PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a gene...
Saved in:
| Published in | The Science of the total environment Vol. 443; pp. 511 - 519 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier B.V
15.01.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0048-9697 1879-1026 |
| DOI | 10.1016/j.scitotenv.2012.10.110 |
Cover
| Abstract | This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs.
The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM10 emission data, collected through the Convention on Long-range Transboundary Air Pollution — CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat.
The ANN model has shown very good performance and demonstrated that the forecast of PM10 emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM10 emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables.
► Neural network (ANN) modeling of annual PM10 emissions at a national level ► Sustainability and economical/industrial parameters are used as model inputs. ► The selection of inputs was based on smoothing factor (ISF) calculated by GA. ► The ANN model provides much better results in comparison with conventional models. ► Up to two years forecast with the ANN model can be made successfully and accurately. |
|---|---|
| AbstractList | This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs.
The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM10 emission data, collected through the Convention on Long-range Transboundary Air Pollution — CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat.
The ANN model has shown very good performance and demonstrated that the forecast of PM10 emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM10 emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables.
► Neural network (ANN) modeling of annual PM10 emissions at a national level ► Sustainability and economical/industrial parameters are used as model inputs. ► The selection of inputs was based on smoothing factor (ISF) calculated by GA. ► The ANN model provides much better results in comparison with conventional models. ► Up to two years forecast with the ANN model can be made successfully and accurately. This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs.The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM10 emission data, collected through the Convention on Long-range Transboundary Air Pollution — CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat.The ANN model has shown very good performance and demonstrated that the forecast of PM10 emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM10 emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables. |
| Author | Pocajt, Viktor V. Perić-Grujić, Aleksandra A. Povrenović, Dragan S. Antanasijević, Davor Z. Ristić, Mirjana Đ. |
| Author_xml | – sequence: 1 givenname: Davor Z. surname: Antanasijević fullname: Antanasijević, Davor Z. email: dantanasijevic@tmf.bg.ac.rs organization: University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia – sequence: 2 givenname: Viktor V. surname: Pocajt fullname: Pocajt, Viktor V. organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia – sequence: 3 givenname: Dragan S. surname: Povrenović fullname: Povrenović, Dragan S. organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia – sequence: 4 givenname: Mirjana Đ. surname: Ristić fullname: Ristić, Mirjana Đ. organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia – sequence: 5 givenname: Aleksandra A. surname: Perić-Grujić fullname: Perić-Grujić, Aleksandra A. organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27130020$$DView record in Pascal Francis |
| BookMark | eNqNkc1v1DAQxS1UJLaFvwFfkLjsMpMPOzlwqCq-pCI4wDmaOJPFS9ZebGcr-OtxdqseuBQfPLLm957k9y7FhfOOhXiJsEFA9Wa3icYmn9gdNwVgsVkWCE_EChvdrhEKdSFWAFWzblWrn4nLGHeQj25wJaavnxEk722M1js5-sCGYrJuK-e43BSSHa2xNEnHcziNdOfDzyjJDXLL-WmNpGnrg00_9tK6w5zkkYKlfmLpD8nu7R9K2f65eDrSFPnF_bwS39-_-3bzcX375cOnm-vbtakQ07oeTUFD35eV4Z7aHgtVk4IKCHvSxnCNTYP9WFSqB00VlkZVoJpS89DqGssr8frsewj-18wxdfl_hqeJHPs5dqgqDQh10T6OlqrO0YEuM_rqHqVoaBoDOWNjdwh2T-F3V2gsAQrInD5zJvgYA48PCEK3VNbtuofKuqWy0wIX5dt_lBk7JZcC2ek_9NdnPedwj5bDwrEzPNhca-oGbx_1-AslprxE |
| CODEN | STENDL |
| CitedBy_id | crossref_primary_10_3390_rs10060975 crossref_primary_10_1007_s11356_019_06108_8 crossref_primary_10_1186_s13717_016_0069_x crossref_primary_10_1016_j_atmosenv_2016_08_007 crossref_primary_10_1016_j_jenvman_2016_10_068 crossref_primary_10_32328_turkjforsci_902897 crossref_primary_10_1007_s11869_018_0630_0 crossref_primary_10_1016_j_ijggc_2013_11_011 crossref_primary_10_3233_JIFS_169555 crossref_primary_10_1016_j_apr_2019_12_010 crossref_primary_10_2166_wst_2016_002 crossref_primary_10_1007_s10666_023_09902_4 crossref_primary_10_1016_j_envpol_2019_05_101 crossref_primary_10_1007_s11869_023_01329_w crossref_primary_10_1007_s11600_023_01072_x crossref_primary_10_1016_j_eswa_2021_115376 crossref_primary_10_24057_2071_9388_2019_169 crossref_primary_10_1007_s11869_017_0477_9 crossref_primary_10_1016_j_envsoft_2019_06_014 crossref_primary_10_1016_j_rser_2017_03_054 crossref_primary_10_1080_10106049_2022_2105404 crossref_primary_10_1007_s00703_020_00744_3 crossref_primary_10_1016_j_jhydrol_2014_10_009 crossref_primary_10_1007_s10661_015_4556_9 crossref_primary_10_1016_j_iot_2022_100628 crossref_primary_10_1007_s11356_017_9216_x crossref_primary_10_1016_j_asoc_2020_106957 crossref_primary_10_1002_for_3005 crossref_primary_10_1080_10962247_2015_1075919 crossref_primary_10_1016_j_envpol_2019_03_068 crossref_primary_10_1016_j_energy_2015_03_060 crossref_primary_10_1016_j_engappai_2018_03_009 crossref_primary_10_1016_j_envpol_2018_10_051 crossref_primary_10_1371_journal_pone_0239509 crossref_primary_10_1007_s13762_017_1591_9 crossref_primary_10_1016_j_atmosenv_2016_03_056 crossref_primary_10_1016_j_jastp_2024_106336 crossref_primary_10_1002_eng2_70031 crossref_primary_10_1016_j_ijadhadh_2023_103346 crossref_primary_10_1007_s11356_013_1876_6 crossref_primary_10_1111_exsy_13449 crossref_primary_10_1007_s00107_022_01818_2 crossref_primary_10_30521_jes_1094106 crossref_primary_10_1002_cem_2505 crossref_primary_10_1016_j_scitotenv_2019_135321 crossref_primary_10_1016_j_envpol_2023_122402 crossref_primary_10_1016_j_atmosenv_2018_03_027 crossref_primary_10_1016_j_jclepro_2021_129660 crossref_primary_10_1016_j_atmosenv_2020_118022 crossref_primary_10_1016_j_inffus_2016_11_015 crossref_primary_10_1016_j_scitotenv_2019_07_367 crossref_primary_10_1016_j_scs_2020_102567 crossref_primary_10_3390_atmos14121807 crossref_primary_10_3390_su12187310 crossref_primary_10_1016_j_cirpj_2021_10_005 crossref_primary_10_1002_jctb_5516 crossref_primary_10_1109_ACCESS_2023_3314490 crossref_primary_10_1007_s11356_016_6279_z crossref_primary_10_3390_sym11020240 crossref_primary_10_1016_j_jclepro_2020_121169 crossref_primary_10_5572_ajae_2020_14_3_225 crossref_primary_10_1080_09593330_2018_1551941 crossref_primary_10_1016_j_apr_2023_101731 crossref_primary_10_4491_eer_2017_093 crossref_primary_10_1080_17480272_2021_1929466 crossref_primary_10_1007_s00500_022_06777_7 crossref_primary_10_1016_j_compag_2020_105653 crossref_primary_10_1016_j_ijdrr_2020_101705 crossref_primary_10_1371_journal_pone_0138507 crossref_primary_10_1002_spe_2413 crossref_primary_10_1016_j_apr_2017_11_004 crossref_primary_10_1016_j_apr_2018_11_004 crossref_primary_10_1016_j_scitotenv_2014_07_051 crossref_primary_10_1016_j_heliyon_2024_e39783 crossref_primary_10_1080_15275922_2014_950774 crossref_primary_10_3390_app14010389 crossref_primary_10_1016_j_apr_2018_03_008 crossref_primary_10_1007_s11356_017_9243_7 crossref_primary_10_3390_ijerph14070764 crossref_primary_10_3390_ijerph121012171 crossref_primary_10_1016_j_atmosres_2017_10_009 crossref_primary_10_1007_s10661_015_4977_5 crossref_primary_10_1142_S0217595917500208 crossref_primary_10_1007_s10651_016_0349_8 crossref_primary_10_1007_s13762_020_02896_6 crossref_primary_10_3390_app9142806 crossref_primary_10_1016_j_apr_2017_10_011 crossref_primary_10_1016_j_jclepro_2020_121027 crossref_primary_10_3390_environments6030029 crossref_primary_10_1016_j_rser_2021_111153 crossref_primary_10_1007_s00704_020_03115_5 crossref_primary_10_5094_APR_2014_079 crossref_primary_10_1016_j_atmosenv_2025_121079 crossref_primary_10_1080_17480272_2021_1992648 crossref_primary_10_1016_j_asoc_2019_105972 crossref_primary_10_1155_2021_4793293 crossref_primary_10_1007_s41742_024_00684_5 crossref_primary_10_1016_j_atmosenv_2022_119347 crossref_primary_10_29130_dubited_554419 crossref_primary_10_3390_math7100965 crossref_primary_10_1002_ps_6547 crossref_primary_10_1007_s11356_014_3669_y crossref_primary_10_1088_1742_6596_1175_1_012063 crossref_primary_10_1016_j_jenvman_2021_112438 crossref_primary_10_1016_j_buildenv_2018_03_058 crossref_primary_10_1016_j_scitotenv_2016_12_018 crossref_primary_10_3390_su12104045 crossref_primary_10_17474_artvinofd_896585 crossref_primary_10_1016_j_envsoft_2022_105529 crossref_primary_10_1080_17480272_2024_2426780 crossref_primary_10_1016_j_jclepro_2020_124023 crossref_primary_10_1142_S146902681450014X crossref_primary_10_1155_2020_6019826 crossref_primary_10_1007_s00521_015_1853_8 crossref_primary_10_1016_j_apr_2021_101153 crossref_primary_10_1007_s00704_024_05304_y crossref_primary_10_1080_10962247_2015_1019652 crossref_primary_10_1016_j_scitotenv_2019_134279 crossref_primary_10_1007_s11356_020_11065_8 crossref_primary_10_1016_j_envpol_2017_08_114 crossref_primary_10_1007_s11356_015_5075_5 crossref_primary_10_1016_j_jastp_2025_106444 |
| Cites_doi | 10.1016/j.atmosenv.2005.10.036 10.1016/j.ijheh.2009.06.001 10.1007/s11625-012-0161-9 10.1016/j.envsci.2005.06.008 10.1016/j.scitotenv.2010.12.039 10.1016/j.envsoft.2004.09.001 10.1016/j.envsoft.2006.08.007 10.1080/15567030802089086 10.1016/j.marpolbul.2008.05.021 10.1016/j.scitotenv.2006.08.018 10.1016/j.atmosenv.2012.02.004 10.1016/j.jhydrol.2007.12.014 10.1109/72.97934 10.1016/j.envsoft.2006.01.004 10.1016/j.atmosenv.2012.01.027 10.1016/S1352-2310(99)00468-9 10.1016/j.atmosenv.2010.05.028 10.1007/s10652-009-9163-2 10.1016/S1364-8152(98)00034-6 10.1016/j.ecolecon.2007.03.008 10.1016/j.eja.2007.01.008 10.1080/15567036.2010.514597 10.1016/S0360-1285(03)00058-3 10.1016/j.apenergy.2008.09.017 10.1016/j.coal.2007.09.003 10.1023/A:1005810619145 10.1016/S1352-2310(00)00367-8 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7S9 L.6 7ST C1K SOI |
| DOI | 10.1016/j.scitotenv.2012.10.110 |
| DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | AGRICOLA Environment Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences Applied Sciences |
| EISSN | 1879-1026 |
| EndPage | 519 |
| ExternalDocumentID | 27130020 10_1016_j_scitotenv_2012_10_110 S0048969712014295 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD AGCQF AGRNS BNPGV IQODW SSH 7S9 L.6 7ST C1K SOI |
| ID | FETCH-LOGICAL-c411t-5fc2adbb34ceba9b1265a6040a1ba7cce51881bf246b07a413c6406837ed97513 |
| IEDL.DBID | .~1 |
| ISSN | 0048-9697 |
| IngestDate | Tue Oct 07 09:17:10 EDT 2025 Sun Sep 28 10:21:25 EDT 2025 Mon Jul 21 09:17:28 EDT 2025 Wed Oct 01 05:13:06 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Fri Feb 23 02:23:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Principal component regression Annual PM10 emission forecasting Multiple linear regression Neural networks Annual PM Statistical analysis Linear regression Prediction Regression analysis Neural network Pollutant emission Optimization Coarse particle Statistical method emission forecasting Genetic algorithm Particle emission Aerosols Principal component analysis |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-5fc2adbb34ceba9b1265a6040a1ba7cce51881bf246b07a413c6406837ed97513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1365048073 |
| PQPubID | 24069 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1647010529 proquest_miscellaneous_1365048073 pascalfrancis_primary_27130020 crossref_primary_10_1016_j_scitotenv_2012_10_110 crossref_citationtrail_10_1016_j_scitotenv_2012_10_110 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2012_10_110 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-15 |
| PublicationDateYYYYMMDD | 2013-01-15 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | The Science of the total environment |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | European Environment Agency (EEA) (bb0060) 2012 Lim, Moon, Kim (bb0135) 2007; 26 Scapellato, Canova, Simone, Carrieri, Maestrelli, Simonato (bb0170) 2009; 212 Böhringer, Jochem (bb0020) 2007; 63 European Commission (bb0045) 1999; 163 Grivas, Chaloulakou (bb0085) 2006; 40 Jakeman, Letcher, Norton (bb0105) 2006; 21 European Commission (bb0040) 1998; 350 International Fertilizer Industry Association (IFA) (bb0095) 2011 European Commission (bb0050) 2001; 309 Sfetsos, Vlachogiannis (bb0185) 2010; 44 Antanasijević D, Pocajt V, Popović I, Redžić N, Ristić M. The Forecasting of Municipal Waste Generation Using Artificial Neural Networks and Sustainability Indicators. Sustain Sci, in press. DOI European Commission (bb0035) 1996; 257 Kim, Kim (bb0125) 2008; 351 U.S. Geological Survey (USGS) (bb0205) 2011; III Radojević DM, Pocajt VV, Popović IG, Perić-Grujić AA, Ristić MDJ. Forecasting of greenhouse gas emissions in Serbia using Artificial neural networks. Energ Source Part A, in press. DOI Schöpp, Amann, Cofala, Heyes, Klimont (bb0175) 1999; 14 Kalogirou (bb0110) 2003; 29 Russell, Dennis (bb0165) 2000; 34 Dennis, Fox, Fuentes, Gilliland, Hanna, Hogrefe (bb0030) 2010; 10 International Iron and Steel Institute (IISI) (bb0100) 2011 Karacan (bb0115) 2008; 73 Abdul-Wahab, Bakheit, Al-Alawi (bb0005) 2005; 20 Specht (bb0195) 1991; 2 Kassomenos, Karakitsios, Papaloukas (bb0120) 2006; 370 . Palani, Liong, Tkalich (bb0145) 2008; 56 Schöpp, Klimont, Suutari, Cofala (bb0180) 2005; 8 European Environment Agency (EEA) (bb0055) 2009 Eurostat (bb0065) 2011 GAINS EUROPE (bb0075) 2012 Najafi, Ghobadian, Tavakoli, Buttsworth, Yusaf, Faizollahnejad (bb0140) 2009; 86 Pay, Jiménez-Guerrero, Baldasano (bb0155) 2012; 51 Eurostat (bb0070) 2012 U.S. Environmental Protection Agency (US EPA) (bb0200) 1995; I Hanna, Lu, Frey, Wheeler, Vukovich, Arunachalam (bb0090) 2001; 35 Koo, Kim, Cho, Jang (bb0130) 2012; 58 Sözen, Gülseven, Arcaklioğlu (bb0190) 2009; 31 Patel, Kumar (bb0150) 1998; 53 Ciancarella, Briganti, Calori, Cappelletti, Cionni, Costa, Cremona, D'Elia, D'Isidoro, Finardi, Mauri, Mircea, Pace, Piersanti, Racalbuto, Radice, Righini, Vialetto, Vitali, Zanini (bb0025) 2011 GAINS EUROPE (bb0080) 2012 Al-Alawi, Abdul-Wahab, Bakheit (bb0010) 2008; 23 Voukantsis, Karatzas, Kukkonen, Räsänen, Karppinen, Kolehmainen (bb0210) 2011; 409 Ciancarella (10.1016/j.scitotenv.2012.10.110_bb0025) 2011 Eurostat (10.1016/j.scitotenv.2012.10.110_bb0070) Karacan (10.1016/j.scitotenv.2012.10.110_bb0115) 2008; 73 GAINS EUROPE (10.1016/j.scitotenv.2012.10.110_bb0080) Pay (10.1016/j.scitotenv.2012.10.110_bb0155) 2012; 51 Kalogirou (10.1016/j.scitotenv.2012.10.110_bb0110) 2003; 29 European Environment Agency (EEA) (10.1016/j.scitotenv.2012.10.110_bb0060) 10.1016/j.scitotenv.2012.10.110_bb0015 Hanna (10.1016/j.scitotenv.2012.10.110_bb0090) 2001; 35 Jakeman (10.1016/j.scitotenv.2012.10.110_bb0105) 2006; 21 European Commission (10.1016/j.scitotenv.2012.10.110_bb0040) 1998; 350 European Commission (10.1016/j.scitotenv.2012.10.110_bb0045) 1999; 163 Lim (10.1016/j.scitotenv.2012.10.110_bb0135) 2007; 26 Grivas (10.1016/j.scitotenv.2012.10.110_bb0085) 2006; 40 Dennis (10.1016/j.scitotenv.2012.10.110_bb0030) 2010; 10 European Environment Agency (EEA) (10.1016/j.scitotenv.2012.10.110_bb0055) Russell (10.1016/j.scitotenv.2012.10.110_bb0165) 2000; 34 Schöpp (10.1016/j.scitotenv.2012.10.110_bb0180) 2005; 8 Sfetsos (10.1016/j.scitotenv.2012.10.110_bb0185) 2010; 44 Sözen (10.1016/j.scitotenv.2012.10.110_bb0190) 2009; 31 Palani (10.1016/j.scitotenv.2012.10.110_bb0145) 2008; 56 Scapellato (10.1016/j.scitotenv.2012.10.110_bb0170) 2009; 212 European Commission (10.1016/j.scitotenv.2012.10.110_bb0035) 1996; 257 Al-Alawi (10.1016/j.scitotenv.2012.10.110_bb0010) 2008; 23 Eurostat (10.1016/j.scitotenv.2012.10.110_bb0065) U.S. Geological Survey (USGS) (10.1016/j.scitotenv.2012.10.110_bb0205) 2011; III International Fertilizer Industry Association (IFA) (10.1016/j.scitotenv.2012.10.110_bb0095) Kassomenos (10.1016/j.scitotenv.2012.10.110_bb0120) 2006; 370 Böhringer (10.1016/j.scitotenv.2012.10.110_bb0020) 2007; 63 GAINS EUROPE (10.1016/j.scitotenv.2012.10.110_bb0075) Patel (10.1016/j.scitotenv.2012.10.110_bb0150) 1998; 53 Voukantsis (10.1016/j.scitotenv.2012.10.110_bb0210) 2011; 409 U.S. Environmental Protection Agency (US EPA) (10.1016/j.scitotenv.2012.10.110_bb0200) 1995; I European Commission (10.1016/j.scitotenv.2012.10.110_bb0050) 2001; 309 10.1016/j.scitotenv.2012.10.110_bb0160 Kim (10.1016/j.scitotenv.2012.10.110_bb0125) 2008; 351 Najafi (10.1016/j.scitotenv.2012.10.110_bb0140) 2009; 86 Koo (10.1016/j.scitotenv.2012.10.110_bb0130) 2012; 58 Abdul-Wahab (10.1016/j.scitotenv.2012.10.110_bb0005) 2005; 20 International Iron and Steel Institute (IISI) (10.1016/j.scitotenv.2012.10.110_bb0100) Schöpp (10.1016/j.scitotenv.2012.10.110_bb0175) 1999; 14 Specht (10.1016/j.scitotenv.2012.10.110_bb0195) 1991; 2 |
| References_xml | – year: 2011 ident: bb0095 – volume: 23 start-page: 396 year: 2008 end-page: 403 ident: bb0010 article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone publication-title: Environ Modell Softw – year: 2012 ident: bb0060 – volume: 370 start-page: 480 year: 2006 end-page: 490 ident: bb0120 article-title: Estimation of daily traffic emissions in a South-European urban agglomeration during a workday. Evaluation of several “what if” scenarios publication-title: Sci Total Environ – volume: 309 start-page: 22 year: 2001 end-page: 30 ident: bb0050 article-title: Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants publication-title: Official Journal of the European Communities – volume: 26 start-page: 425 year: 2007 end-page: 434 ident: bb0135 article-title: Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors publication-title: Eur J Agron – volume: 86 start-page: 630 year: 2009 end-page: 639 ident: bb0140 article-title: Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network publication-title: Appl Energy – volume: 56 start-page: 1586 year: 2008 end-page: 1597 ident: bb0145 article-title: An ANN aplication for water quality forecasting publication-title: Mar Pollut Bull – reference: Antanasijević D, Pocajt V, Popović I, Redžić N, Ristić M. The Forecasting of Municipal Waste Generation Using Artificial Neural Networks and Sustainability Indicators. Sustain Sci, in press. DOI: – volume: 63 start-page: 1 year: 2007 end-page: 8 ident: bb0020 article-title: Measuring the immeasurable — a survey of sustainable indices publication-title: Ecol Econ – volume: 44 start-page: 3159 year: 2010 end-page: 3172 ident: bb0185 article-title: A new methodology development for the regulatory forecasting of PM publication-title: Atmos Environ – volume: 51 start-page: 146 year: 2012 end-page: 164 ident: bb0155 article-title: Assessing sensitivity regimes of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system publication-title: Atmos Environ – year: 2011 ident: bb0025 article-title: National Italian integrated atmospheric model on air pollution: sensitivity to emission inventory publication-title: 14th conference on harmonisation within atmospheric dispersion modelling for regulatory purposes — 2–6 October 2011, Kos, Greece – volume: 58 start-page: 56 year: 2012 end-page: 69 ident: bb0130 article-title: Performance evaluation of the updated air quality forecasting system for Seoul predicting PM publication-title: Atmos Environ – reference: Radojević DM, Pocajt VV, Popović IG, Perić-Grujić AA, Ristić MDJ. Forecasting of greenhouse gas emissions in Serbia using Artificial neural networks. Energ Source Part A, in press. DOI – volume: 20 start-page: 1263 year: 2005 end-page: 1271 ident: bb0005 article-title: Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations publication-title: Environ Modell Softw – volume: 34 start-page: 2283 year: 2000 end-page: 2324 ident: bb0165 article-title: NARSTO critical review of photochemical models and modeling publication-title: Atmos Environ – volume: 350 start-page: 1 year: 1998 end-page: 65 ident: bb0040 article-title: Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC publication-title: Official Journal of the European Communities – volume: 29 start-page: 515 year: 2003 end-page: 566 ident: bb0110 article-title: Artificial intelligence for the modeling and control of combustion processes: a review publication-title: Prog Energ Combust – volume: 257 start-page: 26 year: 1996 end-page: 40 ident: bb0035 article-title: Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control publication-title: OJEC – volume: 8 start-page: 601 year: 2005 end-page: 613 ident: bb0180 article-title: Uncertainty analysis of emission estimates in the RAINS integrated assessment model publication-title: Environ Sci Policy – volume: III year: 2011 ident: bb0205 publication-title: U.S. Geological Survey Minerals Yearbook—1999–2006 – volume: 14 start-page: 1 year: 1999 end-page: 9 ident: bb0175 article-title: Integrated assessment of European air pollution emission control strategies publication-title: Environ Modell Softw – volume: 163 start-page: 41 year: 1999 end-page: 60 ident: bb0045 article-title: Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air publication-title: Official Journal of the European Communities – volume: 351 start-page: 299 year: 2008 end-page: 317 ident: bb0125 article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling publication-title: J Hydrol – volume: 2 start-page: 568 year: 1991 end-page: 576 ident: bb0195 article-title: A general regression neural network publication-title: IEEE Trans Neural Netw – volume: 35 start-page: 891 year: 2001 end-page: 903 ident: bb0090 article-title: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain publication-title: Atmos Environ – year: 2012 ident: bb0080 – year: 2012 ident: bb0075 article-title: RAINS review 2004 – reference: . – volume: 40 start-page: 1216 year: 2006 end-page: 1229 ident: bb0085 article-title: Artificial neural network models for prediction of PM publication-title: Atmos Environ – volume: I year: 1995 ident: bb0200 article-title: AP 42 publication-title: Compilation of air pollutant emission factors – year: 2012 ident: bb0070 – year: 2011 ident: bb0100 article-title: Steel Statistical Yearbook 1999–2006 – volume: 21 start-page: 602 year: 2006 end-page: 614 ident: bb0105 article-title: Ten iterative steps in development and evaluation of environmental models publication-title: Environ Modell Softw – year: 2009 ident: bb0055 article-title: EMEP/EEA emission inventory guidebook — 2009 – volume: 53 start-page: 259 year: 1998 end-page: 277 ident: bb0150 article-title: Evaluation of three air dispersion models: ISCST2, ISCLT2, and SCREEN2 for mercury emissions in an urban area publication-title: Environ Monit Assess – volume: 10 start-page: 471 year: 2010 end-page: 489 ident: bb0030 article-title: A framework for evaluating regional-scale numerical photochemical modeling systems publication-title: Environ Fluid Mech – volume: 73 start-page: 371 year: 2008 end-page: 387 ident: bb0115 article-title: Modeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks publication-title: Int J Coal Geol – volume: 31 start-page: 1141 year: 2009 end-page: 1159 ident: bb0190 article-title: Estimation of GHG emissions in Turkey using energy and economic indicators publication-title: Energy Source Part A – volume: 409 start-page: 1266 year: 2011 end-page: 1276 ident: bb0210 article-title: Intercomparison of air quality data using principal component analysis, and forecasting of PM publication-title: Sci Total Environ – year: 2011 ident: bb0065 – volume: 212 start-page: 626 year: 2009 end-page: 636 ident: bb0170 article-title: Personal PM publication-title: Int J Hyg Environ Health – volume: 309 start-page: 22 year: 2001 ident: 10.1016/j.scitotenv.2012.10.110_bb0050 article-title: Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants publication-title: Official Journal of the European Communities – volume: 40 start-page: 1216 year: 2006 ident: 10.1016/j.scitotenv.2012.10.110_bb0085 article-title: Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens Greece publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.10.036 – volume: 212 start-page: 626 year: 2009 ident: 10.1016/j.scitotenv.2012.10.110_bb0170 article-title: Personal PM10 exposure in asthmatic adults in Padova, Italy: seasonal variability and factors affecting individual concentrations of particulate matter publication-title: Int J Hyg Environ Health doi: 10.1016/j.ijheh.2009.06.001 – year: 2011 ident: 10.1016/j.scitotenv.2012.10.110_bb0025 article-title: National Italian integrated atmospheric model on air pollution: sensitivity to emission inventory – ident: 10.1016/j.scitotenv.2012.10.110_bb0015 doi: 10.1007/s11625-012-0161-9 – volume: 8 start-page: 601 year: 2005 ident: 10.1016/j.scitotenv.2012.10.110_bb0180 article-title: Uncertainty analysis of emission estimates in the RAINS integrated assessment model publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2005.06.008 – volume: 409 start-page: 1266 year: 2011 ident: 10.1016/j.scitotenv.2012.10.110_bb0210 article-title: Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.12.039 – volume: 20 start-page: 1263 year: 2005 ident: 10.1016/j.scitotenv.2012.10.110_bb0005 article-title: Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations publication-title: Environ Modell Softw doi: 10.1016/j.envsoft.2004.09.001 – ident: 10.1016/j.scitotenv.2012.10.110_bb0065 – ident: 10.1016/j.scitotenv.2012.10.110_bb0060 – ident: 10.1016/j.scitotenv.2012.10.110_bb0080 – volume: 23 start-page: 396 year: 2008 ident: 10.1016/j.scitotenv.2012.10.110_bb0010 article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone publication-title: Environ Modell Softw doi: 10.1016/j.envsoft.2006.08.007 – volume: 350 start-page: 1 year: 1998 ident: 10.1016/j.scitotenv.2012.10.110_bb0040 article-title: Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC publication-title: Official Journal of the European Communities – volume: 31 start-page: 1141 year: 2009 ident: 10.1016/j.scitotenv.2012.10.110_bb0190 article-title: Estimation of GHG emissions in Turkey using energy and economic indicators publication-title: Energy Source Part A doi: 10.1080/15567030802089086 – volume: 56 start-page: 1586 year: 2008 ident: 10.1016/j.scitotenv.2012.10.110_bb0145 article-title: An ANN aplication for water quality forecasting publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2008.05.021 – volume: 370 start-page: 480 year: 2006 ident: 10.1016/j.scitotenv.2012.10.110_bb0120 article-title: Estimation of daily traffic emissions in a South-European urban agglomeration during a workday. Evaluation of several “what if” scenarios publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2006.08.018 – volume: 58 start-page: 56 year: 2012 ident: 10.1016/j.scitotenv.2012.10.110_bb0130 article-title: Performance evaluation of the updated air quality forecasting system for Seoul predicting PM10 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2012.02.004 – volume: 351 start-page: 299 year: 2008 ident: 10.1016/j.scitotenv.2012.10.110_bb0125 article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.12.014 – volume: 2 start-page: 568 year: 1991 ident: 10.1016/j.scitotenv.2012.10.110_bb0195 article-title: A general regression neural network publication-title: IEEE Trans Neural Netw doi: 10.1109/72.97934 – ident: 10.1016/j.scitotenv.2012.10.110_bb0070 – volume: 163 start-page: 41 year: 1999 ident: 10.1016/j.scitotenv.2012.10.110_bb0045 article-title: Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air publication-title: Official Journal of the European Communities – ident: 10.1016/j.scitotenv.2012.10.110_bb0075 – volume: 21 start-page: 602 year: 2006 ident: 10.1016/j.scitotenv.2012.10.110_bb0105 article-title: Ten iterative steps in development and evaluation of environmental models publication-title: Environ Modell Softw doi: 10.1016/j.envsoft.2006.01.004 – volume: 51 start-page: 146 year: 2012 ident: 10.1016/j.scitotenv.2012.10.110_bb0155 article-title: Assessing sensitivity regimes of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2012.01.027 – ident: 10.1016/j.scitotenv.2012.10.110_bb0055 – volume: 34 start-page: 2283 year: 2000 ident: 10.1016/j.scitotenv.2012.10.110_bb0165 article-title: NARSTO critical review of photochemical models and modeling publication-title: Atmos Environ doi: 10.1016/S1352-2310(99)00468-9 – volume: 44 start-page: 3159 year: 2010 ident: 10.1016/j.scitotenv.2012.10.110_bb0185 article-title: A new methodology development for the regulatory forecasting of PM10. Application in the Greater Athens Area, Greece publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2010.05.028 – ident: 10.1016/j.scitotenv.2012.10.110_bb0095 – volume: I year: 1995 ident: 10.1016/j.scitotenv.2012.10.110_bb0200 article-title: AP 42 – ident: 10.1016/j.scitotenv.2012.10.110_bb0100 – volume: 10 start-page: 471 year: 2010 ident: 10.1016/j.scitotenv.2012.10.110_bb0030 article-title: A framework for evaluating regional-scale numerical photochemical modeling systems publication-title: Environ Fluid Mech doi: 10.1007/s10652-009-9163-2 – volume: 14 start-page: 1 year: 1999 ident: 10.1016/j.scitotenv.2012.10.110_bb0175 article-title: Integrated assessment of European air pollution emission control strategies publication-title: Environ Modell Softw doi: 10.1016/S1364-8152(98)00034-6 – volume: 63 start-page: 1 year: 2007 ident: 10.1016/j.scitotenv.2012.10.110_bb0020 article-title: Measuring the immeasurable — a survey of sustainable indices publication-title: Ecol Econ doi: 10.1016/j.ecolecon.2007.03.008 – volume: 26 start-page: 425 year: 2007 ident: 10.1016/j.scitotenv.2012.10.110_bb0135 article-title: Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors publication-title: Eur J Agron doi: 10.1016/j.eja.2007.01.008 – ident: 10.1016/j.scitotenv.2012.10.110_bb0160 doi: 10.1080/15567036.2010.514597 – volume: 29 start-page: 515 year: 2003 ident: 10.1016/j.scitotenv.2012.10.110_bb0110 article-title: Artificial intelligence for the modeling and control of combustion processes: a review publication-title: Prog Energ Combust doi: 10.1016/S0360-1285(03)00058-3 – volume: III year: 2011 ident: 10.1016/j.scitotenv.2012.10.110_bb0205 – volume: 86 start-page: 630 year: 2009 ident: 10.1016/j.scitotenv.2012.10.110_bb0140 article-title: Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.09.017 – volume: 73 start-page: 371 year: 2008 ident: 10.1016/j.scitotenv.2012.10.110_bb0115 article-title: Modeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks publication-title: Int J Coal Geol doi: 10.1016/j.coal.2007.09.003 – volume: 53 start-page: 259 year: 1998 ident: 10.1016/j.scitotenv.2012.10.110_bb0150 article-title: Evaluation of three air dispersion models: ISCST2, ISCLT2, and SCREEN2 for mercury emissions in an urban area publication-title: Environ Monit Assess doi: 10.1023/A:1005810619145 – volume: 257 start-page: 26 year: 1996 ident: 10.1016/j.scitotenv.2012.10.110_bb0035 article-title: Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control publication-title: OJEC – volume: 35 start-page: 891 year: 2001 ident: 10.1016/j.scitotenv.2012.10.110_bb0090 article-title: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain publication-title: Atmos Environ doi: 10.1016/S1352-2310(00)00367-8 |
| SSID | ssj0000781 |
| Score | 2.4734323 |
| Snippet | This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 511 |
| SubjectTerms | air pollution algorithms aluminum Annual PM10 emission forecasting Applied sciences Atmospheric pollution copper emissions energy environmental indicators European Union Exact sciences and technology gross domestic product iron Multiple linear regression Neural networks paperboard Pollution prediction Principal component regression regression analysis steel swine wood |
| Title | PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2012.10.110 https://www.proquest.com/docview/1365048073 https://www.proquest.com/docview/1647010529 |
| Volume | 443 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: ACRLP dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIKHN dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1026 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AKRWK dateStart: 19930115 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalY1AoY0tblv0IGuzVrSXLUrW3UlqyhZZRVto3Iylyl5LaoXYKe9nfvjvJTgll68OeDLEUG-l0d7K-7z5CPmuwEpcpkwjtYYOCOKpDq2zCbWnybGozHdQbzs7l-FJ8u86vN8hxz4VBWGXn-6NPD966--WgG82DxWyGHF9xqKVWDGIYeFUkmguhUMVg__cjzAOL2cRTZljY0HoN4wX_29aQmz4gxovvR1T83yLU9sI0MG5lFLx44rtDQDp9TV51mSQ9ii_7hmz4akBeRm3JXwOyd_JIYYNm3RpuBmQ7fqmjkYC0Q-bfz1hKUfYNP5xRSGK9Mw2ioSmC4m8oDkesM0Gx-mW4BOx4Q001pWCBSISkZn5T38_an3d0Vi2WLX2AXTjysmgNXumuo3vuksvTkx_H46TTYEicYKxN8tJxM7U2E85boy3jMjcSVr5h1ijnPBZ0Y7bkQtpUGQiJTkKOANteP9UqZ9ke2azqyr8lNPU6c0ZqYXInylRZXaYeuvncOMZLOySyH_fCdQXKUSdjXvRItNtiNWEFTli4wdIhSVcdF7FGx_NdvvQTW6yZWwGR5PnOozVTWD2UKzwc5NDgU28bBcweHsGYytfLpkBQYWDxZ_9oI4VC3VKu3_3PW74nWzxId7CE5R_IZnu_9B8hgWrtKKyQEXlx9HUyPsfr5OJq8gfNdSB8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEQKpQrBQUR7FSFzTxo4d19xQ1WqBbsWhlXqzbK_TLtomqyZbiQu_nRk72WqFoAdOkZKZJLLH87C_mSHkowYp8YWymdABAhTEUR045TLuKiuLqSt07N4wOS3H5-LrhbzYIIdDLgzCKnvdn3R61Nb9nf1-NPcXsxnm-IoDXWrFwIaBVpUPyEMhucIIbO_XHc4Dq9mkY2ZY2UC-BvKCF3cNOKe3CPLiewkW_zcTtbWwLQxclTpe_KG8o0U6fkae9q4k_Zz-9jnZCPWIPErNJX-OyPbRXQ4bkPWLuB2RrbRVR1MG0gsy_z5hOcW-b7hzRsGLDd62CIemiIq_pDgeqdAExfKX8RLB4y219ZSCCGImJLXzy-Zm1l1d01m9WHb0FsJwTMyiDail6z7f8yU5Pz46OxxnfROGzAvGukxWntupc4XwwVntGC-lLWHpW-as8j5gRTfmKi5KlysLNtGX4CRA3BumWklWbJPNuqnDK0LzoAtvSy2s9KLKldNVHoAtSOsZr9wOKYdxN76vUI6NMuZmgKL9MKsJMzhh8QHLd0i-YlykIh33s3waJtasyZsBU3I_8-6aKKw-yhWeDnIg-DDIhoHZwzMYW4dm2RpEFcY0_uIfNKVQ2LiU69f_85fvyePx2eTEnHw5_faGPOGxjwfLmHxLNrubZXgH3lTnduNq-Q08qCBu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM10+emission+forecasting+using+artificial+neural+networks+and+genetic+algorithm+input+variable+optimization&rft.jtitle=The+Science+of+the+total+environment&rft.au=Antanasijevi%C4%87%2C+Davor+Z&rft.au=Pocajt%2C+Viktor+V&rft.au=Povrenovi%C4%87%2C+Dragan+S&rft.au=Risti%C4%87%2C+Mirjana+%C4%90&rft.date=2013-01-15&rft.issn=0048-9697&rft.volume=443+p.511-519&rft.spage=511&rft.epage=519&rft_id=info:doi/10.1016%2Fj.scitotenv.2012.10.110&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |