PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors
Motivation: Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing...
Saved in:
| Published in | Bioinformatics Vol. 27; no. 20; pp. 2836 - 2842 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Oxford University Press
15.10.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1367-4803 1367-4811 1460-2059 1367-4811 |
| DOI | 10.1093/bioinformatics/btr498 |
Cover
| Abstract | Motivation: Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations.
Results: In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC.
Availability:
http://bioinfo3d.cs.tau.ac.il/PepCrawler/
Contact:
eladdons@tau.ac.il; wolfson@tau.ac.il |
|---|---|
| AbstractList | Motivation: Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations.Results: In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC. Motivation: Design of protein–protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein–peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations. Results: In this article, we present PepCrawler, a new tool for deriving binding peptides from protein–protein complexes and prediction of peptide–protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel ‘steepness score’ was applied for the evaluation of the protein–peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein–peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide–protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC. Availability: http://bioinfo3d.cs.tau.ac.il/PepCrawler/ Contact: eladdons@tau.ac.il; wolfson@tau.ac.il Motivation: Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations. Results: In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC. Availability: http://bioinfo3d.cs.tau.ac.il/PepCrawler/ Contact: eladdons@tau.ac.il; wolfson@tau.ac.il Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations. In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC. http://bioinfo3d.cs.tau.ac.il/PepCrawler/ eladdons@tau.ac.il; wolfson@tau.ac.il. Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations.MOTIVATIONDesign of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which partially mimic the interface area of one of the interacting proteins, are natural candidates to form protein-peptide complexes competing with the original PPI. The prediction of such complexes is especially challenging due to the high flexibility of peptide conformations.In this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC.RESULTSIn this article, we present PepCrawler, a new tool for deriving binding peptides from protein-protein complexes and prediction of peptide-protein complexes, by performing high-resolution docking refinement and estimation of binding affinity. By using a fast path planning approach, PepCrawler rapidly generates large amounts of flexible peptide conformations, allowing backbone and side chain flexibility. A newly introduced binding energy funnel 'steepness score' was applied for the evaluation of the protein-peptide complexes binding affinity. PepCrawler simulations predicted high binding affinity for native protein-peptide complexes benchmark and low affinity for low-energy decoy complexes. In three cases, where wet lab data are available, the PepCrawler predictions were consistent with the data. Comparing to other state of the art flexible peptide-protein structure prediction algorithms, our algorithm is very fast, and takes only minutes to run on a single PC.http://bioinfo3d.cs.tau.ac.il/PepCrawler/AVAILABILITYhttp://bioinfo3d.cs.tau.ac.il/PepCrawler/eladdons@tau.ac.il; wolfson@tau.ac.il.CONTACTeladdons@tau.ac.il; wolfson@tau.ac.il. |
| Author | Donsky, Elad Wolfson, Haim J. |
| Author_xml | – sequence: 1 givenname: Elad surname: Donsky fullname: Donsky, Elad – sequence: 2 givenname: Haim J. surname: Wolfson fullname: Wolfson, Haim J. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24591680$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21880702$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URNuBnwDyBrEKtRPnYVhVI15SJVBV1tH1a-aixA62I1Tx53GZAQSbsvKV9Z37OOecnPjgLSFPOXvJmWwuFAb0LsQZMup0oXIUcnhAzrjoWFWzVp6Uuun6SgysOSXnKX1hrOVCiEfktObDwHpWn5Hvn-yyjfBtsvEVBeogZXp9fVMpSNZQmHYhYt7PtEyie9ztq2hTmNaMwdNoHXo7W58peEMVeoN-R8GVb8y31KaMd-sVNDi62CWjsRT9HhXmENNj8tDBlOyT47shn9--udm-r64-vvuwvbyqtOA8V7zVIGvGe8W1cZ1uuTWiczVjUlreGylaWwupa5AGtGKybzpQTmtrGmhE22zIi0PfJYava9lqnDFpO03gbVjTKHkrhq7r5b3kILuhHngjCvnsSK5qtmZcYjk13o6_nC3A8yMAScPkIniN6Q8nWsm7Es2GtAdOx5BSsfQ3wtl4l_T4d9LjIemie_2PTmP-aXaOgNO9anZQh3X5z4E_AFZFyic |
| CitedBy_id | crossref_primary_10_1021_acs_jcim_8b00142 crossref_primary_10_1016_j_foodchem_2016_07_069 crossref_primary_10_1080_17460441_2021_1851187 crossref_primary_10_1016_j_cbpa_2013_10_011 crossref_primary_10_1021_acs_jcim_0c00058 crossref_primary_10_1016_j_ejmech_2021_113191 crossref_primary_10_1093_nar_gku404 crossref_primary_10_3389_fphar_2022_1056467 crossref_primary_10_1021_ci400128m crossref_primary_10_1080_14760584_2022_2148661 crossref_primary_10_1016_j_sbi_2013_07_006 crossref_primary_10_1039_C9CP01674K crossref_primary_10_1093_nar_gkv495 crossref_primary_10_1002_ijch_201200095 crossref_primary_10_1002_jcc_24795 crossref_primary_10_3390_pathogens10121599 crossref_primary_10_1016_j_fsi_2022_07_055 crossref_primary_10_1042_BST20150001 crossref_primary_10_1002_prot_26384 crossref_primary_10_1002_jcc_24314 crossref_primary_10_1186_s12859_018_2449_y crossref_primary_10_1016_j_str_2015_05_021 crossref_primary_10_1371_journal_pone_0133571 crossref_primary_10_3389_fmolb_2021_681617 crossref_primary_10_1038_s41598_018_22173_4 crossref_primary_10_1093_bioinformatics_btw133 crossref_primary_10_1080_08927022_2015_1025267 crossref_primary_10_3390_sym13030388 crossref_primary_10_1016_j_ymeth_2015_07_004 crossref_primary_10_1093_bib_bby080 crossref_primary_10_3389_fmolb_2020_00066 crossref_primary_10_1016_j_cels_2021_05_002 crossref_primary_10_1093_bioinformatics_btu838 crossref_primary_10_1002_wcms_1693 crossref_primary_10_1007_s12013_017_0810_9 crossref_primary_10_1111_jfd_14120 crossref_primary_10_3389_fmolb_2021_669431 crossref_primary_10_1016_j_crci_2015_12_004 crossref_primary_10_2174_1568026619666181224101744 crossref_primary_10_1093_bioinformatics_btx614 crossref_primary_10_3390_molecules23081963 crossref_primary_10_1093_nar_gkw329 crossref_primary_10_1371_journal_pcbi_1010874 crossref_primary_10_4155_fmc_2016_0189 crossref_primary_10_3390_molecules25040808 crossref_primary_10_1016_j_jmgm_2017_06_013 crossref_primary_10_7717_peerj_725 crossref_primary_10_1017_qrd_2022_14 crossref_primary_10_1016_j_bbrc_2025_151623 crossref_primary_10_3390_molecules25020360 crossref_primary_10_2174_0109298673263447230920151524 crossref_primary_10_2174_0929866527666200129154357 crossref_primary_10_1016_j_drudis_2018_05_006 crossref_primary_10_3390_ijms20102383 crossref_primary_10_1093_nar_gky357 crossref_primary_10_2174_0115701786267754231114064015 crossref_primary_10_1016_j_biopha_2024_116709 crossref_primary_10_1039_D1CP02098F crossref_primary_10_1002_pep2_24343 crossref_primary_10_1021_ci500393h crossref_primary_10_3390_genes13122333 |
| Cites_doi | 10.1002/prot.20831 10.1038/nrd1343 10.1002/prot.22716 10.1074/jbc.M109.073056 10.1002/prot.10286 10.1021/ja054195s 10.1021/ci800174c 10.1007/3-540-45784-4_14 10.1002/prot.22785 10.1371/journal.pcbi.1000295 10.1002/prot.21495 10.1038/nsb0594-334 10.1002/prot.22629 10.1006/jmbi.1998.2439 10.1242/jcs.114.18.3219 10.1074/jbc.M107565200 10.1016/j.cbpa.2009.05.125 10.2174/156802607779318271 10.1016/j.str.2009.10.008 10.1016/j.bmc.2009.08.004 10.1016/j.str.2009.11.012 10.1002/prot.22668 10.1098/rsif.2006.0115 10.1093/bioinformatics/btl325 10.1016/j.jmb.2009.03.038 10.1002/bip.21164 10.1016/j.sbi.2009.07.003 10.1093/bioinformatics/bti1017 10.1002/(SICI)1097-0134(19990201)34:2<255::AID-PROT10>3.0.CO;2-O 10.1021/pr9009854 10.1021/ja032018q 10.1016/j.jmb.2005.11.059 10.1042/BJ20070825 10.1073/pnas.241629998 10.1002/jcc.20084 10.1016/j.jmb.2009.08.063 10.1006/jmbi.1998.2401 10.1073/pnas.0506924102 10.1016/j.bbrc.2010.02.100 |
| ContentType | Journal Article |
| Copyright | The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011 2015 INIST-CNRS |
| Copyright_xml | – notice: The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
| DOI | 10.1093/bioinformatics/btr498 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1460-2059 1367-4811 |
| EndPage | 2842 |
| ExternalDocumentID | 21880702 24591680 10_1093_bioinformatics_btr498 10.1093/bioinformatics/btr498 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | -~X .2P .I3 482 48X 5GY AAMVS ABPTD ACGFS ACUFI ADRIX ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ CZ4 EE~ F5P F9B H5~ HAR HW0 IOX KOP KSI KSN NGC Q5Y RD5 ROX ROZ RXO TLC TN5 TOX WH7 ~91 --- -E4 .DC 0R~ 1TH 23N 2WC 4.4 53G 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE CITATION COF CS3 DAKXR DIK DILTD DU5 D~K EBD EBS EJD EMOBN FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 HZ~ J21 JXSIZ KAQDR KQ8 M-Z MK~ ML0 N9A NLBLG NMDNZ NOMLY NU- NVLIB O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~KM .-4 .GJ ABEFU ABNGD ACUKT AFFNX AGQPQ AI. AQDSO ATTQO AZFZN ELUNK HVGLF IQODW NTWIH O~Y PB- RIG RNI RZF RZO VH1 ZGI ABQTQ CGR CUY CVF ECM EIF M49 NPM 7X8 7QO 8FD ABJNI FR3 P64 |
| ID | FETCH-LOGICAL-c411t-15ca92017b1cdf6c51ed46f20099e17d945e249c2a9dacb09736abfcced3a3453 |
| IEDL.DBID | TOX |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Tue Oct 07 09:21:15 EDT 2025 Fri Jul 11 09:16:24 EDT 2025 Thu Apr 03 07:07:32 EDT 2025 Mon Jul 21 09:14:00 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Tue Jul 01 03:27:05 EDT 2025 Wed Aug 28 03:24:13 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Affinity High resolution Inhibitor Peptides Fast algorithm Estimation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c411t-15ca92017b1cdf6c51ed46f20099e17d945e249c2a9dacb09736abfcced3a3453 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21880702 |
| PQID | 896828134 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_915486679 proquest_miscellaneous_896828134 pubmed_primary_21880702 pascalfrancis_primary_24591680 crossref_primary_10_1093_bioinformatics_btr498 crossref_citationtrail_10_1093_bioinformatics_btr498 oup_primary_10_1093_bioinformatics_btr498 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-10-15 |
| PublicationDateYYYYMMDD | 2011-10-15 |
| PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2011 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Lo Conte (2023012512012863500_B26) 1999; 285 Word (2023012512012863500_B43) 1999; 285 Chaudhury (2023012512012863500_B7) 2009; 17 LaValle (2023012512012863500_B24) 2001 London (2023012512012863500_B27) 2010; 18 Phan (2023012512012863500_B38) 2010; 285 Hayouka (2023012512012863500_B21) 2010; 394 Halperin (2023012512012863500_B18) 1994 Cortés (2023012512012863500_B9) 2005; 21 Andrusier (2023012512012863500_B1) 2007; 69 Bordner (2023012512012863500_B6) 2006; 63 Mashiach (2023012512012863500_B30) 2010; 78 Monfregola (2023012512012863500_B32) 2009; 17 Fagerberg (2023012512012863500_B14) 2006; 356 Cortés (2023012512012863500_B10) 2007 Enosh (2023012512012863500_B13) 2006; 23 Rubinstein (2023012512012863500_B41) 2009; 91 Arkin (2023012512012863500_B4) 2009; 13 Kastritis (2023012512012863500_B22) 2010; 9 Naider (2023012512012863500_B33) 2009; 19 Friedler (2023012512012863500_B17) 2002; 99 Mochly-Rosen (2023012512012863500_B31) 2010; 28 Lovell (2023012512012863500_B29) 2003; 50 Barr (2023012512012863500_B5) 2002; 277 Fletcher (2023012512012863500_B16) 2006; 3 Nieddu (2023012512012863500_B34) 2007; 7 Zhang (2023012512012863500_B44) 1999; 34 Dunbrack (2023012512012863500_B12) 1994; 1 Hashemzadeh (2023012512012863500_B20) 2008; 13 Fernandez-Ballester (2023012512012863500_B15) 2009; 388 Harris (2023012512012863500_B19) 2001; 114 London (2023012512012863500_B28) 2010; 78 Duhovny (2023012512012863500_B11) 2002 Antes (2023012512012863500_B2) 2010; 78 Raveh (2023012512012863500_B40) 2010; 78 Cherepanov (2023012512012863500_B8) 2005; 102 Pettersen (2023012512012863500_B37) 2004; 25 Arkin (2023012512012863500_B3) 2004; 3 Liu (2023012512012863500_B25) 2004; 126 Parthasarathi (2023012512012863500_B36) 2008; 48 Raveh (2023012512012863500_B39) 2009; 5 Laudet (2023012512012863500_B23) 2007; 408 Niv (2023012512012863500_B35) 2005; 127 Staneva (2023012512012863500_B42) 2009; 393 |
| References_xml | – start-page: 113 volume-title: Symposium on Computational Geometry year: 1994 ident: 2023012512012863500_B18 article-title: Spheres, molecules, and hidden surface removal – volume: 63 start-page: 512 year: 2006 ident: 2023012512012863500_B6 article-title: Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes publication-title: Proteins doi: 10.1002/prot.20831 – volume: 3 start-page: 301 year: 2004 ident: 2023012512012863500_B3 article-title: Small-molecule inhibitors of protein–protein interactions: progressing towards the dream publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1343 – volume: 78 start-page: 2029 year: 2010 ident: 2023012512012863500_B40 article-title: Sub-angstrom modeling of complexes between flexible peptides and globular proteins publication-title: Proteins doi: 10.1002/prot.22716 – volume: 285 start-page: 2174 year: 2010 ident: 2023012512012863500_B38 article-title: Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.073056 – volume: 50 start-page: 437 year: 2003 ident: 2023012512012863500_B29 article-title: Structure validation by Cα geometry: Φ, Ψ and Cβ deviation publication-title: Proteins doi: 10.1002/prot.10286 – volume: 127 start-page: 14072 year: 2005 ident: 2023012512012863500_B35 article-title: A flexible docking procedure for the exploration of peptide binding selectivity to known structures and homology models of PDZ domains publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054195s – volume: 48 start-page: 1943 year: 2008 ident: 2023012512012863500_B36 article-title: Approved drug mimics of short peptide ligands from protein interaction motifs publication-title: J. Chem. Inf. Model doi: 10.1021/ci800174c – start-page: 185 volume-title: Workshop on Algorithms in Bioinformatics year: 2002 ident: 2023012512012863500_B11 article-title: Efficient unbound docking of rigid molecules doi: 10.1007/3-540-45784-4_14 – volume: 78 start-page: 3140 year: 2010 ident: 2023012512012863500_B28 article-title: Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? publication-title: Proteins doi: 10.1002/prot.22785 – volume: 5 start-page: 2 year: 2009 ident: 2023012512012863500_B39 article-title: Rapid sampling of molecular motions with prior information constraints publication-title: Plos. Comp. Biol. doi: 10.1371/journal.pcbi.1000295 – volume: 69 start-page: 139 year: 2007 ident: 2023012512012863500_B1 article-title: FireDock: fast interaction refinement in molecular docking publication-title: Proteins doi: 10.1002/prot.21495 – volume: 1 start-page: 334 year: 1994 ident: 2023012512012863500_B12 article-title: Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0594-334 – volume: 13 start-page: 192 year: 2008 ident: 2023012512012863500_B20 article-title: Chemical structures and mode of action of intravenous glycoprotein IIb/IIIa receptor blockers: a review publication-title: Exp. Clin. Cardiol. – volume: 78 start-page: 1084 year: 2010 ident: 2023012512012863500_B2 article-title: DynaDock: a new molecular dynamics-based algorithm for protein–peptide docking including receptor flexibility publication-title: Proteins doi: 10.1002/prot.22629 – volume: 285 start-page: 2177 year: 1999 ident: 2023012512012863500_B26 article-title: The atomic structure of proteinprotein recognition sites publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2439 – start-page: 3301 volume-title: Proceedings of the International Conference Robotics and Automation year: 2007 ident: 2023012512012863500_B10 article-title: Molecular disassembly with RRT-like algorithms – volume: 114 start-page: 3219 year: 2001 ident: 2023012512012863500_B19 article-title: Mechanism and role of PDZ domains in signaling complex assembly publication-title: J. Cell Sci. doi: 10.1242/jcs.114.18.3219 – volume: 277 start-page: 10987 year: 2002 ident: 2023012512012863500_B5 article-title: Identification of the critical features of a small peptide inhibitor of JNK activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107565200 – volume: 13 start-page: 284 year: 2009 ident: 2023012512012863500_B4 article-title: The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2009.05.125 – volume: 7 start-page: 21 year: 2007 ident: 2023012512012863500_B34 article-title: Interfering with protein-protein contact: molecular interaction maps and peptide modulators publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802607779318271 – volume: 17 start-page: 1636 year: 2009 ident: 2023012512012863500_B7 article-title: Identification of structural mechanisms of HIV-1 protease specificity using computational peptide docking: implications for drug resistance publication-title: Structure doi: 10.1016/j.str.2009.10.008 – volume: 17 start-page: 7015 year: 2009 ident: 2023012512012863500_B32 article-title: A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: a proof of concept on HER2 receptor publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2009.08.004 – volume: 18 start-page: 188 year: 2010 ident: 2023012512012863500_B27 article-title: The structural basis of peptide-protein binding strategies publication-title: Structure doi: 10.1016/j.str.2009.11.012 – volume: 78 start-page: 1503 year: 2010 ident: 2023012512012863500_B30 article-title: FiberDock: flexible induced-fit backbone refinement in molecular docking publication-title: Proteins doi: 10.1002/prot.22668 – volume: 3 start-page: 215 year: 2006 ident: 2023012512012863500_B16 article-title: Targeting protein-protein interactions by rational design: mimicry of protein surfaces publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2006.0115 – volume: 23 start-page: 212 year: 2006 ident: 2023012512012863500_B13 article-title: Prediction and simulation of motion in pairs of transmembrane α-helices publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl325 – start-page: 293 volume-title: Algorithmic and Computational Robotics: New Directions. year: 2001 ident: 2023012512012863500_B24 article-title: Rapidly-exploring random trees: progress and prospects – volume: 28 start-page: 14 year: 2010 ident: 2023012512012863500_B31 article-title: Peptide inhibitors of protein-protein interactions: from rational design to the clinic publication-title: Chim. oggi – volume: 388 start-page: 902 year: 2009 ident: 2023012512012863500_B15 article-title: Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.03.038 – volume: 91 start-page: 505 year: 2009 ident: 2023012512012863500_B41 article-title: Peptidic modulators of protein-protein interactions: progress and challenges in computational design publication-title: Biopolymers doi: 10.1002/bip.21164 – volume: 19 start-page: 473 year: 2009 ident: 2023012512012863500_B33 article-title: Peptides in the treatment of AIDS publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.07.003 – volume: 21 start-page: 116 year: 2005 ident: 2023012512012863500_B9 article-title: A path planning approach for computing large-amplitude motions of flexible molecules publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1017 – volume: 34 start-page: 255 year: 1999 ident: 2023012512012863500_B44 article-title: Protein-protein recognition: exploring the energy funnels near the binding sites publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19990201)34:2<255::AID-PROT10>3.0.CO;2-O – volume: 9 start-page: 2216 year: 2010 ident: 2023012512012863500_B22 article-title: Are scoring functions in protein-protein docking ready to predict interactomes? Clues from a novel binding affinity benchmark publication-title: J. Proteome Res. doi: 10.1021/pr9009854 – volume: 126 start-page: 8515 year: 2004 ident: 2023012512012863500_B25 article-title: Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential publication-title: J. Am. Chem. Soc. doi: 10.1021/ja032018q – volume: 356 start-page: 521 year: 2006 ident: 2023012512012863500_B14 article-title: Structural prediction of peptides bound to MHC class I publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.11.059 – volume: 408 start-page: 363 year: 2007 ident: 2023012512012863500_B23 article-title: Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction publication-title: Biochem. J. doi: 10.1042/BJ20070825 – volume: 99 start-page: 937 year: 2002 ident: 2023012512012863500_B17 article-title: A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.241629998 – volume: 25 start-page: 1605 year: 2004 ident: 2023012512012863500_B37 article-title: UCSF Chimera–a visualization system for exploratory research and analysis publication-title: Comput. Chem. doi: 10.1002/jcc.20084 – volume: 393 start-page: 1118 year: 2009 ident: 2023012512012863500_B42 article-title: All-atom Monte Carlo approach to protein-peptide binding publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.08.063 – volume: 285 start-page: 1735 year: 1999 ident: 2023012512012863500_B43 article-title: Asparagine and glutamine: using hydrogen atom contacts in the choice of sidechain amide orientation publication-title: Mol. Biol. doi: 10.1006/jmbi.1998.2401 – volume: 102 start-page: 17308 year: 2005 ident: 2023012512012863500_B8 article-title: Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506924102 – volume: 394 start-page: 260 year: 2010 ident: 2023012512012863500_B21 article-title: Mechanism of action of the HIV-1 integrase inhibitory peptide LEDGF 361–370 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.02.100 |
| SSID | ssj0051444 ssj0005056 |
| Score | 2.3606846 |
| Snippet | Motivation: Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides,... Motivation: Design of protein–protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides,... Design of protein-protein interaction (PPI) inhibitors is a key challenge in structural bioinformatics and computer-aided drug design. Peptides, which... |
| SourceID | proquest pubmed pascalfrancis crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2836 |
| SubjectTerms | Algorithms Biological and medical sciences Drug Design Fundamental and applied biological sciences. Psychology General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Molecular Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Peptides - chemistry Peptides - metabolism Protein Conformation Protein Interaction Mapping - methods |
| Title | PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21880702 https://www.proquest.com/docview/896828134 https://www.proquest.com/docview/915486679 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1460-2059 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: GX1 dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: OVEED dateStart: 20010101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 20220930 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1460-2059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA6lIAgi3l2tSx588SF2MrlM0rdSLFXxQtnCvg252oHtzDI7RcQ_35zNbMsKi_o4IQkhJ-F8Z07O9yH0tlDGC-YLwpVThLPKExuYIJGVVeVjcIWBjO6Xr_Lsgn-ai_keKja1MH-m8DU7tE03kogCcfGhHXquobo3OWKQLJh9m9-96SiAGSZ_JCTAs6QtMHurgm3qd3ZNueWZcrXbg6VZpa2KWeNiNwhdO6PTR-jhiCLxcTb7Y7QX2ifoXtaV_PUU_f4elie9-bkI_RE2OJrVgM_PZwRclsdm8aPrm-HyCqe1YeArJinmHo8gTutKwBP-GWLTemybddkLNjE1J8SOgZUjlzviLuIlPIrxATftZWMbUO55hi5OP8xOzsioskAcp3QgVDijEwyoLHU-Sido8FxGyJroQCuvuQgpRnOl0d44C_Q-0tjoXPDMMC7Yc7Tfdm14ibA0VHmREJ2lllvJVbBaVdpoFQ0AuQnimx2u3UhBDkoYizqnwlm9bZg6G2aC3t8OW2YOjr8NeJfM9699p1tGvh1VcpGgsyomCG-sXqerB_kU04buelUrLVO8Shnf3UVDRChlpSfoRT4wd_MDE15VlK_-Y7Gv0f1yfINIxQHaH_rr8CaBosFOUzjw8fN0fR1uAE7kEm0 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PepCrawler%3A+a+fast+RRT-based+algorithm+for+high-resolution+refinement+and+binding+affinity+estimation+of+peptide+inhibitors&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Donsky%2C+Elad&rft.au=Wolfson%2C+Haim+J&rft.date=2011-10-15&rft.eissn=1367-4811&rft.volume=27&rft.issue=20&rft.spage=2836&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtr498&rft_id=info%3Apmid%2F21880702&rft.externalDocID=21880702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |