An algorithm for non-parametric estimation in state–space models

State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric mod...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 153; p. 107062
Main Authors Chau, Thi Tuyet Trang, Ailliot, Pierre, Monbet, Valérie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2021
Elsevier
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
1872-7352
DOI10.1016/j.csda.2020.107062

Cover

Abstract State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state–space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state–space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation–Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state–space models. The performance of the proposed algorithm is assessed though simulations on toy models and an application to environmental data is discussed.
AbstractList State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In most practical applications, the state–space model is specified through a parametric model. However, the specification of such a parametric model may require an important modeling effort or may lead to models which are not flexible enough to reproduce all the complexity of the phenomenon of interest. In such situations, an appealing alternative consists in inferring the state–space model directly from the data using a non-parametric framework. The recent developments of powerful simulation techniques have permitted to improve the statistical inference for parametric state–space models. It is proposed to combine two of these techniques, namely the Stochastic Expectation–Maximization (SEM) algorithm and Sequential Monte Carlo (SMC) approaches, for non-parametric estimation in state–space models. The performance of the proposed algorithm is assessed though simulations on toy models and an application to environmental data is discussed.
ArticleNumber 107062
Author Ailliot, Pierre
Monbet, Valérie
Chau, Thi Tuyet Trang
Author_xml – sequence: 1
  givenname: Thi Tuyet Trang
  orcidid: 0000-0003-0102-7427
  surname: Chau
  fullname: Chau, Thi Tuyet Trang
  email: trang.chau@lsce.ipsl.fr
  organization: IRMAR-INRIA, University of Rennes, Rennes, France
– sequence: 2
  givenname: Pierre
  surname: Ailliot
  fullname: Ailliot, Pierre
  email: pierre.ailliot@univ-brest.fr
  organization: Univ Brest, CNRS, LMBA - UMR 6205, Brest, France
– sequence: 3
  givenname: Valérie
  surname: Monbet
  fullname: Monbet, Valérie
  email: valerie.monbet@univ-rennes1.fr
  organization: IRMAR-INRIA, University of Rennes, Rennes, France
BackLink https://hal.science/hal-02975833$$DView record in HAL
BookMark eNqNkMuKFDEUQIPMgD2PH3BVS11Um0elUwVu2kEdocGNsw43yS0nTVWlTNIjs_Mf_EO_xJQlCC4GswmEcy4354KcTWFCQl4wumWU7V4ftzY52HLKlwdFd_wZ2bBW8VoJyc_IpkCq7holnpOLlI6UUt6odkPe7qcKhi8h-nw_Vn2IVZlczxBhxBy9rTBlP0L2Yar8VKUMGX9-_5FmsFiNweGQrsh5D0PC6z_3Jbl7_-7zzW19-PTh483-UNuGsVzznTSS00YiB-qEsZaZ3na0c0K0sjddX45RygBK54AZRzvTCWkEU7ZRRlwSsc49TTM8foNh0HMsu8VHzaheMuijXjLoJYNeMxTr1Wrdw18-gNe3-4Ne3ijvlGyFeGCFfbmycwxfT-XnevTJ4jDAhOGUNG-6lkslaFNQvqI2hpQi9v-3S_uPZH3-3TZH8MPT6ptVLcHxwWPUyXqcLDof0Wbtgn9K_wV0xqhV
CitedBy_id crossref_primary_10_1155_2022_7383074
crossref_primary_10_3390_forecast6010003
crossref_primary_10_1063_5_0086255
crossref_primary_10_3390_app14041515
crossref_primary_10_1016_j_artmed_2024_102826
crossref_primary_10_1007_s40435_021_00804_5
crossref_primary_10_3390_en14092551
Cites_doi 10.1038/s41467-017-00030-8
10.1016/j.ifacol.2015.12.257
10.1080/00031305.1992.10475879
10.1016/j.jeconom.2017.06.009
10.1080/01621459.1988.10478639
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1016/j.csda.2010.04.002
10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#
10.5194/gmd-7-531-2014
10.1016/j.ijome.2013.11.010
10.1111/j.1467-9868.2009.00736.x
10.1214/14-STS511
10.1002/qj.3048
10.1080/00949650214669
10.1175/MWR-D-16-0441.1
10.1080/01621459.1990.10474930
10.1146/annurev-statistics-031017-100232
10.1109/JPROC.2007.893250
10.1002/wcc.535
10.1175/MWR-D-12-00223.1
10.1561/2200000045
10.1111/j.2517-6161.1977.tb01600.x
10.1198/jcgs.2009.07175
10.1017/apr.2016.77
10.1198/016214504000000151
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.csda.2020.107062
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-7352
ExternalDocumentID 10.1016/j.csda.2020.107062
oai:HAL:hal-02975833v1
10_1016_j_csda_2020_107062
S0167947320301535
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c411t-265b52045e2a0d3bcc1bfc909d3385fb9ffffb77bae5dda1bd09b935b317c47b3
IEDL.DBID UNPAY
ISSN 0167-9473
1872-7352
IngestDate Sun Oct 26 02:54:46 EDT 2025
Tue Oct 14 20:56:59 EDT 2025
Sat Sep 27 20:41:53 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Thu Oct 02 04:32:47 EDT 2025
Fri Feb 23 02:47:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Conditional particle filter
State–space models
Non-parametric statistics
Local linear regression
SEM algorithm
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c411t-265b52045e2a0d3bcc1bfc909d3385fb9ffffb77bae5dda1bd09b935b317c47b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0102-7427
0000-0001-7365-9189
0000-0002-7883-6970
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0167947320301535?via%3Dihub
PQID 2498257304
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_csda_2020_107062
hal_primary_oai_HAL_hal_02975833v1
proquest_miscellaneous_2498257304
crossref_primary_10_1016_j_csda_2020_107062
crossref_citationtrail_10_1016_j_csda_2020_107062
elsevier_sciencedirect_doi_10_1016_j_csda_2020_107062
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Computational statistics & data analysis
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bocquet, Brajard, Carrassi, Bertino (b5) 2019; 2019
Lindsten, Schön, Jordan (b25) 2012
Andrieu, Doucet, Holenstein (b2) 2010; 72
Delyon, Lavielle, Moulines (b13) 1999
Chau, Ailliot, Monbet, Tandeo (b11) 2018
Lguensat, Tandeo, Ailliot, Pulido, Fablet (b24) 2017; 145
Carroll, Ruppert, Crainiceanu, Stefanski (b10) 2006
Meijer, Spierdijk, Wansbeek (b28) 2013
Svensson, Schön, Kok (b31) 2015; 48
Tandeo, Ailliot, Ruiz, Hannart, Chapron, Cuzol, Monbet, Easton, Fablet (b32) 2015
Durbin, Koopman (b16) 2012
Fan, Yao (b19) 2008
Beskos, Crisan, Jasra, Kamatani, Zhou (b4) 2017; 49
Cleveland, Devlin (b12) 1988; 83
Fearnhead, Künsch (b20) 2018; 5
Brunton, Brunton, Proctor, Kaiser, Kutz (b7) 2017; 8
Carrassi, Bocquet, Bertino, Evensen (b9) 2018
Altman (b1) 1992; 46
Yiou (b35) 2014; 7
Lee, Moon, Zhou (b23) 2017; 200
Dreano, Tandeo, Pulido, Ait-El-Fquih, Chonavel, Hoteit (b15) 2017; 143
Fablet, Ouala, Herzet (b17) 2017
Tippett, DelSole (b33) 2013; 141
Musser (b29) 1997; 27
Lorenz (b27) 1963; 20
Kantas, Doucet, Singh, Maciejowski, Chopin (b22) 2015; 30
Godsill, Doucet, West (b21) 2004; 99
Young, Hunter (b36) 2010; 54
Cappé, Godsill, Moulines (b8) 2007; 95
Fablet, Viet, Lguensat (b18) 2017; 3
Wei, Tanner (b34) 1990; 85
Zhang (b37) 2002; 72
Lindsten, Schön (b26) 2013; 6
Dempster, Laird, Rubin (b14) 1977
O’Carroll (b30) 1984; 33
Boudière, Maisondieu, Ardhuin, Accensi, Pineau-Guillou, Lepesqueur (b6) 2013; 3
Benaglia, Chauveau, Hunter (b3) 2009; 18
Fablet (10.1016/j.csda.2020.107062_b17) 2017
Fablet (10.1016/j.csda.2020.107062_b18) 2017; 3
Bocquet (10.1016/j.csda.2020.107062_b5) 2019; 2019
Benaglia (10.1016/j.csda.2020.107062_b3) 2009; 18
Carrassi (10.1016/j.csda.2020.107062_b9) 2018
Young (10.1016/j.csda.2020.107062_b36) 2010; 54
Delyon (10.1016/j.csda.2020.107062_b13) 1999
Lguensat (10.1016/j.csda.2020.107062_b24) 2017; 145
Svensson (10.1016/j.csda.2020.107062_b31) 2015; 48
Zhang (10.1016/j.csda.2020.107062_b37) 2002; 72
O’Carroll (10.1016/j.csda.2020.107062_b30) 1984; 33
Chau (10.1016/j.csda.2020.107062_b11) 2018
Godsill (10.1016/j.csda.2020.107062_b21) 2004; 99
Dreano (10.1016/j.csda.2020.107062_b15) 2017; 143
Fearnhead (10.1016/j.csda.2020.107062_b20) 2018; 5
Lindsten (10.1016/j.csda.2020.107062_b26) 2013; 6
Durbin (10.1016/j.csda.2020.107062_b16) 2012
Lindsten (10.1016/j.csda.2020.107062_b25) 2012
Meijer (10.1016/j.csda.2020.107062_b28) 2013
Tippett (10.1016/j.csda.2020.107062_b33) 2013; 141
Yiou (10.1016/j.csda.2020.107062_b35) 2014; 7
Andrieu (10.1016/j.csda.2020.107062_b2) 2010; 72
Brunton (10.1016/j.csda.2020.107062_b7) 2017; 8
Boudière (10.1016/j.csda.2020.107062_b6) 2013; 3
Beskos (10.1016/j.csda.2020.107062_b4) 2017; 49
Cleveland (10.1016/j.csda.2020.107062_b12) 1988; 83
Musser (10.1016/j.csda.2020.107062_b29) 1997; 27
Lee (10.1016/j.csda.2020.107062_b23) 2017; 200
Fan (10.1016/j.csda.2020.107062_b19) 2008
Kantas (10.1016/j.csda.2020.107062_b22) 2015; 30
Wei (10.1016/j.csda.2020.107062_b34) 1990; 85
Carroll (10.1016/j.csda.2020.107062_b10) 2006
Cappé (10.1016/j.csda.2020.107062_b8) 2007; 95
Lorenz (10.1016/j.csda.2020.107062_b27) 1963; 20
Dempster (10.1016/j.csda.2020.107062_b14) 1977
Tandeo (10.1016/j.csda.2020.107062_b32) 2015
Altman (10.1016/j.csda.2020.107062_b1) 1992; 46
References_xml – volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: b27
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
– volume: 30
  start-page: 328
  year: 2015
  end-page: 351
  ident: b22
  article-title: On particle methods for parameter estimation in state-space models
  publication-title: Statist. Sci.
– volume: 141
  start-page: 2519
  year: 2013
  end-page: 2525
  ident: b33
  article-title: Constructed analogs and linear regression
  publication-title: Mon. Weather Rev.
– year: 2008
  ident: b19
  article-title: Nonlinear Time Series: Nonparametric and Parametric Methods
– volume: 49
  start-page: 24
  year: 2017
  end-page: 48
  ident: b4
  article-title: A stable particle filter for a class of high-dimensional state-space models
  publication-title: Adv. Appl. Probab.
– volume: 7
  start-page: 531
  year: 2014
  end-page: 543
  ident: b35
  article-title: Anawege: a weather generator based on analogues of atmospheric circulation
  publication-title: Geosci. Model Dev.
– start-page: 77
  year: 2013
  end-page: 92
  ident: b28
  article-title: Measurement error in the linear dynamic panel data model
  publication-title: ISS-2012 Proceedings Volume on Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers
– year: 2017
  ident: b17
  article-title: Bilinear residual Neural Network for the identification and forecasting of dynamical systems
– volume: 3
  start-page: e40
  year: 2013
  end-page: e52
  ident: b6
  article-title: A suitable metocean hindcast database for the design of Marine energy converters
  publication-title: Int. J. Mar. Energy
– volume: 72
  start-page: 791
  year: 2002
  end-page: 802
  ident: b37
  article-title: An EM algorithm for a semiparametric finite mixture model
  publication-title: J. Stat. Comput. Simul.
– start-page: 1
  year: 1977
  end-page: 38
  ident: b14
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Statist. Soc. Ser. B Methodol.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: b1
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Amer. Statist.
– volume: 5
  start-page: 421
  year: 2018
  end-page: 449
  ident: b20
  article-title: Particle filters and data assimilation
  publication-title: Annu. Rev. Stat. Appl.
– volume: 99
  start-page: 156
  year: 2004
  end-page: 168
  ident: b21
  article-title: Monte Carlo smoothing for nonlinear time series
  publication-title: J. Am. Statist. Assoc.
– volume: 18
  start-page: 505
  year: 2009
  end-page: 526
  ident: b3
  article-title: An EM-like algorithm for semi-and nonparametric estimation in multivariate mixtures
  publication-title: J. Comput. Graph. Statist.
– start-page: 2591
  year: 2012
  end-page: 2599
  ident: b25
  article-title: Ancestor sampling for particle gibbs
  publication-title: Advances in Neural Information Processing Systems
– volume: 54
  start-page: 2253
  year: 2010
  end-page: 2266
  ident: b36
  article-title: Mixtures of regressions with predictor-dependent mixing proportions
  publication-title: Comput. Statist. Data Anal.
– year: 2006
  ident: b10
  article-title: Measurement Error in Nonlinear Models: A Modern Perspective
– volume: 83
  start-page: 596
  year: 1988
  end-page: 610
  ident: b12
  article-title: Locally weighted regression: an approach to regression analysis by local fitting
  publication-title: J. Am. Statist. Assoc.
– volume: 33
  start-page: 161
  year: 1984
  end-page: 169
  ident: b30
  article-title: Weather modelling for offshore operations
  publication-title: J. R. Statist. Soc.: Ser. D Statist.
– volume: 145
  start-page: 4093
  year: 2017
  end-page: 4107
  ident: b24
  article-title: The analog data assimilation
  publication-title: Mon. Weather Rev.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 29
  ident: b5
  article-title: Data assimilation as a deep learning tool to infer ODE representations of dynamical models
  publication-title: Nonlinear Process. Geophys. Discuss.
– year: 2012
  ident: b16
  article-title: Time Series Analysis by State Space Methods, Vol. 38
– start-page: e535
  year: 2018
  ident: b9
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev. Clim. Change
– year: 2018
  ident: b11
  article-title: An efficient particle-based method for maximum likelihood estimation in nonlinear state-space models
– start-page: 94
  year: 1999
  end-page: 128
  ident: b13
  article-title: Convergence of a stochastic approximation version of the EM algorithm
  publication-title: Ann. Statist.
– volume: 27
  start-page: 983
  year: 1997
  end-page: 993
  ident: b29
  article-title: Introspective sorting and selection algorithms
  publication-title: Softw. - Pract. Exp.
– volume: 200
  start-page: 251
  year: 2017
  end-page: 259
  ident: b23
  article-title: Many IVs estimation of dynamic panel regression models with measurement error
  publication-title: J. Econometrics
– volume: 72
  start-page: 269
  year: 2010
  end-page: 342
  ident: b2
  article-title: Particle Markov chain Monte Carlo methods
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 8
  start-page: 19
  year: 2017
  ident: b7
  article-title: Chaos as an intermittently forced linear system
  publication-title: Nat. Commun.
– volume: 95
  start-page: 899
  year: 2007
  end-page: 924
  ident: b8
  article-title: An overview of existing methods and recent advances in sequential Monte Carlo
  publication-title: Proc. IEEE
– volume: 143
  start-page: 1877
  year: 2017
  end-page: 1885
  ident: b15
  article-title: Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation–maximization algorithm
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 3
  start-page: 647
  year: 2017
  end-page: 657
  ident: b18
  article-title: Data-driven models for the spatio-temporal interpolation of satellite-derived SST fields
  publication-title: IEEE Trans. Comput. Imag.
– volume: 6
  start-page: 1
  year: 2013
  end-page: 143
  ident: b26
  article-title: Backward simulation methods for Monte Carlo statistical inference
  publication-title: Found. Trends® Mach. Learn.
– start-page: 3
  year: 2015
  end-page: 12
  ident: b32
  article-title: Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system
  publication-title: Machine Learning and Data Mining Approaches to Climate Science
– volume: 85
  start-page: 699
  year: 1990
  end-page: 704
  ident: b34
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
  publication-title: J. Am. Statist. Assoc.
– volume: 48
  start-page: 975
  year: 2015
  end-page: 980
  ident: b31
  article-title: Nonlinear state space smoothing using the conditional particle filter
  publication-title: IFAC-PapersOnLine
– start-page: 94
  year: 1999
  ident: 10.1016/j.csda.2020.107062_b13
  article-title: Convergence of a stochastic approximation version of the EM algorithm
  publication-title: Ann. Statist.
– volume: 33
  start-page: 161
  issue: 1
  year: 1984
  ident: 10.1016/j.csda.2020.107062_b30
  article-title: Weather modelling for offshore operations
  publication-title: J. R. Statist. Soc.: Ser. D Statist.
– volume: 8
  start-page: 19
  issue: 1
  year: 2017
  ident: 10.1016/j.csda.2020.107062_b7
  article-title: Chaos as an intermittently forced linear system
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00030-8
– volume: 48
  start-page: 975
  issue: 28
  year: 2015
  ident: 10.1016/j.csda.2020.107062_b31
  article-title: Nonlinear state space smoothing using the conditional particle filter
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.12.257
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.csda.2020.107062_b1
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Amer. Statist.
  doi: 10.1080/00031305.1992.10475879
– volume: 200
  start-page: 251
  issue: 2
  year: 2017
  ident: 10.1016/j.csda.2020.107062_b23
  article-title: Many IVs estimation of dynamic panel regression models with measurement error
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2017.06.009
– volume: 83
  start-page: 596
  issue: 403
  year: 1988
  ident: 10.1016/j.csda.2020.107062_b12
  article-title: Locally weighted regression: an approach to regression analysis by local fitting
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1080/01621459.1988.10478639
– year: 2017
  ident: 10.1016/j.csda.2020.107062_b17
– volume: 20
  start-page: 130
  issue: 2
  year: 1963
  ident: 10.1016/j.csda.2020.107062_b27
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– year: 2012
  ident: 10.1016/j.csda.2020.107062_b16
– volume: 54
  start-page: 2253
  issue: 10
  year: 2010
  ident: 10.1016/j.csda.2020.107062_b36
  article-title: Mixtures of regressions with predictor-dependent mixing proportions
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2010.04.002
– volume: 27
  start-page: 983
  issue: 8
  year: 1997
  ident: 10.1016/j.csda.2020.107062_b29
  article-title: Introspective sorting and selection algorithms
  publication-title: Softw. - Pract. Exp.
  doi: 10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#
– year: 2008
  ident: 10.1016/j.csda.2020.107062_b19
– volume: 7
  start-page: 531
  issue: 2
  year: 2014
  ident: 10.1016/j.csda.2020.107062_b35
  article-title: Anawege: a weather generator based on analogues of atmospheric circulation
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-531-2014
– volume: 3
  start-page: e40
  year: 2013
  ident: 10.1016/j.csda.2020.107062_b6
  article-title: A suitable metocean hindcast database for the design of Marine energy converters
  publication-title: Int. J. Mar. Energy
  doi: 10.1016/j.ijome.2013.11.010
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.csda.2020.107062_b5
  article-title: Data assimilation as a deep learning tool to infer ODE representations of dynamical models
  publication-title: Nonlinear Process. Geophys. Discuss.
– volume: 72
  start-page: 269
  issue: 3
  year: 2010
  ident: 10.1016/j.csda.2020.107062_b2
  article-title: Particle Markov chain Monte Carlo methods
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2009.00736.x
– year: 2006
  ident: 10.1016/j.csda.2020.107062_b10
– start-page: 77
  year: 2013
  ident: 10.1016/j.csda.2020.107062_b28
  article-title: Measurement error in the linear dynamic panel data model
– year: 2018
  ident: 10.1016/j.csda.2020.107062_b11
– volume: 30
  start-page: 328
  issue: 3
  year: 2015
  ident: 10.1016/j.csda.2020.107062_b22
  article-title: On particle methods for parameter estimation in state-space models
  publication-title: Statist. Sci.
  doi: 10.1214/14-STS511
– start-page: 3
  year: 2015
  ident: 10.1016/j.csda.2020.107062_b32
  article-title: Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system
– volume: 143
  start-page: 1877
  issue: 705
  year: 2017
  ident: 10.1016/j.csda.2020.107062_b15
  article-title: Estimating model-error covariances in nonlinear state-space models using Kalman smoothing and the expectation–maximization algorithm
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3048
– volume: 72
  start-page: 791
  issue: 10
  year: 2002
  ident: 10.1016/j.csda.2020.107062_b37
  article-title: An EM algorithm for a semiparametric finite mixture model
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949650214669
– volume: 145
  start-page: 4093
  issue: 10
  year: 2017
  ident: 10.1016/j.csda.2020.107062_b24
  article-title: The analog data assimilation
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-16-0441.1
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  ident: 10.1016/j.csda.2020.107062_b34
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1080/01621459.1990.10474930
– volume: 5
  start-page: 421
  year: 2018
  ident: 10.1016/j.csda.2020.107062_b20
  article-title: Particle filters and data assimilation
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-031017-100232
– volume: 95
  start-page: 899
  issue: 5
  year: 2007
  ident: 10.1016/j.csda.2020.107062_b8
  article-title: An overview of existing methods and recent advances in sequential Monte Carlo
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2007.893250
– start-page: e535
  year: 2018
  ident: 10.1016/j.csda.2020.107062_b9
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: Wiley Interdiscip. Rev. Clim. Change
  doi: 10.1002/wcc.535
– volume: 141
  start-page: 2519
  issue: 7
  year: 2013
  ident: 10.1016/j.csda.2020.107062_b33
  article-title: Constructed analogs and linear regression
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-12-00223.1
– volume: 3
  start-page: 647
  issue: 4
  year: 2017
  ident: 10.1016/j.csda.2020.107062_b18
  article-title: Data-driven models for the spatio-temporal interpolation of satellite-derived SST fields
  publication-title: IEEE Trans. Comput. Imag.
– volume: 6
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.csda.2020.107062_b26
  article-title: Backward simulation methods for Monte Carlo statistical inference
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000045
– start-page: 1
  year: 1977
  ident: 10.1016/j.csda.2020.107062_b14
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Statist. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 18
  start-page: 505
  issue: 2
  year: 2009
  ident: 10.1016/j.csda.2020.107062_b3
  article-title: An EM-like algorithm for semi-and nonparametric estimation in multivariate mixtures
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/jcgs.2009.07175
– volume: 49
  start-page: 24
  issue: 1
  year: 2017
  ident: 10.1016/j.csda.2020.107062_b4
  article-title: A stable particle filter for a class of high-dimensional state-space models
  publication-title: Adv. Appl. Probab.
  doi: 10.1017/apr.2016.77
– start-page: 2591
  year: 2012
  ident: 10.1016/j.csda.2020.107062_b25
  article-title: Ancestor sampling for particle gibbs
– volume: 99
  start-page: 156
  issue: 465
  year: 2004
  ident: 10.1016/j.csda.2020.107062_b21
  article-title: Monte Carlo smoothing for nonlinear time series
  publication-title: J. Am. Statist. Assoc.
  doi: 10.1198/016214504000000151
SSID ssj0002478
Score 2.3491812
Snippet State–space models are ubiquitous in the statistical literature since they provide a flexible and interpretable framework for analyzing many time series. In...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107062
SubjectTerms algorithms
Conditional particle filter
Continental interfaces, environment
estimation
lead
literature
Local linear regression
methodology
Non-parametric statistics
Ocean, Atmosphere
Sciences of the Universe
SEM algorithm
State–space models
statistical inference
time series analysis
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZYLsAB8RTlJbPa225o4tgxPhYEqhDsZUHiZvkV6KqEatuCuCD-A_-QX8JMHgUOILQ5WrYymnHGM_E33xDyQxqWZ2m-F4lgeMRV7COTiRBBypw7YXORcawdPv2ddc_58YW4mCIHTS0Mwipr31_59NJb1yPtWpvtQa_X_oMAesVlyjCqFykWmnMusYvB7sMrzIPxyhsjvzfOrgtnKoyXG3rkHmI4IOOMfXQ4fbtClOSbEHRmXAzM_Z3p99-cRkcLZL4OI2mnknSRTIViicydTjhYh8tkv1NQ07-8gez_6ppCbEoh04-Q6vsau2g5ivwaVeEi7RW0rCx6fnwCD-MCLRvkDFfI-dHh2UE3qjsmRI4nyShimbACCeYDM7FPrXOJzZ2KlYdMVORW5fBYKa0JwnuTWB8rq1JhIYpwXNp0lUyDLGGNUJmpwAQLLPWBO-9VDIncngux9DbwwFokaVSlXU0njl0t-rrBjf3VqF6N6tWVelvk52TNoCLT-HS2aCyg320JDd7-03XfwVyTFyB_drdzonEMO3Vhmdlt0iI7jTU1fFB4S2KKcDMeashHIWsGx8db5NfEzF-Qd_0_5d0gswyBMuV_nU0yPfo3DlsQ6YzsdrmVXwCCxPqn
  priority: 102
  providerName: Elsevier
Title An algorithm for non-parametric estimation in state–space models
URI https://dx.doi.org/10.1016/j.csda.2020.107062
https://www.proquest.com/docview/2498257304
https://hal.science/hal-02975833
https://www.sciencedirect.com/science/article/am/pii/S0167947320301535?via%3Dihub
UnpaywallVersion publishedVersion
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AKRWK
  dateStart: 19830301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5t2wPiwBvRFVQBwQnSJo6dNCcUHqtC2YpXxXKy_ArN0qZVmyyCA-I_8A_5JXiapFqQWIFELpGssWJn7PE38sw3AHcjQdIwSIcuM4K6NPa0K0JmXOsyp4rJlIUUc4cPJ-FoSp8fsaM9eNXkwmBYZW37K5u-tdZ1y6D-mwOxGKyybPAGY-hjGgUEgT0L2MOTTNwLnmSzUragEzILz9vQmU5eJu8bjm8URydsGFlkadFHnUhTxXypjUYuIoINkReSPx1WrRlGTZ6CpOfKfCU-fxLz-anT6eAirJt5VUEpH_tlIfvqy2-Uj_914pfgQo1lnaTqdRn2TH4Fzh_uiGA3V-FRkjti_mG5zorZwrEA2cmXuYt84wss5aUcJPmosiedLHe26U0_vn23Zk4ZZ1ulZ3MNpgdP3z4euXXZBldR3y9cEjLJkOXeEOHpQCrly1TFXqytO8xSGaf2kVEkhWFaC19qL5ZxwKSFMopGMrgObTsWcwOcKIwNYcSQQBuqtI49600OlfEiLQ01pAt-ox-uak5zLK0x503w2jFHnXLUKa902oX7uz6ritHjTGnWqJ3_oh5uj5wz-92xa2T3ASTxHiUvOLZhuTDMdTvxu3C7WULc7mq8qhG5WZYbbp1i67pb60u78GC3tv5ivPv_Jn4T2sW6NLcssCpkD1r9r34POsmz8WiC7_Hrd-NevYF-AkVVJtk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB615VA4VDxFWh4GcYMlu157XR9DRRUg6YVW6s3ya9ugdBuRpIgL4j_wD_tLOrOPUA5UiD1atnY04x3Pt575BuCVsrws8nI3kdGKROg0JLaQMUHIXHrpSlkIqh0eHxTDI_HxWB6vwV5XC0Npla3vb3x67a3bkX6rzf5sMul_pgR6LVTOKaqXuVyHW0JyRQjs7Y_feR5cNO6YCL5pels50yR5-Xkg8iFOAyot-N9Op_VTSpO8FoNuLquZ_f7NTqfXjqP9u7DVxpFs0Ih6D9ZidR_ujFckrPMH8G5QMTs9OUf4f3rGMDhlCPUT4vo-ozZanhHBRlO5yCYVq0uLLn_-QhfjI6s75MwfwtH--8O9YdK2TEi8yLJFwgvpJDHMR27TkDvvM1d6neqAUFSWTpf4OKWcjTIEm7mQaqdz6TCM8EK5_BFsoCzxMTBV6MgljzwPUfgQdIpIbtfHVAUXReQ9yDpVGd_yiVNbi6npEse-GFKvIfWaRr09eL1aM2vYNG6cLTsLmD_2hEF3f-O6l2iu1QuIQHs4GBkao1ZdVGd2kfXgRWdNg18UXZPYKp4v5wYBKcJm9HyiB29WZv4Hebf_U97nsDk8HI_M6MPBpx24zSlrpv7J8wQ2Fl-X8SmGPQv3rN7WVywy_co
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7tdg-IA2-0RYAMghNkmzh2XJ9QeawqxK5AUGk5WX6FBtq0apNFcOI_8A_5JXiapFqQWIFEjiNbsTP2zDfKzDcAD4SmeZbmw4h7zSImYxfpjPsohMy55SbnGcPa4aPjbDxhL0_4yQ686WphMK2ytf2NTd9Y61YyaL_mQM8Hy6IYvMUceslEShHY85Q_OS30w_R5Ma3NLuxlPMDzHuxNjl-P3ncc3zgcg7ChCMgyoI-2kKbJ-bJrh1xEFAUizuifnNXuFLMmz0DSC3W51F8-69nsjHc6vAyrbl9NUsqng7oyB_brb5SP_3XjV-BSi2XJqJl1FXZ8eQ0uHm2JYNfX4emoJHr2YbEqqumcBIBMykUZId_4HFt5WYIkH031JClKsilv-vHtezBz1pNNl571DZgcvnj3bBy1bRsiy5KkimjGDUeWe0917FJjbWJyK2PpQjjMcyPz8BghjPbcOZ0YF0sjU24ClLFMmPQm9MJa_D4QkUlPOfU0dZ5Z52Qcosmh9bFwxjNP-5B0-lG25TTH1hoz1SWvfVSoU4U6VY1O-_BoO2fZMHqcO5p3ale_qEcFl3PuvPvhjGxfgCTe49ErhTJsF4a1bqdJH-51R0iFW42_anTpF_VahaA4hO7B-rI-PN6erb9Y761_G34betWq9ncCsKrM3faq_AQkySKq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+non-parametric+estimation+in+state%E2%80%93space+models&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Chau%2C+Thi+Tuyet+Trang&rft.au=Ailliot%2C+Pierre&rft.au=Monbet%2C+Val%C3%A9rie&rft.date=2021-01-01&rft.pub=Elsevier&rft.issn=0167-9473&rft.volume=153&rft_id=info:doi/10.1016%2Fj.csda.2020.107062&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02975833v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon