Therapeutic applications of electrospun nanofibers for drug delivery systems
Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to the...
Saved in:
Published in | Archives of pharmacal research Vol. 37; no. 1; pp. 69 - 78 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2014
대한약학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0253-6269 1976-3786 1976-3786 |
DOI | 10.1007/s12272-013-0284-2 |
Cover
Abstract | Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release. |
---|---|
AbstractList | Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release.Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release. Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release. Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and small molecule drugs, can be loaded within or on the surface of nanofibers according to their properties. Hydrophobic drugs are directly dissolved with a polymer in an organic solvent before electrospinning. However, it is preferred to surface-immobilize bioactive molecules on nanofibers by physical absorption or chemical conjugation. Especially, chemically surface-immobilized proteins on a nanofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofiber sheet layers, which are stacked on top of one another, the initial burst release is reduced compared with solid nanofibers because of the layers. Furthermore, hybridization of electrospun nanofibers with nanoparticles, microspheres, and hydrogels is indirect drug loading method into the nanofibers. It is also possible to produce multi-drug delivery systems with timed programmed release. Electrospun nanofiber drug delivery systemshave been studied using various techniques. Herein, wedescribe the fabrication of a drug-incorporating nanofiber. Drugs, such as proteins, peptide, antibodies, and smallmolecule drugs, can be loaded within or on the surface ofnanofibers according to their properties. Hydrophobicdrugs are directly dissolved with a polymer in an organicsolvent before electrospinning. However, it is preferred tosurface-immobilize bioactive molecules on nanofibers byphysical absorption or chemical conjugation. Especially,chemically surface-immobilized proteins on ananofiber mesh stimulate cell differentiation and proliferation. Using a dual electrospinning nozzle to create nanofibersheet layers, which are stacked on top of one another,the initial burst release is reduced compared with solidnanofibers because of the layers. Furthermore, hybridizationof electrospun nanofibers with nanoparticles, microspheres,and hydrogels is indirect drug loading method intothe nanofibers. It is also possible to produce multi-drugdelivery systems with timed programmed release. KCI Citation Count: 126 |
Author | Kim, Woo Jin Son, Young Ju Yoo, Hyuk Sang |
Author_xml | – sequence: 1 givenname: Young Ju surname: Son fullname: Son, Young Ju organization: Department of Biomedical Materials Engineering, Kangwon National University – sequence: 2 givenname: Woo Jin surname: Kim fullname: Kim, Woo Jin organization: Department of Internal Medicine, School of Medicine, Kangwon National University – sequence: 3 givenname: Hyuk Sang surname: Yoo fullname: Yoo, Hyuk Sang email: hsyoo@kangwon.ac.kr organization: Department of Biomedical Materials Engineering, Kangwon National University, Institute of Bioscience and Bioengineering, Kangwon National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24234913$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001902550$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkc1O3DAURi1EVQboA3RTZdkuQv3vZIlQKUgjIaFhbTn29WDI2KmdVJq3JxDYsIDV3ZxzF985RocxRUDoO8FnBGP1uxBKFa0xYTWmDa_pAVqRVsmaqUYeohWmgtWSyvYIHZfygDGTQoiv6IhyynhL2AqtN_eQzQDTGGxlhqEP1owhxVIlX0EPdsypDFOsoonJhw5yqXzKlcvTtnLQh_-Q91XZlxF25RR98aYv8O31nqC7yz-bi6t6ffP3-uJ8XVtOyFhL7lpjqVDOgXGNkcI2TjFuObbWS_BNZ3xjwTHcKSc6Z3iDOQchJPbYt-wE_Vr-xuz1ow06mfByt0k_Zn1-u7nWhDBFOJ7Znws75PRvgjLqXSgW-t5ESFPRRDEmCGsp-RzlbUs4V7iZ0R-v6NTtwOkhh53Je_027AyoBbDzfiWD1zaML8uO2YReE6yfE-oloZ4T6ueEms4meWe-Pf_IoYtTZjZuIeuHNOU4N_hAegI8G62_ |
CitedBy_id | crossref_primary_10_1002_pi_6214 crossref_primary_10_1016_j_eurpolymj_2017_09_020 crossref_primary_10_1016_j_molliq_2023_121854 crossref_primary_10_3390_app8091643 crossref_primary_10_1016_j_ejps_2017_08_032 crossref_primary_10_1016_j_progpolymsci_2014_12_001 crossref_primary_10_7216_teksmuh_1480467 crossref_primary_10_1039_C9AN01987A crossref_primary_10_1080_17425247_2021_1867096 crossref_primary_10_1557_mrc_2018_193 crossref_primary_10_2174_2211738510666220928161957 crossref_primary_10_3109_1061186X_2014_965715 crossref_primary_10_14235_bas_galenos_2022_30502 crossref_primary_10_1016_j_jddst_2020_101604 crossref_primary_10_1038_s41598_017_05842_8 crossref_primary_10_1039_C5RA07595E crossref_primary_10_1039_C9RA05012D crossref_primary_10_1016_j_jddst_2018_10_031 crossref_primary_10_3390_pharmaceutics11040160 crossref_primary_10_1002_adem_202301297 crossref_primary_10_1080_08927022_2020_1783462 crossref_primary_10_1007_s44174_024_00218_9 crossref_primary_10_1016_j_ijbiomac_2017_08_183 crossref_primary_10_1021_acs_biomac_9b01072 crossref_primary_10_1007_s10965_023_03535_7 crossref_primary_10_2147_IJN_S252237 crossref_primary_10_4155_tde_2017_0014 crossref_primary_10_1016_j_msec_2019_110521 crossref_primary_10_1016_j_carbpol_2023_121082 crossref_primary_10_1039_D3TB01088K crossref_primary_10_1007_s40820_018_0226_0 crossref_primary_10_2754_avb202291020163 crossref_primary_10_1248_bpb_b15_00391 crossref_primary_10_1016_j_jconrel_2019_06_038 crossref_primary_10_1080_00914037_2024_2335173 crossref_primary_10_1016_j_ijpharm_2023_123641 crossref_primary_10_1021_acs_macromol_8b01709 crossref_primary_10_1111_cbdd_13959 crossref_primary_10_1016_j_ijbiomac_2018_05_130 crossref_primary_10_3390_pharmaceutics11010007 crossref_primary_10_1016_j_matdes_2016_02_111 crossref_primary_10_1080_00914037_2019_1636248 crossref_primary_10_1002_gch2_201600011 crossref_primary_10_2174_1871520623666230222142825 crossref_primary_10_1016_j_addr_2018_03_002 crossref_primary_10_1016_j_jddst_2023_105100 crossref_primary_10_1016_j_matlet_2014_11_044 crossref_primary_10_1016_j_jcis_2023_06_024 crossref_primary_10_1007_s12221_014_2572_y crossref_primary_10_1016_j_bbrc_2019_06_163 crossref_primary_10_1016_j_jconrel_2014_06_036 crossref_primary_10_1208_s12249_020_01715_y crossref_primary_10_1039_D2BM00820C crossref_primary_10_1038_srep41424 crossref_primary_10_1007_s10924_023_02970_3 crossref_primary_10_1016_j_heliyon_2024_e33178 crossref_primary_10_3390_pharmaceutics14071442 crossref_primary_10_1007_s12035_016_0200_0 crossref_primary_10_3390_molecules27061803 crossref_primary_10_1038_s41598_022_22878_7 crossref_primary_10_1016_j_molliq_2020_114575 crossref_primary_10_1080_00914037_2021_2021905 crossref_primary_10_1016_j_ejpb_2016_11_010 crossref_primary_10_2147_IJN_S281158 crossref_primary_10_1016_j_ijpharm_2021_121040 crossref_primary_10_1002_pat_3764 crossref_primary_10_1021_acsomega_3c00924 crossref_primary_10_1016_j_mtbio_2023_100692 crossref_primary_10_1016_j_ijpharm_2020_120172 crossref_primary_10_1016_j_jddst_2019_03_038 crossref_primary_10_1016_j_jddst_2022_103936 crossref_primary_10_1016_j_jconrel_2020_09_039 crossref_primary_10_1016_j_jddst_2023_104367 crossref_primary_10_3390_nano10030486 crossref_primary_10_1021_acs_chemrev_0c00816 crossref_primary_10_1021_acsapm_9b00798 crossref_primary_10_1088_1361_6528_ac467b crossref_primary_10_1016_j_ijbiomac_2024_132844 crossref_primary_10_1155_2016_6507459 crossref_primary_10_3897_pharmacia_70_e98122 crossref_primary_10_5604_01_3001_0014_3148 crossref_primary_10_3390_polym13213630 crossref_primary_10_1039_C5PY02067K crossref_primary_10_1016_j_eurpolymj_2024_112946 crossref_primary_10_1021_acs_molpharmaceut_5b00614 crossref_primary_10_1016_j_jddst_2019_03_026 crossref_primary_10_1039_C4CS00226A crossref_primary_10_1021_acsomega_3c09492 crossref_primary_10_1088_1748_605X_aac332 crossref_primary_10_1007_s00339_023_07122_x crossref_primary_10_1021_acsbiomaterials_0c01074 crossref_primary_10_3389_fchem_2021_809676 crossref_primary_10_1016_j_memsci_2019_117648 crossref_primary_10_1515_nanoph_2016_0142 crossref_primary_10_1016_j_drudis_2017_05_007 crossref_primary_10_1016_j_msec_2014_08_015 crossref_primary_10_1093_rb_rbae139 crossref_primary_10_3390_app10010065 crossref_primary_10_1039_C6RA05997J crossref_primary_10_1155_2022_2335443 crossref_primary_10_2174_1567201816666190123121425 crossref_primary_10_1016_j_jddst_2022_103714 crossref_primary_10_3390_polym13111863 crossref_primary_10_1016_j_apsb_2022_10_026 crossref_primary_10_1016_j_cej_2021_133356 crossref_primary_10_1016_j_polymdegradstab_2016_02_002 crossref_primary_10_1155_2016_4360659 crossref_primary_10_1088_1361_6528_28_5_052001 crossref_primary_10_1016_j_msec_2017_03_093 crossref_primary_10_3390_nano12172933 crossref_primary_10_1016_j_ejps_2015_03_003 crossref_primary_10_1016_j_promfg_2019_06_127 crossref_primary_10_1080_00405167_2016_1201934 crossref_primary_10_1016_j_carbpol_2020_116816 crossref_primary_10_1016_j_ijpharm_2016_09_060 crossref_primary_10_1016_j_carbpol_2016_09_059 crossref_primary_10_1002_adma_201706665 crossref_primary_10_1208_s12249_024_02794_x crossref_primary_10_3390_ma15062105 crossref_primary_10_3390_nano9040656 crossref_primary_10_1016_j_mtadv_2023_100343 crossref_primary_10_1080_00914037_2021_1962877 crossref_primary_10_3390_pharmaceutics13020286 crossref_primary_10_3762_bjnano_6_198 crossref_primary_10_1039_C6PY01718E crossref_primary_10_1088_1748_605X_aaec26 crossref_primary_10_3390_polym14183725 crossref_primary_10_1002_jbm_a_36912 crossref_primary_10_1016_j_reactfunctpolym_2021_105058 crossref_primary_10_1007_s10965_021_02845_y crossref_primary_10_1016_j_jddst_2022_104018 crossref_primary_10_1073_pnas_1613722113 crossref_primary_10_3390_fib11020021 crossref_primary_10_1016_j_msec_2018_05_007 crossref_primary_10_1177_1528083719848155 crossref_primary_10_1021_am502046h crossref_primary_10_1080_25740881_2023_2204923 crossref_primary_10_7759_cureus_63678 crossref_primary_10_1016_j_ejps_2018_08_023 crossref_primary_10_1002_jbm_a_37187 crossref_primary_10_1039_C6RA15252J crossref_primary_10_3390_pharmaceutics15092285 crossref_primary_10_1002_lsm_22701 crossref_primary_10_1007_s13205_024_04135_y crossref_primary_10_1016_j_pmatsci_2024_101350 crossref_primary_10_1016_j_msec_2018_12_020 crossref_primary_10_1039_D0NA00042F crossref_primary_10_1108_IJCST_02_2024_0043 crossref_primary_10_1186_s12951_021_01065_2 crossref_primary_10_1007_s11837_018_3222_4 crossref_primary_10_1016_j_xphs_2021_09_041 crossref_primary_10_1016_j_colsurfb_2020_111391 crossref_primary_10_1016_j_jddst_2023_104847 crossref_primary_10_3390_pharmaceutics14010191 |
Cites_doi | 10.1248/cpb.58.143 10.1007/s10544-013-9777-5 10.1021/nn700408z 10.1016/j.biomaterials.2004.01.063 10.1088/1758-5082/5/3/035006 10.1016/j.biomaterials.2013.08.028 10.1021/nl062866u 10.1166/jnn.2010.2164 10.1016/S0168-3659(03)00342-0 10.1016/j.jconrel.2009.12.029 10.1002/btpr.214 10.1021/nn300106t 10.1016/j.addr.2009.07.007 10.1007/s11051-013-1726-y 10.1016/j.actbio.2013.03.018 10.1016/j.biomaterials.2004.07.040 10.1016/S0168-3659(02)00041-X 10.1088/0957-4484/17/9/041 10.1016/j.polymer.2009.06.058 10.1016/j.jconrel.2004.04.009 10.1016/j.jcis.2008.11.067 10.1016/j.actbio.2012.10.021 10.1016/j.ijpharm.2011.09.033 10.1021/nl0613555 10.1021/bm301523p 10.1016/j.jconrel.2005.02.024 10.1016/j.actbio.2013.02.006 10.1088/1748-6041/3/2/025010 10.1016/j.jconrel.2010.03.006 10.1007/s10616-012-9450-5 10.1021/nn200876f 10.1007/s10853-013-7359-9 10.1088/1748-3182/3/1/016006 10.1016/j.biomaterials.2009.11.074 10.1023/A:1018318914258 10.1021/bm050743i 10.1002/adma.200802948 10.1039/b509109h 10.1088/1748-6041/4/3/035006 10.1088/0957-4484/19/8/085605 10.1016/j.ejpb.2008.03.010 10.1002/jbm.a.32848 10.1021/bm2018118 10.1038/gt.2012.49 10.1007/s10853-011-6166-4 10.1016/j.ejpb.2007.10.016 10.1088/1748-6041/2/4/L01 10.1002/marc.201100049 10.1016/j.biomaterials.2012.06.017 10.1016/j.matchemphys.2010.10.010 10.1089/ten.tea.2007.0280 10.1021/nn900451a 10.1016/j.actbio.2010.06.019 10.1016/j.jconrel.2006.06.016 10.1016/0092-8674(91)90512-W 10.1016/j.actbio.2009.06.017 10.1016/j.biomaterials.2010.01.098 10.1089/ten.2006.12.221 10.1016/j.biomaterials.2005.10.028 10.1016/j.msec.2013.05.034 10.1021/bm2017146 10.1002/adfm.201201501 10.1021/bm060680j 10.1100/tsw.2009.13 10.2217/17435889.1.4.465 10.1023/A:1023450006281 10.1021/la300821r 10.1002/mabi.201000046 10.1021/la904741h 10.1002/jbm.a.34197 10.1039/c3tb20487a 10.1016/j.biomaterials.2013.03.051 10.1016/j.ejpb.2008.10.015 10.1021/bm0492576 10.1039/c1lc20186g 10.1016/j.jconrel.2009.12.030 10.1016/j.actbio.2013.04.034 10.1016/j.colsurfb.2012.10.016 10.1016/j.jconrel.2006.11.004 10.1088/1758-5082/1/2/025001 10.3390/ijms131114136 10.1002/jps.22189 10.1080/15583720600945394 10.1002/adma.200802458 10.1016/j.biomaterials.2007.10.012 10.1166/jnn.2010.2831 10.1016/j.jconrel.2012.05.047 10.1002/jcb.24033 10.1002/jbm.a.10101 10.1163/156856212X629845 |
ContentType | Journal Article |
Copyright | The Pharmaceutical Society of Korea 2013 |
Copyright_xml | – notice: The Pharmaceutical Society of Korea 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ACYCR |
DOI | 10.1007/s12272-013-0284-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1976-3786 |
EndPage | 78 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1137140 24234913 10_1007_s12272_013_0284_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -53 -56 -5G -BR -EM -Y2 -~C .86 .UV .VR 06C 06D 0R~ 0VY 1N0 2.D 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 3SX 4.4 406 408 40D 40E 53G 5GY 5VS 67N 67Z 6J9 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUDM ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GRRUI H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KPH KVFHK LLZTM M4Y MA- MZR N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SCLPG SDE SDH SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 T16 TEORI TSG TSK TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z83 Z87 Z8O Z8P Z8Q Z91 ZMTXR ZOVNA ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 AABYN AAFGU AAKSU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFAFS AFNRJ AGGBP AGKHE AIMYW AJDOV AKQUC UNUBA Z7X |
ID | FETCH-LOGICAL-c411t-64d9ac257ddead8a65c8d734c40ccf6ef8baf8ced30b7d5bda48044e5560f0f93 |
IEDL.DBID | U2A |
ISSN | 0253-6269 1976-3786 |
IngestDate | Tue Nov 21 21:47:10 EST 2023 Tue Aug 05 09:39:39 EDT 2025 Thu Sep 04 22:56:14 EDT 2025 Mon Jul 21 05:41:47 EDT 2025 Tue Jul 01 03:46:51 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Fri Feb 21 02:37:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electrospinning Nanofiber Drug delivery Tissue engineering |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c411t-64d9ac257ddead8a65c8d734c40ccf6ef8baf8ced30b7d5bda48044e5560f0f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 G704-000010.2014.37.1.008 |
PMID | 24234913 |
PQID | 1499144708 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1137140 proquest_miscellaneous_1733513921 proquest_miscellaneous_1499144708 pubmed_primary_24234913 crossref_citationtrail_10_1007_s12272_013_0284_2 crossref_primary_10_1007_s12272_013_0284_2 springer_journals_10_1007_s12272_013_0284_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140100 2014-1-00 2014-Jan 20140101 2014-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 1 year: 2014 text: 20140100 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Korea (South) |
PublicationTitle | Archives of pharmacal research |
PublicationTitleAbbrev | Arch. Pharm. Res |
PublicationTitleAlternate | Arch Pharm Res |
PublicationYear | 2014 |
Publisher | Springer Netherlands 대한약학회 |
Publisher_xml | – name: Springer Netherlands – name: 대한약학회 |
References | Lee, Kim, Kim, Koh (CR37) 2011; 11 Song, Yu, Markel, Shi, Ren (CR69) 2013; 5 Aduba, Hammer, Yuan, Andrew Yeudall, Bowlin, Yang (CR1) 2013; 9 Shutava, Balkundi, Vangala, Steffan, Bigelow, Cardelli, O’neal, Lvov (CR66) 2009; 3 Pham, Sharma, Mikos (CR57) 2006; 7 Nogueira, Swiston, Beppu, Rubner (CR53) 2010; 26 Tang, Ozcam, Stout, Khan (CR71) 2012; 13 Wang, Jiang, Chen, Yu, Huang (CR77) 2012; 13 Zeng, Yang, Liang, Zhang, Guan, Xu, Chen, Jing (CR92) 2005; 105 Liao, Chew, Leong (CR46) 2006; 1 Yu, Wang, Li, Chian, Li, Liao (CR90) 2013; 9 Geun Hyung (CR16) 2008; 3 SmithCallahan, Xie, Barker, Zheng, Reneker, Dove, Becker (CR67) 2013; 34 Shao, Li, Yang, Li, Luo, Gong, Zhou (CR64) 2011; 421 Yoo, Kim, Park (CR87) 2009; 61 Hettiarachchi, Zhang, Feingold, Lee, Dayton (CR18) 2009; 25 Jeong, Krebs, Bonino, Khan, Alsberg (CR22) 2010; 10 Pritchard, Arner, Neal, Neeley, Bojo, Bachelder, Holz, Watson, Botchwey, Langer, Ghosh (CR59) 2010; 31 Lee, Yoo, Atala, Lee (CR39) 2012; 33 Ionescu, Lee, Sennett, Burdick, Mauck (CR21) 2010; 31 Xu, Chen, Wang, Jing (CR81) 2009; 72 Ghoroghi, Hejazian, Esmaielzade, Dodel, Roudbari, Nobakht (CR17) 2013 Rajangam, Behanna, Hui, Han, Hulvat, Lomasney, Stupp (CR60) 2006; 6 Yohe, Herrera, Colson, Grinstaff (CR86) 2012; 162 Lim, Tan, Ng (CR47) 2008; 92 Wang, Zhang, Wang, Cao, Yu, Yin (CR79) 2013; 15 Yayon, Klagsbrun, Esko, Leder, Ornitz (CR85) 1991; 64 Lee, Go, Bae, Lee, Park (CR41) 2007; 117 Chen, Lv, Pan, Song, Wu, Guo, Wang, Chen, Gu (CR3) 2007; 2 Kolambkar, Bajin, Wojtowicz, Hutmacher, Garcia, Guldberg (CR35) 2013 Kim, Yoo (CR30) 2013; 9 Lee, Lee, Cho, Kim, Yoon, Shin (CR42) 2013; 34 Yu, Branford-White, Bligh, White, Chatterton, Zhu (CR89) 2011; 32 Li, Dujardin, Mann (CR43) 2005; 21 Jo, Lee, Kim, Won, Kim, Cho, Jeong (CR24) 2009; 21 Mickova, Buzgo, Benada, Rampichova, Fisar, Filova, Tesarova, Lukas, Amler (CR52) 2012; 13 Son, Yoo (CR68) 2012; 100A Krishnan, Mackay, Duxbury, Pastor, Hawker, Van Horn, Asokan, Wong (CR36) 2007; 7 Chua, Lim, Zhang, Lu, Wen, Ramakrishna, Leong, Mao (CR10) 2005; 26 Galyean, Day, Malinowski, Kittredge, Leopold (CR14) 2009; 331 Okuda, Tominaga, Kidoaki (CR54) 2010; 143 Lee, Park, Koh (CR38) 2013; 23 Schofer, Boudriot, Leifeld, Sutterlin, Rudisile, Wendorff, Greiner, Paletta, Fuchs-Winkelmann (CR63) 2009; 9 Immich, Arias, Carreras, Boemo, Tornero (CR20) 2013; 33 Choi, Yoo (CR9) 2010; 95 Cho, Choi, Jeong, Yoo (CR5) 2010; 6 Sasisekharan, Ernst, Venkataraman (CR62) 1997; 1 Zhang, Wang, Feng, Li, Lim, Ramakrishna (CR95) 2006; 7 Yoshida, Langer, Lendlein, Lahann (CR88) 2006; 46 Kim, Park, Hammond (CR27) 2008; 2 Chan, Liao, Li, Lareu, Larrick, Ramakrishna, Raghunath (CR2) 2009; 4 Kim, Min, Park, Kim (CR28) 2008; 3 Meng, Zheng, Li, Zheng (CR51) 2011; 125 Tigli, Kazaroglu, Mav, Gumusderel (CR73) 2010; 22 Choi, Leong, Yoo (CR6) 2008; 29 Wang, Wang, Qiao, Yin (CR78) 2010; 99 Ren, Zhang, Mi, Liu, Zeng, Rao, Hoke, Mao (CR61) 2013; 9 Sharma, Gupta, Rath, Goyal, Mathur, Dhakate (CR65) 2013; 1 Kim, Yoo (CR31) 2013; 20 Jia, Prabhakaran, Qin, Kai, Ramakrishna (CR23) 2013; 48 Li, Kanjwal, Lin, Chronakis (CR45) 2013; 103 Choi, Yoo (CR8) 2010; 10 Chen, Gao, Dong, Song, Yang, Howard, Kjems, Besenbacher (CR4) 2012; 6 Luong-Van, Grøndahl, Chua, Leong, Nurcombe, Cool (CR50) 2006; 27 Zhu, Mao, Gao (CR96) 2012; 14 Choi, Messersmith, Yoo (CR7) 2013 Kim, Yoo (CR29) 2010; 145 Loh, Peh, Liao, Sng, Li (CR49) 2010; 143 Yang, Li, Qi, Zhou, Weng (CR84) 2008; 69 Fathi-Azarbayjani, Chan (CR13) 2010; 58 Verreck, Chun, Rosenblatt, Peeters, Dijck, Mensch, Noppe, Brewster (CR76) 2003; 92 Im, Yun, Lim, Kim, Lee (CR19) 2010; 6 Kidoaki, Kwon, Matsuda (CR26) 2005; 26 Liwen, Carl, Saad, Xiangwu (CR48) 2008; 19 Xu, Chen, Ma, Wang, Jing (CR80) 2008; 70 De Geest, Déjugnat, Verhoeven, Sukhorukov, Jonas, Plain, Demeester, De Smedt (CR11) 2006; 116 Venugopal, Rajeswari, Shayanti, Low, Bongso, Giri Dev, Deepika, Choon, Ramakrishna (CR74) 2012; 24 Kim, Park (CR34) 2006; 12 Kim, Luu, Chang, Fang, Hsiao, Chu, Hadjiargyrou (CR33) 2004; 98 Li, Danielson, Alexander, Tuan (CR44) 2003; 67A Verreck, Chun, Peeters, Rosenblatt, Brewster (CR75) 2003; 20 Tian, Prabhakaran, Ding, Kai, Ramakrishna (CR72) 2012; 47 Lee, Krogman, Ma, Hill, Hammond, Rutledge (CR40) 2009; 21 Park, Kim, Cho, Lee (CR55) 2012; 113 Yang, Shah, Wang (CR83) 2009; 15 Zhang, Gao, Jiang, Qin (CR94) 2012; 28 Yan, Xiaoqiang, Lianjiang, Chen, Xiumei (CR82) 2009; 50 Tambralli, Blakeney, Anderson, Kushwaha, Andukuri, Dean, Jun (CR70) 2009; 1 Zhang, Tong, Zhou, Fang, Guo (CR93) 2012; 64 Fang, Zhang, Xu, Wei (CR12) 2010; 10 Pattama, Uracha, Pitt (CR56) 2006; 17 Kenawy, Bowlin, Mansfield, Layman, Simpson, Sanders, Wnek (CR25) 2002; 81 Kim, Yoo (CR32) 2013; 20 Poon, Chang, Zhao, Hammond (CR58) 2011; 5 Gatti, Smithgall, Paranjape, Rolfes, Paranjape (CR15) 2013; 15 Zeng, Aigner, Czubayko, Kissel, Wendorff, Greiner (CR91) 2005; 6 HS Kim (284_CR32) 2013; 20 K Hettiarachchi (284_CR18) 2009; 25 SI Jeong (284_CR22) 2010; 10 BS Kim (284_CR27) 2008; 2 K Geun Hyung (284_CR16) 2008; 3 HS Kim (284_CR30) 2013; 9 TG Kim (284_CR34) 2006; 12 YM Kolambkar (284_CR35) 2013 RS Krishnan (284_CR36) 2007; 7 JA Lee (284_CR40) 2009; 21 YZ Zhang (284_CR95) 2006; 7 A Tambralli (284_CR70) 2009; 1 W Song (284_CR69) 2013; 5 ST Yohe (284_CR86) 2012; 162 LC Ionescu (284_CR21) 2010; 31 TG Shutava (284_CR66) 2009; 3 T Okuda (284_CR54) 2010; 143 CD Pritchard (284_CR59) 2010; 31 AA Galyean (284_CR14) 2009; 331 FM Ghoroghi (284_CR17) 2013 A Sharma (284_CR65) 2013; 1 JS Choi (284_CR8) 2010; 10 IC Liao (284_CR46) 2006; 1 JS Im (284_CR19) 2010; 6 MD Schofer (284_CR63) 2009; 9 YI Cho (284_CR5) 2010; 6 A Yayon (284_CR85) 1991; 64 XJ Loh (284_CR49) 2010; 143 X Yang (284_CR83) 2009; 15 DG Yu (284_CR89) 2011; 32 Y Wang (284_CR79) 2013; 15 DC Aduba Jr (284_CR1) 2013; 9 C Chen (284_CR3) 2007; 2 X Li (284_CR45) 2013; 103 M Yoshida (284_CR88) 2006; 46 LA SmithCallahan (284_CR67) 2013; 34 A Mickova (284_CR52) 2012; 13 G Verreck (284_CR75) 2003; 20 S Yan (284_CR82) 2009; 50 RS Tigli (284_CR73) 2010; 22 JS Choi (284_CR7) 2013 SG Wang (284_CR77) 2012; 13 J Lee (284_CR39) 2012; 33 J Venugopal (284_CR74) 2012; 24 L Tian (284_CR72) 2012; 47 G Verreck (284_CR76) 2003; 92 W-J Li (284_CR44) 2003; 67A Y Zhu (284_CR96) 2012; 14 YJ Lee (284_CR42) 2013; 34 JH Park (284_CR55) 2012; 113 X Xu (284_CR80) 2008; 70 JS Choi (284_CR9) 2010; 95 X Zhang (284_CR94) 2012; 28 Z Poon (284_CR58) 2011; 5 J Zeng (284_CR91) 2005; 6 E Jo (284_CR24) 2009; 21 L Jia (284_CR23) 2013; 48 J Zeng (284_CR92) 2005; 105 M Chen (284_CR4) 2012; 6 C Tang (284_CR71) 2012; 13 E-R Kenawy (284_CR25) 2002; 81 HJ Lee (284_CR38) 2013; 23 JW Gatti (284_CR15) 2013; 15 R Sasisekharan (284_CR62) 1997; 1 D Zhang (284_CR93) 2012; 64 S Shao (284_CR64) 2011; 421 S Kidoaki (284_CR26) 2005; 26 Y-J Ren (284_CR61) 2013; 9 GM Nogueira (284_CR53) 2010; 26 JS Choi (284_CR6) 2008; 29 BG Geest De (284_CR11) 2006; 116 HS Yoo (284_CR87) 2009; 61 JS Lee (284_CR41) 2007; 117 CT Lim (284_CR47) 2008; 92 QP Pham (284_CR57) 2006; 7 AP Immich (284_CR20) 2013; 33 J Liwen (284_CR48) 2008; 19 T Pattama (284_CR56) 2006; 17 HJ Lee (284_CR37) 2011; 11 KN Chua (284_CR10) 2005; 26 K Kim (284_CR33) 2004; 98 CK Chan (284_CR2) 2009; 4 X Xu (284_CR81) 2009; 72 HS Kim (284_CR31) 2013; 20 E Luong-Van (284_CR50) 2006; 27 M Li (284_CR43) 2005; 21 Y Wang (284_CR78) 2010; 99 K Rajangam (284_CR60) 2006; 6 Y Yang (284_CR84) 2008; 69 R Fang (284_CR12) 2010; 10 YJ Son (284_CR68) 2012; 100A A Fathi-Azarbayjani (284_CR13) 2010; 58 DG Yu (284_CR90) 2013; 9 GH Kim (284_CR28) 2008; 3 HS Kim (284_CR29) 2010; 145 ZX Meng (284_CR51) 2011; 125 |
References_xml | – volume: 58 start-page: 143 year: 2010 end-page: 146 ident: CR13 article-title: Single and multi-layered nanofibers for rapid and controlled drug delivery publication-title: Chemical and Pharmaceutical Bulletin (Tokyo) doi: 10.1248/cpb.58.143 – volume: 15 start-page: 887 year: 2013 end-page: 893 ident: CR15 article-title: Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics publication-title: Biomedical Microdevices doi: 10.1007/s10544-013-9777-5 – volume: 2 start-page: 386 year: 2008 end-page: 392 ident: CR27 article-title: Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces publication-title: ACS Nano doi: 10.1021/nn700408z – volume: 26 start-page: 37 year: 2005 end-page: 46 ident: CR26 article-title: Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.063 – volume: 5 start-page: 035006 year: 2013 ident: CR69 article-title: Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device publication-title: Biofabrication doi: 10.1088/1758-5082/5/3/035006 – volume: 34 start-page: 9089 year: 2013 end-page: 9095 ident: CR67 article-title: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.028 – volume: 7 start-page: 484 year: 2007 end-page: 489 ident: CR36 article-title: Self-assembled multilayers of nanocomponents publication-title: Nano Letters doi: 10.1021/nl062866u – volume: 10 start-page: 3038 year: 2010 end-page: 3045 ident: CR8 article-title: Nano-inspired fibrous matrix with bi-phasic release of proteins publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2010.2164 – volume: 92 start-page: 349 year: 2003 end-page: 360 ident: CR76 article-title: Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer publication-title: Journal of Controlled Release doi: 10.1016/S0168-3659(03)00342-0 – volume: 143 start-page: 258 year: 2010 end-page: 264 ident: CR54 article-title: Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2009.12.029 – volume: 25 start-page: 938 year: 2009 end-page: 945 ident: CR18 article-title: Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy publication-title: Biotechnology Progress doi: 10.1002/btpr.214 – volume: 6 start-page: 4835 year: 2012 end-page: 4844 ident: CR4 article-title: Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery publication-title: ACS Nano doi: 10.1021/nn300106t – volume: 61 start-page: 1033 year: 2009 end-page: 1042 ident: CR87 article-title: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2009.07.007 – volume: 15 start-page: 1726 year: 2013 end-page: 1738 ident: CR79 article-title: Fabrication of core–shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-013-1726-y – volume: 92 start-page: 1419080 year: 2008 end-page: 1419083 ident: CR47 article-title: Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers publication-title: Applied Physics Letters – volume: 9 start-page: 7371 year: 2013 end-page: 7380 ident: CR30 article-title: In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2013.03.018 – volume: 26 start-page: 2537 year: 2005 end-page: 2547 ident: CR10 article-title: Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.07.040 – volume: 81 start-page: 57 year: 2002 end-page: 64 ident: CR25 article-title: Release of tetracycline hydrochloride from electrospun poly(ethylene- -vinylacetate), poly(lactic acid), and a blend publication-title: Journal of Controlled Release doi: 10.1016/S0168-3659(02)00041-X – volume: 17 start-page: 2317 year: 2006 ident: CR56 article-title: Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs publication-title: Nanotechnology doi: 10.1088/0957-4484/17/9/041 – volume: 50 start-page: 4212 year: 2009 end-page: 4219 ident: CR82 article-title: Poly(l-lactide- -ε-caprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins publication-title: Polymer doi: 10.1016/j.polymer.2009.06.058 – volume: 98 start-page: 47 year: 2004 end-page: 56 ident: CR33 article-title: Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide- -glycolide)-based electrospun nanofibrous scaffolds publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2004.04.009 – volume: 331 start-page: 532 year: 2009 end-page: 542 ident: CR14 article-title: Polyelectrolyte-linked film assemblies of nanoparticles and nanoshells: Growth, stability, and optical properties publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2008.11.067 – volume: 9 start-page: 5665 year: 2013 end-page: 5672 ident: CR90 article-title: Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2012.10.021 – volume: 421 start-page: 310 year: 2011 end-page: 320 ident: CR64 article-title: Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2011.09.033 – volume: 6 start-page: 2086 year: 2006 end-page: 2090 ident: CR60 article-title: Heparin binding nanostructures to promote growth of blood vessels publication-title: Nano Letters doi: 10.1021/nl0613555 – volume: 14 start-page: 342 year: 2012 end-page: 349 ident: CR96 article-title: Control over the gradient differentiation of rat BMSCs on a PCL membrane with surface-immobilized alendronate gradient publication-title: Biomacromolecules doi: 10.1021/bm301523p – volume: 105 start-page: 43 year: 2005 end-page: 51 ident: CR92 article-title: Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2005.02.024 – volume: 9 start-page: 6576 year: 2013 end-page: 6584 ident: CR1 article-title: Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2013.02.006 – volume: 24 start-page: 170 year: 2012 end-page: 184 ident: CR74 article-title: Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 3 start-page: 025010 year: 2008 ident: CR16 article-title: Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold publication-title: Biomedical Materials doi: 10.1088/1748-6041/3/2/025010 – volume: 145 start-page: 264 year: 2010 end-page: 271 ident: CR29 article-title: MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2010.03.006 – volume: 64 start-page: 701 year: 2012 end-page: 710 ident: CR93 article-title: Osteogenic differentiation of human placenta-derived mesenchymal stem cells (PMSCs) on electrospun nanofiber meshes publication-title: Cytotechnology doi: 10.1007/s10616-012-9450-5 – volume: 5 start-page: 4284 year: 2011 end-page: 4292 ident: CR58 article-title: Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia publication-title: ACS Nano doi: 10.1021/nn200876f – volume: 48 start-page: 5113 year: 2013 end-page: 5124 ident: CR23 article-title: Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering publication-title: Journal of Materials Science doi: 10.1007/s10853-013-7359-9 – volume: 3 start-page: 016006 year: 2008 ident: CR28 article-title: Coaxially electrospun micro/nanofibrous poly(epsilon-caprolactone)/eggshell-protein scaffold publication-title: Bioinspiration and Biomimetics doi: 10.1088/1748-3182/3/1/016006 – volume: 31 start-page: 2153 year: 2010 end-page: 2162 ident: CR59 article-title: The use of surface modified poly(glycerol- -sebacic acid) in retinal transplantation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.074 – volume: 1 start-page: 45 year: 1997 end-page: 54 ident: CR62 article-title: On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans publication-title: Angiogenesis doi: 10.1023/A:1018318914258 – volume: 7 start-page: 1049 year: 2006 end-page: 1057 ident: CR95 article-title: Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release publication-title: Biomacromolecules doi: 10.1021/bm050743i – volume: 21 start-page: 968 year: 2009 end-page: 972 ident: CR24 article-title: Core-sheath nanofibers containing colloidal arrays in the core for programmable multi-agent delivery publication-title: Advanced Materials doi: 10.1002/adma.200802948 – volume: 21 start-page: 4952 year: 2005 end-page: 4954 ident: CR43 article-title: Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates publication-title: Chemical Communications doi: 10.1039/b509109h – volume: 4 start-page: 035006 year: 2009 end-page: 035016 ident: CR2 article-title: Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers publication-title: Biomedical Materials doi: 10.1088/1748-6041/4/3/035006 – volume: 19 start-page: 085605 year: 2008 ident: CR48 article-title: Preparation and characterization of silica nanoparticulate–polyacrylonitrile composite and porous nanofibers publication-title: Nanotechnology doi: 10.1088/0957-4484/19/8/085605 – volume: 70 start-page: 165 year: 2008 end-page: 170 ident: CR80 article-title: The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2008.03.010 – volume: 95 start-page: 564 year: 2010 end-page: 573 ident: CR9 article-title: Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.32848 – volume: 113 start-page: 1645 year: 2012 end-page: 1653 ident: CR55 article-title: Characterization of hydrophobic anti-cancer drug-loaded amphiphilic peptides as a gene carrier publication-title: Journal of Cellular Biochemistry – volume: 13 start-page: 952 year: 2012 end-page: 962 ident: CR52 article-title: Core/shell nanofibers with embedded liposomes as a drug delivery system publication-title: Biomacromolecules doi: 10.1021/bm2018118 – volume: 20 start-page: 378 year: 2013 end-page: 385 ident: CR31 article-title: Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes publication-title: Gene Therapy doi: 10.1038/gt.2012.49 – volume: 47 start-page: 3272 year: 2012 end-page: 3281 ident: CR72 article-title: Emulsion electrospun vascular endothelial growth factor encapsulated poly(l-lactic acid- -ε-caprolactone) nanofibers for sustained release in cardiac tissue engineering publication-title: Journal of Materials Science doi: 10.1007/s10853-011-6166-4 – year: 2013 ident: CR17 article-title: Evaluation of the effect of NT-3 and biodegradable poly-L-lactic acid nanofiber scaffolds on differentiation of rat hair follicle stem cells into neural cells in vitro publication-title: Journal of Molecular Neuroscience – volume: 69 start-page: 106 year: 2008 end-page: 116 ident: CR84 article-title: Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly( -lactide) ultrafine fibers prepared by emulsion electrospinning publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2007.10.016 – volume: 2 start-page: L1 year: 2007 end-page: L4 ident: CR3 article-title: Poly(lactic acid) (PLA) based nanocomposites—a novel way of drug-releasing publication-title: Biomedical Materials doi: 10.1088/1748-6041/2/4/L01 – volume: 32 start-page: 744 year: 2011 end-page: 750 ident: CR89 article-title: Improving polymer nanofiber quality using a modified co-axial electrospinning process publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.201100049 – volume: 33 start-page: 6709 year: 2012 end-page: 6720 ident: CR39 article-title: The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.017 – volume: 125 start-page: 606 year: 2011 end-page: 611 ident: CR51 article-title: Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold publication-title: Materials Chemistry and Physics doi: 10.1016/j.matchemphys.2010.10.010 – volume: 15 start-page: 945 year: 2009 end-page: 956 ident: CR83 article-title: Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation publication-title: Tissue Engineering Part A doi: 10.1089/ten.tea.2007.0280 – year: 2013 ident: CR35 article-title: Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro publication-title: Tissue Engineering, Parts A – volume: 3 start-page: 1877 year: 2009 end-page: 1885 ident: CR66 article-title: Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols publication-title: ACS Nano doi: 10.1021/nn900451a – volume: 6 start-page: 4725 year: 2010 end-page: 4733 ident: CR5 article-title: Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2010.06.019 – volume: 116 start-page: 159 year: 2006 end-page: 169 ident: CR11 article-title: Layer-by-layer coating of degradable microgels for pulsed drug delivery publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2006.06.016 – volume: 64 start-page: 841 year: 1991 end-page: 848 ident: CR85 article-title: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor publication-title: Cell doi: 10.1016/0092-8674(91)90512-W – volume: 6 start-page: 102 year: 2010 end-page: 109 ident: CR19 article-title: Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2009.06.017 – volume: 31 start-page: 4113 year: 2010 end-page: 4120 ident: CR21 article-title: An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.098 – volume: 12 start-page: 221 year: 2006 end-page: 233 ident: CR34 article-title: Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly( , -lactic- -glycolic acid) nanofiber mesh publication-title: Tissue Engineering doi: 10.1089/ten.2006.12.221 – volume: 27 start-page: 2042 year: 2006 end-page: 2050 ident: CR50 article-title: Controlled release of heparin from poly(ε-caprolactone) electrospun fibers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.028 – volume: 67A start-page: 1105 year: 2003 end-page: 1114 ident: CR44 article-title: Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds publication-title: Journal of Biomedical Materials Research Part A – volume: 33 start-page: 4002 year: 2013 end-page: 4008 ident: CR20 article-title: Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen publication-title: Materials Science and Engineering C: Materials for Biological Applications doi: 10.1016/j.msec.2013.05.034 – volume: 20 start-page: 378 year: 2013 end-page: 385 ident: CR32 article-title: Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes publication-title: Gene Therapy doi: 10.1038/gt.2012.49 – volume: 13 start-page: 1269 year: 2012 end-page: 1278 ident: CR71 article-title: Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers publication-title: Biomacromolecules doi: 10.1021/bm2017146 – volume: 23 start-page: 591 year: 2013 end-page: 597 ident: CR38 article-title: Fabrication of nanofiber microarchitectures localized within hydrogel microparticles and their application to protein delivery and cell encapsulation publication-title: Advanced Functional Materials doi: 10.1002/adfm.201201501 – volume: 7 start-page: 2796 year: 2006 end-page: 2805 ident: CR57 article-title: Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration publication-title: Biomacromolecules doi: 10.1021/bm060680j – volume: 9 start-page: 118 year: 2009 end-page: 129 ident: CR63 article-title: Characterization of a PLLA-collagen I blend nanofiber scaffold with respect to growth and osteogenic differentiation of human mesenchymal stem cells publication-title: Scientific World Journal doi: 10.1100/tsw.2009.13 – volume: 1 start-page: 465 year: 2006 end-page: 471 ident: CR46 article-title: Aligned core-shell nanofibers delivering bioactive proteins publication-title: Nanomedicine doi: 10.2217/17435889.1.4.465 – volume: 20 start-page: 810 year: 2003 end-page: 817 ident: CR75 article-title: Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning publication-title: Pharmaceutical Research doi: 10.1023/A:1023450006281 – volume: 28 start-page: 10026 year: 2012 end-page: 10032 ident: CR94 article-title: Flexible generation of gradient electrospinning nanofibers using a microfluidic assisted approach publication-title: Langmuir doi: 10.1021/la300821r – volume: 10 start-page: 934 year: 2010 end-page: 943 ident: CR22 article-title: Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering publication-title: Macromolecular Bioscience doi: 10.1002/mabi.201000046 – volume: 26 start-page: 8953 year: 2010 end-page: 8958 ident: CR53 article-title: Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment publication-title: Langmuir doi: 10.1021/la904741h – volume: 100A start-page: 2678 year: 2012 end-page: 2685 ident: CR68 article-title: Dexamethasone-incorporated nanofibrous meshes for antiproliferation of smooth muscle cells: Thermally induced drug-loading strategy publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.34197 – volume: 1 start-page: 3410 year: 2013 end-page: 3418 ident: CR65 article-title: Electrospun composite nanofiber-based transmucosal patch for anti-diabetic drug delivery publication-title: Journal of Materials Chemistry B doi: 10.1039/c3tb20487a – volume: 34 start-page: 5059 year: 2013 end-page: 5069 ident: CR42 article-title: Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.051 – volume: 72 start-page: 18 year: 2009 end-page: 25 ident: CR81 article-title: Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2008.10.015 – volume: 6 start-page: 1484 year: 2005 end-page: 1488 ident: CR91 article-title: Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings publication-title: Biomacromolecules doi: 10.1021/bm0492576 – volume: 11 start-page: 2849 year: 2011 end-page: 2857 ident: CR37 article-title: Micropatterns of double-layered nanofiber scaffolds with dual functions of cell patterning and metabolite detection publication-title: Lab on a Chip doi: 10.1039/c1lc20186g – volume: 143 start-page: 175 year: 2010 end-page: 182 ident: CR49 article-title: Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2009.12.030 – volume: 9 start-page: 7727 year: 2013 end-page: 7736 ident: CR61 article-title: Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2013.04.034 – volume: 103 start-page: 182 year: 2013 end-page: 188 ident: CR45 article-title: Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2012.10.016 – volume: 22 start-page: 207 issue: 1–3 year: 2010 end-page: 223 ident: CR73 article-title: Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 117 start-page: 204 year: 2007 end-page: 209 ident: CR41 article-title: Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2006.11.004 – volume: 1 start-page: 025001 year: 2009 ident: CR70 article-title: A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers publication-title: Biofabrication doi: 10.1088/1758-5082/1/2/025001 – volume: 13 start-page: 14136 year: 2012 end-page: 14148 ident: CR77 article-title: Preparation of coaxial-electrospun poly[bis(p-methylphenoxy)]phosphazene nanofiber membrane for enzyme immobilization publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms131114136 – volume: 99 start-page: 4805 year: 2010 end-page: 4811 ident: CR78 article-title: A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles publication-title: Journal of Pharmaceutical Sciences doi: 10.1002/jps.22189 – volume: 46 start-page: 347 year: 2006 end-page: 375 ident: CR88 article-title: From advanced biomedical coatings to multi-functionalized biomaterials publication-title: Journal of Macromolecular Science: Part C: Polymer Reviews doi: 10.1080/15583720600945394 – volume: 21 start-page: 1252 year: 2009 end-page: 1256 ident: CR40 article-title: Highly reactive multilayer-assembled TiO coating on electrospun polymer nanofibers publication-title: Advanced Materials doi: 10.1002/adma.200802458 – volume: 29 start-page: 587 year: 2008 end-page: 596 ident: CR6 article-title: In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF) publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.10.012 – volume: 10 start-page: 7747 year: 2010 end-page: 7751 ident: CR12 article-title: Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2010.2831 – volume: 162 start-page: 92 year: 2012 end-page: 101 ident: CR86 article-title: 3D Superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2012.05.047 – year: 2013 ident: CR7 article-title: Decoration of electrospun nanofibers with monomeric catechols to facilitate cell adhesion publication-title: Macromolecular Bioscience – volume: 81 start-page: 57 year: 2002 ident: 284_CR25 publication-title: Journal of Controlled Release doi: 10.1016/S0168-3659(02)00041-X – volume: 33 start-page: 4002 year: 2013 ident: 284_CR20 publication-title: Materials Science and Engineering C: Materials for Biological Applications doi: 10.1016/j.msec.2013.05.034 – volume: 5 start-page: 035006 year: 2013 ident: 284_CR69 publication-title: Biofabrication doi: 10.1088/1758-5082/5/3/035006 – volume: 3 start-page: 025010 year: 2008 ident: 284_CR16 publication-title: Biomedical Materials doi: 10.1088/1748-6041/3/2/025010 – volume: 92 start-page: 1419080 year: 2008 ident: 284_CR47 publication-title: Applied Physics Letters – volume: 9 start-page: 118 year: 2009 ident: 284_CR63 publication-title: Scientific World Journal doi: 10.1100/tsw.2009.13 – volume: 7 start-page: 2796 year: 2006 ident: 284_CR57 publication-title: Biomacromolecules doi: 10.1021/bm060680j – volume: 26 start-page: 8953 year: 2010 ident: 284_CR53 publication-title: Langmuir doi: 10.1021/la904741h – volume: 113 start-page: 1645 year: 2012 ident: 284_CR55 publication-title: Journal of Cellular Biochemistry doi: 10.1002/jcb.24033 – volume: 105 start-page: 43 year: 2005 ident: 284_CR92 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2005.02.024 – volume: 64 start-page: 701 year: 2012 ident: 284_CR93 publication-title: Cytotechnology doi: 10.1007/s10616-012-9450-5 – volume: 26 start-page: 2537 year: 2005 ident: 284_CR10 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.07.040 – volume: 6 start-page: 4725 year: 2010 ident: 284_CR5 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2010.06.019 – volume: 3 start-page: 1877 year: 2009 ident: 284_CR66 publication-title: ACS Nano doi: 10.1021/nn900451a – volume: 125 start-page: 606 year: 2011 ident: 284_CR51 publication-title: Materials Chemistry and Physics doi: 10.1016/j.matchemphys.2010.10.010 – volume: 11 start-page: 2849 year: 2011 ident: 284_CR37 publication-title: Lab on a Chip doi: 10.1039/c1lc20186g – volume: 98 start-page: 47 year: 2004 ident: 284_CR33 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2004.04.009 – volume: 20 start-page: 810 year: 2003 ident: 284_CR75 publication-title: Pharmaceutical Research doi: 10.1023/A:1023450006281 – volume: 19 start-page: 085605 year: 2008 ident: 284_CR48 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/8/085605 – volume: 331 start-page: 532 year: 2009 ident: 284_CR14 publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2008.11.067 – volume: 10 start-page: 3038 year: 2010 ident: 284_CR8 publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2010.2164 – volume: 6 start-page: 2086 year: 2006 ident: 284_CR60 publication-title: Nano Letters doi: 10.1021/nl0613555 – volume: 143 start-page: 175 year: 2010 ident: 284_CR49 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2009.12.030 – volume: 145 start-page: 264 year: 2010 ident: 284_CR29 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2010.03.006 – volume: 21 start-page: 4952 year: 2005 ident: 284_CR43 publication-title: Chemical Communications doi: 10.1039/b509109h – volume: 12 start-page: 221 year: 2006 ident: 284_CR34 publication-title: Tissue Engineering doi: 10.1089/ten.2006.12.221 – volume: 95 start-page: 564 year: 2010 ident: 284_CR9 publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.32848 – volume: 28 start-page: 10026 year: 2012 ident: 284_CR94 publication-title: Langmuir doi: 10.1021/la300821r – volume: 58 start-page: 143 year: 2010 ident: 284_CR13 publication-title: Chemical and Pharmaceutical Bulletin (Tokyo) doi: 10.1248/cpb.58.143 – volume: 33 start-page: 6709 year: 2012 ident: 284_CR39 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.017 – volume: 31 start-page: 2153 year: 2010 ident: 284_CR59 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.074 – volume: 9 start-page: 5665 year: 2013 ident: 284_CR90 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2012.10.021 – volume: 64 start-page: 841 year: 1991 ident: 284_CR85 publication-title: Cell doi: 10.1016/0092-8674(91)90512-W – volume: 22 start-page: 207 issue: 1–3 year: 2010 ident: 284_CR73 publication-title: Journal of Biomaterials Science, Polymer Edition – volume: 143 start-page: 258 year: 2010 ident: 284_CR54 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2009.12.029 – volume: 92 start-page: 349 year: 2003 ident: 284_CR76 publication-title: Journal of Controlled Release doi: 10.1016/S0168-3659(03)00342-0 – volume: 15 start-page: 945 year: 2009 ident: 284_CR83 publication-title: Tissue Engineering Part A doi: 10.1089/ten.tea.2007.0280 – volume: 46 start-page: 347 year: 2006 ident: 284_CR88 publication-title: Journal of Macromolecular Science: Part C: Polymer Reviews doi: 10.1080/15583720600945394 – volume: 3 start-page: 016006 year: 2008 ident: 284_CR28 publication-title: Bioinspiration and Biomimetics doi: 10.1088/1748-3182/3/1/016006 – volume: 7 start-page: 1049 year: 2006 ident: 284_CR95 publication-title: Biomacromolecules doi: 10.1021/bm050743i – volume: 21 start-page: 968 year: 2009 ident: 284_CR24 publication-title: Advanced Materials doi: 10.1002/adma.200802948 – volume: 99 start-page: 4805 year: 2010 ident: 284_CR78 publication-title: Journal of Pharmaceutical Sciences doi: 10.1002/jps.22189 – volume: 6 start-page: 4835 year: 2012 ident: 284_CR4 publication-title: ACS Nano doi: 10.1021/nn300106t – volume: 6 start-page: 102 year: 2010 ident: 284_CR19 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2009.06.017 – volume: 9 start-page: 7727 year: 2013 ident: 284_CR61 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2013.04.034 – volume: 72 start-page: 18 year: 2009 ident: 284_CR81 publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2008.10.015 – volume: 13 start-page: 1269 year: 2012 ident: 284_CR71 publication-title: Biomacromolecules doi: 10.1021/bm2017146 – volume: 67A start-page: 1105 year: 2003 ident: 284_CR44 publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.10101 – volume: 1 start-page: 3410 year: 2013 ident: 284_CR65 publication-title: Journal of Materials Chemistry B doi: 10.1039/c3tb20487a – volume: 10 start-page: 7747 year: 2010 ident: 284_CR12 publication-title: Journal of Nanoscience and Nanotechnology doi: 10.1166/jnn.2010.2831 – volume: 48 start-page: 5113 year: 2013 ident: 284_CR23 publication-title: Journal of Materials Science doi: 10.1007/s10853-013-7359-9 – year: 2013 ident: 284_CR7 publication-title: Macromolecular Bioscience – year: 2013 ident: 284_CR17 publication-title: Journal of Molecular Neuroscience – volume: 7 start-page: 484 year: 2007 ident: 284_CR36 publication-title: Nano Letters doi: 10.1021/nl062866u – volume: 103 start-page: 182 year: 2013 ident: 284_CR45 publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2012.10.016 – volume: 1 start-page: 465 year: 2006 ident: 284_CR46 publication-title: Nanomedicine doi: 10.2217/17435889.1.4.465 – volume: 26 start-page: 37 year: 2005 ident: 284_CR26 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.01.063 – volume: 69 start-page: 106 year: 2008 ident: 284_CR84 publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2007.10.016 – volume: 17 start-page: 2317 year: 2006 ident: 284_CR56 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/9/041 – volume: 23 start-page: 591 year: 2013 ident: 284_CR38 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201201501 – volume: 2 start-page: L1 year: 2007 ident: 284_CR3 publication-title: Biomedical Materials doi: 10.1088/1748-6041/2/4/L01 – volume: 27 start-page: 2042 year: 2006 ident: 284_CR50 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.028 – volume: 15 start-page: 887 year: 2013 ident: 284_CR15 publication-title: Biomedical Microdevices doi: 10.1007/s10544-013-9777-5 – volume: 421 start-page: 310 year: 2011 ident: 284_CR64 publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2011.09.033 – volume: 25 start-page: 938 year: 2009 ident: 284_CR18 publication-title: Biotechnology Progress doi: 10.1002/btpr.214 – volume: 1 start-page: 025001 year: 2009 ident: 284_CR70 publication-title: Biofabrication doi: 10.1088/1758-5082/1/2/025001 – volume: 1 start-page: 45 year: 1997 ident: 284_CR62 publication-title: Angiogenesis doi: 10.1023/A:1018318914258 – volume: 15 start-page: 1726 year: 2013 ident: 284_CR79 publication-title: Journal of Nanoparticle Research doi: 10.1007/s11051-013-1726-y – volume: 5 start-page: 4284 year: 2011 ident: 284_CR58 publication-title: ACS Nano doi: 10.1021/nn200876f – volume: 20 start-page: 378 year: 2013 ident: 284_CR31 publication-title: Gene Therapy doi: 10.1038/gt.2012.49 – volume: 6 start-page: 1484 year: 2005 ident: 284_CR91 publication-title: Biomacromolecules doi: 10.1021/bm0492576 – volume: 13 start-page: 952 year: 2012 ident: 284_CR52 publication-title: Biomacromolecules doi: 10.1021/bm2018118 – volume: 34 start-page: 5059 year: 2013 ident: 284_CR42 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.051 – volume: 47 start-page: 3272 year: 2012 ident: 284_CR72 publication-title: Journal of Materials Science doi: 10.1007/s10853-011-6166-4 – volume: 9 start-page: 6576 year: 2013 ident: 284_CR1 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2013.02.006 – volume: 9 start-page: 7371 year: 2013 ident: 284_CR30 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2013.03.018 – volume: 117 start-page: 204 year: 2007 ident: 284_CR41 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2006.11.004 – volume: 29 start-page: 587 year: 2008 ident: 284_CR6 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.10.012 – volume: 21 start-page: 1252 year: 2009 ident: 284_CR40 publication-title: Advanced Materials doi: 10.1002/adma.200802458 – volume: 116 start-page: 159 year: 2006 ident: 284_CR11 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2006.06.016 – volume: 34 start-page: 9089 year: 2013 ident: 284_CR67 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.028 – volume: 50 start-page: 4212 year: 2009 ident: 284_CR82 publication-title: Polymer doi: 10.1016/j.polymer.2009.06.058 – volume: 31 start-page: 4113 year: 2010 ident: 284_CR21 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.098 – volume: 2 start-page: 386 year: 2008 ident: 284_CR27 publication-title: ACS Nano doi: 10.1021/nn700408z – volume: 70 start-page: 165 year: 2008 ident: 284_CR80 publication-title: European Journal of Pharmaceutics and Biopharmaceutics doi: 10.1016/j.ejpb.2008.03.010 – volume: 14 start-page: 342 year: 2012 ident: 284_CR96 publication-title: Biomacromolecules doi: 10.1021/bm301523p – volume: 162 start-page: 92 year: 2012 ident: 284_CR86 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2012.05.047 – volume: 24 start-page: 170 year: 2012 ident: 284_CR74 publication-title: Journal of Biomaterials Science, Polymer Edition doi: 10.1163/156856212X629845 – volume: 13 start-page: 14136 year: 2012 ident: 284_CR77 publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms131114136 – volume: 61 start-page: 1033 year: 2009 ident: 284_CR87 publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2009.07.007 – volume: 10 start-page: 934 year: 2010 ident: 284_CR22 publication-title: Macromolecular Bioscience doi: 10.1002/mabi.201000046 – year: 2013 ident: 284_CR35 publication-title: Tissue Engineering, Parts A – volume: 32 start-page: 744 year: 2011 ident: 284_CR89 publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.201100049 – volume: 4 start-page: 035006 year: 2009 ident: 284_CR2 publication-title: Biomedical Materials doi: 10.1088/1748-6041/4/3/035006 – volume: 100A start-page: 2678 year: 2012 ident: 284_CR68 publication-title: Journal of Biomedical Materials Research Part A doi: 10.1002/jbm.a.34197 – volume: 20 start-page: 378 year: 2013 ident: 284_CR32 publication-title: Gene Therapy doi: 10.1038/gt.2012.49 |
SSID | ssj0036555 |
Score | 2.4665892 |
SecondaryResourceType | review_article |
Snippet | Electrospun nanofiber drug delivery systems have been studied using various techniques. Herein, we describe the fabrication of a drug-incorporating nanofiber.... Electrospun nanofiber drug delivery systemshave been studied using various techniques. Herein, wedescribe the fabrication of a drug-incorporating nanofiber.... |
SourceID | nrf proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 69 |
SubjectTerms | absorption Animals antibodies bioactive properties cell differentiation Delayed-Action Preparations Drug Carriers drug delivery systems Drug Delivery Systems - instrumentation drugs Humans hydrocolloids Hydrophobic and Hydrophilic Interactions hydrophobicity Medicine Nanofibers Nanomedicine - instrumentation Nanomedicine - methods nanoparticles Pharmaceutical Preparations - administration & dosage Pharmaceutical Preparations - chemistry Pharmacology/Toxicology Pharmacy polymers Polymers - chemistry proteins Review Solubility solvents Technology, Pharmaceutical - instrumentation Technology, Pharmaceutical - methods 약학 |
Title | Therapeutic applications of electrospun nanofibers for drug delivery systems |
URI | https://link.springer.com/article/10.1007/s12272-013-0284-2 https://www.ncbi.nlm.nih.gov/pubmed/24234913 https://www.proquest.com/docview/1499144708 https://www.proquest.com/docview/1733513921 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001902550 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Archives of Pharmacal Research, 2014, 37(1), , pp.69-78 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61IKFeEFBawktuhTgAkZzYSZzjUrGlvMSBleBkOX4gBMqize5h_z3jPFhQAYlTDnEsK_P67PF8A7ATO4wpkRah09SGPkL5gyYbGipy47OvRvt65_OL9HjAT66T67aOu-puu3cpydpTz4rd4jjz1wh83lHwEP3ufOLppFCJB3Gvc78sTepWpxjLWYhoPe9SmW9N8SoYfS1H7i2c-V-OtA49_SVYbDEj6TVCXoYvtlyBhfM2K74Cu5cN__T0gFzNyqmqA7JLLmfM1NPvcPbiNXmZuiZDR9qGONXjpCSlKlHpCoSGBEEtMaPJLTH2wd_hmJKG_LlahUH_6OrPcdi2Uwg1j6JxmHKTK40mih5NGaHSRAuTMa451dql1olCOaGtYbTITFIYxQXl3CYIihx1OfsBc-WwtGtAVKqZogVVcWS4UkluKC-MS43A6XImAqDdf5W65Rr3LS8e5Iwl2YtCoiikF4WMA9h7_uSxIdr4aPBvFJa813fS02P75-1Q3o8kbgL-4aampiEM4FcnS4k24xMhqrTDSYXbHUTFnGdUfDAmYyxBeBxHAfxsFOF5XR6D8jxiAex3miFb06_eX_T6p0ZvwDc0Fd6c9mzC3Hg0sVuIf8bFNsz3-oeHF_759-b0aLvW_ycOdP6n |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VkCgXVGgLoS-DEIeykZzYSZwjqooW2EUcdiVuluMHQqAs2uwe9t8zzoOlKiBxyiGOZWVe3_jzjAEOY4cxJdIidJra0Ecov9FkQ0NFbjz7arSvdx5epv0xP79Orts67qo77d5RkrWnXha7xXHmjxF43lHwEP3ummcZfcY1jk8698vSpL7qFGM5CxGt5x2V-dIU_wSjlXLqXsKZ_3Gkdeg5_QSbLWYkJ42Qt-CDLbdhfdiy4ttwdNX0n170yGhZTlX1yBG5WnamXnyGwbPX5Dl1TSaOtBfiVA_zkpSqRKUrEBoSBLXETOc3xNh7f4ZjQZrmz9UXGJ_-Hf3ph-11CqHmUTQLU25ypdFE0aMpI1SaaGEyxjWnWrvUOlEoJ7Q1jBaZSQqjuKCc2wRBkaMuZ19htZyUdheISjVTtKAqjgxXKskN5YVxqRE4Xc5EALT7r1K3vcb9lRf3ctkl2YtCoiikF4WMA_j99MlD02jjrcEHKCx5p2-lb4_tnzcTeTeVmAScYVJTtyEMYL-TpUSb8USIKu1kXmG6g6iY84yKN8ZkjCUIj-MogJ1GEZ7W5TEozyMWwHGnGbI1_er1Re-9a_Qv-NgfDQdycHZ58Q020Gx4s_PzHVZn07n9gVhoVvysdf8REsT-eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqq48CivlJdBqAdoWid2EudYQZeWPrSHVion4_hRVVtlV5vksPx6xpukW6BUQpxyiGPZznjms2fmG4D3sUObEmkROk1t6C2Uv2iyoaEiN977arTPdz46TvdO-dez5Kyrc1r10e69S7LNafAsTWW9PTVue5n4FseZDynwPkjBQ9TBK9yXkBjAys6Xbwe7vTJmabIofIqWnYWI3fPesXlTJ7-YprvlzN2EOv_wmC4M0fABfO-n0MafjLeautjSP35jd_yPOT6E-x1IJTutVD2CO7Zcg9Wjzg2_BhujlvB6vklOlvlb1SbZIKMlFfb8MRxee02u-8rJxJGuAk81bUpSqhKlvEAsShBFEzNrzomxlz5oZE5atunqCZwOd08-7YVd_YZQ8yiqw5SbXGnUCahClREqTbQwGeOaU61dap0olBPaGkaLzCSFUVxQzm2CKMxRl7OnMCgnpX0ORKWaKVpQFUeGK5XkhvLCuNQI7C5nIgDa_zqpO3JzX2PjUi5pmf1ySlxO6ZdTxgF8uPpk2jJ73Nb4HcqDHOsL6fm4_fN8IscziaeOfTxFLXgPA3jbi4vETeo9L6q0k6bC8xXCcM4zKm5pkzGWIB6PowCetbJ2NS4PenkesQA-9nIjO11T_X3Q6__U-g2sjj4P5eH-8cELuIfblLc3TS9hUM8a-wqxV1287vbXT0SZJCY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Therapeutic+applications+of+electrospun+nanofibers+for+drug+delivery+systems&rft.jtitle=Archives+of+pharmacal+research&rft.au=Son%2C+Young+Ju&rft.au=Kim%2C+Woo+Jin&rft.au=Yoo%2C+Hyuk+Sang&rft.date=2014-01-01&rft.issn=1976-3786&rft.eissn=1976-3786&rft.volume=37&rft.issue=1&rft.spage=69&rft_id=info:doi/10.1007%2Fs12272-013-0284-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-6269&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-6269&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-6269&client=summon |