Transcriptome modeling and phenotypic assays for cancer precision medicine
Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands of cancer-enriched mutated genes have been reported by global sequencing projects, to date, only a few oncogenic mutations have been confirme...
        Saved in:
      
    
          | Published in | Archives of pharmacal research Vol. 40; no. 8; pp. 906 - 914 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Seoul
          Pharmaceutical Society of Korea
    
        01.08.2017
     대한약학회  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0253-6269 1976-3786 1976-3786  | 
| DOI | 10.1007/s12272-017-0940-z | 
Cover
| Abstract | Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands of cancer-enriched mutated genes have been reported by global sequencing projects, to date, only a few oncogenic mutations have been confirmed as effective biomarkers in cancer therapies. The low frequency and varied profile (i.e., allele frequency, mutation position) of mutant genes among cancer types limit the utility of predictive biomarkers. The recent explosion of cancer transcriptome and phenotypic screening data provides another opportunity for finding transcript-level biomarkers and targets, thus overcoming the limitation of cancer mutation analyses. Technological developments enable the rapid and extensive discovery of potential target-biomarker combinations from large-scale transcriptome-level screening combined with physiologically relevant phenotypic assays. Here, we summarized recent progress as well as discussed the outlook of transcriptome-oriented data mining strategies and phenotypic assays for the identification of non-genetic biomarkers and targets in cancer drug discovery. | 
    
|---|---|
| AbstractList | Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands of cancer-enriched mutated genes have been reported by global sequencing projects, to date, only a few oncogenic mutations have been confirmed as effective biomarkers in cancer therapies. The low frequency and varied profile (i.e., allele frequency, mutation position) of mutant genes among cancer types limit the utility of predictive biomarkers. The recent explosion of cancer transcriptome and phenotypic screening data provides another opportunity for finding transcript-level biomarkers and targets, thus overcoming the limitation of cancer mutation analyses. Technological developments enable the rapid and extensive discovery of potential target-biomarker combinations from large-scale transcriptome-level screening combined with physiologically relevant phenotypic assays. Here, we summarized recent progress as well as discussed the outlook of transcriptome-oriented data mining strategies and phenotypic assays for the identification of non-genetic biomarkers and targets in cancer drug discovery.Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands of cancer-enriched mutated genes have been reported by global sequencing projects, to date, only a few oncogenic mutations have been confirmed as effective biomarkers in cancer therapies. The low frequency and varied profile (i.e., allele frequency, mutation position) of mutant genes among cancer types limit the utility of predictive biomarkers. The recent explosion of cancer transcriptome and phenotypic screening data provides another opportunity for finding transcript-level biomarkers and targets, thus overcoming the limitation of cancer mutation analyses. Technological developments enable the rapid and extensive discovery of potential target-biomarker combinations from large-scale transcriptome-level screening combined with physiologically relevant phenotypic assays. Here, we summarized recent progress as well as discussed the outlook of transcriptome-oriented data mining strategies and phenotypic assays for the identification of non-genetic biomarkers and targets in cancer drug discovery. Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands of cancer-enriched mutated genes have been reported by global sequencing projects, to date, only a few oncogenic mutations have been confirmed as effective biomarkers in cancer therapies. The low frequency and varied profile (i.e., allele frequency, mutation position) of mutant genes among cancer types limit the utility of predictive biomarkers. The recent explosion of cancer transcriptome and phenotypic screening data provides another opportunity for finding transcript-level biomarkers and targets, thus overcoming the limitation of cancer mutation analyses. Technological developments enable the rapid and extensive discovery of potential target-biomarker combinations from large-scale transcriptome-level screening combined with physiologically relevant phenotypic assays. Here, we summarized recent progress as well as discussed the outlook of transcriptome-oriented data mining strategies and phenotypic assays for the identification of non-genetic biomarkers and targets in cancer drug discovery. Cancer precision medicine requires clinicallyactionable biomarkers for patient stratification and a betterprediction of clinical outcome. Although thousands ofcancer-enriched mutated genes have been reported byglobal sequencing projects, to date, only a few oncogenicmutations have been confirmed as effective biomarkers incancer therapies. The low frequency and varied profile (i.e.,allele frequency, mutation position) of mutant genes amongcancer types limit the utility of predictive biomarkers. Therecent explosion of cancer transcriptome and phenotypicscreening data provides another opportunity for findingtranscript-level biomarkers and targets, thus overcomingthe limitation of cancer mutation analyses. Technologicaldevelopments enable the rapid and extensive discovery ofpotential target-biomarker combinations from large-scaletranscriptome-level screening combined with physiologicallyrelevant phenotypic assays. Here, we summarizedrecent progress as well as discussed the outlook of transcriptome-oriented data mining strategies and phenotypicassays for the identification of non-genetic biomarkers andtargets in cancer drug discovery. KCI Citation Count: 3  | 
    
| Author | Jeong, Euna Yoon, Sukjoon Song, Mee Moon, Sung Ung  | 
    
| Author_xml | – sequence: 1 givenname: Euna surname: Jeong fullname: Jeong, Euna organization: Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women’s University – sequence: 2 givenname: Sung Ung surname: Moon fullname: Moon, Sung Ung organization: Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women’s University – sequence: 3 givenname: Mee surname: Song fullname: Song, Mee organization: Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women’s University – sequence: 4 givenname: Sukjoon orcidid: 0000-0001-7885-7117 surname: Yoon fullname: Yoon, Sukjoon email: yoonsj@sookmyung.ac.kr organization: Center for Advanced Bioinformatics & Systems Medicine, Sookmyung Women’s University, Department of Biological Sciences, Sookmyung Women’s University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28766239$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002257119$$DAccess content in National Research Foundation of Korea (NRF)  | 
    
| BookMark | eNqFkU1v1DAQhi1URLeFH8AF5QiHwPg7PlZVoUWVkNBythzbWdwmdrCzh-2vx9sUDhzKaaTR83rG85yhk5iiR-gtho8YQH4qmBBJWsCyBcWgfXiBNlhJ0VLZiRO0AcJpK4hQp-islDsAKjjnr9Ap6aQQhKoN-rrNJhabw7ykyTdTcn4McdeY6Jr5p49pOczBNqYUcyjNkHJjTbQ-N3P2NpSQYjN5F2yI_jV6OZix-DdP9Rz9-Hy1vbxub799ubm8uG0tw3hpO-4klUyJvuOUk85SRmTvJTAGru85lXyoKzNlrZeGOIodg8GBU4MntUXP0Yf13ZgHfW-DTiY81l3S91lffN_eaKxwR4Wo7PuVnXP6tfdl0VMo1o-jiT7tiyYAwBShEv6LYkU4x5ix4wbvntB9X3-v5xwmkw_6z1krgFfA5lRK9sNfBIM-qtOrOl3V6aM6_VAz8p-MDYtZ6oWXbML4bJKsyVKnxJ3P-i7tc6wOngn9BkZLrDc | 
    
| CitedBy_id | crossref_primary_10_1016_j_alcohol_2018_05_004 crossref_primary_10_3389_fgene_2021_770857 crossref_primary_10_1016_j_bbcan_2023_189030 crossref_primary_10_3389_fonc_2020_00423 crossref_primary_10_1016_j_leukres_2017_11_008  | 
    
| Cites_doi | 10.1126/science.1246981 10.1016/j.drudis.2013.07.001 10.1371/journal.pone.0162394 10.1038/nrd3651 10.1093/nar/gku480 10.1016/j.ccell.2017.01.005 10.5808/GI.2013.11.4.239 10.1038/nmeth.2600 10.1158/0008-5472.CAN-12-3342 10.1002/ijc.27529 10.1038/nature11003 10.1038/gt.2016.28 10.1038/nature21688 10.1186/s12864-016-2911-z 10.1158/0008-5472.CAN-14-0725 10.1177/1087057114528537 10.1158/0008-5472.CAN-12-1370 10.1016/j.copbio.2016.04.003 10.1186/s13073-017-0440-2 10.1038/nrg3899 10.1038/nrm2085 10.1073/pnas.1505979112 10.1093/nar/gkw1121 10.1038/clpt.2012.237 10.1038/73432 10.1038/nrc1951 10.1093/bioinformatics/btu835 10.1016/j.ccr.2009.12.020 10.1038/nprot.2016.105 10.1371/journal.pone.0108283 10.1177/1087057114522514 10.1038/nbt.3853 10.1158/2159-8290.CD-16-0154 10.1093/jnci/81.14.1088 10.1016/j.addr.2014.03.001 10.1016/j.bbrc.2017.04.055 10.1016/j.compbiolchem.2015.07.005 10.1177/1087057115583037 10.1038/srep29721 10.1038/nmeth924 10.1124/mol.109.056192 10.1016/j.cell.2016.06.017 10.1093/nar/gks1111 10.1093/nar/gkw997 10.3322/caac.21329 10.4155/fmc.14.163 10.1371/journal.pone.0046086 10.1038/ncomms3126 10.1096/fj.201600953 10.1038/sdata.2014.35 10.1093/bib/bbw142 10.1038/ng1650 10.3390/nu9040368 10.1093/bioinformatics/btx340 10.1177/2472555217696796 10.7554/eLife.19760 10.1093/database/baw093 10.3390/genes8030086 10.1016/j.currproblcancer.2017.05.002  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Pharmaceutical Society of Korea 2017 | 
    
| Copyright_xml | – notice: The Pharmaceutical Society of Korea 2017 | 
    
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 ACYCR  | 
    
| DOI | 10.1007/s12272-017-0940-z | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Korean Citation Index  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology  | 
    
| EISSN | 1976-3786 | 
    
| EndPage | 914 | 
    
| ExternalDocumentID | oai_kci_go_kr_ARTI_1918366 28766239 10_1007_s12272_017_0940_z  | 
    
| Genre | Journal Article Review  | 
    
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2016R1D1A1B03935110; NRF-2016R1A5A1011974 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea grantid: NRF-2015R1D1A1A01057815 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea grantid: NRF-2016R1A5A1011974 – fundername: National Research Foundation of Korea grantid: NRF-2016R1D1A1B03935110 – fundername: National Research Foundation of Korea grantid: NRF-2015R1D1A1A01057815  | 
    
| GroupedDBID | --- -53 -56 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 2.D 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 3SX 4.4 406 408 40D 40E 53G 5GY 5VS 67N 67Z 6J9 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUDM ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GRRUI H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH KVFHK LLZTM M4Y MA- MZR N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCLPG SDE SDH SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 T16 TEORI TSG TSK TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z83 Z87 Z8O Z8P Z8Q Z91 ZMTXR ZOVNA ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 7X8 7S9 L.6 ACYCR  | 
    
| ID | FETCH-LOGICAL-c411t-85d737496b853528c3427be70440dbb5375f26949cce7a2d31d40fd0d9fe2ce73 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0253-6269 1976-3786  | 
    
| IngestDate | Sun Mar 09 07:53:09 EDT 2025 Fri Sep 05 13:58:08 EDT 2025 Fri Sep 05 14:49:15 EDT 2025 Wed Feb 19 02:41:43 EST 2025 Thu Apr 24 22:58:34 EDT 2025 Wed Oct 01 04:24:55 EDT 2025 Fri Feb 21 02:37:01 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Biomarker Phenotypic screening Precision medicine Cancer transcriptome  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c411t-85d737496b853528c3427be70440dbb5375f26949cce7a2d31d40fd0d9fe2ce73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23  | 
    
| ORCID | 0000-0001-7885-7117 | 
    
| PMID | 28766239 | 
    
| PQID | 1925511447 | 
    
| PQPubID | 23479 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1918366 proquest_miscellaneous_2000492370 proquest_miscellaneous_1925511447 pubmed_primary_28766239 crossref_primary_10_1007_s12272_017_0940_z crossref_citationtrail_10_1007_s12272_017_0940_z springer_journals_10_1007_s12272_017_0940_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20170800 2017-8-00 2017-Aug 20170801 2017-08  | 
    
| PublicationDateYYYYMMDD | 2017-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2017 text: 20170800  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Seoul | 
    
| PublicationPlace_xml | – name: Seoul – name: Korea (South)  | 
    
| PublicationTitle | Archives of pharmacal research | 
    
| PublicationTitleAbbrev | Arch. Pharm. Res | 
    
| PublicationTitleAlternate | Arch Pharm Res | 
    
| PublicationYear | 2017 | 
    
| Publisher | Pharmaceutical Society of Korea 대한약학회  | 
    
| Publisher_xml | – name: Pharmaceutical Society of Korea – name: 대한약학회  | 
    
| References | Fu, Fernandez, Ferrer, Titus, Buehler, Lal-Nag (CR13) 2017; 22 Jeong, He, Park, Song, Kim, Lee, Yoon (CR25) 2015; 31 Bray, Singh, Han, Davis, Borgeson, Hartland, Kost-Alimova, Gustafsdottir, Gibson, Carpenter (CR6) 2016; 11 Hong, Kim, Li, Jeong, Yoon (CR19) 2017; 487 Kim, Yim, He, Lee, Kim, Choi, Lee, Kim, Jeong, Song, Jeon, Kim, Mills, Cho, Yoon (CR30) 2016; 6 Zheng, Thorne, Mckew (CR63) 2013; 18 Arai, Eguchi, Rahman, Sakamoto, Masuda, Nakatsura, Calderwood, Kozaki, Itoh (CR4) 2016; 11 Shoemaker (CR50) 2006; 6 Jaiswal, Peddinti, Akimov, Wennerberg, Kuznetsov, Tang, Aittokallio (CR24) 2017; 9 Hannus, Beitzinger, Engelmann, Weickert, Spang, Hannus, Meister (CR17) 2014; 42 Rotem, Janzer, Izar, Ji, Doench, Garraway, Struhl (CR47) 2015; 112 Marhefka, Abbud-Antaki (CR34) 2012; 7 Zeng, Tao, Peng, Qin, Chen, He, Tan, Xia Liu, Yang, Chen, Jiang, Chen (CR62) 2017 Aken, Ayling, Barrell, Clarke, Curwen, Fairley, Fernandez Banet, Billis, Garcia Giron, Hourlier, Howe, Kahari, Kokocinski, Martin, Murphy, Nag, Ruffier, Schuster, Tang, Vogel, White, Zadissa, Flicek, Searle (CR3) 2016 Vempati, Chung, Mader, Koleti, Datar, Vidovic, Wrobel, Erickson, Muhlich, Berriz, Benes, Subramanian, Pillai, Shamu, Schurer (CR58) 2014; 19 Pereira, Silva, Duarte, Rodrigues, Duarte, Albuquerque, Serra (CR37) 2017 Thoma, Zimmermann, Agarkova, Kelm, Krek (CR56) 2014; 69 Jiang, Zhang, Yazdanparast, Li, Pawar, Liu, Inavolu, Cheng (CR26) 2016; 17 Kim, Hong, Kwon, Yoon (CR29) 2013; 11 Kelloff, Sigman (CR27) 2012; 11 Rana (CR40) 2007; 8 Singh, Carpenter, Genovesio (CR52) 2014; 19 Howes, Richardson, Finlay, Vuori (CR22) 2014; 9 Liu, Yin, Zhong, Guan, Luo, Min, Yao, Bo, Dai, Bai (CR33) 2017 Ross, Scherf, Eisen, Perou, Rees, Spellman, Iyer, Jeffrey, Van De Rijn, Waltham, Pergamenschikov, Lee, Lashkari, Shalon, Myers, Weinstein, Botstein, Brown (CR46) 2000; 24 Verhaak, Hoadley, Purdom, Wang, Qi, Wilkerson, Miller, Ding, Golub, Mesirov, Alexe, Lawrence, O’kelly, Tamayo, Weir, Gabriel, Winckler, Gupta, Jakkula, Feiler, Hodgson, James, Sarkaria, Brennan, Kahn, Spellman, Wilson, Speed, Gray, Meyerson, Getz, Perou, Hayes (CR59) 2010; 17 Abaan, Polley, Davis, Zhu, Bilke, Walker, Pineda, Gindin, Jiang, Reinhold, Holbeck, Simon, Doroshow, Pommier, Meltzer (CR1) 2013; 73 Gu, Wang, Han, Zhou, Zhao, Chen, Zhang, Peng, Liang, Qi, Zhao, Yang, Guo (CR16) 2017 Silva, Li, Chang, Ge, Golding, Rickles, Siolas, Hu, Paddison, Schlabach, Sheth, Bradshaw, Burchard, Kulkarni, Cavet, Sachidanandam, Mccombie, Cleary, Elledge, Hannon (CR51) 2005; 37 Roychowdhury, Chinnaiyan (CR48) 2016; 66 Caicedo, Singh, Carpenter (CR7) 2016; 39 Horlbeck, Gilbert, Villalta, Adamson, Pak, Chen, Fields, Park, Corn, Kampmann, Weissman (CR20) 2016 Root, Hacohen, Hahn, Lander, Sabatini (CR45) 2006; 3 Riss, Moravec, Niles, Duellman, Benink, Worzella, Minor, Sittampalam, Coussens, Brimacombe, Grossman, Arkin, Auld, Austin, Baell, Bejcek, Chung, Dahlin, Devanaryan, Foley, Glicksman, Hall, Hass, Inglese, Iversen, Lal-Nag, Li, Mcgee, Mcmanus, Riss, Trask, Weidner, Xia, Xu (CR44) 2004 Reinhold, Sunshine, Liu, Varma, Kohn, Morris, Doroshow, Pommier (CR42) 2012; 72 Cowley, Weir, Vazquez, Tamayo, Scott, Rusin, East-Seletsky, Ali, Gerath, Pantel, Lizotte, Jiang, Hsiao, Tsherniak, Dwinell, Aoyama, Okamoto, Harrington, Gelfand, Green, Tomko, Gopal, Wong, Li, Howell, Stransky, Liefeld, Jang, Bistline, Hill Meyers, Armstrong, Anderson, Stegmaier, Reich, Pellman, Boehm, Mesirov, Golub, Root, Hahn (CR8) 2014; 1 Marugan, Torres, Lallena (CR35) 2015; 5 Wang, Wei, Sabatini, Lander (CR60) 2014; 343 Hatzis, Bedard, Birkbak, Beck, Aerts, Stem, Shi, Clarke, Quackenbush, Haibe-Kains (CR18) 2014; 74 Yang, Soares, Greninger, Edelman, Lightfoot, Forbes, Bindal, Beare, Smith, Thompson, Ramaswamy, Futreal, Haber, Stratton, Benes, Mcdermott, Garnett (CR61) 2013; 41 Horman, Hogan, Delos Reyes, Lo, Antczak (CR21) 2015; 7 Rameseder, Krismer, Dayma, Ehrenberger, Hwang, Airoldi, Floyd, Yaffe (CR39) 2015; 20 Iorio, Knijnenburg, Vis, Bignell, Menden, Schubert, Aben, Goncalves, Barthorpe, Lightfoot, Cokelaer, Greninger, Van Dyk, Chang, De Silva, Heyn, Deng, Egan, Liu, Mironenko, Mitropoulos, Richardson, Wang, Zhang, Moran, Sayols, Soleimani, Tamborero, Lopez-Bigas, Ross-Macdonald, Esteller, Gray, Haber, Stratton, Benes, Wessels, Saez-Rodriguez, Mcdermott, Garnett (CR23) 2016; 166 Riba, Emmenlauer, Chen, Sigoillot, Cong, Dehio, Jenkins, Zavolan (CR43) 2017; 4 Li, Zhao, Akbani, Liu, Ju, Ling, Vellano, Roebuck, Yu, Eterovic, Byers, Davies, Deng, Gopal, Chen, Von Euw, Slamon, Conklin, Heymach, Gazdar, Minna, Myers, Lu, Mills, Liang (CR32) 2017; 31 Rauscher, Heigwer, Breinig, Winter, Boutros (CR41) 2017; 45 Perez-Pinera, Kocak, Vockley, Adler, Kabadi, Polstein, Thakore, Glass, Ousterout, Leong, Guilak, Crawford, Reddy, Gersbach (CR38) 2013; 10 Song, Jeong, Lee, Tsoy, Kwon, Yoon (CR53) 2015; 58 Song, Lee, Nam, Jeong, Kim, Hong, Kim, Yim, Yoo, Kim, Kim, Cho, Mills, Kim, Yoon (CR54) 2017; 31 Barretina, Caponigro, Stransky, Venkatesan, Margolin, Kim, Wilson, Lehar, Kryukov, Sonkin, Reddy, Liu, Murray, Berger, Monahan, Morais, Meltzer, Korejwa, Jane-Valbuena, Mapa, Thibault, Bric-Furlong, Raman, Shipway, Engels, Cheng, Yu, Yu, Aspesi, De Silva, Jagtap, Jones, Wang, Hatton, Palescandolo, Gupta, Mahan, Sougnez, Onofrio, Liefeld, Macconaill, Winckler, Reich, Li, Mesirov, Gabriel, Getz, Ardlie, Chan, Myer, Weber, Porter, Warmuth, Finan, Harris, Meyerson, Golub, Morrissey, Sellers, Schlegel, Garraway (CR5) 2012; 483 Forbes, Beare, Boutselakis, Bamford, Bindal, Tate, Cole, Ward, Dawson, Ponting, Stefancsik, Harsha, Kok, Jia, Jubb, Sondka, Thompson, De, Campbell (CR12) 2017; 45 Gimenez, Ielpi, Mutto, Grosembacher, Argibay, Pereyra-Bonnet (CR14) 2016; 23 Sundar, Brown, Ingles Russo, Yap (CR55) 2017 Aguirre, Meyers, Weir, Vazquez, Zhang, Ben-David, Cook, Ha, Harrington, Doshi, Kost-Alimova, Gill, Xu, Ali, Jiang, Pantel, Lee, Goodale, Cherniack, Oh, Kryukov, Cowley, Garraway, Stegmaier, Roberts, Golub, Meyerson, Root, Tsherniak, Hahn (CR2) 2016; 6 Kim, He, Kim, Zhang, Lu, Yu, Stemke-Hale, Greshock, Wooster, Yoon, Mills (CR28) 2012; 131 Klann, Black, Chellappan, Safi, Song, Hilton, Crawford, Reddy, Gersbach (CR31) 2017; 35 Paull, Shoemaker, Hodes, Monks, Scudiero, Rubinstein, Plowman, Boyd (CR36) 1989; 81 Domcke, Sinha, Levine, Sander, Schultz (CR10) 2013; 4 Tomczak, Czerwinska, Wiznerowicz (CR57) 2015; 19 Deeken, Robey, Shukla, Steadman, Chakraborty, Poonkuzhali, Schuetz, Holbeck, Ambudkar, Bates (CR9) 2009; 76 Erb, Scott, Li, Xie, Paulk, Seo, Souza, Roberts, Dastjerdi, Buckley, Sanjana, Shalem, Nabet, Zeid, Offei-Addo, Dhe-Paganon, Zhang, Orkin, Winter, Bradner (CR11) 2017; 543 Gonzalez De Castro, Clarke, Al-Lazikani, Workman (CR15) 2013; 93 Shalem, Sanjana, Zhang (CR49) 2015; 16 JF Deeken (940_CR9) 2009; 76 J Rameseder (940_CR39) 2015; 20 A Jaiswal (940_CR24) 2017; 9 MA Erb (940_CR11) 2017; 543 CR Thoma (940_CR56) 2014; 69 RH Shoemaker (940_CR50) 2006; 6 E Jeong (940_CR25) 2015; 31 P Perez-Pinera (940_CR38) 2013; 10 DT Ross (940_CR46) 2000; 24 F Iorio (940_CR23) 2016; 166 M Song (940_CR53) 2015; 58 SR Horman (940_CR21) 2015; 7 JN Marhefka (940_CR34) 2012; 7 SA Forbes (940_CR12) 2017; 45 K Arai (940_CR4) 2016; 11 M Song (940_CR54) 2017; 31 WC Reinhold (940_CR42) 2012; 72 X Zeng (940_CR62) 2017 BL Aken (940_CR3) 2016 UD Vempati (940_CR58) 2014; 19 LP Pereira (940_CR37) 2017 KD Paull (940_CR36) 1989; 81 G Jiang (940_CR26) 2016; 17 J Barretina (940_CR5) 2012; 483 N Kim (940_CR29) 2013; 11 S Singh (940_CR52) 2014; 19 AL Howes (940_CR22) 2014; 9 MA Bray (940_CR6) 2016; 11 TM Rana (940_CR40) 2007; 8 CA Gimenez (940_CR14) 2016; 23 N Kim (940_CR30) 2016; 6 TL Riss (940_CR44) 2004 O Shalem (940_CR49) 2015; 16 OD Abaan (940_CR1) 2013; 73 S Domcke (940_CR10) 2013; 4 M Hannus (940_CR17) 2014; 42 J Li (940_CR32) 2017; 31 MA Horlbeck (940_CR20) 2016 C Hatzis (940_CR18) 2014; 74 Y Liu (940_CR33) 2017 AJ Aguirre (940_CR2) 2016; 6 B Rauscher (940_CR41) 2017; 45 GJ Kelloff (940_CR27) 2012; 11 A Riba (940_CR43) 2017; 4 Y Hong (940_CR19) 2017; 487 N Kim (940_CR28) 2012; 131 W Zheng (940_CR63) 2013; 18 W Yang (940_CR61) 2013; 41 T Wang (940_CR60) 2014; 343 S Roychowdhury (940_CR48) 2016; 66 K Tomczak (940_CR57) 2015; 19 Y Gu (940_CR16) 2017 J Fu (940_CR13) 2017; 22 D Gonzalez De Castro (940_CR15) 2013; 93 GS Cowley (940_CR8) 2014; 1 C Marugan (940_CR35) 2015; 5 A Rotem (940_CR47) 2015; 112 TS Klann (940_CR31) 2017; 35 DE Root (940_CR45) 2006; 3 JM Silva (940_CR51) 2005; 37 R Sundar (940_CR55) 2017 JC Caicedo (940_CR7) 2016; 39 RG Verhaak (940_CR59) 2010; 17  | 
    
| References_xml | – volume: 343 start-page: 80 year: 2014 end-page: 84 ident: CR60 article-title: Genetic screens in human cells using the CRISPR-Cas9 system publication-title: Science doi: 10.1126/science.1246981 – volume: 18 start-page: 1067 year: 2013 end-page: 1073 ident: CR63 article-title: Phenotypic screens as a renewed approach for drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2013.07.001 – volume: 11 start-page: e0162394 year: 2016 ident: CR4 article-title: A novel high-throughput 3D screening system for EMT inhibitors: a pilot screening discovered the EMT inhibitory activity of CDK2 inhibitor SU9516 publication-title: PLoS ONE doi: 10.1371/journal.pone.0162394 – year: 2017 ident: CR16 article-title: A landscape of synthetic viable interactions in cancer publication-title: Brief Bioinform – volume: 37 start-page: 1281 year: 2005 end-page: 1288 ident: CR51 article-title: Second-generation shRNA libraries covering the mouse and human genomes publication-title: Nat Genet – volume: 11 start-page: 201 year: 2012 end-page: 214 ident: CR27 article-title: Cancer biomarkers: selecting the right drug for the right patient publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3651 – volume: 42 start-page: 8049 year: 2014 end-page: 8061 ident: CR17 article-title: siPools: highly complex but accurately defined siRNA pools eliminate off-target effects publication-title: Nucleic Acids Res doi: 10.1093/nar/gku480 – volume: 31 start-page: 225 year: 2017 end-page: 239 ident: CR32 article-title: Characterization of human cancer cell lines by reverse-phase protein arrays publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.01.005 – volume: 11 start-page: 239 year: 2013 end-page: 244 ident: CR29 article-title: Somatic mutaome profile in human cancer tissues publication-title: Genomics Inform doi: 10.5808/GI.2013.11.4.239 – volume: 10 start-page: 973 year: 2013 end-page: 976 ident: CR38 article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors publication-title: Nat Methods doi: 10.1038/nmeth.2600 – volume: 73 start-page: 4372 year: 2013 end-page: 4382 ident: CR1 article-title: The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3342 – volume: 131 start-page: 2456 year: 2012 end-page: 2464 ident: CR28 article-title: Systematic analysis of genotype-specific drug responses in cancer publication-title: Int J Cancer doi: 10.1002/ijc.27529 – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: CR5 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 23 start-page: 543 year: 2016 end-page: 547 ident: CR14 article-title: CRISPR-on system for the activation of the endogenous human INS gene publication-title: Gene Ther doi: 10.1038/gt.2016.28 – volume: 543 start-page: 270 year: 2017 end-page: 274 ident: CR11 article-title: Transcription control by the ENL YEATS domain in acute leukaemia publication-title: Nature doi: 10.1038/nature21688 – year: 2017 ident: CR33 article-title: Systematic identification and assessment of therapeutic targets for breast cancer based on genome-wide RNA interference transcriptomes publication-title: Genes (Basel) – volume: 17 start-page: 525 issue: Suppl 7 year: 2016 ident: CR26 article-title: Comprehensive comparison of molecular portraits between cell lines and tumors in breast cancer publication-title: BMC Genomics doi: 10.1186/s12864-016-2911-z – volume: 74 start-page: 4016 year: 2014 end-page: 4023 ident: CR18 article-title: Enhancing reproducibility in cancer drug screening: how do we move forward? publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0725 – year: 2016 ident: CR20 article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation publication-title: Elife – year: 2004 ident: CR44 article-title: Cell Viability Assays publication-title: Assay guidance manual – volume: 19 start-page: 640 year: 2014 end-page: 650 ident: CR52 article-title: Increasing the content of high-content screening: an overview publication-title: J Biomol Screen doi: 10.1177/1087057114528537 – volume: 72 start-page: 3499 year: 2012 end-page: 3511 ident: CR42 article-title: Cell Miner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1370 – volume: 39 start-page: 134 year: 2016 end-page: 142 ident: CR7 article-title: Applications in image-based profiling of perturbations publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.04.003 – volume: 9 start-page: 51 year: 2017 ident: CR24 article-title: Seed-effect modeling improves the consistency of genome-wide loss-of-function screens and identifies synthetic lethal vulnerabilities in cancer cells publication-title: Genome Med doi: 10.1186/s13073-017-0440-2 – volume: 4 start-page: e184 issue: 182–193 year: 2017 ident: CR43 article-title: Explicit modeling of siRNA-dependent on- and off-target repression improves the interpretation of screening results publication-title: Cell Syst – volume: 16 start-page: 299 year: 2015 end-page: 311 ident: CR49 article-title: High-throughput functional genomics using CRISPR-Cas9 publication-title: Nat Rev Genet doi: 10.1038/nrg3899 – volume: 8 start-page: 23 year: 2007 end-page: 36 ident: CR40 article-title: Illuminating the silence: understanding the structure and function of small RNAs publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2085 – volume: 112 start-page: 5708 year: 2015 end-page: 5713 ident: CR47 article-title: Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1505979112 – volume: 45 start-page: D777 year: 2017 end-page: D783 ident: CR12 article-title: COSMIC: somatic cancer genetics at high-resolution publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1121 – year: 2017 ident: CR55 article-title: Targeting ATR in cancer medicine publication-title: Curr Probl Cancer – volume: 93 start-page: 252 year: 2013 end-page: 259 ident: CR15 article-title: Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2012.237 – volume: 24 start-page: 227 year: 2000 end-page: 235 ident: CR46 article-title: Systematic variation in gene expression patterns in human cancer cell lines publication-title: Nat Genet doi: 10.1038/73432 – year: 2017 ident: CR62 article-title: HEROD: a human ethnic and regional specific omics database publication-title: Bioinformatics – volume: 6 start-page: 813 year: 2006 end-page: 823 ident: CR50 article-title: The NCI60 human tumour cell line anticancer drug screen publication-title: Nat Rev Cancer doi: 10.1038/nrc1951 – volume: 31 start-page: 1508 year: 2015 end-page: 1514 ident: CR25 article-title: MACE: mutation-oriented profiling of chemical response and gene expression in cancers publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu835 – volume: 17 start-page: 98 year: 2010 end-page: 110 ident: CR59 article-title: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume: 11 start-page: 1757 year: 2016 end-page: 1774 ident: CR6 article-title: Cell painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes publication-title: Nat Protoc doi: 10.1038/nprot.2016.105 – volume: 9 start-page: e108283 year: 2014 ident: CR22 article-title: 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems publication-title: PLoS ONE doi: 10.1371/journal.pone.0108283 – volume: 5 start-page: 299 year: 2015 ident: CR35 article-title: Phenotypic screening approaches to develop aurora kinase inhibitors: drug discovery perspectives publication-title: Front Oncol – volume: 19 start-page: 803 year: 2014 end-page: 816 ident: CR58 article-title: metadata standard and data exchange specifications to describe, model, and integrate complex and diverse high-throughput screening data from the Library of Integrated Network-based Cellular Signatures (LINCS) publication-title: J Biomol Screen doi: 10.1177/1087057114522514 – volume: 35 start-page: 561 year: 2017 end-page: 568 ident: CR31 article-title: CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome publication-title: Nat Biotechnol doi: 10.1038/nbt.3853 – year: 2017 ident: CR37 article-title: Targeting colorectal cancer proliferation, stemness and metastatic potential using brassicaceae extracts enriched in isothiocyanates: a 3D cell model-based study publication-title: Nutrients – volume: 6 start-page: 914 year: 2016 end-page: 929 ident: CR2 article-title: Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0154 – volume: 81 start-page: 1088 year: 1989 end-page: 1092 ident: CR36 article-title: Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm publication-title: J Natl Cancer Inst doi: 10.1093/jnci/81.14.1088 – volume: 69 start-page: 29 year: 2014 end-page: 41 ident: CR56 article-title: 3D cell culture systems modeling tumor growth determinants in cancer target discovery publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2014.03.001 – volume: 22 start-page: 525 year: 2017 end-page: 536 ident: CR13 article-title: RNAi high-throughput screening of single- and multi-cell-type tumor spheroids: a comprehensive analysis in two and three dimensions publication-title: SLAS Discov – volume: 487 start-page: 307 year: 2017 end-page: 312 ident: CR19 article-title: Patient sample-oriented analysis of gene expression highlights extracellular signatures in breast cancer progression publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.04.055 – volume: 58 start-page: 192 year: 2015 end-page: 198 ident: CR53 article-title: Analysis of image-based phenotypic parameters for high throughput gene perturbation assays publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2015.07.005 – volume: 20 start-page: 985 year: 2015 end-page: 997 ident: CR39 article-title: A multivariate computational method to analyze high-content RNAi screening data publication-title: J Biomol Screen doi: 10.1177/1087057115583037 – volume: 6 start-page: 29721 year: 2016 ident: CR30 article-title: Cardiac glycosides display selective efficacy for STK11 mutant lung cancer publication-title: Sci Rep doi: 10.1038/srep29721 – volume: 3 start-page: 715 year: 2006 end-page: 719 ident: CR45 article-title: Genome-scale loss-of-function screening with a lentiviral RNAi library publication-title: Nat Methods doi: 10.1038/nmeth924 – volume: 76 start-page: 946 year: 2009 end-page: 956 ident: CR9 article-title: Identification of compounds that correlate with ABCG2 transporter function in the National Cancer Institute Anticancer Drug Screen publication-title: Mol Pharmacol doi: 10.1124/mol.109.056192 – volume: 19 start-page: A68 year: 2015 end-page: A77 ident: CR57 article-title: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge publication-title: Contemp Oncol – year: 2016 ident: CR3 article-title: The Ensembl gene annotation system publication-title: Database – volume: 166 start-page: 740 year: 2016 end-page: 754 ident: CR23 article-title: A landscape of pharmacogenomic interactions in cancer publication-title: Cell doi: 10.1016/j.cell.2016.06.017 – volume: 41 start-page: D955 year: 2013 end-page: D961 ident: CR61 article-title: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1111 – volume: 45 start-page: D679 year: 2017 end-page: D686 ident: CR41 article-title: GenomeCRISPR—a database for high-throughput CRISPR/Cas9 screens publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw997 – volume: 66 start-page: 75 year: 2016 end-page: 88 ident: CR48 article-title: Translating cancer genomes and transcriptomes for precision oncology publication-title: CA Cancer J Clin doi: 10.3322/caac.21329 – volume: 7 start-page: 513 year: 2015 end-page: 525 ident: CR21 article-title: Challenges and opportunities toward enabling phenotypic screening of complex and 3D cell models publication-title: Future Med Chem doi: 10.4155/fmc.14.163 – volume: 7 start-page: e46086 year: 2012 ident: CR34 article-title: Validation of the Cancer BioChip System as a 3D siRNA screening tool for breast cancer targets publication-title: PLoS ONE doi: 10.1371/journal.pone.0046086 – volume: 4 start-page: 2126 year: 2013 ident: CR10 article-title: Evaluating cell lines as tumour models by comparison of genomic profiles publication-title: Nat Commun doi: 10.1038/ncomms3126 – volume: 31 start-page: 625 year: 2017 end-page: 635 ident: CR54 article-title: Loss-of-function screens of druggable targetome against cancer stem-like cells publication-title: FASEB J doi: 10.1096/fj.201600953 – volume: 1 start-page: 140035 year: 2014 ident: CR8 article-title: Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies publication-title: Sci Data doi: 10.1038/sdata.2014.35 – volume: 76 start-page: 946 year: 2009 ident: 940_CR9 publication-title: Mol Pharmacol doi: 10.1124/mol.109.056192 – volume: 58 start-page: 192 year: 2015 ident: 940_CR53 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2015.07.005 – year: 2017 ident: 940_CR16 publication-title: Brief Bioinform doi: 10.1093/bib/bbw142 – volume: 10 start-page: 973 year: 2013 ident: 940_CR38 publication-title: Nat Methods doi: 10.1038/nmeth.2600 – volume: 73 start-page: 4372 year: 2013 ident: 940_CR1 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-3342 – volume: 166 start-page: 740 year: 2016 ident: 940_CR23 publication-title: Cell doi: 10.1016/j.cell.2016.06.017 – volume: 19 start-page: A68 year: 2015 ident: 940_CR57 publication-title: Contemp Oncol – volume: 112 start-page: 5708 year: 2015 ident: 940_CR47 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1505979112 – volume: 1 start-page: 140035 year: 2014 ident: 940_CR8 publication-title: Sci Data doi: 10.1038/sdata.2014.35 – volume: 11 start-page: e0162394 year: 2016 ident: 940_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0162394 – volume: 487 start-page: 307 year: 2017 ident: 940_CR19 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.04.055 – volume: 17 start-page: 525 issue: Suppl 7 year: 2016 ident: 940_CR26 publication-title: BMC Genomics doi: 10.1186/s12864-016-2911-z – volume: 9 start-page: e108283 year: 2014 ident: 940_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0108283 – volume: 131 start-page: 2456 year: 2012 ident: 940_CR28 publication-title: Int J Cancer doi: 10.1002/ijc.27529 – volume: 20 start-page: 985 year: 2015 ident: 940_CR39 publication-title: J Biomol Screen doi: 10.1177/1087057115583037 – volume: 72 start-page: 3499 year: 2012 ident: 940_CR42 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-1370 – volume: 543 start-page: 270 year: 2017 ident: 940_CR11 publication-title: Nature doi: 10.1038/nature21688 – volume: 7 start-page: e46086 year: 2012 ident: 940_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0046086 – volume: 19 start-page: 640 year: 2014 ident: 940_CR52 publication-title: J Biomol Screen doi: 10.1177/1087057114528537 – volume: 39 start-page: 134 year: 2016 ident: 940_CR7 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.04.003 – volume: 81 start-page: 1088 year: 1989 ident: 940_CR36 publication-title: J Natl Cancer Inst doi: 10.1093/jnci/81.14.1088 – volume: 37 start-page: 1281 year: 2005 ident: 940_CR51 publication-title: Nat Genet doi: 10.1038/ng1650 – volume: 41 start-page: D955 year: 2013 ident: 940_CR61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1111 – volume: 483 start-page: 603 year: 2012 ident: 940_CR5 publication-title: Nature doi: 10.1038/nature11003 – year: 2017 ident: 940_CR37 publication-title: Nutrients doi: 10.3390/nu9040368 – volume: 6 start-page: 29721 year: 2016 ident: 940_CR30 publication-title: Sci Rep doi: 10.1038/srep29721 – volume: 4 start-page: 2126 year: 2013 ident: 940_CR10 publication-title: Nat Commun doi: 10.1038/ncomms3126 – volume: 23 start-page: 543 year: 2016 ident: 940_CR14 publication-title: Gene Ther doi: 10.1038/gt.2016.28 – volume: 69 start-page: 29 year: 2014 ident: 940_CR56 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2014.03.001 – volume: 9 start-page: 51 year: 2017 ident: 940_CR24 publication-title: Genome Med doi: 10.1186/s13073-017-0440-2 – volume: 93 start-page: 252 year: 2013 ident: 940_CR15 publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2012.237 – volume: 11 start-page: 1757 year: 2016 ident: 940_CR6 publication-title: Nat Protoc doi: 10.1038/nprot.2016.105 – volume: 42 start-page: 8049 year: 2014 ident: 940_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku480 – volume: 45 start-page: D777 year: 2017 ident: 940_CR12 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1121 – volume: 19 start-page: 803 year: 2014 ident: 940_CR58 publication-title: J Biomol Screen doi: 10.1177/1087057114522514 – volume: 5 start-page: 299 year: 2015 ident: 940_CR35 publication-title: Front Oncol – volume: 17 start-page: 98 year: 2010 ident: 940_CR59 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume: 11 start-page: 239 year: 2013 ident: 940_CR29 publication-title: Genomics Inform doi: 10.5808/GI.2013.11.4.239 – volume: 45 start-page: D679 year: 2017 ident: 940_CR41 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw997 – volume: 3 start-page: 715 year: 2006 ident: 940_CR45 publication-title: Nat Methods doi: 10.1038/nmeth924 – volume: 18 start-page: 1067 year: 2013 ident: 940_CR63 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2013.07.001 – volume: 31 start-page: 225 year: 2017 ident: 940_CR32 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.01.005 – volume: 4 start-page: e184 issue: 182–193 year: 2017 ident: 940_CR43 publication-title: Cell Syst – volume: 8 start-page: 23 year: 2007 ident: 940_CR40 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2085 – volume: 74 start-page: 4016 year: 2014 ident: 940_CR18 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0725 – year: 2017 ident: 940_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx340 – volume: 22 start-page: 525 year: 2017 ident: 940_CR13 publication-title: SLAS Discov doi: 10.1177/2472555217696796 – year: 2016 ident: 940_CR20 publication-title: Elife doi: 10.7554/eLife.19760 – volume: 24 start-page: 227 year: 2000 ident: 940_CR46 publication-title: Nat Genet doi: 10.1038/73432 – year: 2016 ident: 940_CR3 publication-title: Database doi: 10.1093/database/baw093 – volume: 16 start-page: 299 year: 2015 ident: 940_CR49 publication-title: Nat Rev Genet doi: 10.1038/nrg3899 – volume: 7 start-page: 513 year: 2015 ident: 940_CR21 publication-title: Future Med Chem doi: 10.4155/fmc.14.163 – volume: 343 start-page: 80 year: 2014 ident: 940_CR60 publication-title: Science doi: 10.1126/science.1246981 – volume: 66 start-page: 75 year: 2016 ident: 940_CR48 publication-title: CA Cancer J Clin doi: 10.3322/caac.21329 – volume: 31 start-page: 1508 year: 2015 ident: 940_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu835 – volume: 6 start-page: 914 year: 2016 ident: 940_CR2 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0154 – volume-title: Assay guidance manual year: 2004 ident: 940_CR44 – year: 2017 ident: 940_CR33 publication-title: Genes (Basel) doi: 10.3390/genes8030086 – year: 2017 ident: 940_CR55 publication-title: Curr Probl Cancer doi: 10.1016/j.currproblcancer.2017.05.002 – volume: 11 start-page: 201 year: 2012 ident: 940_CR27 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3651 – volume: 35 start-page: 561 year: 2017 ident: 940_CR31 publication-title: Nat Biotechnol doi: 10.1038/nbt.3853 – volume: 6 start-page: 813 year: 2006 ident: 940_CR50 publication-title: Nat Rev Cancer doi: 10.1038/nrc1951 – volume: 31 start-page: 625 year: 2017 ident: 940_CR54 publication-title: FASEB J doi: 10.1096/fj.201600953  | 
    
| SSID | ssj0036555 | 
    
| Score | 2.2055206 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands... Cancer precision medicine requires clinicallyactionable biomarkers for patient stratification and a betterprediction of clinical outcome. Although thousands...  | 
    
| SourceID | nrf proquest pubmed crossref springer  | 
    
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 906 | 
    
| SubjectTerms | biomarkers drugs gene frequency genes Medicine mutants mutation neoplasms patients Pharmacology/Toxicology Pharmacy phenotype prediction Review screening transcriptome 약학  | 
    
| Title | Transcriptome modeling and phenotypic assays for cancer precision medicine | 
    
| URI | https://link.springer.com/article/10.1007/s12272-017-0940-z https://www.ncbi.nlm.nih.gov/pubmed/28766239 https://www.proquest.com/docview/1925511447 https://www.proquest.com/docview/2000492370 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002257119  | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Archives of Pharmacal Research, 2017, 40(8), , pp.906-914 | 
    
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1976-3786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036555 issn: 0253-6269 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1976-3786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036555 issn: 0253-6269 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1976-3786 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036555 issn: 0253-6269 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ygNJLaZO2cR9BLSGHNgZbD8s6bko2j5KQQxbSk7AlOYSk9mJvDptf35HWzlKaFHISmLEtPCNpPs_MNwA7JXepSY2KE2sRoMg8icvM_-YQtMoNF8xxX-B8epYdTfjJpbjs67i7Idt9CEmGnXpZ7Eap9GkEMvacb_H9KqwLz-aFRjyho2H7ZZkIrU7xLGcxeutqCGU-9oi_DqPVuq0e8zP_iZGGo2f8Gl71PiMZLZT8BlZcvQEvTvuo-Absni_4p-d75GJZTtXtkV1yvmSmnm_CSTiZwj7R_HYkdMHBN5KitsTnejWz-fTaEPSni3lH0J0lxhtFS6Zt34qHDLH4tzAZH1z8OIr7Zgqx4Wk6i3NhJZNcZWUeGF0M41SWTvqW07YsBZOi8lWtyhgnC2pZanlS2cSqylG8xN7BWt3UbgtIyoW1EqENd4znSiiRVyqjFbcJL_IyjSAZvqo2PdO4b3hxq5ccyV4RGhWhvSL0fQTfHm6ZLmg2_if8FVWlb8y19uTYfrxq9E2rEQIcawSgOcuyCL4MmtS4YnwYpKhdc9ehAMIohIFcPi1DA3SiTCYRvF-YwcO8EGNm6DSqCL4PdqH7hd89PekPz5L-CC9pMFOfafgJ1mbtnfuM3s-s3Ib10Xh__8yPh79-HmwH6_8DHyP8vg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb5xADLaajdT20kf6os9pVeXQhAjmwcAxqpJuHhvlsJHS0whmhiraFlbAHnZ_fT08smqbVMoJCQ3IDMb2h-3PAJ8zbkMd6sQPjEGAIuPAzyL3m0PQPNZcMMtdg_PkLBpf8ONLcdn3cddDtfuQkmwt9brZjVLpygik7zjf_NUGbHLEJ3QEm_vfvp8cDAaYRaIddorenPkYrydDMvOmm_zhjjaKKr8p0vwnS9o6n8PHMB3E7mpOZnuLJtvTq78YHe_4XE_gUR-Mkv1Oe57CPVtswf1Jn27fgu3zjth6uUum6z6tepdsk_M15fXyGRy3Lq81QOUvS9rxOigDSQtDXBFZ2SznV5pgoJ4ua4JxMtFO2yoyr_oZP2RI8j-Hi8OD6dex309p8DUPw8aPhZFM8iTK4pYqRjNOZWalm2VtskwwKXLXLptobWVKDQsND3ITmCS3FE-xFzAqysK-AhJyYYxEzMQt43EiEhHnSURzbgKexlnoQTC8LKV7CnM3SeOnWpMvu81UuJnKbaZaefDl-pJ5x9_xv8WfUAPUTF8px7rtjj9KNasUYosjhcg2ZlHkwcdBQRR-ii6_kha2XNS4APEZ4ksub19DW0xGmQw8eNlp17VcCF4jjEYTD3YGTVG9RalvF_r1nVZ_gAfj6eRUnR6dnbyBh7RVO1fO-BZGTbWw7zDEarL3_Sf1G9SoGa0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB9sheJFtH7Fz1WkB21osh_Z7LGoj7ba8g590NuS7G5KqSaPJD28_vXObpI-xFbwFAiTZMlMduaXmfkNwMeSu9SkRsWJtQhQZJ7EZeZ_cwha5YYL5rhvcD4-yQ4W_OhMnI1zTrup2n1KSQ49DZ6lqe73lrbaWze-USp9SYGMPf9bfL0B97nnSUCDXtD9aStmmQhjT9GvsxgjdzWlNW-7xR-OaaNuq9tizr_ypcENzR7BwzF-JPuDwh_DPVdvw9bxmCHfhp35wEW92iWn69aqbpfskPmapXr1BI6Clwp7RvPLkTARB59IitoSX_fV9KvlhSEYWxerjmBoS4w3kJYs23EsD5ny8k9hMft2-uUgHgcrxIanaR_nwkomucrKPLC7GMapLJ3046dtWQomReU7XJUxThbUstTypLKJVZWjeIo9g826qd0LICkX1kqEOdwxniuhRF6pjFbcJrzIyzSCZHqr2oys4374xU-95kv2itCoCO0Voa8j-HRzyXKg3PiX8AdUlb40F9oTZfvjeaMvW41w4FAjGM1ZlkXwftKkxq_Hp0SK2jVXHQogpEJIyOXdMjTAKMpkEsHzwQxu1oV4M8MAUkXwebILPW4C3d2Lfvlf0u9ga_51pn8cnnx_BQ9osFhfgPgaNvv2yr3BoKgv3wbD_w3LQQDl | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+modeling+and+phenotypic+assays+for+cancer+precision+medicine&rft.jtitle=Archives+of+pharmacal+research&rft.au=Jeong%2C+Euna&rft.au=Moon%2C+Sung+Ung&rft.au=Song%2C+Mee&rft.au=Yoon%2C+Sukjoon&rft.date=2017-08-01&rft.issn=1976-3786&rft.eissn=1976-3786&rft.volume=40&rft.issue=8&rft.spage=906&rft_id=info:doi/10.1007%2Fs12272-017-0940-z&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6269&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6269&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6269&client=summon |