PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization

This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a gene...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 443; pp. 511 - 519
Main Authors Antanasijević, Davor Z., Pocajt, Viktor V., Povrenović, Dragan S., Ristić, Mirjana Đ., Perić-Grujić, Aleksandra A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 15.01.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
DOI10.1016/j.scitotenv.2012.10.110

Cover

Abstract This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM10 emission data, collected through the Convention on Long-range Transboundary Air Pollution — CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat. The ANN model has shown very good performance and demonstrated that the forecast of PM10 emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM10 emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables. ► Neural network (ANN) modeling of annual PM10 emissions at a national level ► Sustainability and economical/industrial parameters are used as model inputs. ► The selection of inputs was based on smoothing factor (ISF) calculated by GA. ► The ANN model provides much better results in comparison with conventional models. ► Up to two years forecast with the ANN model can be made successfully and accurately.
AbstractList This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM10 emission data, collected through the Convention on Long-range Transboundary Air Pollution — CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat. The ANN model has shown very good performance and demonstrated that the forecast of PM10 emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM10 emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables. ► Neural network (ANN) modeling of annual PM10 emissions at a national level ► Sustainability and economical/industrial parameters are used as model inputs. ► The selection of inputs was based on smoothing factor (ISF) calculated by GA. ► The ANN model provides much better results in comparison with conventional models. ► Up to two years forecast with the ANN model can be made successfully and accurately.
This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs.The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM10 emission data, collected through the Convention on Long-range Transboundary Air Pollution — CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat.The ANN model has shown very good performance and demonstrated that the forecast of PM10 emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM10 emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables.
Author Pocajt, Viktor V.
Perić-Grujić, Aleksandra A.
Povrenović, Dragan S.
Antanasijević, Davor Z.
Ristić, Mirjana Đ.
Author_xml – sequence: 1
  givenname: Davor Z.
  surname: Antanasijević
  fullname: Antanasijević, Davor Z.
  email: dantanasijevic@tmf.bg.ac.rs
  organization: University of Belgrade, Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
– sequence: 2
  givenname: Viktor V.
  surname: Pocajt
  fullname: Pocajt, Viktor V.
  organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
– sequence: 3
  givenname: Dragan S.
  surname: Povrenović
  fullname: Povrenović, Dragan S.
  organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
– sequence: 4
  givenname: Mirjana Đ.
  surname: Ristić
  fullname: Ristić, Mirjana Đ.
  organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
– sequence: 5
  givenname: Aleksandra A.
  surname: Perić-Grujić
  fullname: Perić-Grujić, Aleksandra A.
  organization: University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27130020$$DView record in Pascal Francis
BookMark eNqNkc1v1DAQxS1UJLaFvwFfkLjsMpMPOzlwqCq-pCI4wDmaOJPFS9ZebGcr-OtxdqseuBQfPLLm957k9y7FhfOOhXiJsEFA9Wa3icYmn9gdNwVgsVkWCE_EChvdrhEKdSFWAFWzblWrn4nLGHeQj25wJaavnxEk722M1js5-sCGYrJuK-e43BSSHa2xNEnHcziNdOfDzyjJDXLL-WmNpGnrg00_9tK6w5zkkYKlfmLpD8nu7R9K2f65eDrSFPnF_bwS39-_-3bzcX375cOnm-vbtakQ07oeTUFD35eV4Z7aHgtVk4IKCHvSxnCNTYP9WFSqB00VlkZVoJpS89DqGssr8frsewj-18wxdfl_hqeJHPs5dqgqDQh10T6OlqrO0YEuM_rqHqVoaBoDOWNjdwh2T-F3V2gsAQrInD5zJvgYA48PCEK3VNbtuofKuqWy0wIX5dt_lBk7JZcC2ek_9NdnPedwj5bDwrEzPNhca-oGbx_1-AslprxE
CODEN STENDL
CitedBy_id crossref_primary_10_3390_rs10060975
crossref_primary_10_1007_s11356_019_06108_8
crossref_primary_10_1186_s13717_016_0069_x
crossref_primary_10_1016_j_atmosenv_2016_08_007
crossref_primary_10_1016_j_jenvman_2016_10_068
crossref_primary_10_32328_turkjforsci_902897
crossref_primary_10_1007_s11869_018_0630_0
crossref_primary_10_1016_j_ijggc_2013_11_011
crossref_primary_10_3233_JIFS_169555
crossref_primary_10_1016_j_apr_2019_12_010
crossref_primary_10_2166_wst_2016_002
crossref_primary_10_1007_s10666_023_09902_4
crossref_primary_10_1016_j_envpol_2019_05_101
crossref_primary_10_1007_s11869_023_01329_w
crossref_primary_10_1007_s11600_023_01072_x
crossref_primary_10_1016_j_eswa_2021_115376
crossref_primary_10_24057_2071_9388_2019_169
crossref_primary_10_1007_s11869_017_0477_9
crossref_primary_10_1016_j_envsoft_2019_06_014
crossref_primary_10_1016_j_rser_2017_03_054
crossref_primary_10_1080_10106049_2022_2105404
crossref_primary_10_1007_s00703_020_00744_3
crossref_primary_10_1016_j_jhydrol_2014_10_009
crossref_primary_10_1007_s10661_015_4556_9
crossref_primary_10_1016_j_iot_2022_100628
crossref_primary_10_1007_s11356_017_9216_x
crossref_primary_10_1016_j_asoc_2020_106957
crossref_primary_10_1002_for_3005
crossref_primary_10_1080_10962247_2015_1075919
crossref_primary_10_1016_j_envpol_2019_03_068
crossref_primary_10_1016_j_energy_2015_03_060
crossref_primary_10_1016_j_engappai_2018_03_009
crossref_primary_10_1016_j_envpol_2018_10_051
crossref_primary_10_1371_journal_pone_0239509
crossref_primary_10_1007_s13762_017_1591_9
crossref_primary_10_1016_j_atmosenv_2016_03_056
crossref_primary_10_1016_j_jastp_2024_106336
crossref_primary_10_1002_eng2_70031
crossref_primary_10_1016_j_ijadhadh_2023_103346
crossref_primary_10_1007_s11356_013_1876_6
crossref_primary_10_1111_exsy_13449
crossref_primary_10_1007_s00107_022_01818_2
crossref_primary_10_30521_jes_1094106
crossref_primary_10_1002_cem_2505
crossref_primary_10_1016_j_scitotenv_2019_135321
crossref_primary_10_1016_j_envpol_2023_122402
crossref_primary_10_1016_j_atmosenv_2018_03_027
crossref_primary_10_1016_j_jclepro_2021_129660
crossref_primary_10_1016_j_atmosenv_2020_118022
crossref_primary_10_1016_j_inffus_2016_11_015
crossref_primary_10_1016_j_scitotenv_2019_07_367
crossref_primary_10_1016_j_scs_2020_102567
crossref_primary_10_3390_atmos14121807
crossref_primary_10_3390_su12187310
crossref_primary_10_1016_j_cirpj_2021_10_005
crossref_primary_10_1002_jctb_5516
crossref_primary_10_1109_ACCESS_2023_3314490
crossref_primary_10_1007_s11356_016_6279_z
crossref_primary_10_3390_sym11020240
crossref_primary_10_1016_j_jclepro_2020_121169
crossref_primary_10_5572_ajae_2020_14_3_225
crossref_primary_10_1080_09593330_2018_1551941
crossref_primary_10_1016_j_apr_2023_101731
crossref_primary_10_4491_eer_2017_093
crossref_primary_10_1080_17480272_2021_1929466
crossref_primary_10_1007_s00500_022_06777_7
crossref_primary_10_1016_j_compag_2020_105653
crossref_primary_10_1016_j_ijdrr_2020_101705
crossref_primary_10_1371_journal_pone_0138507
crossref_primary_10_1002_spe_2413
crossref_primary_10_1016_j_apr_2017_11_004
crossref_primary_10_1016_j_apr_2018_11_004
crossref_primary_10_1016_j_scitotenv_2014_07_051
crossref_primary_10_1016_j_heliyon_2024_e39783
crossref_primary_10_1080_15275922_2014_950774
crossref_primary_10_3390_app14010389
crossref_primary_10_1016_j_apr_2018_03_008
crossref_primary_10_1007_s11356_017_9243_7
crossref_primary_10_3390_ijerph14070764
crossref_primary_10_3390_ijerph121012171
crossref_primary_10_1016_j_atmosres_2017_10_009
crossref_primary_10_1007_s10661_015_4977_5
crossref_primary_10_1142_S0217595917500208
crossref_primary_10_1007_s10651_016_0349_8
crossref_primary_10_1007_s13762_020_02896_6
crossref_primary_10_3390_app9142806
crossref_primary_10_1016_j_apr_2017_10_011
crossref_primary_10_1016_j_jclepro_2020_121027
crossref_primary_10_3390_environments6030029
crossref_primary_10_1016_j_rser_2021_111153
crossref_primary_10_1007_s00704_020_03115_5
crossref_primary_10_5094_APR_2014_079
crossref_primary_10_1016_j_atmosenv_2025_121079
crossref_primary_10_1080_17480272_2021_1992648
crossref_primary_10_1016_j_asoc_2019_105972
crossref_primary_10_1155_2021_4793293
crossref_primary_10_1007_s41742_024_00684_5
crossref_primary_10_1016_j_atmosenv_2022_119347
crossref_primary_10_29130_dubited_554419
crossref_primary_10_3390_math7100965
crossref_primary_10_1002_ps_6547
crossref_primary_10_1007_s11356_014_3669_y
crossref_primary_10_1088_1742_6596_1175_1_012063
crossref_primary_10_1016_j_jenvman_2021_112438
crossref_primary_10_1016_j_buildenv_2018_03_058
crossref_primary_10_1016_j_scitotenv_2016_12_018
crossref_primary_10_3390_su12104045
crossref_primary_10_17474_artvinofd_896585
crossref_primary_10_1016_j_envsoft_2022_105529
crossref_primary_10_1080_17480272_2024_2426780
crossref_primary_10_1016_j_jclepro_2020_124023
crossref_primary_10_1142_S146902681450014X
crossref_primary_10_1155_2020_6019826
crossref_primary_10_1007_s00521_015_1853_8
crossref_primary_10_1016_j_apr_2021_101153
crossref_primary_10_1007_s00704_024_05304_y
crossref_primary_10_1080_10962247_2015_1019652
crossref_primary_10_1016_j_scitotenv_2019_134279
crossref_primary_10_1007_s11356_020_11065_8
crossref_primary_10_1016_j_envpol_2017_08_114
crossref_primary_10_1007_s11356_015_5075_5
crossref_primary_10_1016_j_jastp_2025_106444
Cites_doi 10.1016/j.atmosenv.2005.10.036
10.1016/j.ijheh.2009.06.001
10.1007/s11625-012-0161-9
10.1016/j.envsci.2005.06.008
10.1016/j.scitotenv.2010.12.039
10.1016/j.envsoft.2004.09.001
10.1016/j.envsoft.2006.08.007
10.1080/15567030802089086
10.1016/j.marpolbul.2008.05.021
10.1016/j.scitotenv.2006.08.018
10.1016/j.atmosenv.2012.02.004
10.1016/j.jhydrol.2007.12.014
10.1109/72.97934
10.1016/j.envsoft.2006.01.004
10.1016/j.atmosenv.2012.01.027
10.1016/S1352-2310(99)00468-9
10.1016/j.atmosenv.2010.05.028
10.1007/s10652-009-9163-2
10.1016/S1364-8152(98)00034-6
10.1016/j.ecolecon.2007.03.008
10.1016/j.eja.2007.01.008
10.1080/15567036.2010.514597
10.1016/S0360-1285(03)00058-3
10.1016/j.apenergy.2008.09.017
10.1016/j.coal.2007.09.003
10.1023/A:1005810619145
10.1016/S1352-2310(00)00367-8
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
7ST
C1K
SOI
DOI 10.1016/j.scitotenv.2012.10.110
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
AGRICOLA
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
Applied Sciences
EISSN 1879-1026
EndPage 519
ExternalDocumentID 27130020
10_1016_j_scitotenv_2012_10_110
S0048969712014295
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7S9
L.6
7ST
C1K
SOI
ID FETCH-LOGICAL-c411t-5fc2adbb34ceba9b1265a6040a1ba7cce51881bf246b07a413c6406837ed97513
IEDL.DBID .~1
ISSN 0048-9697
IngestDate Tue Oct 07 09:17:10 EDT 2025
Sun Sep 28 10:21:25 EDT 2025
Mon Jul 21 09:17:28 EDT 2025
Wed Oct 01 05:13:06 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Fri Feb 23 02:23:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Principal component regression
Annual PM10 emission forecasting
Multiple linear regression
Neural networks
Annual PM
Statistical analysis
Linear regression
Prediction
Regression analysis
Neural network
Pollutant emission
Optimization
Coarse particle
Statistical method
emission forecasting
Genetic algorithm
Particle emission
Aerosols
Principal component analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-5fc2adbb34ceba9b1265a6040a1ba7cce51881bf246b07a413c6406837ed97513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1365048073
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_1647010529
proquest_miscellaneous_1365048073
pascalfrancis_primary_27130020
crossref_primary_10_1016_j_scitotenv_2012_10_110
crossref_citationtrail_10_1016_j_scitotenv_2012_10_110
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2012_10_110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-15
PublicationDateYYYYMMDD 2013-01-15
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle The Science of the total environment
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References European Environment Agency (EEA) (bb0060) 2012
Lim, Moon, Kim (bb0135) 2007; 26
Scapellato, Canova, Simone, Carrieri, Maestrelli, Simonato (bb0170) 2009; 212
Böhringer, Jochem (bb0020) 2007; 63
European Commission (bb0045) 1999; 163
Grivas, Chaloulakou (bb0085) 2006; 40
Jakeman, Letcher, Norton (bb0105) 2006; 21
European Commission (bb0040) 1998; 350
International Fertilizer Industry Association (IFA) (bb0095) 2011
European Commission (bb0050) 2001; 309
Sfetsos, Vlachogiannis (bb0185) 2010; 44
Antanasijević D, Pocajt V, Popović I, Redžić N, Ristić M. The Forecasting of Municipal Waste Generation Using Artificial Neural Networks and Sustainability Indicators. Sustain Sci, in press. DOI
European Commission (bb0035) 1996; 257
Kim, Kim (bb0125) 2008; 351
U.S. Geological Survey (USGS) (bb0205) 2011; III
Radojević DM, Pocajt VV, Popović IG, Perić-Grujić AA, Ristić MDJ. Forecasting of greenhouse gas emissions in Serbia using Artificial neural networks. Energ Source Part A, in press. DOI
Schöpp, Amann, Cofala, Heyes, Klimont (bb0175) 1999; 14
Kalogirou (bb0110) 2003; 29
Russell, Dennis (bb0165) 2000; 34
Dennis, Fox, Fuentes, Gilliland, Hanna, Hogrefe (bb0030) 2010; 10
International Iron and Steel Institute (IISI) (bb0100) 2011
Karacan (bb0115) 2008; 73
Abdul-Wahab, Bakheit, Al-Alawi (bb0005) 2005; 20
Specht (bb0195) 1991; 2
Kassomenos, Karakitsios, Papaloukas (bb0120) 2006; 370
.
Palani, Liong, Tkalich (bb0145) 2008; 56
Schöpp, Klimont, Suutari, Cofala (bb0180) 2005; 8
European Environment Agency (EEA) (bb0055) 2009
Eurostat (bb0065) 2011
GAINS EUROPE (bb0075) 2012
Najafi, Ghobadian, Tavakoli, Buttsworth, Yusaf, Faizollahnejad (bb0140) 2009; 86
Pay, Jiménez-Guerrero, Baldasano (bb0155) 2012; 51
Eurostat (bb0070) 2012
U.S. Environmental Protection Agency (US EPA) (bb0200) 1995; I
Hanna, Lu, Frey, Wheeler, Vukovich, Arunachalam (bb0090) 2001; 35
Koo, Kim, Cho, Jang (bb0130) 2012; 58
Sözen, Gülseven, Arcaklioğlu (bb0190) 2009; 31
Patel, Kumar (bb0150) 1998; 53
Ciancarella, Briganti, Calori, Cappelletti, Cionni, Costa, Cremona, D'Elia, D'Isidoro, Finardi, Mauri, Mircea, Pace, Piersanti, Racalbuto, Radice, Righini, Vialetto, Vitali, Zanini (bb0025) 2011
GAINS EUROPE (bb0080) 2012
Al-Alawi, Abdul-Wahab, Bakheit (bb0010) 2008; 23
Voukantsis, Karatzas, Kukkonen, Räsänen, Karppinen, Kolehmainen (bb0210) 2011; 409
Ciancarella (10.1016/j.scitotenv.2012.10.110_bb0025) 2011
Eurostat (10.1016/j.scitotenv.2012.10.110_bb0070)
Karacan (10.1016/j.scitotenv.2012.10.110_bb0115) 2008; 73
GAINS EUROPE (10.1016/j.scitotenv.2012.10.110_bb0080)
Pay (10.1016/j.scitotenv.2012.10.110_bb0155) 2012; 51
Kalogirou (10.1016/j.scitotenv.2012.10.110_bb0110) 2003; 29
European Environment Agency (EEA) (10.1016/j.scitotenv.2012.10.110_bb0060)
10.1016/j.scitotenv.2012.10.110_bb0015
Hanna (10.1016/j.scitotenv.2012.10.110_bb0090) 2001; 35
Jakeman (10.1016/j.scitotenv.2012.10.110_bb0105) 2006; 21
European Commission (10.1016/j.scitotenv.2012.10.110_bb0040) 1998; 350
European Commission (10.1016/j.scitotenv.2012.10.110_bb0045) 1999; 163
Lim (10.1016/j.scitotenv.2012.10.110_bb0135) 2007; 26
Grivas (10.1016/j.scitotenv.2012.10.110_bb0085) 2006; 40
Dennis (10.1016/j.scitotenv.2012.10.110_bb0030) 2010; 10
European Environment Agency (EEA) (10.1016/j.scitotenv.2012.10.110_bb0055)
Russell (10.1016/j.scitotenv.2012.10.110_bb0165) 2000; 34
Schöpp (10.1016/j.scitotenv.2012.10.110_bb0180) 2005; 8
Sfetsos (10.1016/j.scitotenv.2012.10.110_bb0185) 2010; 44
Sözen (10.1016/j.scitotenv.2012.10.110_bb0190) 2009; 31
Palani (10.1016/j.scitotenv.2012.10.110_bb0145) 2008; 56
Scapellato (10.1016/j.scitotenv.2012.10.110_bb0170) 2009; 212
European Commission (10.1016/j.scitotenv.2012.10.110_bb0035) 1996; 257
Al-Alawi (10.1016/j.scitotenv.2012.10.110_bb0010) 2008; 23
Eurostat (10.1016/j.scitotenv.2012.10.110_bb0065)
U.S. Geological Survey (USGS) (10.1016/j.scitotenv.2012.10.110_bb0205) 2011; III
International Fertilizer Industry Association (IFA) (10.1016/j.scitotenv.2012.10.110_bb0095)
Kassomenos (10.1016/j.scitotenv.2012.10.110_bb0120) 2006; 370
Böhringer (10.1016/j.scitotenv.2012.10.110_bb0020) 2007; 63
GAINS EUROPE (10.1016/j.scitotenv.2012.10.110_bb0075)
Patel (10.1016/j.scitotenv.2012.10.110_bb0150) 1998; 53
Voukantsis (10.1016/j.scitotenv.2012.10.110_bb0210) 2011; 409
U.S. Environmental Protection Agency (US EPA) (10.1016/j.scitotenv.2012.10.110_bb0200) 1995; I
European Commission (10.1016/j.scitotenv.2012.10.110_bb0050) 2001; 309
10.1016/j.scitotenv.2012.10.110_bb0160
Kim (10.1016/j.scitotenv.2012.10.110_bb0125) 2008; 351
Najafi (10.1016/j.scitotenv.2012.10.110_bb0140) 2009; 86
Koo (10.1016/j.scitotenv.2012.10.110_bb0130) 2012; 58
Abdul-Wahab (10.1016/j.scitotenv.2012.10.110_bb0005) 2005; 20
International Iron and Steel Institute (IISI) (10.1016/j.scitotenv.2012.10.110_bb0100)
Schöpp (10.1016/j.scitotenv.2012.10.110_bb0175) 1999; 14
Specht (10.1016/j.scitotenv.2012.10.110_bb0195) 1991; 2
References_xml – year: 2011
  ident: bb0095
– volume: 23
  start-page: 396
  year: 2008
  end-page: 403
  ident: bb0010
  article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
  publication-title: Environ Modell Softw
– year: 2012
  ident: bb0060
– volume: 370
  start-page: 480
  year: 2006
  end-page: 490
  ident: bb0120
  article-title: Estimation of daily traffic emissions in a South-European urban agglomeration during a workday. Evaluation of several “what if” scenarios
  publication-title: Sci Total Environ
– volume: 309
  start-page: 22
  year: 2001
  end-page: 30
  ident: bb0050
  article-title: Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants
  publication-title: Official Journal of the European Communities
– volume: 26
  start-page: 425
  year: 2007
  end-page: 434
  ident: bb0135
  article-title: Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors
  publication-title: Eur J Agron
– volume: 86
  start-page: 630
  year: 2009
  end-page: 639
  ident: bb0140
  article-title: Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network
  publication-title: Appl Energy
– volume: 56
  start-page: 1586
  year: 2008
  end-page: 1597
  ident: bb0145
  article-title: An ANN aplication for water quality forecasting
  publication-title: Mar Pollut Bull
– reference: Antanasijević D, Pocajt V, Popović I, Redžić N, Ristić M. The Forecasting of Municipal Waste Generation Using Artificial Neural Networks and Sustainability Indicators. Sustain Sci, in press. DOI:
– volume: 63
  start-page: 1
  year: 2007
  end-page: 8
  ident: bb0020
  article-title: Measuring the immeasurable — a survey of sustainable indices
  publication-title: Ecol Econ
– volume: 44
  start-page: 3159
  year: 2010
  end-page: 3172
  ident: bb0185
  article-title: A new methodology development for the regulatory forecasting of PM
  publication-title: Atmos Environ
– volume: 51
  start-page: 146
  year: 2012
  end-page: 164
  ident: bb0155
  article-title: Assessing sensitivity regimes of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system
  publication-title: Atmos Environ
– year: 2011
  ident: bb0025
  article-title: National Italian integrated atmospheric model on air pollution: sensitivity to emission inventory
  publication-title: 14th conference on harmonisation within atmospheric dispersion modelling for regulatory purposes — 2–6 October 2011, Kos, Greece
– volume: 58
  start-page: 56
  year: 2012
  end-page: 69
  ident: bb0130
  article-title: Performance evaluation of the updated air quality forecasting system for Seoul predicting PM
  publication-title: Atmos Environ
– reference: Radojević DM, Pocajt VV, Popović IG, Perić-Grujić AA, Ristić MDJ. Forecasting of greenhouse gas emissions in Serbia using Artificial neural networks. Energ Source Part A, in press. DOI
– volume: 20
  start-page: 1263
  year: 2005
  end-page: 1271
  ident: bb0005
  article-title: Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations
  publication-title: Environ Modell Softw
– volume: 34
  start-page: 2283
  year: 2000
  end-page: 2324
  ident: bb0165
  article-title: NARSTO critical review of photochemical models and modeling
  publication-title: Atmos Environ
– volume: 350
  start-page: 1
  year: 1998
  end-page: 65
  ident: bb0040
  article-title: Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC
  publication-title: Official Journal of the European Communities
– volume: 29
  start-page: 515
  year: 2003
  end-page: 566
  ident: bb0110
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog Energ Combust
– volume: 257
  start-page: 26
  year: 1996
  end-page: 40
  ident: bb0035
  article-title: Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control
  publication-title: OJEC
– volume: 8
  start-page: 601
  year: 2005
  end-page: 613
  ident: bb0180
  article-title: Uncertainty analysis of emission estimates in the RAINS integrated assessment model
  publication-title: Environ Sci Policy
– volume: III
  year: 2011
  ident: bb0205
  publication-title: U.S. Geological Survey Minerals Yearbook—1999–2006
– volume: 14
  start-page: 1
  year: 1999
  end-page: 9
  ident: bb0175
  article-title: Integrated assessment of European air pollution emission control strategies
  publication-title: Environ Modell Softw
– volume: 163
  start-page: 41
  year: 1999
  end-page: 60
  ident: bb0045
  article-title: Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air
  publication-title: Official Journal of the European Communities
– volume: 351
  start-page: 299
  year: 2008
  end-page: 317
  ident: bb0125
  article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
  publication-title: J Hydrol
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: bb0195
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
– volume: 35
  start-page: 891
  year: 2001
  end-page: 903
  ident: bb0090
  article-title: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain
  publication-title: Atmos Environ
– year: 2012
  ident: bb0080
– year: 2012
  ident: bb0075
  article-title: RAINS review 2004
– reference: .
– volume: 40
  start-page: 1216
  year: 2006
  end-page: 1229
  ident: bb0085
  article-title: Artificial neural network models for prediction of PM
  publication-title: Atmos Environ
– volume: I
  year: 1995
  ident: bb0200
  article-title: AP 42
  publication-title: Compilation of air pollutant emission factors
– year: 2012
  ident: bb0070
– year: 2011
  ident: bb0100
  article-title: Steel Statistical Yearbook 1999–2006
– volume: 21
  start-page: 602
  year: 2006
  end-page: 614
  ident: bb0105
  article-title: Ten iterative steps in development and evaluation of environmental models
  publication-title: Environ Modell Softw
– year: 2009
  ident: bb0055
  article-title: EMEP/EEA emission inventory guidebook — 2009
– volume: 53
  start-page: 259
  year: 1998
  end-page: 277
  ident: bb0150
  article-title: Evaluation of three air dispersion models: ISCST2, ISCLT2, and SCREEN2 for mercury emissions in an urban area
  publication-title: Environ Monit Assess
– volume: 10
  start-page: 471
  year: 2010
  end-page: 489
  ident: bb0030
  article-title: A framework for evaluating regional-scale numerical photochemical modeling systems
  publication-title: Environ Fluid Mech
– volume: 73
  start-page: 371
  year: 2008
  end-page: 387
  ident: bb0115
  article-title: Modeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks
  publication-title: Int J Coal Geol
– volume: 31
  start-page: 1141
  year: 2009
  end-page: 1159
  ident: bb0190
  article-title: Estimation of GHG emissions in Turkey using energy and economic indicators
  publication-title: Energy Source Part A
– volume: 409
  start-page: 1266
  year: 2011
  end-page: 1276
  ident: bb0210
  article-title: Intercomparison of air quality data using principal component analysis, and forecasting of PM
  publication-title: Sci Total Environ
– year: 2011
  ident: bb0065
– volume: 212
  start-page: 626
  year: 2009
  end-page: 636
  ident: bb0170
  article-title: Personal PM
  publication-title: Int J Hyg Environ Health
– volume: 309
  start-page: 22
  year: 2001
  ident: 10.1016/j.scitotenv.2012.10.110_bb0050
  article-title: Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants
  publication-title: Official Journal of the European Communities
– volume: 40
  start-page: 1216
  year: 2006
  ident: 10.1016/j.scitotenv.2012.10.110_bb0085
  article-title: Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens Greece
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.10.036
– volume: 212
  start-page: 626
  year: 2009
  ident: 10.1016/j.scitotenv.2012.10.110_bb0170
  article-title: Personal PM10 exposure in asthmatic adults in Padova, Italy: seasonal variability and factors affecting individual concentrations of particulate matter
  publication-title: Int J Hyg Environ Health
  doi: 10.1016/j.ijheh.2009.06.001
– year: 2011
  ident: 10.1016/j.scitotenv.2012.10.110_bb0025
  article-title: National Italian integrated atmospheric model on air pollution: sensitivity to emission inventory
– ident: 10.1016/j.scitotenv.2012.10.110_bb0015
  doi: 10.1007/s11625-012-0161-9
– volume: 8
  start-page: 601
  year: 2005
  ident: 10.1016/j.scitotenv.2012.10.110_bb0180
  article-title: Uncertainty analysis of emission estimates in the RAINS integrated assessment model
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2005.06.008
– volume: 409
  start-page: 1266
  year: 2011
  ident: 10.1016/j.scitotenv.2012.10.110_bb0210
  article-title: Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.12.039
– volume: 20
  start-page: 1263
  year: 2005
  ident: 10.1016/j.scitotenv.2012.10.110_bb0005
  article-title: Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2004.09.001
– ident: 10.1016/j.scitotenv.2012.10.110_bb0065
– ident: 10.1016/j.scitotenv.2012.10.110_bb0060
– ident: 10.1016/j.scitotenv.2012.10.110_bb0080
– volume: 23
  start-page: 396
  year: 2008
  ident: 10.1016/j.scitotenv.2012.10.110_bb0010
  article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2006.08.007
– volume: 350
  start-page: 1
  year: 1998
  ident: 10.1016/j.scitotenv.2012.10.110_bb0040
  article-title: Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC
  publication-title: Official Journal of the European Communities
– volume: 31
  start-page: 1141
  year: 2009
  ident: 10.1016/j.scitotenv.2012.10.110_bb0190
  article-title: Estimation of GHG emissions in Turkey using energy and economic indicators
  publication-title: Energy Source Part A
  doi: 10.1080/15567030802089086
– volume: 56
  start-page: 1586
  year: 2008
  ident: 10.1016/j.scitotenv.2012.10.110_bb0145
  article-title: An ANN aplication for water quality forecasting
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2008.05.021
– volume: 370
  start-page: 480
  year: 2006
  ident: 10.1016/j.scitotenv.2012.10.110_bb0120
  article-title: Estimation of daily traffic emissions in a South-European urban agglomeration during a workday. Evaluation of several “what if” scenarios
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2006.08.018
– volume: 58
  start-page: 56
  year: 2012
  ident: 10.1016/j.scitotenv.2012.10.110_bb0130
  article-title: Performance evaluation of the updated air quality forecasting system for Seoul predicting PM10
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2012.02.004
– volume: 351
  start-page: 299
  year: 2008
  ident: 10.1016/j.scitotenv.2012.10.110_bb0125
  article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.12.014
– volume: 2
  start-page: 568
  year: 1991
  ident: 10.1016/j.scitotenv.2012.10.110_bb0195
  article-title: A general regression neural network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.97934
– ident: 10.1016/j.scitotenv.2012.10.110_bb0070
– volume: 163
  start-page: 41
  year: 1999
  ident: 10.1016/j.scitotenv.2012.10.110_bb0045
  article-title: Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air
  publication-title: Official Journal of the European Communities
– ident: 10.1016/j.scitotenv.2012.10.110_bb0075
– volume: 21
  start-page: 602
  year: 2006
  ident: 10.1016/j.scitotenv.2012.10.110_bb0105
  article-title: Ten iterative steps in development and evaluation of environmental models
  publication-title: Environ Modell Softw
  doi: 10.1016/j.envsoft.2006.01.004
– volume: 51
  start-page: 146
  year: 2012
  ident: 10.1016/j.scitotenv.2012.10.110_bb0155
  article-title: Assessing sensitivity regimes of secondary inorganic aerosol formation in Europe with the CALIOPE-EU modeling system
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2012.01.027
– ident: 10.1016/j.scitotenv.2012.10.110_bb0055
– volume: 34
  start-page: 2283
  year: 2000
  ident: 10.1016/j.scitotenv.2012.10.110_bb0165
  article-title: NARSTO critical review of photochemical models and modeling
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(99)00468-9
– volume: 44
  start-page: 3159
  year: 2010
  ident: 10.1016/j.scitotenv.2012.10.110_bb0185
  article-title: A new methodology development for the regulatory forecasting of PM10. Application in the Greater Athens Area, Greece
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2010.05.028
– ident: 10.1016/j.scitotenv.2012.10.110_bb0095
– volume: I
  year: 1995
  ident: 10.1016/j.scitotenv.2012.10.110_bb0200
  article-title: AP 42
– ident: 10.1016/j.scitotenv.2012.10.110_bb0100
– volume: 10
  start-page: 471
  year: 2010
  ident: 10.1016/j.scitotenv.2012.10.110_bb0030
  article-title: A framework for evaluating regional-scale numerical photochemical modeling systems
  publication-title: Environ Fluid Mech
  doi: 10.1007/s10652-009-9163-2
– volume: 14
  start-page: 1
  year: 1999
  ident: 10.1016/j.scitotenv.2012.10.110_bb0175
  article-title: Integrated assessment of European air pollution emission control strategies
  publication-title: Environ Modell Softw
  doi: 10.1016/S1364-8152(98)00034-6
– volume: 63
  start-page: 1
  year: 2007
  ident: 10.1016/j.scitotenv.2012.10.110_bb0020
  article-title: Measuring the immeasurable — a survey of sustainable indices
  publication-title: Ecol Econ
  doi: 10.1016/j.ecolecon.2007.03.008
– volume: 26
  start-page: 425
  year: 2007
  ident: 10.1016/j.scitotenv.2012.10.110_bb0135
  article-title: Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2007.01.008
– ident: 10.1016/j.scitotenv.2012.10.110_bb0160
  doi: 10.1080/15567036.2010.514597
– volume: 29
  start-page: 515
  year: 2003
  ident: 10.1016/j.scitotenv.2012.10.110_bb0110
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog Energ Combust
  doi: 10.1016/S0360-1285(03)00058-3
– volume: III
  year: 2011
  ident: 10.1016/j.scitotenv.2012.10.110_bb0205
– volume: 86
  start-page: 630
  year: 2009
  ident: 10.1016/j.scitotenv.2012.10.110_bb0140
  article-title: Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.09.017
– volume: 73
  start-page: 371
  year: 2008
  ident: 10.1016/j.scitotenv.2012.10.110_bb0115
  article-title: Modeling and prediction of ventilation methane emissions of U.S. longwall mines using supervised artificial neural networks
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2007.09.003
– volume: 53
  start-page: 259
  year: 1998
  ident: 10.1016/j.scitotenv.2012.10.110_bb0150
  article-title: Evaluation of three air dispersion models: ISCST2, ISCLT2, and SCREEN2 for mercury emissions in an urban area
  publication-title: Environ Monit Assess
  doi: 10.1023/A:1005810619145
– volume: 257
  start-page: 26
  year: 1996
  ident: 10.1016/j.scitotenv.2012.10.110_bb0035
  article-title: Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control
  publication-title: OJEC
– volume: 35
  start-page: 891
  year: 2001
  ident: 10.1016/j.scitotenv.2012.10.110_bb0090
  article-title: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain
  publication-title: Atmos Environ
  doi: 10.1016/S1352-2310(00)00367-8
SSID ssj0000781
Score 2.4734323
Snippet This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM10 emissions at the national level, using...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 511
SubjectTerms air pollution
algorithms
aluminum
Annual PM10 emission forecasting
Applied sciences
Atmospheric pollution
copper
emissions
energy
environmental indicators
European Union
Exact sciences and technology
gross domestic product
iron
Multiple linear regression
Neural networks
paperboard
Pollution
prediction
Principal component regression
regression analysis
steel
swine
wood
Title PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
URI https://dx.doi.org/10.1016/j.scitotenv.2012.10.110
https://www.proquest.com/docview/1365048073
https://www.proquest.com/docview/1647010529
Volume 443
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: ACRLP
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIKHN
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AKRWK
  dateStart: 19930115
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalY1AoY0tblv0IGuzVrSXLUrW3UlqyhZZRVto3Iylyl5LaoXYKe9nfvjvJTgll68OeDLEUG-l0d7K-7z5CPmuwEpcpkwjtYYOCOKpDq2zCbWnybGozHdQbzs7l-FJ8u86vN8hxz4VBWGXn-6NPD966--WgG82DxWyGHF9xqKVWDGIYeFUkmguhUMVg__cjzAOL2cRTZljY0HoN4wX_29aQmz4gxovvR1T83yLU9sI0MG5lFLx44rtDQDp9TV51mSQ9ii_7hmz4akBeRm3JXwOyd_JIYYNm3RpuBmQ7fqmjkYC0Q-bfz1hKUfYNP5xRSGK9Mw2ioSmC4m8oDkesM0Gx-mW4BOx4Q001pWCBSISkZn5T38_an3d0Vi2WLX2AXTjysmgNXumuo3vuksvTkx_H46TTYEicYKxN8tJxM7U2E85boy3jMjcSVr5h1ijnPBZ0Y7bkQtpUGQiJTkKOANteP9UqZ9ke2azqyr8lNPU6c0ZqYXInylRZXaYeuvncOMZLOySyH_fCdQXKUSdjXvRItNtiNWEFTli4wdIhSVcdF7FGx_NdvvQTW6yZWwGR5PnOozVTWD2UKzwc5NDgU28bBcweHsGYytfLpkBQYWDxZ_9oI4VC3VKu3_3PW74nWzxId7CE5R_IZnu_9B8hgWrtKKyQEXlx9HUyPsfr5OJq8gfNdSB8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKEQKpQrBQUR7FSFzTxo4d19xQ1WqBbsWhlXqzbK_TLtomqyZbiQu_nRk72WqFoAdOkZKZJLLH87C_mSHkowYp8YWymdABAhTEUR045TLuKiuLqSt07N4wOS3H5-LrhbzYIIdDLgzCKnvdn3R61Nb9nf1-NPcXsxnm-IoDXWrFwIaBVpUPyEMhucIIbO_XHc4Dq9mkY2ZY2UC-BvKCF3cNOKe3CPLiewkW_zcTtbWwLQxclTpe_KG8o0U6fkae9q4k_Zz-9jnZCPWIPErNJX-OyPbRXQ4bkPWLuB2RrbRVR1MG0gsy_z5hOcW-b7hzRsGLDd62CIemiIq_pDgeqdAExfKX8RLB4y219ZSCCGImJLXzy-Zm1l1d01m9WHb0FsJwTMyiDail6z7f8yU5Pz46OxxnfROGzAvGukxWntupc4XwwVntGC-lLWHpW-as8j5gRTfmKi5KlysLNtGX4CRA3BumWklWbJPNuqnDK0LzoAtvSy2s9KLKldNVHoAtSOsZr9wOKYdxN76vUI6NMuZmgKL9MKsJMzhh8QHLd0i-YlykIh33s3waJtasyZsBU3I_8-6aKKw-yhWeDnIg-DDIhoHZwzMYW4dm2RpEFcY0_uIfNKVQ2LiU69f_85fvyePx2eTEnHw5_faGPOGxjwfLmHxLNrubZXgH3lTnduNq-Q08qCBu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM10+emission+forecasting+using+artificial+neural+networks+and+genetic+algorithm+input+variable+optimization&rft.jtitle=The+Science+of+the+total+environment&rft.au=Antanasijevi%C4%87%2C+Davor+Z&rft.au=Pocajt%2C+Viktor+V&rft.au=Povrenovi%C4%87%2C+Dragan+S&rft.au=Risti%C4%87%2C+Mirjana+%C4%90&rft.date=2013-01-15&rft.issn=0048-9697&rft.volume=443+p.511-519&rft.spage=511&rft.epage=519&rft_id=info:doi/10.1016%2Fj.scitotenv.2012.10.110&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon