70400-3
10.1109/TPAMI.2005.110
10.1109/TBME.2008.915728
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd
– notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
7X8
DOI 10.1088/1741-2552/ac028b
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 10_1088_1741_2552_ac028b
jneac028b
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976152; 81630051
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Young Elite Scientist Sponsorship Program by CAST
  grantid: 2018QNRC001
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB1300302
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
7X8
ID FETCH-LOGICAL-c411t-87afa00308733bfc62d80f5ddf5e5dec2a0ef58832de754b69f9a63109d4a0283
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Fri Sep 05 07:59:23 EDT 2025
Thu Apr 24 22:52:53 EDT 2025
Wed Oct 01 02:41:34 EDT 2025
Wed Aug 21 03:34:31 EDT 2024
Tue Jun 13 23:30:42 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-87afa00308733bfc62d80f5ddf5e5dec2a0ef58832de754b69f9a63109d4a0283
Notes JNE-104235.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3516-561X
0000-0002-2147-9888
PQID 2538050064
PQPubID 23479
PageCount 14
ParticipantIDs iop_journals_10_1088_1741_2552_ac028b
crossref_primary_10_1088_1741_2552_ac028b
proquest_miscellaneous_2538050064
crossref_citationtrail_10_1088_1741_2552_ac028b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Wolpaw (jneac028bbib2) 2004; 57
Schaeff (jneac028bbib23) 2012; 9
Farwell (jneac028bbib25) 1988; 70
Wolpaw (jneac028bbib1) 2000; 8
Yin (jneac028bbib13) 2015; 62
Lee (jneac028bbib4) 2016; 24
Muller-Putz (jneac028bbib11) 2007; 55
Niazi (jneac028bbib15) 2013; 51
Townsend (jneac028bbib16) 2004; 12
Xu (jneac028bbib24) 2018; 65
Lei (jneac028bbib37) 2009; 17
Lebedev (jneac028bbib3) 2006; 29
Krusienski (jneac028bbib20) 2008; 167
Ye (jneac028bbib36) 2005; 27
Henry (jneac028bbib7) 2006; 67
Blankertz (jneac028bbib9) 2011; 56
Lotte (jneac028bbib14) 2009
Aloise (jneac028bbib19) 2011; 42
Guger (jneac028bbib39) 2009; 462
Marathe (jneac028bbib33) 2014; 22
Hoffmann (jneac028bbib27) 2008; 167
Xiao (jneac028bbib18) 2020; 67
Chen (jneac028bbib12) 2015; 12
Jin (jneac028bbib21) 2011; 8
Rivet (jneac028bbib28) 2009; 56
Krusienski (jneac028bbib26) 2006; 3
Baldwin (jneac028bbib5) 2012; 59
Nakanishi (jneac028bbib6) 2017; 135
Kaufmann (jneac028bbib17) 2011; 8
Alcaide-Aguirre (jneac028bbib38) 2014; 11
Gerson (jneac028bbib32) 2006; 14
Lawhern (jneac028bbib34) 2018; 15
Luck (jneac028bbib10) 2014
Jin (jneac028bbib8) 2014; 24
Zhang (jneac028bbib31) 2013; 21
Rakotomamonjy (jneac028bbib30) 2008; 55
Lotte (jneac028bbib35) 2007; 4
Hong (jneac028bbib22) 2009; 120
Kaper (jneac028bbib29) 2004; 51
References_xml – volume: 3
  start-page: 299
  year: 2006
  ident: jneac028bbib26
  article-title: A comparison of classification techniques for the P300 Speller
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/3/4/007
– volume: 17
  start-page: 521
  year: 2009
  ident: jneac028bbib37
  article-title: An empirical bayesian framework for brain-computer interfaces
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2027705
– volume: 15
  year: 2018
  ident: jneac028bbib34
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 67
  start-page: 2266
  year: 2020
  ident: jneac028bbib18
  article-title: Discriminative canonical pattern matching for single-trial classification of ERP components
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2958641
– volume: 21
  start-page: 233
  year: 2013
  ident: jneac028bbib31
  article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2243471
– volume: 56
  start-page: 2035
  year: 2009
  ident: jneac028bbib28
  article-title: xDAWN algorithm to enhance evoked potentials: application to brain-computer interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2012869
– volume: 24
  year: 2014
  ident: jneac028bbib8
  article-title: An ERP-based BCI using an oddball paradigm with different faces and reduced errors in critical functions
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500270
– volume: 70
  start-page: 510
  year: 1988
  ident: jneac028bbib25
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(88)90149-6
– volume: 11
  year: 2014
  ident: jneac028bbib38
  article-title: Novel hold-release functionality in a P300 brain-computer interface
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/11/6/066010
– volume: 29
  start-page: 536
  year: 2006
  ident: jneac028bbib3
  article-title: Brain-machine interfaces: past, present and future
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2006.07.004
– start-page: 4543
  year: 2009
  ident: jneac028bbib14
  article-title: Comparison of designs towards a subject-independent brain-computer interface based on motor imagery
– volume: 12
  start-page: 258
  year: 2004
  ident: jneac028bbib16
  article-title: Continuous EEG classification during motor imagery–simulation of an asynchronous BCI
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.827220
– volume: 42
  start-page: 219
  year: 2011
  ident: jneac028bbib19
  article-title: Asynchronous P300-based brain-computer interface to control a virtual environment: initial tests on end users
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005941104200406
– volume: 51
  start-page: 507
  year: 2013
  ident: jneac028bbib15
  article-title: Detection of movement-related cortical potentials based on subject-independent training
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1018-1
– volume: 55
  start-page: 361
  year: 2007
  ident: jneac028bbib11
  article-title: Control of an electrical prosthesis with an SSVEP-based BCI
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897815
– year: 2014
  ident: jneac028bbib10
– volume: 65
  start-page: 1166
  year: 2018
  ident: jneac028bbib24
  article-title: A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2799661
– volume: 14
  start-page: 174
  year: 2006
  ident: jneac028bbib32
  article-title: Cortically coupled computer vision for rapid image search
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875550
– volume: 4
  start-page: R1–R13
  year: 2007
  ident: jneac028bbib35
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 8
  year: 2011
  ident: jneac028bbib17
  article-title: Flashing characters with famous faces improves ERP-based brain-computer interface performance
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/8/5/056016
– volume: 167
  start-page: 115
  year: 2008
  ident: jneac028bbib27
  article-title: An efficient P300-based brain-computer interface for disabled subjects
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– volume: 8
  year: 2011
  ident: jneac028bbib21
  article-title: An adaptive P300-based control system
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/8/3/036006
– volume: 59
  start-page: 48
  year: 2012
  ident: jneac028bbib5
  article-title: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.047
– volume: 8
  start-page: 164
  year: 2000
  ident: jneac028bbib1
  article-title: Brain-computer interface technology: a review of the first international meeting
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/TRE.2000.847807
– volume: 56
  start-page: 814
  year: 2011
  ident: jneac028bbib9
  article-title: Single-trial analysis and classification of ERP components–a tutorial
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume: 167
  start-page: 15
  year: 2008
  ident: jneac028bbib20
  article-title: Toward enhanced P300 speller performance
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.07.017
– volume: 24
  start-page: 399
  year: 2016
  ident: jneac028bbib4
  article-title: A visual attention monitor based on steady-state visual evoked potential
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2501378
– volume: 9
  year: 2012
  ident: jneac028bbib23
  article-title: Exploring motion VEPs for gaze-independent communication
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/9/4/045006
– volume: 462
  start-page: 94
  year: 2009
  ident: jneac028bbib39
  article-title: How many people are able to control a P300-based brain-computer interface (BCI)?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.06.045
– volume: 135
  start-page: 550
  year: 2017
  ident: jneac028bbib6
  article-title: Detecting glaucoma with a portable brain-computer interface for objective assessment of visual function loss
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2017.0738
– volume: 51
  start-page: 1073
  year: 2004
  ident: jneac028bbib29
  article-title: BCI Competition 2003–Data set IIb: support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826698
– volume: 67
  start-page: 2092–a
  year: 2006
  ident: jneac028bbib7
  article-title: Electroencephalography: basic principles, clinical applications, and related fields
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000243257.85592.9a
– volume: 62
  start-page: 1447
  year: 2015
  ident: jneac028bbib13
  article-title: A dynamically optimized ssvep brain-computer interface (BCI) speller
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2320948
– volume: 22
  start-page: 201
  year: 2014
  ident: jneac028bbib33
  article-title: Sliding HDCA: single-trial EEG classification to overcome and quantify temporal variability
  publication-title: IEEE Trans. Neural. Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2304884
– volume: 12
  year: 2015
  ident: jneac028bbib12
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/12/4/046008
– volume: 120
  start-page: 1658
  year: 2009
  ident: jneac028bbib22
  article-title: N200-speller using motion-onset visual response
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.06.026
– volume: 57
  start-page: 607
  year: 2004
  ident: jneac028bbib2
  article-title: Brain-computer interfaces (BCIs) for communication and control: a mini-review
  publication-title: Suppl. Clin. Neurophysiol.
  doi: 10.1016/s1567-424x(09)70400-3
– volume: 27
  start-page: 929
  year: 2005
  ident: jneac028bbib36
  article-title: A two-stage linear discriminant analysis via QR-decomposition
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2005.110
– volume: 55
  start-page: 1147
  year: 2008
  ident: jneac028bbib30
  article-title: BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.915728
SSID ssj0031790
Score 2.407712
Snippet Objective. P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain–computer interfaces (BCIs). Thus, fast and...
Objective.P300s are one of the most studied event-related potentials (ERPs), which have been widely used for brain-computer interfaces (BCIs). Thus, fast and...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 46079
SubjectTerms brain–computer interface
electroencephalogram
multi-window discriminative canonical pattern matching
P300-speller
Title Enhancement for P300-speller classification using multi-window discriminative canonical pattern matching
URI https://iopscience.iop.org/article/10.1088/1741-2552/ac028b
https://www.proquest.com/docview/2538050064
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BvfRSSmnVhYKMVJA4ZDcPx3HECSEQ4gAcisQByXL8KII2u9qHEPx6ZuwsEg-hqrccJnYyHo8_e74ZA_zENUUYzbNENBY3KE3OE8lzk6A9S1dzX-U-sC1OxfEFP7ksLxdg7ykXZjjqXH8fH2Oh4KjCjhAnB4ihswSRcD7QBlfHZhE-FBKBMWXvnZ3P3XBBpadiNiRJi7SLUb7VwrM1aRH7feWYw2pztAxX8--MJJPb_mza9M3DixKO__kjn-FTh0LZfhRdgQXXfoHV_RZ34H_v2Q4LvNBw4L4K14ftNZkGHSMyhLjsvEjTZEJRGzdmhtA30Y3CCDOi0f9mgaWY3OF2f3jHKO833h1GnpXhUA5DLiYbhdKeLUPMHAidX-Hi6PDXwXHS3c-QGJ5lU3Sk2utYU7AoGm9EbmXqS2t96UrrTK5T50uJPsO6quSNqH2tBZUitVwTrvkGS9il-w6slM4ZjdiZwqLOFrWoXFbpOkc7EoWtejCYj5AyXfFyukPjjwpBdCkVKVORMlVUZg92n94YxcId78hu4xipbvZO3pFjz-RuWqcyqbii6HJVq5H1PdiaW47CiUrRF9264WyC7RQyLQkCrv1jd-vwMScGTaAb_oCl6XjmNhACTZvNYOqP3rz-Tw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71ISEufYLYllIjARKH7ObhOM6xarsqD5U9UKk34_hBBW121d1VBb-eGTtbqVBVSL3l4MSJZzL-7PnmM8AbnFOE0TxLRGNxgdLkPJE8Nwn6s3Q191XuA9viVJyc8Y_n5Xl3zmmohRlPutDfx8soFByHsCPEyQFi6CxBJJwPtMHZsRlMrF-G1aBTQhV8X0aLUFyQ_FSsiKQ7RNrlKe97yp15aRn7_ic4hxlnuA7fFu8aiSY_-_NZ0ze__5JxfMTHbMBah0bZQWy-CUuu3YLtgxZX4le_2DsW-KFh430bLo7bC3IR2k5kCHXZqEjTZErZG3fNDKFwoh0FSzOi039nga2Y3OCyf3zDqP43niFGEZahScehJpNNgsRnyxA7B2LnMzgbHn89PEm6cxoSw7NshgFVex21BYui8UbkVqa-tNaXrrTO5Dp1vpQYO6yrSt6I2tdakCSp5ZrwzXNYwS7dC2CldM5oxNCUHnW2qEXlskrXOfqTKGzVg8HCSsp0IuZ0lsalCsl0KRUNqKIBVXFAe_D-9o5JFPB4oO1btJPq_uLpA-3YnXY_WqcyqbiiLHNVK7RhD14vvEfhD0tZGN268XyKzylkWhIU3PnP7vbhyehoqD5_OP20C09zItUEBuJLWJldz90eoqJZ8yp4_h8fHQO_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+for+P300-speller+classification+using+multi-window+discriminative+canonical+pattern+matching&rft.jtitle=Journal+of+neural+engineering&rft.au=Xiao%2C+Xiaolin&rft.au=Xu%2C+Minpeng&rft.au=Han%2C+Jin&rft.au=Yin%2C+Erwei&rft.date=2021-08-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fac028b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon