Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis

•AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual methods.•AI algorithms significantly reduce tooth segmentation time, enabling faster and more efficient clinical applications (around 10 times faster t...

Full description

Saved in:
Bibliographic Details
Published inJournal of dentistry Vol. 146; p. 105064
Main Authors Xiang, Bilu, Lu, Jiayi, Yu, Jiayi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text
ISSN0300-5712
1879-176X
1879-176X
DOI10.1016/j.jdent.2024.105064

Cover

Abstract •AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual methods.•AI algorithms significantly reduce tooth segmentation time, enabling faster and more efficient clinical applications (around 10 times faster than manual segmentation).•Convolutional Neural Networks, particularly the U-net model, were found to be the most commonly utilized AI-based approaches for tooth segmentation. This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques. The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC). PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques. AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies. AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice.
AbstractList This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques. The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC). PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques. AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies. AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice.
•AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual methods.•AI algorithms significantly reduce tooth segmentation time, enabling faster and more efficient clinical applications (around 10 times faster than manual segmentation).•Convolutional Neural Networks, particularly the U-net model, were found to be the most commonly utilized AI-based approaches for tooth segmentation. This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques. The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC). PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques. AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies. AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice.
This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques.OBJECTIVESThis systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques.The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC).DATAThe data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC).PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques.SOURCESPubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques.AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies.CONCLUSIONSAI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies.AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice.CLINICAL SIGNIFICANCEAI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice.
ArticleNumber 105064
Author Xiang, Bilu
Lu, Jiayi
Yu, Jiayi
Author_xml – sequence: 1
  givenname: Bilu
  surname: Xiang
  fullname: Xiang, Bilu
  email: xiangbl@szu.edu.cn
  organization: School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen 518000, China
– sequence: 2
  givenname: Jiayi
  surname: Lu
  fullname: Lu, Jiayi
  organization: Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518000, China
– sequence: 3
  givenname: Jiayi
  surname: Yu
  fullname: Yu, Jiayi
  organization: Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518000, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38768854$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFJ0BCXrLJYOfPMYhFGZUfqYhNkdhZd-ybwYPjFNspykvwzHgm7aYLurJ0fL4j-5wzcuJHj4S85GzNGW_f7Nd7gz6tS1bWWWlYWz8hK94JWXDR_jghK1YxVjSCl6fkLMY9Y6xmpXxGTqtOtF3X1Cvy9_IW3ATJ-h1N45h-0oi7IcdmafQUtJ4C6JmCNzTZASn2vdUWfdasp5sPm2tqB9hhpFM8hEBI9uAAl-8TOmd32Yxv6QWNc0w45GBNA95a_HNM_YoJCvDg5mjjc_K0Bxfxxd15Tr5_vLzefC6uvn36srm4KnTNeSqEkNuuR17mIhrZNZL3XVs3nEHf8K1oAcpWM1MajqatsdqCFLwzJXKTSWaqc_J6yb0J4-8JY1KDjTq_FjyOU1QVa0Qry1rIbH11Z522Axp1E_J_w6zuO8wGuRh0GGMM2Cttl_pSAOsUZ-qwl9qr417qsJda9sps9YC9j_8_9X6hMFeUiwwqHidBYwPqpMxoH-HfPeC1s95qcL9wfpT-B8UJxVs
CitedBy_id crossref_primary_10_1111_jerd_13451
crossref_primary_10_1016_j_aej_2024_11_103
crossref_primary_10_1016_j_jdent_2024_105387
crossref_primary_10_1016_j_jdent_2024_105398
crossref_primary_10_1016_j_jdent_2024_105425
crossref_primary_10_1186_s12903_024_05395_z
Cites_doi 10.1007/s00330-021-08455-y
10.1016/j.physa.2023.128529
10.2214/AJR.16.17224
10.1109/ACCESS.2020.2975826
10.1109/42.363096
10.1016/j.jdent.2022.104238
10.1109/ACCESS.2020.2991799
10.1038/s41598-022-23901-7
10.1109/TPAMI.2021.3086072
10.1016/j.compbiomed.2020.103720
10.1109/ACCESS.2022.3192411
10.1177/00220345211005338
10.1007/s00784-020-03544-6
10.3390/jpm11070629
10.1007/s00330-018-5644-3
10.1093/ejo/cjac047
10.1038/s41467-022-29637-2
10.1016/j.media.2023.102750
10.1587/transinf.E92.D.2137
10.1155/2022/3289663
10.1016/j.joen.2021.09.001
10.1007/s00784-022-04708-2
10.1016/j.jdent.2021.103865
10.14311/NNW.2022.32.018
10.1016/j.ejrad.2009.05.060
10.1016/j.neucom.2020.07.110
10.3390/ijerph192215414
10.1016/j.ejrad.2009.03.042
10.1016/j.joen.2020.12.020
10.1136/bmj.n71
10.1259/dmfr.20200251
10.1007/s00784-023-05048-5
10.1016/j.patcog.2022.108974
10.7326/0003-4819-155-8-201110180-00009
10.1016/j.jclinepi.2010.07.015
10.1016/j.jdent.2023.104727
10.1111/iej.13115
10.1111/ocr.12517
10.1007/s00330-021-07709-z
10.1016/j.jdent.2022.104069
10.1109/JBHI.2017.2709406
10.1016/j.jdent.2022.104139
10.1016/j.jacr.2017.12.026
10.1007/s11042-022-12524-9
10.1097/SLA.0000000000002693
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jdent.2024.105064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1879-176X
ExternalDocumentID 38768854
10_1016_j_jdent_2024_105064
S0300571224002331
Genre Meta-Analysis
Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
34H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8FE
8FG
8FH
8P~
9JM
AABNK
AAEDT
AAEDW
AAGKA
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
D-I
DU5
EBD
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDX
HMK
HMO
HVGLF
HZ~
IAO
IEA
IHE
IHR
INR
J1W
KOM
L6V
LH1
LK8
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
WH7
WOW
WUQ
Z5R
ZGI
~G-
~HD
0SF
3V.
7RV
7X7
8FI
AACTN
ABJCF
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
BHPHI
FYUFA
GUQSH
HCIFZ
M1P
M2O
M7P
M7S
NCXOZ
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c411t-779b8fe12101598591f864510af51b76aa26c0d2d1ed64e3ba9718d2e1d79b0d3
IEDL.DBID .~1
ISSN 0300-5712
1879-176X
IngestDate Sun Sep 28 10:40:26 EDT 2025
Sun Jul 13 01:33:17 EDT 2025
Wed Oct 01 04:53:13 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Sat Feb 08 15:51:13 EST 2025
Tue Oct 14 19:33:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Convolutional Neural Networks
Tooth segmentation
Artificial intelligence
CBCT
Meta-analysis
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-779b8fe12101598591f864510af51b76aa26c0d2d1ed64e3ba9718d2e1d79b0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-4
content type line 23
ObjectType-Undefined-3
PMID 38768854
PQID 3057692479
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3057692479
pubmed_primary_38768854
crossref_citationtrail_10_1016_j_jdent_2024_105064
crossref_primary_10_1016_j_jdent_2024_105064
elsevier_sciencedirect_doi_10_1016_j_jdent_2024_105064
elsevier_clinicalkey_doi_10_1016_j_jdent_2024_105064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of dentistry
PublicationTitleAlternate J Dent
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gou, Rao, Zhang, Sun, Cheng (bib0029) 2019
Ezhov, Zakirov, Gusarev (bib0025) 2019
Wang, Minnema, Batenburg, Forouzanfar, Hu, Wu (bib0045) 2021; 100
Patel, Brown, Pimentel, Kelly, Abella, Durack (bib0003) 2019; 52
Wang, Xia, Yan, Zhao, Bian, Liu, Qi, Zhang, Tang (bib0046) 2023; 85
Gerhardt, Fontenele, Leite, Lahoud, Van Gerven, Willems, Smolders, Beznik, Jacobs (bib0028) 2022; 122
Kohli, Prevedello, Filice, Geis (bib0009) 2017; 208
Nogueira-Reis, Morgan, Nomidis, Van Gerven, Oliveira-Santos, Jacobs, Tabchoury (bib0041) 2023; 27
Zijdenbos, Dawant, Margolin, Palmer (bib0052) 1994; 13
Arabi, Zaidi (bib0010) 2021; 31
Lee, Chung, Lee, Shin (bib0035) 2022; 81
Khan, Mukati, Rizvi, Yazdanie (bib0036) 2022; 32
Whiting, Rutjes, Westwood, Mallett, Deeks, Reitsma, Leeflang, Sterne, Bossuyt (bib0014) 2011; 155
Liang, Jacobs, Hassan, Li, Pauwels, Corpas, Souza, Martens, Shahbazian, Alonso, Lambrichts (bib0012) 2010; 75
Monill-González, Rovira-Calatayud, d'Oliveira, Ustrell-Torrent (bib0054) 2021; 24
Gan, Xia, Xiong, Li, Zhao (bib0027) 2018; 22
Lahoud, EzEldeen, Beznik, Willems, Leite, Van Gerven, Jacobs (bib0037) 2021; 47
Qiu, van der Wel, Kraeima, Glas, Guo, Borra, Witjes, van Ooijen (bib0050) 2021; 11
Cui, Zhang, Lian, Li, Yang, Wang, Zhu, Shen (bib0049) 2021
Preda, Morgan, Van Gerven, Nogueira-Reis, Smolders, Wang, Nomidis, Shaheen, Willems, Jacobs (bib0042) 2022; 124
Tao, Wang (bib0044) 2022; 2022
Hosntalab, Zoroofi, Tehrani-Fard, Shirani, Alsharif (bib0030) 2009; 92-D
Shaheen, Leite, Alqahtani, Smolders, Van Gerven, Willems, Jacobs (bib0043) 2021; 115
Zhou (bib0051) 2023; 615
Lee, Woo, Yu, Seo, Lee, Lee (bib0038) 2020; 8
Cui, Wang, Li, Song, Zuo, Wang, Zhang, Zhou, Chong, Zeng, Zhang (bib0022) 2022
Lin, Fu, Ren, Yang, Duan, Chen, Zhang (bib0040) 2021; 47
Hashimoto, Rosman, Rus, Meireles (bib0008) 2018; 268
Cui, Fang, Mei, Zhang, Yu, Liu, Jiang, Sun, Ma, Huang, Liu, Zhao, Lian, Ding, Zhu, Shen (bib0016) 2022; 13
Leite, Van Gerven, Willems, Beznik, Lahoud, Gaêta-Araujo, Vranckx, Jacobs (bib0002) 2021; 25
Wong, Al-Hasani, Alam, Alam (bib0006) 2019; 29
Thrall, Li, Li, Cruz, Do, Dreyer, Brink (bib0007) 2018; 15
Xie, Yang, Chen (bib0047) 2023; 133
Balshem, Helfand, Schünemann, Oxman, Kunz, Brozek, Vist, Falck-Ytter, Meerpohl, Norris (bib0015) 2011; 64
Chung, Lee, Hong, Park, Lee, Lee, Yang, Lee, Shin (bib0020) 2020; 120
Dot, Schouman, Dubois, Rouch, Gajny (bib0023) 2022; 32
Fontenele, Gerhardt, Pinto, Van Gerven, Willems, Jacobs, Freitas (bib0026) 2022; 119
Uffmann, Schaefer-Prokop (bib0004) 2009; 72
Galibourg, Dumoncel, Telmon, Calvet, Michetti, Maret (bib0005) 2017; 47
Cui, Li, Wang (bib0021) 2019
Hsu, Yuh, Lin, Lyu, Pan, Zhuang, Chang, Peng, Lee, Juan, Juan, Liu, Juan (bib0032) 2022; 12
Al-Sarem, Al-Asali, Alqutaibi, Saeed (bib0018) 2022; 19
Hosntalab, Aghaeizadeh Zoroofi, Abbaspour Tehrani-Fard, Shirani (bib0031) 2010; 5
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Akl, Brennan, Chou, Glanville, Grimshaw, Hróbjartsson, Lalu, Li, Loder, Mayo-Wilson, McDonald, McGuinness, Moher (bib0013) 2021; 372
Orentlicher, Horowitz, Abboud (bib0001) 1995; 33
Ayidh Alqahtani, Jacobs, Smolders, Van Gerven, Willems, Shujaat, Shaheen (bib0017) 2023; 45
Jang, Kim, Cho, Seo (bib0033) 2022; 44
Zhang, Li, Lv, Xu, Zhou, Li, Ai (bib0053) 2023; 138
Duan, Chen, Zhang, Lin, Yang (bib0024) 2021; 50
Yang, Xie, Jia, Chen, Yang, Xie, Jiang (bib0048) 2021; 419
Polizzi, Quinzi, Ronsivalle, Venezia, Santonocito, Lo Giudice, Leonardi, Isola (bib0011) 2023; 27
Li, Chen, Han, Zhuang, Li, Lin (bib0039) 2020; 28
Chen, Du, Yun, Yang, Dai, Zhong, Feng, Yang (bib0019) 2020; 8
Jiang, Zhang, Shi, Liu, Shi (bib0034) 2022; 10
Leite (10.1016/j.jdent.2024.105064_bib0002) 2021; 25
Cui (10.1016/j.jdent.2024.105064_bib0021) 2019
Li (10.1016/j.jdent.2024.105064_bib0039) 2020; 28
Dot (10.1016/j.jdent.2024.105064_bib0023) 2022; 32
Qiu (10.1016/j.jdent.2024.105064_bib0050) 2021; 11
Zhang (10.1016/j.jdent.2024.105064_bib0053) 2023; 138
Nogueira-Reis (10.1016/j.jdent.2024.105064_bib0041) 2023; 27
Wang (10.1016/j.jdent.2024.105064_bib0045) 2021; 100
Jiang (10.1016/j.jdent.2024.105064_bib0034) 2022; 10
Khan (10.1016/j.jdent.2024.105064_bib0036) 2022; 32
Gou (10.1016/j.jdent.2024.105064_bib0029) 2019
Orentlicher (10.1016/j.jdent.2024.105064_bib0001) 1995; 33
Ezhov (10.1016/j.jdent.2024.105064_bib0025) 2019
Zhou (10.1016/j.jdent.2024.105064_bib0051) 2023; 615
Gan (10.1016/j.jdent.2024.105064_bib0027) 2018; 22
Shaheen (10.1016/j.jdent.2024.105064_bib0043) 2021; 115
Lee (10.1016/j.jdent.2024.105064_bib0038) 2020; 8
Kohli (10.1016/j.jdent.2024.105064_bib0009) 2017; 208
Lin (10.1016/j.jdent.2024.105064_bib0040) 2021; 47
Cui (10.1016/j.jdent.2024.105064_bib0016) 2022; 13
Polizzi (10.1016/j.jdent.2024.105064_bib0011) 2023; 27
Cui (10.1016/j.jdent.2024.105064_bib0049) 2021
Cui (10.1016/j.jdent.2024.105064_bib0022) 2022
Duan (10.1016/j.jdent.2024.105064_bib0024) 2021; 50
Lee (10.1016/j.jdent.2024.105064_bib0035) 2022; 81
Xie (10.1016/j.jdent.2024.105064_bib0047) 2023; 133
Al-Sarem (10.1016/j.jdent.2024.105064_bib0018) 2022; 19
Chen (10.1016/j.jdent.2024.105064_bib0019) 2020; 8
Yang (10.1016/j.jdent.2024.105064_bib0048) 2021; 419
Patel (10.1016/j.jdent.2024.105064_bib0003) 2019; 52
Lahoud (10.1016/j.jdent.2024.105064_bib0037) 2021; 47
Galibourg (10.1016/j.jdent.2024.105064_bib0005) 2017; 47
Page (10.1016/j.jdent.2024.105064_bib0013) 2021; 372
Whiting (10.1016/j.jdent.2024.105064_bib0014) 2011; 155
Hashimoto (10.1016/j.jdent.2024.105064_bib0008) 2018; 268
Preda (10.1016/j.jdent.2024.105064_bib0042) 2022; 124
Ayidh Alqahtani (10.1016/j.jdent.2024.105064_bib0017) 2023; 45
Arabi (10.1016/j.jdent.2024.105064_bib0010) 2021; 31
Tao (10.1016/j.jdent.2024.105064_bib0044) 2022; 2022
Balshem (10.1016/j.jdent.2024.105064_bib0015) 2011; 64
Monill-González (10.1016/j.jdent.2024.105064_bib0054) 2021; 24
Jang (10.1016/j.jdent.2024.105064_bib0033) 2022; 44
Uffmann (10.1016/j.jdent.2024.105064_bib0004) 2009; 72
Wang (10.1016/j.jdent.2024.105064_bib0046) 2023; 85
Hsu (10.1016/j.jdent.2024.105064_bib0032) 2022; 12
Wong (10.1016/j.jdent.2024.105064_bib0006) 2019; 29
Hosntalab (10.1016/j.jdent.2024.105064_bib0030) 2009; 92-D
Fontenele (10.1016/j.jdent.2024.105064_bib0026) 2022; 119
Thrall (10.1016/j.jdent.2024.105064_bib0007) 2018; 15
Zijdenbos (10.1016/j.jdent.2024.105064_bib0052) 1994; 13
Hosntalab (10.1016/j.jdent.2024.105064_bib0031) 2010; 5
Chung (10.1016/j.jdent.2024.105064_bib0020) 2020; 120
Liang (10.1016/j.jdent.2024.105064_bib0012) 2010; 75
Gerhardt (10.1016/j.jdent.2024.105064_bib0028) 2022; 122
References_xml – start-page: 52
  year: 2019
  end-page: 56
  ident: bib0025
  article-title: Coarse-to-fine volumetric segmentation of teeth in cone-beam ct
  publication-title: IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– volume: 10
  start-page: 76563
  year: 2022
  end-page: 76572
  ident: bib0034
  article-title: Alternate level set evolutions with controlled switch for tooth segmentation
  publication-title: IEEE Access
– volume: 115
  year: 2021
  ident: bib0043
  article-title: A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study
  publication-title: J. Dent.
– volume: 15
  start-page: 504
  year: 2018
  end-page: 508
  ident: bib0007
  article-title: Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success
  publication-title: J. Am. Coll. Radiol.
– volume: 12
  year: 2022
  ident: bib0032
  article-title: Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography
  publication-title: Sci. Rep.
– volume: 32
  start-page: 301
  year: 2022
  end-page: 318
  ident: bib0036
  article-title: Tooth segmentation in 3D cone-beam CT images using deep convolutional neural network
  publication-title: Neural. Netw.
– volume: 2022
  year: 2022
  ident: bib0044
  article-title: Tooth CT image segmentation method based on the U-net network and attention module
  publication-title: Comput. Math. Methods. Med.
– volume: 44
  start-page: 6562
  year: 2022
  end-page: 6568
  ident: bib0033
  article-title: A fully automated method for 3D individual tooth identification and segmentation in Dental CBCT
  publication-title: IEEE. Trans. Pattern. Anal. Mach. Intel.
– volume: 13
  start-page: 716
  year: 1994
  end-page: 724
  ident: bib0052
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE. Trans. Med. Imaging.
– volume: 47
  year: 2017
  ident: bib0005
  article-title: Assessment of automatic segmentation of teeth using a watershed-based method
  publication-title: Dentomaxillofacial. Radiol.
– volume: 19
  start-page: 15414
  year: 2022
  ident: bib0018
  article-title: Enhanced tooth region detection using pretrained deep learning models
  publication-title: Int. J. Env. Res. Pub. He.
– year: 2022
  ident: bib0022
  article-title: Tooth+: a large-scale dental cone beam computed tomography dataset and benchmark for tooth volume segmentation
  publication-title: Data Augmentation, Labelling, and Imperfections, Lecture Notes in Computer Science
– volume: 124
  year: 2022
  ident: bib0042
  article-title: Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: a validation study
  publication-title: J. Dent.
– volume: 13
  start-page: 2096
  year: 2022
  ident: bib0016
  article-title: A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
  publication-title: Nat. Commun.
– volume: 85
  year: 2023
  ident: bib0046
  article-title: Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning
  publication-title: Med. Image. Anal.
– volume: 75
  start-page: 265
  year: 2010
  end-page: 269
  ident: bib0012
  article-title: A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): part I. On subjective image quality
  publication-title: Eur. J. Radiol.
– volume: 615
  year: 2023
  ident: bib0051
  article-title: Discriminating abilities of threshold-free evaluation metrics in link prediction
  publication-title: Physica. A.
– volume: 138
  year: 2023
  ident: bib0053
  article-title: Advancements in oral and maxillofacial surgery medical images segmentation techniques: an overview
  publication-title: J. Dent.
– volume: 27
  start-page: 3363
  year: 2023
  end-page: 3378
  ident: bib0011
  article-title: Tooth automatic segmentation from CBCT images: a systematic review
  publication-title: Clin. Oral. Invest.
– volume: 32
  start-page: 3639
  year: 2022
  end-page: 3648
  ident: bib0023
  article-title: Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework
  publication-title: Eur. Radiol.
– volume: 133
  year: 2023
  ident: bib0047
  article-title: WITS: weakly-supervised individual tooth segmentation model trained on box-level labels
  publication-title: Pattern. Recogn.
– volume: 50
  year: 2021
  ident: bib0024
  article-title: Refined tooth and pulp segmentation using U-Net in CBCT image
  publication-title: Dentomaxillofac. Radiol.
– volume: 119
  year: 2022
  ident: bib0026
  article-title: Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - a validation study
  publication-title: J. Dent.
– volume: 52
  start-page: 1138
  year: 2019
  end-page: 1152
  ident: bib0003
  article-title: Cone beam computed tomography in Endodontics - a review of the literature
  publication-title: Int. Endod. J.
– volume: 155
  start-page: 529
  year: 2011
  end-page: 536
  ident: bib0014
  article-title: QUA-DAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann. Intern. Med.
– volume: 64
  start-page: 401
  year: 2011
  end-page: 406
  ident: bib0015
  article-title: GRADE guidelines: 3. Rating the quality of evidence
  publication-title: J Clin Epidemiol
– volume: 22
  start-page: 196
  year: 2018
  end-page: 204
  ident: bib0027
  article-title: Tooth and alveolar bone segmentation from dental computed tomography images
  publication-title: IEEE. J. Biomed. Health.
– volume: 122
  year: 2022
  ident: bib0028
  article-title: Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks
  publication-title: J. Dent.
– volume: 5
  start-page: 237
  year: 2010
  end-page: 2249
  ident: bib0031
  article-title: Classification and numbering of teeth in multi-slice CT images using wavelet-Fourier descriptor
  publication-title: Int. J. Comput. Ass. Rad.
– volume: 11
  start-page: 629
  year: 2021
  ident: bib0050
  article-title: Automatic segmentation of mandible from conventional methods to deep learning—a review
  publication-title: J. Personalized. Med.
– volume: 24
  start-page: 6
  year: 2021
  end-page: 15
  ident: bib0054
  article-title: Artificial intelligence in orthodontics: where are we now? A scoping review
  publication-title: Orthod. Craniofac. Res.
– volume: 92-D
  start-page: 2137
  year: 2009
  end-page: 2151
  ident: bib0030
  article-title: A Hybrid Segmentation Framework for Computer-Assisted Dental Procedures
  publication-title: IEICE. Trans. Inf. Syst.
– volume: 47
  start-page: 827
  year: 2021
  end-page: 835
  ident: bib0037
  article-title: Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography
  publication-title: J. Endod.
– volume: 8
  start-page: 50507
  year: 2020
  end-page: 50518
  ident: bib0038
  article-title: Automated CNN-based tooth segmentation in cone-beam CT for dental implant planning
  publication-title: IEEE. Access.
– volume: 208
  start-page: 754
  year: 2017
  end-page: 760
  ident: bib0009
  article-title: Implementing machine learning in radiology practice and research
  publication-title: AJR. Am. J. Roentgenol.
– volume: 47
  start-page: 1933
  year: 2021
  end-page: 1941
  ident: bib0040
  article-title: Micro-computed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography
  publication-title: J. Endod.
– volume: 100
  start-page: 943
  year: 2021
  end-page: 949
  ident: bib0045
  article-title: Multiclass CBCT image segmentation for orthodontics with deep learning
  publication-title: J. Dent. Res.
– volume: 72
  start-page: 202
  year: 2009
  end-page: 208
  ident: bib0004
  article-title: Digital radiography: the balance between image quality and required radiation dose
  publication-title: Eur J Radiol
– volume: 25
  start-page: 2257
  year: 2021
  end-page: 2267
  ident: bib0002
  article-title: Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs
  publication-title: Clin. Oral. Invest.
– volume: 33
  start-page: 720
  year: 1995
  end-page: 733
  ident: bib0001
  article-title: Computer-guided implant surgery: indications and guidelines for use
  publication-title: Compend. Contin. Educ. Dent. (Jamesburg, N.J.:
– start-page: 6361
  year: 2019
  end-page: 6370
  ident: bib0021
  article-title: ToothNet: automatic tooth instance segmentation and identification from cone beam CT images
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 29
  start-page: 141
  year: 2019
  end-page: 143
  ident: bib0006
  article-title: Artificial intelligence in radiology: how will we be affected?
  publication-title: Eur. Radiol.
– volume: 31
  start-page: 6384
  year: 2021
  end-page: 6396
  ident: bib0010
  article-title: Deep learning-based metal artefact reduction in PET/CT imaging
  publication-title: Eur. Radiol.
– start-page: 150
  year: 2021
  end-page: 162
  ident: bib0049
  article-title: Hierarchical morphology-guided tooth instance segmentation from CBCT images
  publication-title: Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event Proceedings
– volume: 372
  start-page: n71
  year: 2021
  ident: bib0013
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
– volume: 28
  start-page: 905
  year: 2020
  end-page: 922
  ident: bib0039
  article-title: Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN
  publication-title: J. X-ray. Sci. Technol.
– volume: 120
  year: 2020
  ident: bib0020
  article-title: Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation
  publication-title: Comput. Biol. Med.
– volume: 8
  start-page: 97296
  year: 2020
  end-page: 97309
  ident: bib0019
  article-title: Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a Multi-task FCN
  publication-title: IEEE. Access.
– volume: 268
  start-page: 70
  year: 2018
  end-page: 76
  ident: bib0008
  article-title: Artificial intelligence in surgery: promises and perils
  publication-title: Ann. Surg.
– volume: 45
  start-page: 169
  year: 2023
  end-page: 174
  ident: bib0017
  article-title: Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study
  publication-title: Eur. J. Orthodont.
– volume: 419
  start-page: 108
  year: 2021
  end-page: 125
  ident: bib0048
  article-title: Accurate and automatic tooth image segmentation model with deep convolutional neural. networks and level set method
  publication-title: Neurocomputing
– year: 2019
  ident: bib0029
  article-title: Automatic image annotation and deep learning for tooth CT image segmentation
  publication-title: Image and Graphics. ICIG 2019. Lecture Notes in Computer Science
– volume: 27
  start-page: 1133
  year: 2023
  end-page: 1141
  ident: bib0041
  article-title: Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images
  publication-title: Clin. Oral. Invest.
– volume: 81
  start-page: 18327
  year: 2022
  end-page: 18342
  ident: bib0035
  article-title: Tooth instance segmentation from cone-beam CT images through point-based detection and Gaussian disentanglement
  publication-title: Multimed. Tools. Appl.
– volume: 32
  start-page: 3639
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0023
  article-title: Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08455-y
– volume: 615
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0051
  article-title: Discriminating abilities of threshold-free evaluation metrics in link prediction
  publication-title: Physica. A.
  doi: 10.1016/j.physa.2023.128529
– volume: 208
  start-page: 754
  year: 2017
  ident: 10.1016/j.jdent.2024.105064_bib0009
  article-title: Implementing machine learning in radiology practice and research
  publication-title: AJR. Am. J. Roentgenol.
  doi: 10.2214/AJR.16.17224
– volume: 33
  start-page: 720
  year: 1995
  ident: 10.1016/j.jdent.2024.105064_bib0001
  article-title: Computer-guided implant surgery: indications and guidelines for use
  publication-title: Compend. Contin. Educ. Dent. (Jamesburg, N.J.:
– start-page: 52
  year: 2019
  ident: 10.1016/j.jdent.2024.105064_bib0025
  article-title: Coarse-to-fine volumetric segmentation of teeth in cone-beam ct
– volume: 8
  start-page: 50507
  year: 2020
  ident: 10.1016/j.jdent.2024.105064_bib0038
  article-title: Automated CNN-based tooth segmentation in cone-beam CT for dental implant planning
  publication-title: IEEE. Access.
  doi: 10.1109/ACCESS.2020.2975826
– volume: 13
  start-page: 716
  year: 1994
  ident: 10.1016/j.jdent.2024.105064_bib0052
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE. Trans. Med. Imaging.
  doi: 10.1109/42.363096
– volume: 124
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0042
  article-title: Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: a validation study
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2022.104238
– year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0022
  article-title: Tooth+: a large-scale dental cone beam computed tomography dataset and benchmark for tooth volume segmentation
– volume: 8
  start-page: 97296
  year: 2020
  ident: 10.1016/j.jdent.2024.105064_bib0019
  article-title: Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a Multi-task FCN
  publication-title: IEEE. Access.
  doi: 10.1109/ACCESS.2020.2991799
– volume: 12
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0032
  article-title: Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-23901-7
– volume: 44
  start-page: 6562
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0033
  article-title: A fully automated method for 3D individual tooth identification and segmentation in Dental CBCT
  publication-title: IEEE. Trans. Pattern. Anal. Mach. Intel.
  doi: 10.1109/TPAMI.2021.3086072
– volume: 120
  year: 2020
  ident: 10.1016/j.jdent.2024.105064_bib0020
  article-title: Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103720
– volume: 10
  start-page: 76563
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0034
  article-title: Alternate level set evolutions with controlled switch for tooth segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3192411
– volume: 100
  start-page: 943
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0045
  article-title: Multiclass CBCT image segmentation for orthodontics with deep learning
  publication-title: J. Dent. Res.
  doi: 10.1177/00220345211005338
– volume: 25
  start-page: 2257
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0002
  article-title: Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs
  publication-title: Clin. Oral. Invest.
  doi: 10.1007/s00784-020-03544-6
– volume: 11
  start-page: 629
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0050
  article-title: Automatic segmentation of mandible from conventional methods to deep learning—a review
  publication-title: J. Personalized. Med.
  doi: 10.3390/jpm11070629
– volume: 29
  start-page: 141
  year: 2019
  ident: 10.1016/j.jdent.2024.105064_bib0006
  article-title: Artificial intelligence in radiology: how will we be affected?
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5644-3
– volume: 45
  start-page: 169
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0017
  article-title: Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study
  publication-title: Eur. J. Orthodont.
  doi: 10.1093/ejo/cjac047
– volume: 13
  start-page: 2096
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0016
  article-title: A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29637-2
– volume: 85
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0046
  article-title: Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2023.102750
– volume: 92-D
  start-page: 2137
  year: 2009
  ident: 10.1016/j.jdent.2024.105064_bib0030
  article-title: A Hybrid Segmentation Framework for Computer-Assisted Dental Procedures
  publication-title: IEICE. Trans. Inf. Syst.
  doi: 10.1587/transinf.E92.D.2137
– volume: 2022
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0044
  article-title: Tooth CT image segmentation method based on the U-net network and attention module
  publication-title: Comput. Math. Methods. Med.
  doi: 10.1155/2022/3289663
– volume: 47
  year: 2017
  ident: 10.1016/j.jdent.2024.105064_bib0005
  article-title: Assessment of automatic segmentation of teeth using a watershed-based method
  publication-title: Dentomaxillofacial. Radiol.
– volume: 47
  start-page: 1933
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0040
  article-title: Micro-computed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography
  publication-title: J. Endod.
  doi: 10.1016/j.joen.2021.09.001
– volume: 27
  start-page: 1133
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0041
  article-title: Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images
  publication-title: Clin. Oral. Invest.
  doi: 10.1007/s00784-022-04708-2
– start-page: 6361
  year: 2019
  ident: 10.1016/j.jdent.2024.105064_bib0021
  article-title: ToothNet: automatic tooth instance segmentation and identification from cone beam CT images
– volume: 115
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0043
  article-title: A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2021.103865
– volume: 32
  start-page: 301
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0036
  article-title: Tooth segmentation in 3D cone-beam CT images using deep convolutional neural network
  publication-title: Neural. Netw.
  doi: 10.14311/NNW.2022.32.018
– volume: 72
  start-page: 202
  year: 2009
  ident: 10.1016/j.jdent.2024.105064_bib0004
  article-title: Digital radiography: the balance between image quality and required radiation dose
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.05.060
– volume: 419
  start-page: 108
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0048
  article-title: Accurate and automatic tooth image segmentation model with deep convolutional neural. networks and level set method
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.110
– volume: 19
  start-page: 15414
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0018
  article-title: Enhanced tooth region detection using pretrained deep learning models
  publication-title: Int. J. Env. Res. Pub. He.
  doi: 10.3390/ijerph192215414
– volume: 75
  start-page: 265
  year: 2010
  ident: 10.1016/j.jdent.2024.105064_bib0012
  article-title: A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): part I. On subjective image quality
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2009.03.042
– volume: 47
  start-page: 827
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0037
  article-title: Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography
  publication-title: J. Endod.
  doi: 10.1016/j.joen.2020.12.020
– volume: 372
  start-page: n71
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0013
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– volume: 28
  start-page: 905
  year: 2020
  ident: 10.1016/j.jdent.2024.105064_bib0039
  article-title: Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN
  publication-title: J. X-ray. Sci. Technol.
– volume: 50
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0024
  article-title: Refined tooth and pulp segmentation using U-Net in CBCT image
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20200251
– volume: 27
  start-page: 3363
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0011
  article-title: Tooth automatic segmentation from CBCT images: a systematic review
  publication-title: Clin. Oral. Invest.
  doi: 10.1007/s00784-023-05048-5
– volume: 133
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0047
  article-title: WITS: weakly-supervised individual tooth segmentation model trained on box-level labels
  publication-title: Pattern. Recogn.
  doi: 10.1016/j.patcog.2022.108974
– volume: 155
  start-page: 529
  year: 2011
  ident: 10.1016/j.jdent.2024.105064_bib0014
  article-title: QUA-DAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 64
  start-page: 401
  year: 2011
  ident: 10.1016/j.jdent.2024.105064_bib0015
  article-title: GRADE guidelines: 3. Rating the quality of evidence
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2010.07.015
– volume: 5
  start-page: 237
  year: 2010
  ident: 10.1016/j.jdent.2024.105064_bib0031
  article-title: Classification and numbering of teeth in multi-slice CT images using wavelet-Fourier descriptor
  publication-title: Int. J. Comput. Ass. Rad.
– volume: 138
  year: 2023
  ident: 10.1016/j.jdent.2024.105064_bib0053
  article-title: Advancements in oral and maxillofacial surgery medical images segmentation techniques: an overview
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2023.104727
– volume: 52
  start-page: 1138
  year: 2019
  ident: 10.1016/j.jdent.2024.105064_bib0003
  article-title: Cone beam computed tomography in Endodontics - a review of the literature
  publication-title: Int. Endod. J.
  doi: 10.1111/iej.13115
– volume: 24
  start-page: 6
  issue: Suppl 2
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0054
  article-title: Artificial intelligence in orthodontics: where are we now? A scoping review
  publication-title: Orthod. Craniofac. Res.
  doi: 10.1111/ocr.12517
– volume: 31
  start-page: 6384
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0010
  article-title: Deep learning-based metal artefact reduction in PET/CT imaging
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-07709-z
– volume: 119
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0026
  article-title: Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - a validation study
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2022.104069
– volume: 22
  start-page: 196
  year: 2018
  ident: 10.1016/j.jdent.2024.105064_bib0027
  article-title: Tooth and alveolar bone segmentation from dental computed tomography images
  publication-title: IEEE. J. Biomed. Health.
  doi: 10.1109/JBHI.2017.2709406
– volume: 122
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0028
  article-title: Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2022.104139
– start-page: 150
  year: 2021
  ident: 10.1016/j.jdent.2024.105064_bib0049
  article-title: Hierarchical morphology-guided tooth instance segmentation from CBCT images
– volume: 15
  start-page: 504
  year: 2018
  ident: 10.1016/j.jdent.2024.105064_bib0007
  article-title: Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2017.12.026
– year: 2019
  ident: 10.1016/j.jdent.2024.105064_bib0029
  article-title: Automatic image annotation and deep learning for tooth CT image segmentation
– volume: 81
  start-page: 18327
  year: 2022
  ident: 10.1016/j.jdent.2024.105064_bib0035
  article-title: Tooth instance segmentation from cone-beam CT images through point-based detection and Gaussian disentanglement
  publication-title: Multimed. Tools. Appl.
  doi: 10.1007/s11042-022-12524-9
– volume: 268
  start-page: 70
  year: 2018
  ident: 10.1016/j.jdent.2024.105064_bib0008
  article-title: Artificial intelligence in surgery: promises and perils
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000002693
SSID ssj0004029
Score 2.4987528
SecondaryResourceType review_article
Snippet •AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual...
This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105064
SubjectTerms Algorithms
Artificial Intelligence
CBCT
Cone-Beam Computed Tomography - methods
Convolutional Neural Networks
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Meta-analysis
Neural Networks, Computer
Tooth - diagnostic imaging
Tooth segmentation
Title Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0300571224002331
https://dx.doi.org/10.1016/j.jdent.2024.105064
https://www.ncbi.nlm.nih.gov/pubmed/38768854
https://www.proquest.com/docview/3057692479
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-176X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004029
  issn: 0300-5712
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-176X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004029
  issn: 0300-5712
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1879-176X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004029
  issn: 0300-5712
  databaseCode: ACRLP
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-176X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004029
  issn: 0300-5712
  databaseCode: AIKHN
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-176X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004029
  issn: 0300-5712
  databaseCode: AKRWK
  dateStart: 19721001
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-176X
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004029
  issn: 0300-5712
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4s3yqIzUI2Hz8Do2t2XpshTRC63Um-X4scqKZqtu9sCFn8BvZsZ2tnBokbhESpTJY8aeGcvffEPIoYXJV3ivM1Z7kTHL6kzmpsy0dxWThbVeB4DsCV-csePzyfkemQ21MAirTL4_-vTgrdOVcdLm-LJtx99yZFqvi4CCLKtQS81YjV0M3v28hnnA-kjGnYQ8w7sH5qGA8VphMSwsEkuG_W5zzm6KTjdlnyEKzR-Q-yl9pNP4hQ_JnusekbsfEfKDXdsek19Hib67W9J-DWagG7e8SAVGHdXGbK-0-UF1Zyn2lacucEhgASZtOzr7MDul7QU4mQ1FSPySojIiywRt_6DvfE-n9JoFmsYKmPDUr67XmU5cJ0_I2fzodLbIUs-FzLCi6CHZlo3wDmnFINFBcjsvOIOJq_2kaGqudclNbktbOMuZqxotIbrZ0hUWJHNbPSX73bpzzwmF7EHbpkT-HM-ktlJXZiI0aFl4IQ0fkXLQtTKJkBz7YnxXA_JspYKBFBpIRQONyNud0GXk47j9djYYUQ2lpuAcFcSL28X4Tuyv0fhvwTfDSFEwT3HzRXduvd0o8Ks1h8VuLUfkWRxCux-oICQJMWEv_ve1L8k9PIsw4ldkv7_auteQLPXNQZgNcBTzTwfkzvTzl8XJb1woFTI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOil6rvbltaVemy6ieM4MTe6BW1b4NJF4mY5fqyCIIvY7KEXfgK_mRk7WdoDVOo18eThsechf_MNIZ8sbL7Me53w0lcJt7xMZGpYor3Lucys9ToAZI_F9IT_OC1ON8hkqIVBWGVv-6NND9a6vzLuZ3N82TTjXykyrZdZQEGyHGupt3jBSszAvlzf4TwgQZLxKCFNcPhAPRRAXmdYDQtZIuPY8DYV_D73dF_4GdzQwRPyuI8f6V78xKdkw7XPyPY3xPxg27bn5Ga_5-9u57RbgB7o0s0v-gqjlmpjVlfa_Ka6tRQby1MXSCSwApM2LZ18ncxocwFWZkkREz-nOBuRZoI2f_B37tI9ekcDTWMJTHjqket0onuykxfk5GB_NpkmfdOFxPAs6yDalnXlHfKKQaSD7Ha-Ehx2rvZFVpdCayZMapnNnBXc5bWW4N4sc5kFydTmL8lmu2jda0IhfNC2Zkig47nUVurcFJWGWa58JY0YETbMtTI9Izk2xjhXA_TsTAUFKVSQigoakc9roctIyPHwcD4oUQ21pmAdFTiMh8XEWuyv5fhvwY_DSlGwUfH0RbdusVoqMKylgGy3lCPyKi6h9Q_k4JOqquBv_ve1H8j2dHZ0qA6_H_98Sx7hnYgpfkc2u6uV24HIqavfh51xCx-QFeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+tooth+segmentation+accuracy+and+time+efficiency+in+CBCT+images+using+artificial+intelligence%3A+A+systematic+review+and+Meta-analysis&rft.jtitle=Journal+of+dentistry&rft.au=Xiang%2C+Bilu&rft.au=Lu%2C+Jiayi&rft.au=Yu%2C+Jiayi&rft.date=2024-07-01&rft.eissn=1879-176X&rft.volume=146&rft.spage=105064&rft_id=info:doi/10.1016%2Fj.jdent.2024.105064&rft_id=info%3Apmid%2F38768854&rft.externalDocID=38768854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5712&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5712&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5712&client=summon