An algorithm for non-parametric estimation in state–space models
State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric mod...
Saved in:
| Published in | Computational statistics & data analysis Vol. 153; p. 107062 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-9473 1872-7352 1872-7352 |
| DOI | 10.1016/j.csda.2020.107062 |
Cover
| Abstract | State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state–space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state–space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation–Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state–space models. The performance of the proposed algorithm is assessed though simulations on toy models and an application to environmental data is discussed. |
|---|---|
| AbstractList | State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state–space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state–space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation–Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state–space models. The performance of the proposed algorithm is assessed though simulations on toy models and an application to environmental data is discussed. |
| ArticleNumber | 107062 |
| Author | Ailliot, Pierre Monbet, Valérie Chau, Thi Tuyet Trang |
| Author_xml | – sequence: 1 givenname: Thi Tuyet Trang orcidid: 0000-0003-0102-7427 surname: Chau fullname: Chau, Thi Tuyet Trang email: trang.chau@lsce.ipsl.fr organization: IRMAR-INRIA, University of Rennes, Rennes, France – sequence: 2 givenname: Pierre surname: Ailliot fullname: Ailliot, Pierre email: pierre.ailliot@univ-brest.fr organization: Univ Brest, CNRS, LMBA - UMR 6205, Brest, France – sequence: 3 givenname: Valérie surname: Monbet fullname: Monbet, Valérie email: valerie.monbet@univ-rennes1.fr organization: IRMAR-INRIA, University of Rennes, Rennes, France |
| BackLink | https://hal.science/hal-02975833$$DView record in HAL |
| BookMark | eNqNkMuKFDEUQIPMgD2PH3BVS11Um0elUwVu2kEdocGNsw43yS0nTVWlTNIjs_Mf_EO_xJQlCC4GswmEcy4354KcTWFCQl4wumWU7V4ftzY52HLKlwdFd_wZ2bBW8VoJyc_IpkCq7holnpOLlI6UUt6odkPe7qcKhi8h-nw_Vn2IVZlczxBhxBy9rTBlP0L2Yar8VKUMGX9-_5FmsFiNweGQrsh5D0PC6z_3Jbl7_-7zzW19-PTh483-UNuGsVzznTSS00YiB-qEsZaZ3na0c0K0sjddX45RygBK54AZRzvTCWkEU7ZRRlwSsc49TTM8foNh0HMsu8VHzaheMuijXjLoJYNeMxTr1Wrdw18-gNe3-4Ne3ijvlGyFeGCFfbmycwxfT-XnevTJ4jDAhOGUNG-6lkslaFNQvqI2hpQi9v-3S_uPZH3-3TZH8MPT6ptVLcHxwWPUyXqcLDof0Wbtgn9K_wV0xqhV |
| CitedBy_id | crossref_primary_10_1155_2022_7383074 crossref_primary_10_3390_forecast6010003 crossref_primary_10_1063_5_0086255 crossref_primary_10_3390_app14041515 crossref_primary_10_1016_j_artmed_2024_102826 crossref_primary_10_1007_s40435_021_00804_5 crossref_primary_10_3390_en14092551 |
| Cites_doi | 10.1038/s41467-017-00030-8 10.1016/j.ifacol.2015.12.257 10.1080/00031305.1992.10475879 10.1016/j.jeconom.2017.06.009 10.1080/01621459.1988.10478639 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/j.csda.2010.04.002 10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-# 10.5194/gmd-7-531-2014 10.1016/j.ijome.2013.11.010 10.1111/j.1467-9868.2009.00736.x 10.1214/14-STS511 10.1002/qj.3048 10.1080/00949650214669 10.1175/MWR-D-16-0441.1 10.1080/01621459.1990.10474930 10.1146/annurev-statistics-031017-100232 10.1109/JPROC.2007.893250 10.1002/wcc.535 10.1175/MWR-D-12-00223.1 10.1561/2200000045 10.1111/j.2517-6161.1977.tb01600.x 10.1198/jcgs.2009.07175 10.1017/apr.2016.77 10.1198/016214504000000151 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7S9 L.6 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.csda.2020.107062 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-7352 |
| ExternalDocumentID | 10.1016/j.csda.2020.107062 oai:HAL:hal-02975833v1 10_1016_j_csda_2020_107062 S0167947320301535 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SST SSV SSW SSZ T5K VH1 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c411t-265b52045e2a0d3bcc1bfc909d3385fb9ffffb77bae5dda1bd09b935b317c47b3 |
| IEDL.DBID | UNPAY |
| ISSN | 0167-9473 1872-7352 |
| IngestDate | Sun Oct 26 02:54:46 EDT 2025 Tue Oct 14 20:56:59 EDT 2025 Sat Sep 27 20:41:53 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Thu Oct 02 04:32:47 EDT 2025 Fri Feb 23 02:47:18 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Conditional particle filter State–space models Non-parametric statistics Local linear regression SEM algorithm |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-265b52045e2a0d3bcc1bfc909d3385fb9ffffb77bae5dda1bd09b935b317c47b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0102-7427 0000-0001-7365-9189 0000-0002-7883-6970 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0167947320301535?via%3Dihub |
| PQID | 2498257304 |
| PQPubID | 24069 |
| ParticipantIDs | unpaywall_primary_10_1016_j_csda_2020_107062 hal_primary_oai_HAL_hal_02975833v1 proquest_miscellaneous_2498257304 crossref_primary_10_1016_j_csda_2020_107062 crossref_citationtrail_10_1016_j_csda_2020_107062 elsevier_sciencedirect_doi_10_1016_j_csda_2020_107062 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 2021-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational statistics & data analysis |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Bocquet, Brajard, Carrassi, Bertino (b5) 2019; 2019 Lindsten, Schön, Jordan (b25) 2012 Andrieu, Doucet, Holenstein (b2) 2010; 72 Delyon, Lavielle, Moulines (b13) 1999 Chau, Ailliot, Monbet, Tandeo (b11) 2018 Lguensat, Tandeo, Ailliot, Pulido, Fablet (b24) 2017; 145 Carroll, Ruppert, Crainiceanu, Stefanski (b10) 2006 Meijer, Spierdijk, Wansbeek (b28) 2013 Svensson, Schön, Kok (b31) 2015; 48 Tandeo, Ailliot, Ruiz, Hannart, Chapron, Cuzol, Monbet, Easton, Fablet (b32) 2015 Durbin, Koopman (b16) 2012 Fan, Yao (b19) 2008 Beskos, Crisan, Jasra, Kamatani, Zhou (b4) 2017; 49 Cleveland, Devlin (b12) 1988; 83 Fearnhead, Künsch (b20) 2018; 5 Brunton, Brunton, Proctor, Kaiser, Kutz (b7) 2017; 8 Carrassi, Bocquet, Bertino, Evensen (b9) 2018 Altman (b1) 1992; 46 Yiou (b35) 2014; 7 Lee, Moon, Zhou (b23) 2017; 200 Dreano, Tandeo, Pulido, Ait-El-Fquih, Chonavel, Hoteit (b15) 2017; 143 Fablet, Ouala, Herzet (b17) 2017 Tippett, DelSole (b33) 2013; 141 Musser (b29) 1997; 27 Lorenz (b27) 1963; 20 Kantas, Doucet, Singh, Maciejowski, Chopin (b22) 2015; 30 Godsill, Doucet, West (b21) 2004; 99 Young, Hunter (b36) 2010; 54 Cappé, Godsill, Moulines (b8) 2007; 95 Fablet, Viet, Lguensat (b18) 2017; 3 Wei, Tanner (b34) 1990; 85 Zhang (b37) 2002; 72 Lindsten, Schön (b26) 2013; 6 Dempster, Laird, Rubin (b14) 1977 O’Carroll (b30) 1984; 33 Boudière, Maisondieu, Ardhuin, Accensi, Pineau-Guillou, Lepesqueur (b6) 2013; 3 Benaglia, Chauveau, Hunter (b3) 2009; 18 Fablet (10.1016/j.csda.2020.107062_b17) 2017 Fablet (10.1016/j.csda.2020.107062_b18) 2017; 3 Bocquet (10.1016/j.csda.2020.107062_b5) 2019; 2019 Benaglia (10.1016/j.csda.2020.107062_b3) 2009; 18 Carrassi (10.1016/j.csda.2020.107062_b9) 2018 Young (10.1016/j.csda.2020.107062_b36) 2010; 54 Delyon (10.1016/j.csda.2020.107062_b13) 1999 Lguensat (10.1016/j.csda.2020.107062_b24) 2017; 145 Svensson (10.1016/j.csda.2020.107062_b31) 2015; 48 Zhang (10.1016/j.csda.2020.107062_b37) 2002; 72 O’Carroll (10.1016/j.csda.2020.107062_b30) 1984; 33 Chau (10.1016/j.csda.2020.107062_b11) 2018 Godsill (10.1016/j.csda.2020.107062_b21) 2004; 99 Dreano (10.1016/j.csda.2020.107062_b15) 2017; 143 Fearnhead (10.1016/j.csda.2020.107062_b20) 2018; 5 Lindsten (10.1016/j.csda.2020.107062_b26) 2013; 6 Durbin (10.1016/j.csda.2020.107062_b16) 2012 Lindsten (10.1016/j.csda.2020.107062_b25) 2012 Meijer (10.1016/j.csda.2020.107062_b28) 2013 Tippett (10.1016/j.csda.2020.107062_b33) 2013; 141 Yiou (10.1016/j.csda.2020.107062_b35) 2014; 7 Andrieu (10.1016/j.csda.2020.107062_b2) 2010; 72 Brunton (10.1016/j.csda.2020.107062_b7) 2017; 8 Boudière (10.1016/j.csda.2020.107062_b6) 2013; 3 Beskos (10.1016/j.csda.2020.107062_b4) 2017; 49 Cleveland (10.1016/j.csda.2020.107062_b12) 1988; 83 Musser (10.1016/j.csda.2020.107062_b29) 1997; 27 Lee (10.1016/j.csda.2020.107062_b23) 2017; 200 Fan (10.1016/j.csda.2020.107062_b19) 2008 Kantas (10.1016/j.csda.2020.107062_b22) 2015; 30 Wei (10.1016/j.csda.2020.107062_b34) 1990; 85 Carroll (10.1016/j.csda.2020.107062_b10) 2006 Cappé (10.1016/j.csda.2020.107062_b8) 2007; 95 Lorenz (10.1016/j.csda.2020.107062_b27) 1963; 20 Dempster (10.1016/j.csda.2020.107062_b14) 1977 Tandeo (10.1016/j.csda.2020.107062_b32) 2015 Altman (10.1016/j.csda.2020.107062_b1) 1992; 46 |
| References_xml | – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: b27 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. – volume: 30 start-page: 328 year: 2015 end-page: 351 ident: b22 article-title: On particle methods for parameter estimation in state-space models publication-title: Statist. Sci. – volume: 141 start-page: 2519 year: 2013 end-page: 2525 ident: b33 article-title: Constructed analogs and linear regression publication-title: Mon. Weather Rev. – year: 2008 ident: b19 article-title: Nonlinear Time Series: Nonparametric and Parametric Methods – volume: 49 start-page: 24 year: 2017 end-page: 48 ident: b4 article-title: A stable particle filter for a class of high-dimensional state-space models publication-title: Adv. Appl. Probab. – volume: 7 start-page: 531 year: 2014 end-page: 543 ident: b35 article-title: Anawege: a weather generator based on analogues of atmospheric circulation publication-title: Geosci. Model Dev. – start-page: 77 year: 2013 end-page: 92 ident: b28 article-title: Measurement error in the linear dynamic panel data model publication-title: ISS-2012 Proceedings Volume on Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers – year: 2017 ident: b17 article-title: Bilinear residual Neural Network for the identification and forecasting of dynamical systems – volume: 3 start-page: e40 year: 2013 end-page: e52 ident: b6 article-title: A suitable metocean hindcast database for the design of Marine energy converters publication-title: Int. J. Mar. Energy – volume: 72 start-page: 791 year: 2002 end-page: 802 ident: b37 article-title: An EM algorithm for a semiparametric finite mixture model publication-title: J. Stat. Comput. Simul. – start-page: 1 year: 1977 end-page: 38 ident: b14 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Statist. Soc. Ser. B Methodol. – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: b1 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer. Statist. – volume: 5 start-page: 421 year: 2018 end-page: 449 ident: b20 article-title: Particle filters and data assimilation publication-title: Annu. Rev. Stat. Appl. – volume: 99 start-page: 156 year: 2004 end-page: 168 ident: b21 article-title: Monte Carlo smoothing for nonlinear time series publication-title: J. Am. Statist. Assoc. – volume: 18 start-page: 505 year: 2009 end-page: 526 ident: b3 article-title: An EM-like algorithm for semi-and nonparametric estimation in multivariate mixtures publication-title: J. Comput. Graph. Statist. – start-page: 2591 year: 2012 end-page: 2599 ident: b25 article-title: Ancestor sampling for particle gibbs publication-title: Advances in Neural Information Processing Systems – volume: 54 start-page: 2253 year: 2010 end-page: 2266 ident: b36 article-title: Mixtures of regressions with predictor-dependent mixing proportions publication-title: Comput. Statist. Data Anal. – year: 2006 ident: b10 article-title: Measurement Error in Nonlinear Models: A Modern Perspective – volume: 83 start-page: 596 year: 1988 end-page: 610 ident: b12 article-title: Locally weighted regression: an approach to regression analysis by local fitting publication-title: J. Am. Statist. Assoc. – volume: 33 start-page: 161 year: 1984 end-page: 169 ident: b30 article-title: Weather modelling for offshore operations publication-title: J. R. Statist. Soc.: Ser. D Statist. – volume: 145 start-page: 4093 year: 2017 end-page: 4107 ident: b24 article-title: The analog data assimilation publication-title: Mon. Weather Rev. – volume: 2019 start-page: 1 year: 2019 end-page: 29 ident: b5 article-title: Data assimilation as a deep learning tool to infer ODE representations of dynamical models publication-title: Nonlinear Process. Geophys. Discuss. – year: 2012 ident: b16 article-title: Time Series Analysis by State Space Methods, Vol. 38 – start-page: e535 year: 2018 ident: b9 article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives publication-title: Wiley Interdiscip. Rev. Clim. Change – year: 2018 ident: b11 article-title: An efficient particle-based method for maximum likelihood estimation in nonlinear state-space models – start-page: 94 year: 1999 end-page: 128 ident: b13 article-title: Convergence of a stochastic approximation version of the EM algorithm publication-title: Ann. Statist. – volume: 27 start-page: 983 year: 1997 end-page: 993 ident: b29 article-title: Introspective sorting and selection algorithms publication-title: Softw. - Pract. Exp. – volume: 200 start-page: 251 year: 2017 end-page: 259 ident: b23 article-title: Many IVs estimation of dynamic panel regression models with measurement error publication-title: J. Econometrics – volume: 72 start-page: 269 year: 2010 end-page: 342 ident: b2 article-title: Particle Markov chain Monte Carlo methods publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 8 start-page: 19 year: 2017 ident: b7 article-title: Chaos as an intermittently forced linear system publication-title: Nat. Commun. – volume: 95 start-page: 899 year: 2007 end-page: 924 ident: b8 article-title: An overview of existing methods and recent advances in sequential Monte Carlo publication-title: Proc. IEEE – volume: 143 start-page: 1877 year: 2017 end-page: 1885 ident: b15 article-title: Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation–maximization algorithm publication-title: Q. J. R. Meteorol. Soc. – volume: 3 start-page: 647 year: 2017 end-page: 657 ident: b18 article-title: Data-driven models for the spatio-temporal interpolation of satellite-derived SST fields publication-title: IEEE Trans. Comput. Imag. – volume: 6 start-page: 1 year: 2013 end-page: 143 ident: b26 article-title: Backward simulation methods for Monte Carlo statistical inference publication-title: Found. Trends® Mach. Learn. – start-page: 3 year: 2015 end-page: 12 ident: b32 article-title: Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system publication-title: Machine Learning and Data Mining Approaches to Climate Science – volume: 85 start-page: 699 year: 1990 end-page: 704 ident: b34 article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms publication-title: J. Am. Statist. Assoc. – volume: 48 start-page: 975 year: 2015 end-page: 980 ident: b31 article-title: Nonlinear state space smoothing using the conditional particle filter publication-title: IFAC-PapersOnLine – start-page: 94 year: 1999 ident: 10.1016/j.csda.2020.107062_b13 article-title: Convergence of a stochastic approximation version of the EM algorithm publication-title: Ann. Statist. – volume: 33 start-page: 161 issue: 1 year: 1984 ident: 10.1016/j.csda.2020.107062_b30 article-title: Weather modelling for offshore operations publication-title: J. R. Statist. Soc.: Ser. D Statist. – volume: 8 start-page: 19 issue: 1 year: 2017 ident: 10.1016/j.csda.2020.107062_b7 article-title: Chaos as an intermittently forced linear system publication-title: Nat. Commun. doi: 10.1038/s41467-017-00030-8 – volume: 48 start-page: 975 issue: 28 year: 2015 ident: 10.1016/j.csda.2020.107062_b31 article-title: Nonlinear state space smoothing using the conditional particle filter publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.12.257 – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.csda.2020.107062_b1 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer. Statist. doi: 10.1080/00031305.1992.10475879 – volume: 200 start-page: 251 issue: 2 year: 2017 ident: 10.1016/j.csda.2020.107062_b23 article-title: Many IVs estimation of dynamic panel regression models with measurement error publication-title: J. Econometrics doi: 10.1016/j.jeconom.2017.06.009 – volume: 83 start-page: 596 issue: 403 year: 1988 ident: 10.1016/j.csda.2020.107062_b12 article-title: Locally weighted regression: an approach to regression analysis by local fitting publication-title: J. Am. Statist. Assoc. doi: 10.1080/01621459.1988.10478639 – year: 2017 ident: 10.1016/j.csda.2020.107062_b17 – volume: 20 start-page: 130 issue: 2 year: 1963 ident: 10.1016/j.csda.2020.107062_b27 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – year: 2012 ident: 10.1016/j.csda.2020.107062_b16 – volume: 54 start-page: 2253 issue: 10 year: 2010 ident: 10.1016/j.csda.2020.107062_b36 article-title: Mixtures of regressions with predictor-dependent mixing proportions publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2010.04.002 – volume: 27 start-page: 983 issue: 8 year: 1997 ident: 10.1016/j.csda.2020.107062_b29 article-title: Introspective sorting and selection algorithms publication-title: Softw. - Pract. Exp. doi: 10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-# – year: 2008 ident: 10.1016/j.csda.2020.107062_b19 – volume: 7 start-page: 531 issue: 2 year: 2014 ident: 10.1016/j.csda.2020.107062_b35 article-title: Anawege: a weather generator based on analogues of atmospheric circulation publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-531-2014 – volume: 3 start-page: e40 year: 2013 ident: 10.1016/j.csda.2020.107062_b6 article-title: A suitable metocean hindcast database for the design of Marine energy converters publication-title: Int. J. Mar. Energy doi: 10.1016/j.ijome.2013.11.010 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.csda.2020.107062_b5 article-title: Data assimilation as a deep learning tool to infer ODE representations of dynamical models publication-title: Nonlinear Process. Geophys. Discuss. – volume: 72 start-page: 269 issue: 3 year: 2010 ident: 10.1016/j.csda.2020.107062_b2 article-title: Particle Markov chain Monte Carlo methods publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2009.00736.x – year: 2006 ident: 10.1016/j.csda.2020.107062_b10 – start-page: 77 year: 2013 ident: 10.1016/j.csda.2020.107062_b28 article-title: Measurement error in the linear dynamic panel data model – year: 2018 ident: 10.1016/j.csda.2020.107062_b11 – volume: 30 start-page: 328 issue: 3 year: 2015 ident: 10.1016/j.csda.2020.107062_b22 article-title: On particle methods for parameter estimation in state-space models publication-title: Statist. Sci. doi: 10.1214/14-STS511 – start-page: 3 year: 2015 ident: 10.1016/j.csda.2020.107062_b32 article-title: Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system – volume: 143 start-page: 1877 issue: 705 year: 2017 ident: 10.1016/j.csda.2020.107062_b15 article-title: Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation–maximization algorithm publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3048 – volume: 72 start-page: 791 issue: 10 year: 2002 ident: 10.1016/j.csda.2020.107062_b37 article-title: An EM algorithm for a semiparametric finite mixture model publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949650214669 – volume: 145 start-page: 4093 issue: 10 year: 2017 ident: 10.1016/j.csda.2020.107062_b24 article-title: The analog data assimilation publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-16-0441.1 – volume: 85 start-page: 699 issue: 411 year: 1990 ident: 10.1016/j.csda.2020.107062_b34 article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms publication-title: J. Am. Statist. Assoc. doi: 10.1080/01621459.1990.10474930 – volume: 5 start-page: 421 year: 2018 ident: 10.1016/j.csda.2020.107062_b20 article-title: Particle filters and data assimilation publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-031017-100232 – volume: 95 start-page: 899 issue: 5 year: 2007 ident: 10.1016/j.csda.2020.107062_b8 article-title: An overview of existing methods and recent advances in sequential Monte Carlo publication-title: Proc. IEEE doi: 10.1109/JPROC.2007.893250 – start-page: e535 year: 2018 ident: 10.1016/j.csda.2020.107062_b9 article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives publication-title: Wiley Interdiscip. Rev. Clim. Change doi: 10.1002/wcc.535 – volume: 141 start-page: 2519 issue: 7 year: 2013 ident: 10.1016/j.csda.2020.107062_b33 article-title: Constructed analogs and linear regression publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-12-00223.1 – volume: 3 start-page: 647 issue: 4 year: 2017 ident: 10.1016/j.csda.2020.107062_b18 article-title: Data-driven models for the spatio-temporal interpolation of satellite-derived SST fields publication-title: IEEE Trans. Comput. Imag. – volume: 6 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.csda.2020.107062_b26 article-title: Backward simulation methods for Monte Carlo statistical inference publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000045 – start-page: 1 year: 1977 ident: 10.1016/j.csda.2020.107062_b14 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Statist. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 18 start-page: 505 issue: 2 year: 2009 ident: 10.1016/j.csda.2020.107062_b3 article-title: An EM-like algorithm for semi-and nonparametric estimation in multivariate mixtures publication-title: J. Comput. Graph. Statist. doi: 10.1198/jcgs.2009.07175 – volume: 49 start-page: 24 issue: 1 year: 2017 ident: 10.1016/j.csda.2020.107062_b4 article-title: A stable particle filter for a class of high-dimensional state-space models publication-title: Adv. Appl. Probab. doi: 10.1017/apr.2016.77 – start-page: 2591 year: 2012 ident: 10.1016/j.csda.2020.107062_b25 article-title: Ancestor sampling for particle gibbs – volume: 99 start-page: 156 issue: 465 year: 2004 ident: 10.1016/j.csda.2020.107062_b21 article-title: Monte Carlo smoothing for nonlinear time series publication-title: J. Am. Statist. Assoc. doi: 10.1198/016214504000000151 |
| SSID | ssj0002478 |
| Score | 2.3491812 |
| Snippet | State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In... |
| SourceID | unpaywall hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107062 |
| SubjectTerms | algorithms Conditional particle filter Continental interfaces, environment estimation lead literature Local linear regression methodology Non-parametric statistics Ocean, Atmosphere Sciences of the Universe SEM algorithm State–space models statistical inference time series analysis |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZYLsAB8RTlJbPa225o4tgxPhYEqhDsZUHiZvkV6KqEatuCuCD-A_-QX8JMHgUOILQ5WrYymnHGM_E33xDyQxqWZ2m-F4lgeMRV7COTiRBBypw7YXORcawdPv2ddc_58YW4mCIHTS0Mwipr31_59NJb1yPtWpvtQa_X_oMAesVlyjCqFykWmnMusYvB7sMrzIPxyhsjvzfOrgtnKoyXG3rkHmI4IOOMfXQ4fbtClOSbEHRmXAzM_Z3p99-cRkcLZL4OI2mnknSRTIViicydTjhYh8tkv1NQ07-8gez_6ppCbEoh04-Q6vsau2g5ivwaVeEi7RW0rCx6fnwCD-MCLRvkDFfI-dHh2UE3qjsmRI4nyShimbACCeYDM7FPrXOJzZ2KlYdMVORW5fBYKa0JwnuTWB8rq1JhIYpwXNp0lUyDLGGNUJmpwAQLLPWBO-9VDIncngux9DbwwFokaVSlXU0njl0t-rrBjf3VqF6N6tWVelvk52TNoCLT-HS2aCyg320JDd7-03XfwVyTFyB_drdzonEMO3Vhmdlt0iI7jTU1fFB4S2KKcDMeashHIWsGx8db5NfEzF-Qd_0_5d0gswyBMuV_nU0yPfo3DlsQ6YzsdrmVXwCCxPqn priority: 102 providerName: Elsevier |
| Title | An algorithm for non-parametric estimation in state–space models |
| URI | https://dx.doi.org/10.1016/j.csda.2020.107062 https://www.proquest.com/docview/2498257304 https://hal.science/hal-02975833 https://www.sciencedirect.com/science/article/am/pii/S0167947320301535?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 153 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7352 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002478 issn: 1872-7352 databaseCode: AKRWK dateStart: 19830301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5t2wPiwBvRFVQBwQnSJo6dNCcUHqtC2YpXxXKy_ArN0qZVmyyCA-I_8A_5JXiapFqQWIFELpGssWJn7PE38sw3AHcjQdIwSIcuM4K6NPa0K0JmXOsyp4rJlIUUc4cPJ-FoSp8fsaM9eNXkwmBYZW37K5u-tdZ1y6D-mwOxGKyybPAGY-hjGgUEgT0L2MOTTNwLnmSzUragEzILz9vQmU5eJu8bjm8URydsGFlkadFHnUhTxXypjUYuIoINkReSPx1WrRlGTZ6CpOfKfCU-fxLz-anT6eAirJt5VUEpH_tlIfvqy2-Uj_914pfgQo1lnaTqdRn2TH4Fzh_uiGA3V-FRkjti_mG5zorZwrEA2cmXuYt84wss5aUcJPmosiedLHe26U0_vn23Zk4ZZ1ulZ3MNpgdP3z4euXXZBldR3y9cEjLJkOXeEOHpQCrly1TFXqytO8xSGaf2kVEkhWFaC19qL5ZxwKSFMopGMrgObTsWcwOcKIwNYcSQQBuqtI49600OlfEiLQ01pAt-ox-uak5zLK0x503w2jFHnXLUKa902oX7uz6ritHjTGnWqJ3_oh5uj5wz-92xa2T3ASTxHiUvOLZhuTDMdTvxu3C7WULc7mq8qhG5WZYbbp1i67pb60u78GC3tv5ivPv_Jn4T2sW6NLcssCpkD1r9r34POsmz8WiC7_Hrd-NevYF-AkVVJtk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB615VA4VDxFWh4GcYMlu157XR9DRRUg6YVW6s3ya9ugdBuRpIgL4j_wD_tLOrOPUA5UiD1atnY04x3Pt575BuCVsrws8nI3kdGKROg0JLaQMUHIXHrpSlkIqh0eHxTDI_HxWB6vwV5XC0Npla3vb3x67a3bkX6rzf5sMul_pgR6LVTOKaqXuVyHW0JyRQjs7Y_feR5cNO6YCL5pels50yR5-Xkg8iFOAyot-N9Op_VTSpO8FoNuLquZ_f7NTqfXjqP9u7DVxpFs0Ih6D9ZidR_ujFckrPMH8G5QMTs9OUf4f3rGMDhlCPUT4vo-ozZanhHBRlO5yCYVq0uLLn_-QhfjI6s75MwfwtH--8O9YdK2TEi8yLJFwgvpJDHMR27TkDvvM1d6neqAUFSWTpf4OKWcjTIEm7mQaqdz6TCM8EK5_BFsoCzxMTBV6MgljzwPUfgQdIpIbtfHVAUXReQ9yDpVGd_yiVNbi6npEse-GFKvIfWaRr09eL1aM2vYNG6cLTsLmD_2hEF3f-O6l2iu1QuIQHs4GBkao1ZdVGd2kfXgRWdNg18UXZPYKp4v5wYBKcJm9HyiB29WZv4Hebf_U97nsDk8HI_M6MPBpx24zSlrpv7J8wQ2Fl-X8SmGPQv3rN7WVywy_co |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7tdg-IA2-0RYAMghNkmzh2XJ9QeawqxK5AUGk5WX6FBtq0apNFcOI_8A_5JXiapFqQWIFEjiNbsTP2zDfKzDcAD4SmeZbmw4h7zSImYxfpjPsohMy55SbnGcPa4aPjbDxhL0_4yQ686WphMK2ytf2NTd9Y61YyaL_mQM8Hy6IYvMUceslEShHY85Q_OS30w_R5Ma3NLuxlPMDzHuxNjl-P3ncc3zgcg7ChCMgyoI-2kKbJ-bJrh1xEFAUizuifnNXuFLMmz0DSC3W51F8-69nsjHc6vAyrbl9NUsqng7oyB_brb5SP_3XjV-BSi2XJqJl1FXZ8eQ0uHm2JYNfX4emoJHr2YbEqqumcBIBMykUZId_4HFt5WYIkH031JClKsilv-vHtezBz1pNNl571DZgcvnj3bBy1bRsiy5KkimjGDUeWe0917FJjbWJyK2PpQjjMcyPz8BghjPbcOZ0YF0sjU24ClLFMmPQm9MJa_D4QkUlPOfU0dZ5Z52Qcosmh9bFwxjNP-5B0-lG25TTH1hoz1SWvfVSoU4U6VY1O-_BoO2fZMHqcO5p3ale_qEcFl3PuvPvhjGxfgCTe49ErhTJsF4a1bqdJH-51R0iFW42_anTpF_VahaA4hO7B-rI-PN6erb9Y761_G34betWq9ncCsKrM3faq_AQkySKq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+non-parametric+estimation+in+state%E2%80%93space+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Chau%2C+Thi+Tuyet+Trang&rft.au=Ailliot%2C+Pierre&rft.au=Monbet%2C+Val%C3%A9rie&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=0167-9473&rft.volume=153&rft_id=info:doi/10.1016%2Fj.csda.2020.107062&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02975833v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon |