Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis
•AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual methods.•AI algorithms significantly reduce tooth segmentation time, enabling faster and more efficient clinical applications (around 10 times faster t...
Saved in:
| Published in | Journal of dentistry Vol. 146; p. 105064 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0300-5712 1879-176X 1879-176X |
| DOI | 10.1016/j.jdent.2024.105064 |
Cover
| Abstract | •AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual methods.•AI algorithms significantly reduce tooth segmentation time, enabling faster and more efficient clinical applications (around 10 times faster than manual segmentation).•Convolutional Neural Networks, particularly the U-net model, were found to be the most commonly utilized AI-based approaches for tooth segmentation.
This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques.
The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC).
PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies.
The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques.
AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies.
AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice. |
|---|---|
| AbstractList | This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques.
The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC).
PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques.
AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies.
AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice. •AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual methods.•AI algorithms significantly reduce tooth segmentation time, enabling faster and more efficient clinical applications (around 10 times faster than manual segmentation).•Convolutional Neural Networks, particularly the U-net model, were found to be the most commonly utilized AI-based approaches for tooth segmentation. This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques. The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC). PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques. AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies. AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice. This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques.OBJECTIVESThis systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in three-dimensional cone-beam computed tomography (CBCT) images, with a focus on their accuracy and efficiency compared to those of manual segmentation techniques.The data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC).DATAThe data analyzed in this review consisted of a wide range of research studies utilizing AI algorithms for tooth segmentation in CBCT images. Meta-analysis was performed, focusing on the evaluation of the segmentation results using the dice similarity coefficient (DSC).PubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques.SOURCESPubMed, Embase, Scopus, Web of Science, and IEEE Explore were comprehensively searched to identify relevant studies. The initial search yielded 5642 entries, and subsequent screening and selection processes led to the inclusion of 35 studies in the systematic review. Among the various segmentation methods employed, convolutional neural networks, particularly the U-net model, are the most commonly utilized. The pooled effect of the DSC score for tooth segmentation was 0.95 (95 %CI 0.94 to 0.96). Furthermore, seven papers provided insights into the time required for segmentation, which ranged from 1.5 s to 3.4 min when utilizing AI techniques.AI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies.CONCLUSIONSAI models demonstrated favorable accuracy in automatically segmenting teeth from CBCT images while reducing the time required for the process. Nevertheless, correction methods for metal artifacts and tooth structure segmentation using different imaging modalities should be addressed in future studies.AI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice.CLINICAL SIGNIFICANCEAI algorithms have great potential for precise tooth measurements, orthodontic treatment planning, dental implant placement, and other dental procedures that require accurate tooth delineation. These advances have contributed to improved clinical outcomes and patient care in dental practice. |
| ArticleNumber | 105064 |
| Author | Xiang, Bilu Lu, Jiayi Yu, Jiayi |
| Author_xml | – sequence: 1 givenname: Bilu surname: Xiang fullname: Xiang, Bilu email: xiangbl@szu.edu.cn organization: School of Dentistry, Shenzhen University Medical School, Shenzhen University, Shenzhen 518000, China – sequence: 2 givenname: Jiayi surname: Lu fullname: Lu, Jiayi organization: Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518000, China – sequence: 3 givenname: Jiayi surname: Yu fullname: Yu, Jiayi organization: Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518000, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38768854$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAUhS1URKeFJ0BCXrLJYOfPMYhFGZUfqYhNkdhZd-ybwYPjFNspykvwzHgm7aYLurJ0fL4j-5wzcuJHj4S85GzNGW_f7Nd7gz6tS1bWWWlYWz8hK94JWXDR_jghK1YxVjSCl6fkLMY9Y6xmpXxGTqtOtF3X1Cvy9_IW3ATJ-h1N45h-0oi7IcdmafQUtJ4C6JmCNzTZASn2vdUWfdasp5sPm2tqB9hhpFM8hEBI9uAAl-8TOmd32Yxv6QWNc0w45GBNA95a_HNM_YoJCvDg5mjjc_K0Bxfxxd15Tr5_vLzefC6uvn36srm4KnTNeSqEkNuuR17mIhrZNZL3XVs3nEHf8K1oAcpWM1MajqatsdqCFLwzJXKTSWaqc_J6yb0J4-8JY1KDjTq_FjyOU1QVa0Qry1rIbH11Z522Axp1E_J_w6zuO8wGuRh0GGMM2Cttl_pSAOsUZ-qwl9qr417qsJda9sps9YC9j_8_9X6hMFeUiwwqHidBYwPqpMxoH-HfPeC1s95qcL9wfpT-B8UJxVs |
| CitedBy_id | crossref_primary_10_1111_jerd_13451 crossref_primary_10_1016_j_aej_2024_11_103 crossref_primary_10_1016_j_jdent_2024_105387 crossref_primary_10_1016_j_jdent_2024_105398 crossref_primary_10_1016_j_jdent_2024_105425 crossref_primary_10_1186_s12903_024_05395_z |
| Cites_doi | 10.1007/s00330-021-08455-y 10.1016/j.physa.2023.128529 10.2214/AJR.16.17224 10.1109/ACCESS.2020.2975826 10.1109/42.363096 10.1016/j.jdent.2022.104238 10.1109/ACCESS.2020.2991799 10.1038/s41598-022-23901-7 10.1109/TPAMI.2021.3086072 10.1016/j.compbiomed.2020.103720 10.1109/ACCESS.2022.3192411 10.1177/00220345211005338 10.1007/s00784-020-03544-6 10.3390/jpm11070629 10.1007/s00330-018-5644-3 10.1093/ejo/cjac047 10.1038/s41467-022-29637-2 10.1016/j.media.2023.102750 10.1587/transinf.E92.D.2137 10.1155/2022/3289663 10.1016/j.joen.2021.09.001 10.1007/s00784-022-04708-2 10.1016/j.jdent.2021.103865 10.14311/NNW.2022.32.018 10.1016/j.ejrad.2009.05.060 10.1016/j.neucom.2020.07.110 10.3390/ijerph192215414 10.1016/j.ejrad.2009.03.042 10.1016/j.joen.2020.12.020 10.1136/bmj.n71 10.1259/dmfr.20200251 10.1007/s00784-023-05048-5 10.1016/j.patcog.2022.108974 10.7326/0003-4819-155-8-201110180-00009 10.1016/j.jclinepi.2010.07.015 10.1016/j.jdent.2023.104727 10.1111/iej.13115 10.1111/ocr.12517 10.1007/s00330-021-07709-z 10.1016/j.jdent.2022.104069 10.1109/JBHI.2017.2709406 10.1016/j.jdent.2022.104139 10.1016/j.jacr.2017.12.026 10.1007/s11042-022-12524-9 10.1097/SLA.0000000000002693 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jdent.2024.105064 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Dentistry |
| EISSN | 1879-176X |
| ExternalDocumentID | 38768854 10_1016_j_jdent_2024_105064 S0300571224002331 |
| Genre | Meta-Analysis Research Support, Non-U.S. Gov't Systematic Review Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29K 34H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8FE 8FG 8FH 8P~ 9JM AABNK AAEDT AAEDW AAGKA AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 D-I DU5 EBD EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDX HMK HMO HVGLF HZ~ IAO IEA IHE IHR INR J1W KOM L6V LH1 LK8 M29 M41 MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSZ T5K WH7 WOW WUQ Z5R ZGI ~G- ~HD 0SF 3V. 7RV 7X7 8FI AACTN ABJCF AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR BHPHI FYUFA GUQSH HCIFZ M1P M2O M7P M7S NCXOZ RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c411t-779b8fe12101598591f864510af51b76aa26c0d2d1ed64e3ba9718d2e1d79b0d3 |
| IEDL.DBID | .~1 |
| ISSN | 0300-5712 1879-176X |
| IngestDate | Sun Sep 28 10:40:26 EDT 2025 Sun Jul 13 01:33:17 EDT 2025 Wed Oct 01 04:53:13 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Sat Feb 08 15:51:13 EST 2025 Tue Oct 14 19:33:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional Neural Networks Tooth segmentation Artificial intelligence CBCT Meta-analysis |
| Language | English |
| License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-779b8fe12101598591f864510af51b76aa26c0d2d1ed64e3ba9718d2e1d79b0d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-4 content type line 23 ObjectType-Undefined-3 |
| PMID | 38768854 |
| PQID | 3057692479 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3057692479 pubmed_primary_38768854 crossref_citationtrail_10_1016_j_jdent_2024_105064 crossref_primary_10_1016_j_jdent_2024_105064 elsevier_sciencedirect_doi_10_1016_j_jdent_2024_105064 elsevier_clinicalkey_doi_10_1016_j_jdent_2024_105064 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of dentistry |
| PublicationTitleAlternate | J Dent |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gou, Rao, Zhang, Sun, Cheng (bib0029) 2019 Ezhov, Zakirov, Gusarev (bib0025) 2019 Wang, Minnema, Batenburg, Forouzanfar, Hu, Wu (bib0045) 2021; 100 Patel, Brown, Pimentel, Kelly, Abella, Durack (bib0003) 2019; 52 Wang, Xia, Yan, Zhao, Bian, Liu, Qi, Zhang, Tang (bib0046) 2023; 85 Gerhardt, Fontenele, Leite, Lahoud, Van Gerven, Willems, Smolders, Beznik, Jacobs (bib0028) 2022; 122 Kohli, Prevedello, Filice, Geis (bib0009) 2017; 208 Nogueira-Reis, Morgan, Nomidis, Van Gerven, Oliveira-Santos, Jacobs, Tabchoury (bib0041) 2023; 27 Zijdenbos, Dawant, Margolin, Palmer (bib0052) 1994; 13 Arabi, Zaidi (bib0010) 2021; 31 Lee, Chung, Lee, Shin (bib0035) 2022; 81 Khan, Mukati, Rizvi, Yazdanie (bib0036) 2022; 32 Whiting, Rutjes, Westwood, Mallett, Deeks, Reitsma, Leeflang, Sterne, Bossuyt (bib0014) 2011; 155 Liang, Jacobs, Hassan, Li, Pauwels, Corpas, Souza, Martens, Shahbazian, Alonso, Lambrichts (bib0012) 2010; 75 Monill-González, Rovira-Calatayud, d'Oliveira, Ustrell-Torrent (bib0054) 2021; 24 Gan, Xia, Xiong, Li, Zhao (bib0027) 2018; 22 Lahoud, EzEldeen, Beznik, Willems, Leite, Van Gerven, Jacobs (bib0037) 2021; 47 Qiu, van der Wel, Kraeima, Glas, Guo, Borra, Witjes, van Ooijen (bib0050) 2021; 11 Cui, Zhang, Lian, Li, Yang, Wang, Zhu, Shen (bib0049) 2021 Preda, Morgan, Van Gerven, Nogueira-Reis, Smolders, Wang, Nomidis, Shaheen, Willems, Jacobs (bib0042) 2022; 124 Tao, Wang (bib0044) 2022; 2022 Hosntalab, Zoroofi, Tehrani-Fard, Shirani, Alsharif (bib0030) 2009; 92-D Shaheen, Leite, Alqahtani, Smolders, Van Gerven, Willems, Jacobs (bib0043) 2021; 115 Zhou (bib0051) 2023; 615 Lee, Woo, Yu, Seo, Lee, Lee (bib0038) 2020; 8 Cui, Wang, Li, Song, Zuo, Wang, Zhang, Zhou, Chong, Zeng, Zhang (bib0022) 2022 Lin, Fu, Ren, Yang, Duan, Chen, Zhang (bib0040) 2021; 47 Hashimoto, Rosman, Rus, Meireles (bib0008) 2018; 268 Cui, Fang, Mei, Zhang, Yu, Liu, Jiang, Sun, Ma, Huang, Liu, Zhao, Lian, Ding, Zhu, Shen (bib0016) 2022; 13 Leite, Van Gerven, Willems, Beznik, Lahoud, Gaêta-Araujo, Vranckx, Jacobs (bib0002) 2021; 25 Wong, Al-Hasani, Alam, Alam (bib0006) 2019; 29 Thrall, Li, Li, Cruz, Do, Dreyer, Brink (bib0007) 2018; 15 Xie, Yang, Chen (bib0047) 2023; 133 Balshem, Helfand, Schünemann, Oxman, Kunz, Brozek, Vist, Falck-Ytter, Meerpohl, Norris (bib0015) 2011; 64 Chung, Lee, Hong, Park, Lee, Lee, Yang, Lee, Shin (bib0020) 2020; 120 Dot, Schouman, Dubois, Rouch, Gajny (bib0023) 2022; 32 Fontenele, Gerhardt, Pinto, Van Gerven, Willems, Jacobs, Freitas (bib0026) 2022; 119 Uffmann, Schaefer-Prokop (bib0004) 2009; 72 Galibourg, Dumoncel, Telmon, Calvet, Michetti, Maret (bib0005) 2017; 47 Cui, Li, Wang (bib0021) 2019 Hsu, Yuh, Lin, Lyu, Pan, Zhuang, Chang, Peng, Lee, Juan, Juan, Liu, Juan (bib0032) 2022; 12 Al-Sarem, Al-Asali, Alqutaibi, Saeed (bib0018) 2022; 19 Hosntalab, Aghaeizadeh Zoroofi, Abbaspour Tehrani-Fard, Shirani (bib0031) 2010; 5 Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Akl, Brennan, Chou, Glanville, Grimshaw, Hróbjartsson, Lalu, Li, Loder, Mayo-Wilson, McDonald, McGuinness, Moher (bib0013) 2021; 372 Orentlicher, Horowitz, Abboud (bib0001) 1995; 33 Ayidh Alqahtani, Jacobs, Smolders, Van Gerven, Willems, Shujaat, Shaheen (bib0017) 2023; 45 Jang, Kim, Cho, Seo (bib0033) 2022; 44 Zhang, Li, Lv, Xu, Zhou, Li, Ai (bib0053) 2023; 138 Duan, Chen, Zhang, Lin, Yang (bib0024) 2021; 50 Yang, Xie, Jia, Chen, Yang, Xie, Jiang (bib0048) 2021; 419 Polizzi, Quinzi, Ronsivalle, Venezia, Santonocito, Lo Giudice, Leonardi, Isola (bib0011) 2023; 27 Li, Chen, Han, Zhuang, Li, Lin (bib0039) 2020; 28 Chen, Du, Yun, Yang, Dai, Zhong, Feng, Yang (bib0019) 2020; 8 Jiang, Zhang, Shi, Liu, Shi (bib0034) 2022; 10 Leite (10.1016/j.jdent.2024.105064_bib0002) 2021; 25 Cui (10.1016/j.jdent.2024.105064_bib0021) 2019 Li (10.1016/j.jdent.2024.105064_bib0039) 2020; 28 Dot (10.1016/j.jdent.2024.105064_bib0023) 2022; 32 Qiu (10.1016/j.jdent.2024.105064_bib0050) 2021; 11 Zhang (10.1016/j.jdent.2024.105064_bib0053) 2023; 138 Nogueira-Reis (10.1016/j.jdent.2024.105064_bib0041) 2023; 27 Wang (10.1016/j.jdent.2024.105064_bib0045) 2021; 100 Jiang (10.1016/j.jdent.2024.105064_bib0034) 2022; 10 Khan (10.1016/j.jdent.2024.105064_bib0036) 2022; 32 Gou (10.1016/j.jdent.2024.105064_bib0029) 2019 Orentlicher (10.1016/j.jdent.2024.105064_bib0001) 1995; 33 Ezhov (10.1016/j.jdent.2024.105064_bib0025) 2019 Zhou (10.1016/j.jdent.2024.105064_bib0051) 2023; 615 Gan (10.1016/j.jdent.2024.105064_bib0027) 2018; 22 Shaheen (10.1016/j.jdent.2024.105064_bib0043) 2021; 115 Lee (10.1016/j.jdent.2024.105064_bib0038) 2020; 8 Kohli (10.1016/j.jdent.2024.105064_bib0009) 2017; 208 Lin (10.1016/j.jdent.2024.105064_bib0040) 2021; 47 Cui (10.1016/j.jdent.2024.105064_bib0016) 2022; 13 Polizzi (10.1016/j.jdent.2024.105064_bib0011) 2023; 27 Cui (10.1016/j.jdent.2024.105064_bib0049) 2021 Cui (10.1016/j.jdent.2024.105064_bib0022) 2022 Duan (10.1016/j.jdent.2024.105064_bib0024) 2021; 50 Lee (10.1016/j.jdent.2024.105064_bib0035) 2022; 81 Xie (10.1016/j.jdent.2024.105064_bib0047) 2023; 133 Al-Sarem (10.1016/j.jdent.2024.105064_bib0018) 2022; 19 Chen (10.1016/j.jdent.2024.105064_bib0019) 2020; 8 Yang (10.1016/j.jdent.2024.105064_bib0048) 2021; 419 Patel (10.1016/j.jdent.2024.105064_bib0003) 2019; 52 Lahoud (10.1016/j.jdent.2024.105064_bib0037) 2021; 47 Galibourg (10.1016/j.jdent.2024.105064_bib0005) 2017; 47 Page (10.1016/j.jdent.2024.105064_bib0013) 2021; 372 Whiting (10.1016/j.jdent.2024.105064_bib0014) 2011; 155 Hashimoto (10.1016/j.jdent.2024.105064_bib0008) 2018; 268 Preda (10.1016/j.jdent.2024.105064_bib0042) 2022; 124 Ayidh Alqahtani (10.1016/j.jdent.2024.105064_bib0017) 2023; 45 Arabi (10.1016/j.jdent.2024.105064_bib0010) 2021; 31 Tao (10.1016/j.jdent.2024.105064_bib0044) 2022; 2022 Balshem (10.1016/j.jdent.2024.105064_bib0015) 2011; 64 Monill-González (10.1016/j.jdent.2024.105064_bib0054) 2021; 24 Jang (10.1016/j.jdent.2024.105064_bib0033) 2022; 44 Uffmann (10.1016/j.jdent.2024.105064_bib0004) 2009; 72 Wang (10.1016/j.jdent.2024.105064_bib0046) 2023; 85 Hsu (10.1016/j.jdent.2024.105064_bib0032) 2022; 12 Wong (10.1016/j.jdent.2024.105064_bib0006) 2019; 29 Hosntalab (10.1016/j.jdent.2024.105064_bib0030) 2009; 92-D Fontenele (10.1016/j.jdent.2024.105064_bib0026) 2022; 119 Thrall (10.1016/j.jdent.2024.105064_bib0007) 2018; 15 Zijdenbos (10.1016/j.jdent.2024.105064_bib0052) 1994; 13 Hosntalab (10.1016/j.jdent.2024.105064_bib0031) 2010; 5 Chung (10.1016/j.jdent.2024.105064_bib0020) 2020; 120 Liang (10.1016/j.jdent.2024.105064_bib0012) 2010; 75 Gerhardt (10.1016/j.jdent.2024.105064_bib0028) 2022; 122 |
| References_xml | – start-page: 52 year: 2019 end-page: 56 ident: bib0025 article-title: Coarse-to-fine volumetric segmentation of teeth in cone-beam ct publication-title: IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – volume: 10 start-page: 76563 year: 2022 end-page: 76572 ident: bib0034 article-title: Alternate level set evolutions with controlled switch for tooth segmentation publication-title: IEEE Access – volume: 115 year: 2021 ident: bib0043 article-title: A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study publication-title: J. Dent. – volume: 15 start-page: 504 year: 2018 end-page: 508 ident: bib0007 article-title: Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success publication-title: J. Am. Coll. Radiol. – volume: 12 year: 2022 ident: bib0032 article-title: Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography publication-title: Sci. Rep. – volume: 32 start-page: 301 year: 2022 end-page: 318 ident: bib0036 article-title: Tooth segmentation in 3D cone-beam CT images using deep convolutional neural network publication-title: Neural. Netw. – volume: 2022 year: 2022 ident: bib0044 article-title: Tooth CT image segmentation method based on the U-net network and attention module publication-title: Comput. Math. Methods. Med. – volume: 44 start-page: 6562 year: 2022 end-page: 6568 ident: bib0033 article-title: A fully automated method for 3D individual tooth identification and segmentation in Dental CBCT publication-title: IEEE. Trans. Pattern. Anal. Mach. Intel. – volume: 13 start-page: 716 year: 1994 end-page: 724 ident: bib0052 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE. Trans. Med. Imaging. – volume: 47 year: 2017 ident: bib0005 article-title: Assessment of automatic segmentation of teeth using a watershed-based method publication-title: Dentomaxillofacial. Radiol. – volume: 19 start-page: 15414 year: 2022 ident: bib0018 article-title: Enhanced tooth region detection using pretrained deep learning models publication-title: Int. J. Env. Res. Pub. He. – year: 2022 ident: bib0022 article-title: Tooth+: a large-scale dental cone beam computed tomography dataset and benchmark for tooth volume segmentation publication-title: Data Augmentation, Labelling, and Imperfections, Lecture Notes in Computer Science – volume: 124 year: 2022 ident: bib0042 article-title: Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: a validation study publication-title: J. Dent. – volume: 13 start-page: 2096 year: 2022 ident: bib0016 article-title: A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images publication-title: Nat. Commun. – volume: 85 year: 2023 ident: bib0046 article-title: Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning publication-title: Med. Image. Anal. – volume: 75 start-page: 265 year: 2010 end-page: 269 ident: bib0012 article-title: A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): part I. On subjective image quality publication-title: Eur. J. Radiol. – volume: 615 year: 2023 ident: bib0051 article-title: Discriminating abilities of threshold-free evaluation metrics in link prediction publication-title: Physica. A. – volume: 138 year: 2023 ident: bib0053 article-title: Advancements in oral and maxillofacial surgery medical images segmentation techniques: an overview publication-title: J. Dent. – volume: 27 start-page: 3363 year: 2023 end-page: 3378 ident: bib0011 article-title: Tooth automatic segmentation from CBCT images: a systematic review publication-title: Clin. Oral. Invest. – volume: 32 start-page: 3639 year: 2022 end-page: 3648 ident: bib0023 article-title: Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework publication-title: Eur. Radiol. – volume: 133 year: 2023 ident: bib0047 article-title: WITS: weakly-supervised individual tooth segmentation model trained on box-level labels publication-title: Pattern. Recogn. – volume: 50 year: 2021 ident: bib0024 article-title: Refined tooth and pulp segmentation using U-Net in CBCT image publication-title: Dentomaxillofac. Radiol. – volume: 119 year: 2022 ident: bib0026 article-title: Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - a validation study publication-title: J. Dent. – volume: 52 start-page: 1138 year: 2019 end-page: 1152 ident: bib0003 article-title: Cone beam computed tomography in Endodontics - a review of the literature publication-title: Int. Endod. J. – volume: 155 start-page: 529 year: 2011 end-page: 536 ident: bib0014 article-title: QUA-DAS-2: a revised tool for the quality assessment of diagnostic accuracy studies publication-title: Ann. Intern. Med. – volume: 64 start-page: 401 year: 2011 end-page: 406 ident: bib0015 article-title: GRADE guidelines: 3. Rating the quality of evidence publication-title: J Clin Epidemiol – volume: 22 start-page: 196 year: 2018 end-page: 204 ident: bib0027 article-title: Tooth and alveolar bone segmentation from dental computed tomography images publication-title: IEEE. J. Biomed. Health. – volume: 122 year: 2022 ident: bib0028 article-title: Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks publication-title: J. Dent. – volume: 5 start-page: 237 year: 2010 end-page: 2249 ident: bib0031 article-title: Classification and numbering of teeth in multi-slice CT images using wavelet-Fourier descriptor publication-title: Int. J. Comput. Ass. Rad. – volume: 11 start-page: 629 year: 2021 ident: bib0050 article-title: Automatic segmentation of mandible from conventional methods to deep learning—a review publication-title: J. Personalized. Med. – volume: 24 start-page: 6 year: 2021 end-page: 15 ident: bib0054 article-title: Artificial intelligence in orthodontics: where are we now? A scoping review publication-title: Orthod. Craniofac. Res. – volume: 92-D start-page: 2137 year: 2009 end-page: 2151 ident: bib0030 article-title: A Hybrid Segmentation Framework for Computer-Assisted Dental Procedures publication-title: IEICE. Trans. Inf. Syst. – volume: 47 start-page: 827 year: 2021 end-page: 835 ident: bib0037 article-title: Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography publication-title: J. Endod. – volume: 8 start-page: 50507 year: 2020 end-page: 50518 ident: bib0038 article-title: Automated CNN-based tooth segmentation in cone-beam CT for dental implant planning publication-title: IEEE. Access. – volume: 208 start-page: 754 year: 2017 end-page: 760 ident: bib0009 article-title: Implementing machine learning in radiology practice and research publication-title: AJR. Am. J. Roentgenol. – volume: 47 start-page: 1933 year: 2021 end-page: 1941 ident: bib0040 article-title: Micro-computed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography publication-title: J. Endod. – volume: 100 start-page: 943 year: 2021 end-page: 949 ident: bib0045 article-title: Multiclass CBCT image segmentation for orthodontics with deep learning publication-title: J. Dent. Res. – volume: 72 start-page: 202 year: 2009 end-page: 208 ident: bib0004 article-title: Digital radiography: the balance between image quality and required radiation dose publication-title: Eur J Radiol – volume: 25 start-page: 2257 year: 2021 end-page: 2267 ident: bib0002 article-title: Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs publication-title: Clin. Oral. Invest. – volume: 33 start-page: 720 year: 1995 end-page: 733 ident: bib0001 article-title: Computer-guided implant surgery: indications and guidelines for use publication-title: Compend. Contin. Educ. Dent. (Jamesburg, N.J.: – start-page: 6361 year: 2019 end-page: 6370 ident: bib0021 article-title: ToothNet: automatic tooth instance segmentation and identification from cone beam CT images publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 29 start-page: 141 year: 2019 end-page: 143 ident: bib0006 article-title: Artificial intelligence in radiology: how will we be affected? publication-title: Eur. Radiol. – volume: 31 start-page: 6384 year: 2021 end-page: 6396 ident: bib0010 article-title: Deep learning-based metal artefact reduction in PET/CT imaging publication-title: Eur. Radiol. – start-page: 150 year: 2021 end-page: 162 ident: bib0049 article-title: Hierarchical morphology-guided tooth instance segmentation from CBCT images publication-title: Information Processing in Medical Imaging: 27th International Conference, IPMI 2021, Virtual Event Proceedings – volume: 372 start-page: n71 year: 2021 ident: bib0013 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: BMJ – volume: 28 start-page: 905 year: 2020 end-page: 922 ident: bib0039 article-title: Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN publication-title: J. X-ray. Sci. Technol. – volume: 120 year: 2020 ident: bib0020 article-title: Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation publication-title: Comput. Biol. Med. – volume: 8 start-page: 97296 year: 2020 end-page: 97309 ident: bib0019 article-title: Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a Multi-task FCN publication-title: IEEE. Access. – volume: 268 start-page: 70 year: 2018 end-page: 76 ident: bib0008 article-title: Artificial intelligence in surgery: promises and perils publication-title: Ann. Surg. – volume: 45 start-page: 169 year: 2023 end-page: 174 ident: bib0017 article-title: Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study publication-title: Eur. J. Orthodont. – volume: 419 start-page: 108 year: 2021 end-page: 125 ident: bib0048 article-title: Accurate and automatic tooth image segmentation model with deep convolutional neural. networks and level set method publication-title: Neurocomputing – year: 2019 ident: bib0029 article-title: Automatic image annotation and deep learning for tooth CT image segmentation publication-title: Image and Graphics. ICIG 2019. Lecture Notes in Computer Science – volume: 27 start-page: 1133 year: 2023 end-page: 1141 ident: bib0041 article-title: Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images publication-title: Clin. Oral. Invest. – volume: 81 start-page: 18327 year: 2022 end-page: 18342 ident: bib0035 article-title: Tooth instance segmentation from cone-beam CT images through point-based detection and Gaussian disentanglement publication-title: Multimed. Tools. Appl. – volume: 32 start-page: 3639 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0023 article-title: Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08455-y – volume: 615 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0051 article-title: Discriminating abilities of threshold-free evaluation metrics in link prediction publication-title: Physica. A. doi: 10.1016/j.physa.2023.128529 – volume: 208 start-page: 754 year: 2017 ident: 10.1016/j.jdent.2024.105064_bib0009 article-title: Implementing machine learning in radiology practice and research publication-title: AJR. Am. J. Roentgenol. doi: 10.2214/AJR.16.17224 – volume: 33 start-page: 720 year: 1995 ident: 10.1016/j.jdent.2024.105064_bib0001 article-title: Computer-guided implant surgery: indications and guidelines for use publication-title: Compend. Contin. Educ. Dent. (Jamesburg, N.J.: – start-page: 52 year: 2019 ident: 10.1016/j.jdent.2024.105064_bib0025 article-title: Coarse-to-fine volumetric segmentation of teeth in cone-beam ct – volume: 8 start-page: 50507 year: 2020 ident: 10.1016/j.jdent.2024.105064_bib0038 article-title: Automated CNN-based tooth segmentation in cone-beam CT for dental implant planning publication-title: IEEE. Access. doi: 10.1109/ACCESS.2020.2975826 – volume: 13 start-page: 716 year: 1994 ident: 10.1016/j.jdent.2024.105064_bib0052 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE. Trans. Med. Imaging. doi: 10.1109/42.363096 – volume: 124 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0042 article-title: Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: a validation study publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104238 – year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0022 article-title: Tooth+: a large-scale dental cone beam computed tomography dataset and benchmark for tooth volume segmentation – volume: 8 start-page: 97296 year: 2020 ident: 10.1016/j.jdent.2024.105064_bib0019 article-title: Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a Multi-task FCN publication-title: IEEE. Access. doi: 10.1109/ACCESS.2020.2991799 – volume: 12 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0032 article-title: Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography publication-title: Sci. Rep. doi: 10.1038/s41598-022-23901-7 – volume: 44 start-page: 6562 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0033 article-title: A fully automated method for 3D individual tooth identification and segmentation in Dental CBCT publication-title: IEEE. Trans. Pattern. Anal. Mach. Intel. doi: 10.1109/TPAMI.2021.3086072 – volume: 120 year: 2020 ident: 10.1016/j.jdent.2024.105064_bib0020 article-title: Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103720 – volume: 10 start-page: 76563 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0034 article-title: Alternate level set evolutions with controlled switch for tooth segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3192411 – volume: 100 start-page: 943 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0045 article-title: Multiclass CBCT image segmentation for orthodontics with deep learning publication-title: J. Dent. Res. doi: 10.1177/00220345211005338 – volume: 25 start-page: 2257 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0002 article-title: Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs publication-title: Clin. Oral. Invest. doi: 10.1007/s00784-020-03544-6 – volume: 11 start-page: 629 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0050 article-title: Automatic segmentation of mandible from conventional methods to deep learning—a review publication-title: J. Personalized. Med. doi: 10.3390/jpm11070629 – volume: 29 start-page: 141 year: 2019 ident: 10.1016/j.jdent.2024.105064_bib0006 article-title: Artificial intelligence in radiology: how will we be affected? publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5644-3 – volume: 45 start-page: 169 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0017 article-title: Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study publication-title: Eur. J. Orthodont. doi: 10.1093/ejo/cjac047 – volume: 13 start-page: 2096 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0016 article-title: A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images publication-title: Nat. Commun. doi: 10.1038/s41467-022-29637-2 – volume: 85 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0046 article-title: Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning publication-title: Med. Image. Anal. doi: 10.1016/j.media.2023.102750 – volume: 92-D start-page: 2137 year: 2009 ident: 10.1016/j.jdent.2024.105064_bib0030 article-title: A Hybrid Segmentation Framework for Computer-Assisted Dental Procedures publication-title: IEICE. Trans. Inf. Syst. doi: 10.1587/transinf.E92.D.2137 – volume: 2022 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0044 article-title: Tooth CT image segmentation method based on the U-net network and attention module publication-title: Comput. Math. Methods. Med. doi: 10.1155/2022/3289663 – volume: 47 year: 2017 ident: 10.1016/j.jdent.2024.105064_bib0005 article-title: Assessment of automatic segmentation of teeth using a watershed-based method publication-title: Dentomaxillofacial. Radiol. – volume: 47 start-page: 1933 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0040 article-title: Micro-computed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography publication-title: J. Endod. doi: 10.1016/j.joen.2021.09.001 – volume: 27 start-page: 1133 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0041 article-title: Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images publication-title: Clin. Oral. Invest. doi: 10.1007/s00784-022-04708-2 – start-page: 6361 year: 2019 ident: 10.1016/j.jdent.2024.105064_bib0021 article-title: ToothNet: automatic tooth instance segmentation and identification from cone beam CT images – volume: 115 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0043 article-title: A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103865 – volume: 32 start-page: 301 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0036 article-title: Tooth segmentation in 3D cone-beam CT images using deep convolutional neural network publication-title: Neural. Netw. doi: 10.14311/NNW.2022.32.018 – volume: 72 start-page: 202 year: 2009 ident: 10.1016/j.jdent.2024.105064_bib0004 article-title: Digital radiography: the balance between image quality and required radiation dose publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2009.05.060 – volume: 419 start-page: 108 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0048 article-title: Accurate and automatic tooth image segmentation model with deep convolutional neural. networks and level set method publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.110 – volume: 19 start-page: 15414 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0018 article-title: Enhanced tooth region detection using pretrained deep learning models publication-title: Int. J. Env. Res. Pub. He. doi: 10.3390/ijerph192215414 – volume: 75 start-page: 265 year: 2010 ident: 10.1016/j.jdent.2024.105064_bib0012 article-title: A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT): part I. On subjective image quality publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2009.03.042 – volume: 47 start-page: 827 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0037 article-title: Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography publication-title: J. Endod. doi: 10.1016/j.joen.2020.12.020 – volume: 372 start-page: n71 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0013 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: BMJ doi: 10.1136/bmj.n71 – volume: 28 start-page: 905 year: 2020 ident: 10.1016/j.jdent.2024.105064_bib0039 article-title: Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN publication-title: J. X-ray. Sci. Technol. – volume: 50 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0024 article-title: Refined tooth and pulp segmentation using U-Net in CBCT image publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20200251 – volume: 27 start-page: 3363 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0011 article-title: Tooth automatic segmentation from CBCT images: a systematic review publication-title: Clin. Oral. Invest. doi: 10.1007/s00784-023-05048-5 – volume: 133 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0047 article-title: WITS: weakly-supervised individual tooth segmentation model trained on box-level labels publication-title: Pattern. Recogn. doi: 10.1016/j.patcog.2022.108974 – volume: 155 start-page: 529 year: 2011 ident: 10.1016/j.jdent.2024.105064_bib0014 article-title: QUA-DAS-2: a revised tool for the quality assessment of diagnostic accuracy studies publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-155-8-201110180-00009 – volume: 64 start-page: 401 year: 2011 ident: 10.1016/j.jdent.2024.105064_bib0015 article-title: GRADE guidelines: 3. Rating the quality of evidence publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2010.07.015 – volume: 5 start-page: 237 year: 2010 ident: 10.1016/j.jdent.2024.105064_bib0031 article-title: Classification and numbering of teeth in multi-slice CT images using wavelet-Fourier descriptor publication-title: Int. J. Comput. Ass. Rad. – volume: 138 year: 2023 ident: 10.1016/j.jdent.2024.105064_bib0053 article-title: Advancements in oral and maxillofacial surgery medical images segmentation techniques: an overview publication-title: J. Dent. doi: 10.1016/j.jdent.2023.104727 – volume: 52 start-page: 1138 year: 2019 ident: 10.1016/j.jdent.2024.105064_bib0003 article-title: Cone beam computed tomography in Endodontics - a review of the literature publication-title: Int. Endod. J. doi: 10.1111/iej.13115 – volume: 24 start-page: 6 issue: Suppl 2 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0054 article-title: Artificial intelligence in orthodontics: where are we now? A scoping review publication-title: Orthod. Craniofac. Res. doi: 10.1111/ocr.12517 – volume: 31 start-page: 6384 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0010 article-title: Deep learning-based metal artefact reduction in PET/CT imaging publication-title: Eur. Radiol. doi: 10.1007/s00330-021-07709-z – volume: 119 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0026 article-title: Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - a validation study publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104069 – volume: 22 start-page: 196 year: 2018 ident: 10.1016/j.jdent.2024.105064_bib0027 article-title: Tooth and alveolar bone segmentation from dental computed tomography images publication-title: IEEE. J. Biomed. Health. doi: 10.1109/JBHI.2017.2709406 – volume: 122 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0028 article-title: Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104139 – start-page: 150 year: 2021 ident: 10.1016/j.jdent.2024.105064_bib0049 article-title: Hierarchical morphology-guided tooth instance segmentation from CBCT images – volume: 15 start-page: 504 year: 2018 ident: 10.1016/j.jdent.2024.105064_bib0007 article-title: Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2017.12.026 – year: 2019 ident: 10.1016/j.jdent.2024.105064_bib0029 article-title: Automatic image annotation and deep learning for tooth CT image segmentation – volume: 81 start-page: 18327 year: 2022 ident: 10.1016/j.jdent.2024.105064_bib0035 article-title: Tooth instance segmentation from cone-beam CT images through point-based detection and Gaussian disentanglement publication-title: Multimed. Tools. Appl. doi: 10.1007/s11042-022-12524-9 – volume: 268 start-page: 70 year: 2018 ident: 10.1016/j.jdent.2024.105064_bib0008 article-title: Artificial intelligence in surgery: promises and perils publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002693 |
| SSID | ssj0004029 |
| Score | 2.4987528 |
| SecondaryResourceType | review_article |
| Snippet | •AI-based models achieve high accuracy (DSC=0.95, 95 %CI 0.94 to 0.96) in delineating tooth boundaries from CBCT images, reducing reliance on manual... This systematic review and meta-analysis aimed to assess the current performance of artificial intelligence (AI)-based methods for tooth segmentation in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105064 |
| SubjectTerms | Algorithms Artificial Intelligence CBCT Cone-Beam Computed Tomography - methods Convolutional Neural Networks Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional - methods Meta-analysis Neural Networks, Computer Tooth - diagnostic imaging Tooth segmentation |
| Title | Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence: A systematic review and Meta-analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0300571224002331 https://dx.doi.org/10.1016/j.jdent.2024.105064 https://www.ncbi.nlm.nih.gov/pubmed/38768854 https://www.proquest.com/docview/3057692479 |
| Volume | 146 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-176X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004029 issn: 0300-5712 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-176X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004029 issn: 0300-5712 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1879-176X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004029 issn: 0300-5712 databaseCode: ACRLP dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-176X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004029 issn: 0300-5712 databaseCode: AIKHN dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-176X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004029 issn: 0300-5712 databaseCode: AKRWK dateStart: 19721001 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-176X dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0004029 issn: 0300-5712 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoAL4s3yqIzUI2Hz8Do2t2XpshTRC63Um-X4scqKZqtu9sCFn8BvZsZ2tnBokbhESpTJY8aeGcvffEPIoYXJV3ivM1Z7kTHL6kzmpsy0dxWThbVeB4DsCV-csePzyfkemQ21MAirTL4_-vTgrdOVcdLm-LJtx99yZFqvi4CCLKtQS81YjV0M3v28hnnA-kjGnYQ8w7sH5qGA8VphMSwsEkuG_W5zzm6KTjdlnyEKzR-Q-yl9pNP4hQ_JnusekbsfEfKDXdsek19Hib67W9J-DWagG7e8SAVGHdXGbK-0-UF1Zyn2lacucEhgASZtOzr7MDul7QU4mQ1FSPySojIiywRt_6DvfE-n9JoFmsYKmPDUr67XmU5cJ0_I2fzodLbIUs-FzLCi6CHZlo3wDmnFINFBcjsvOIOJq_2kaGqudclNbktbOMuZqxotIbrZ0hUWJHNbPSX73bpzzwmF7EHbpkT-HM-ktlJXZiI0aFl4IQ0fkXLQtTKJkBz7YnxXA_JspYKBFBpIRQONyNud0GXk47j9djYYUQ2lpuAcFcSL28X4Tuyv0fhvwTfDSFEwT3HzRXduvd0o8Ks1h8VuLUfkWRxCux-oICQJMWEv_ve1L8k9PIsw4ldkv7_auteQLPXNQZgNcBTzTwfkzvTzl8XJb1woFTI |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOil6rvbltaVemy6ieM4MTe6BW1b4NJF4mY5fqyCIIvY7KEXfgK_mRk7WdoDVOo18eThsechf_MNIZ8sbL7Me53w0lcJt7xMZGpYor3Lucys9ToAZI_F9IT_OC1ON8hkqIVBWGVv-6NND9a6vzLuZ3N82TTjXykyrZdZQEGyHGupt3jBSszAvlzf4TwgQZLxKCFNcPhAPRRAXmdYDQtZIuPY8DYV_D73dF_4GdzQwRPyuI8f6V78xKdkw7XPyPY3xPxg27bn5Ga_5-9u57RbgB7o0s0v-gqjlmpjVlfa_Ka6tRQby1MXSCSwApM2LZ18ncxocwFWZkkREz-nOBuRZoI2f_B37tI9ekcDTWMJTHjqket0onuykxfk5GB_NpkmfdOFxPAs6yDalnXlHfKKQaSD7Ha-Ehx2rvZFVpdCayZMapnNnBXc5bWW4N4sc5kFydTmL8lmu2jda0IhfNC2Zkig47nUVurcFJWGWa58JY0YETbMtTI9Izk2xjhXA_TsTAUFKVSQigoakc9roctIyPHwcD4oUQ21pmAdFTiMh8XEWuyv5fhvwY_DSlGwUfH0RbdusVoqMKylgGy3lCPyKi6h9Q_k4JOqquBv_ve1H8j2dHZ0qA6_H_98Sx7hnYgpfkc2u6uV24HIqavfh51xCx-QFeE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+tooth+segmentation+accuracy+and+time+efficiency+in+CBCT+images+using+artificial+intelligence%3A+A+systematic+review+and+Meta-analysis&rft.jtitle=Journal+of+dentistry&rft.au=Xiang%2C+Bilu&rft.au=Lu%2C+Jiayi&rft.au=Yu%2C+Jiayi&rft.date=2024-07-01&rft.eissn=1879-176X&rft.volume=146&rft.spage=105064&rft_id=info:doi/10.1016%2Fj.jdent.2024.105064&rft_id=info%3Apmid%2F38768854&rft.externalDocID=38768854 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-5712&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-5712&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-5712&client=summon |