Spectral CT image reconstruction using a constrained optimization approach—An algorithm for AAPM 2022 spectral CT grand challenge and beyond
Background CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconst...
        Saved in:
      
    
          | Published in | Medical physics (Lancaster) Vol. 51; no. 5; pp. 3376 - 3390 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
        
        01.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-2405 2473-4209 1522-8541 2473-4209  | 
| DOI | 10.1002/mp.16877 | 
Cover
| Abstract | Background
CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner‐up team.
Purpose
This paper reports details of our PROSPECT algorithm (Prior‐based Restricted‐variable Optimization for SPEctral CT) and follow‐up studies regarding the algorithm's accuracy and enhancement of its convergence speed.
Methods
We formulated the reconstruction task as an optimization problem. PROSPECT employed a one‐step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam‐hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data.
Results
Prior knowledge allowed a reduction of the number of unknown variables by 85.9%$85.9\%$. PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3×10−6$3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double‐precision projection data reduced RMSE to 1.2×10−11$1.2\,\times \,10^{-11}$. Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time.
Conclusions
PROSPECT algorithm achieved a high degree of accuracy and computational efficiency. | 
    
|---|---|
| AbstractList | Background
CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner‐up team.
Purpose
This paper reports details of our PROSPECT algorithm (Prior‐based Restricted‐variable Optimization for SPEctral CT) and follow‐up studies regarding the algorithm's accuracy and enhancement of its convergence speed.
Methods
We formulated the reconstruction task as an optimization problem. PROSPECT employed a one‐step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam‐hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data.
Results
Prior knowledge allowed a reduction of the number of unknown variables by 85.9%$85.9\%$. PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3×10−6$3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double‐precision projection data reduced RMSE to 1.2×10−11$1.2\,\times \,10^{-11}$. Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time.
Conclusions
PROSPECT algorithm achieved a high degree of accuracy and computational efficiency. CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner-up team.BACKGROUNDCT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner-up team.This paper reports details of our PROSPECT algorithm (Prior-based Restricted-variable Optimization for SPEctral CT) and follow-up studies regarding the algorithm's accuracy and enhancement of its convergence speed.PURPOSEThis paper reports details of our PROSPECT algorithm (Prior-based Restricted-variable Optimization for SPEctral CT) and follow-up studies regarding the algorithm's accuracy and enhancement of its convergence speed.We formulated the reconstruction task as an optimization problem. PROSPECT employed a one-step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam-hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data.METHODSWe formulated the reconstruction task as an optimization problem. PROSPECT employed a one-step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam-hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data.Prior knowledge allowed a reduction of the number of unknown variables by 85.9 % $85.9\%$ . PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3 × 10 - 6 $3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double-precision projection data reduced RMSE to 1.2 × 10 - 11 $1.2\,\times \,10^{-11}$ . Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time.RESULTSPrior knowledge allowed a reduction of the number of unknown variables by 85.9 % $85.9\%$ . PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3 × 10 - 6 $3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double-precision projection data reduced RMSE to 1.2 × 10 - 11 $1.2\,\times \,10^{-11}$ . Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time.PROSPECT algorithm achieved a high degree of accuracy and computational efficiency.CONCLUSIONSPROSPECT algorithm achieved a high degree of accuracy and computational efficiency. CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner-up team. This paper reports details of our PROSPECT algorithm (Prior-based Restricted-variable Optimization for SPEctral CT) and follow-up studies regarding the algorithm's accuracy and enhancement of its convergence speed. We formulated the reconstruction task as an optimization problem. PROSPECT employed a one-step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam-hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data. Prior knowledge allowed a reduction of the number of unknown variables by . PROSPECT algorithm achieved the average root of mean square error (RMSE) of in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double-precision projection data reduced RMSE to . Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time. PROSPECT algorithm achieved a high degree of accuracy and computational efficiency.  | 
    
| Author | Jia, Xun Hu, Xiaoyu  | 
    
| Author_xml | – sequence: 1 givenname: Xiaoyu surname: Hu fullname: Hu, Xiaoyu organization: Johns Hopkins University – sequence: 2 givenname: Xun surname: Jia fullname: Jia, Xun email: xunjia@jhu.edu organization: Johns Hopkins University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38078560$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1u1DAUhS1URKcFiSdAXpZFhms7iZ0VGo34k1pRibK2PI6TMUrsYCethhVPwIon5EnwTEpVELCyrv35nHvvOUFHzjuD0FMCSwJAX_TDkpSC8wdoQXPOspxCdYQWAFWe0RyKY3QS4ycAKFkBj9AxE8BFUcICffswGD0G1eH1Fba9ag0ORnsXxzDp0XqHp2hdixWeL5V1psZ-GG1vv6gDoIYheKW3P75-X6Wqa32w47bHjQ94tbq8wBQoxfGeTxuUq7Heqq4zLjnuq43ZeVc_Rg8b1UXz5PY8RR9fv7pav83O3795t16dZzonhGes0rRhoDiUvCiZEmYjmlIXBakKVYCCtAxCTU6E3jCRJ5qriuSEClbzUhh2ip7PupMb1O4mNSKHkMYPO0lA7ncq-0EedprYlzM7TJve1Nq4_Rx3vFdW_v7i7Fa2_loSArwknCaFs1uF4D9PJo6yt1GbrlPO-ClKWgGtGKdlkdBn983uXH4lloDlDOjgYwymkdqOhyD24XR_a__sjw__mTSb0Rvbmd0_OXlxOfM_AcUwxPw | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6560_adac9e | 
    
| Cites_doi | 10.2214/AJR.12.9207 10.1109/TMI.1982.4307555 10.1088/0031-9155/49/1/010 10.1016/j.compmedimag.2020.101821 10.1118/1.3371691 10.1137/1.9780898719277 10.1002/mp.12796 10.1088/0031-9155/57/9/2803 10.1259/bjr/35628509 10.1148/radiol.12112707 10.1016/j.crad.2020.06.012 10.1088/0266-5611/25/12/123009 10.1088/0031-9155/53/17/021 10.1002/mp.12345 10.2214/AJR.12.9121 10.1364/JOSAA.1.000612 10.1109/TIP.2010.2058811 10.1007/s00330-008-1122-7 10.1002/mp.14114 10.1088/1361-6560/ab6f51 10.1118/1.3525840 10.1109/TCI.2015.2461492 10.1109/TMI.2018.2823768 10.1002/mp.13687 10.1007/s10549-018-4675-4 10.1088/0031-9155/58/24/8725 10.1088/0031-9155/56/13/004 10.1002/mp.15489 10.1088/0031-9155/56/11/010  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 American Association of Physicists in Medicine. | 
    
| Copyright_xml | – notice: 2023 American Association of Physicists in Medicine. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/mp.16877 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Physics  | 
    
| EISSN | 2473-4209 | 
    
| EndPage | 3390 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:11076172 PMC11076172 38078560 10_1002_mp_16877 MP16877  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: R01EB032716 – fundername: National Cancer Institute funderid: R37CA214639; R01CA227289 – fundername: NIBIB NIH HHS grantid: R01 EB032716 – fundername: NCI NIH HHS grantid: R37CA214639 – fundername: NCI NIH HHS grantid: R01CA227289 – fundername: NCI NIH HHS grantid: R01 CA227289 – fundername: NCI NIH HHS grantid: R37 CA214639 – fundername: NIBIB NIH HHS grantid: R01EB032716  | 
    
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM ABUFD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4117-39c2f30a7067563a8eb8f6c55195a50a068712e418cb3849c27a9141283d768e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0094-2405 2473-4209 1522-8541  | 
    
| IngestDate | Sun Oct 26 04:14:17 EDT 2025 Tue Sep 30 17:03:27 EDT 2025 Thu Sep 04 16:04:25 EDT 2025 Mon Jul 21 05:57:11 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Wed Oct 01 05:34:54 EDT 2025 Wed Jan 22 17:20:42 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | spectral CT deep learning reconstruction  | 
    
| Language | English | 
    
| License | 2023 American Association of Physicists in Medicine. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4117-39c2f30a7067563a8eb8f6c55195a50a068712e418cb3849c27a9141283d768e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11076172 | 
    
| PMID | 38078560 | 
    
| PQID | 2902937265 | 
    
| PQPubID | 23479 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mp_16877 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11076172 proquest_miscellaneous_2902937265 pubmed_primary_38078560 crossref_citationtrail_10_1002_mp_16877 crossref_primary_10_1002_mp_16877 wiley_primary_10_1002_mp_16877_MP16877  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2024 | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Medical physics (Lancaster) | 
    
| PublicationTitleAlternate | Med Phys | 
    
| PublicationYear | 2024 | 
    
| References | 2015; 1 2009; 25 2021; 87 2010; 37 2006; 79 2017; 44 2018; 169 2013; 266 2011; 56 2008; 53 2018; 45 2012; 57 2011; 38 2022; 49 2010; 20 2012; 199 2013; 58 2001 1982; 1 2020; 75 1984; 1 2019; 46 2018 2003; 49 2020; 47 2020; 65 2009; 19 2018; 37 2023; 50 e_1_2_8_28_1 Sidky EY (e_1_2_8_17_1) 2023; 50 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1  | 
    
| References_xml | – volume: 1 start-page: 612 year: 1984 end-page: 619 article-title: Practical cone‐beam algorithm publication-title: Josa a – volume: 50 start-page: 1 year: 2023 end-page: 14 article-title: Report on the AAPM deep‐learning spectral CT grand challenge publication-title: Med Phys – year: 2018 article-title: Multi‐materials beam hardening artifacts correction for computed tomography (CT) based on X‐ray spectrum estimation – volume: 19 start-page: 13 year: 2009 end-page: 23 article-title: Dual energy CT: preliminary observations and potential clinical applications in the abdomen publication-title: Eur Radiol – volume: 199 start-page: S9 year: 2012 end-page: S15 article-title: Dual‐energy CT–based monochromatic imaging publication-title: Am J Roentgenol – volume: 37 start-page: 1418 year: 2018 end-page: 1429 article-title: Framing U‐Net via deep convolutional framelets: application to sparse‐view CT publication-title: IEEE Trans Med Imaging – volume: 87 year: 2021 article-title: Non‐convex primal‐dual algorithm for image reconstruction in spectral CT publication-title: Comput Med Imaging Graph – volume: 37 start-page: 1757 year: 2010 end-page: 1760 article-title: GPU‐based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation publication-title: Med Phys – year: 2001 – volume: 57 start-page: 2803 year: 2012 article-title: CT metal artifact reduction method correcting for beam hardening and missing projections publication-title: Phys Med Biol – volume: 58 start-page: 8725 year: 2013 article-title: Automatic treatment plan re‐optimization for adaptive radiotherapy guided with the initial plan DVHs* publication-title: Phys Med Biol – volume: 45 start-page: 1491 year: 2018 end-page: 1503 article-title: Material elemental decomposition in dual and multi‐energy CT via a sparsity‐dictionary approach for proton stopping power ratio calculation publication-title: Med Phys – volume: 25 year: 2009 article-title: Why do commercial CT scanners still employ traditional, filtered back‐projection for image reconstruction? publication-title: Inverse Problems – volume: 199 start-page: S98 year: 2012 article-title: Dual‐energy CT: oncologic applications publication-title: AJR Am J Roentgenol – volume: 79 start-page: S27 year: 2006 end-page: S35 article-title: The role of PET/CT scanning in radiotherapy planning publication-title: Br J Radiol – volume: 44 start-page: e339 year: 2017 end-page: e352 article-title: Low‐dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge publication-title: Med Phys – volume: 38 start-page: 245 year: 2011 end-page: 255 article-title: Least squares parameter estimation methods for material decomposition with energy discriminating detectors publication-title: Med Phys – volume: 169 start-page: 217 year: 2018 end-page: 229 article-title: Rapid review: radiomics and breast cancer publication-title: Breast Cancer Res Treat – volume: 53 start-page: 4777 year: 2008 article-title: Image reconstruction in circular cone‐beam computed tomography by constrained, total‐variation minimization publication-title: Phys Med Biol – volume: 75 start-page: 886 year: 2020 end-page: 902 article-title: Benefit of dual‐layer spectral CT in emergency imaging of different organ systems publication-title: Clin Radiol – volume: 49 start-page: 4935 year: 2022 end-page: 4943 article-title: Report on the AAPM deep‐learning sparse‐view CT grand challenge publication-title: Med Phys – volume: 47 start-page: 2329 year: 2020 end-page: 2336 article-title: Operating a treatment planning system using a deep‐reinforcement learning‐based virtual treatment planner for prostate cancer intensity‐modulated radiation therapy treatment planning publication-title: Med Phys – volume: 1 start-page: 200 year: 2015 end-page: 216 article-title: A model‐based image reconstruction algorithm with simultaneous beam hardening correction for X‐ray CT publication-title: IEEE Trans Comput Imaging – volume: 56 start-page: 3787 year: 2011 end-page: 3807 article-title: GPU‐based iterative cone‐beam CT reconstruction using tight frame regularization publication-title: Phys Med Biol – volume: 65 year: 2020 article-title: An introduction to deep learning in medical physics advantages, potential, and challenges publication-title: Phys Med Biol – volume: 49 start-page: 145 year: 2003 article-title: Characterization and suppression of edge and aliasing artifacts in iterative x‐ray CT reconstruction publication-title: Phys Med Biol – volume: 20 start-page: 161 year: 2010 end-page: 175 article-title: Fast model‐based X‐ray CT reconstruction using spatially nonhomogeneous ICD optimization publication-title: IEEE Trans Image Process – volume: 46 start-page: 3799 year: 2019 end-page: 3811 article-title: SPARE: Sparse‐view reconstruction challenge for 4D cone‐beam CT from a 1‐min scan publication-title: Med Phys – volume: 56 start-page: 3337 year: 2011 article-title: A GPU‐based finite‐size pencil beam algorithm with 3D‐density correction for radiotherapy dose calculation publication-title: Phys Med Biol – volume: 1 start-page: 81 year: 1982 end-page: 94 article-title: Image restoration by the method of convex projections: part 1. theory publication-title: IEEE Trans Med Imaging – volume: 266 start-page: 197 year: 2013 end-page: 206 article-title: Filtered back projection, adaptive statistical iterative reconstruction, and a model‐based iterative reconstruction in abdominal CT: an experimental clinical study publication-title: Radiology – ident: e_1_2_8_20_1 doi: 10.2214/AJR.12.9207 – ident: e_1_2_8_5_1 doi: 10.1109/TMI.1982.4307555 – ident: e_1_2_8_7_1 doi: 10.1088/0031-9155/49/1/010 – ident: e_1_2_8_27_1 doi: 10.1016/j.compmedimag.2020.101821 – ident: e_1_2_8_8_1 doi: 10.1118/1.3371691 – ident: e_1_2_8_2_1 doi: 10.1137/1.9780898719277 – ident: e_1_2_8_21_1 doi: 10.1002/mp.12796 – ident: e_1_2_8_30_1 doi: 10.1088/0031-9155/57/9/2803 – ident: e_1_2_8_23_1 doi: 10.1259/bjr/35628509 – ident: e_1_2_8_10_1 doi: 10.1148/radiol.12112707 – ident: e_1_2_8_26_1 doi: 10.1016/j.crad.2020.06.012 – ident: e_1_2_8_28_1 – ident: e_1_2_8_4_1 doi: 10.1088/0266-5611/25/12/123009 – ident: e_1_2_8_6_1 doi: 10.1088/0031-9155/53/17/021 – ident: e_1_2_8_14_1 doi: 10.1002/mp.12345 – ident: e_1_2_8_18_1 doi: 10.2214/AJR.12.9121 – ident: e_1_2_8_3_1 doi: 10.1364/JOSAA.1.000612 – ident: e_1_2_8_11_1 doi: 10.1109/TIP.2010.2058811 – ident: e_1_2_8_19_1 doi: 10.1007/s00330-008-1122-7 – ident: e_1_2_8_25_1 doi: 10.1002/mp.14114 – volume: 50 start-page: 1 year: 2023 ident: e_1_2_8_17_1 article-title: Report on the AAPM deep‐learning spectral CT grand challenge publication-title: Med Phys – ident: e_1_2_8_13_1 doi: 10.1088/1361-6560/ab6f51 – ident: e_1_2_8_31_1 doi: 10.1118/1.3525840 – ident: e_1_2_8_29_1 doi: 10.1109/TCI.2015.2461492 – ident: e_1_2_8_12_1 doi: 10.1109/TMI.2018.2823768 – ident: e_1_2_8_15_1 doi: 10.1002/mp.13687 – ident: e_1_2_8_32_1 doi: 10.1007/s10549-018-4675-4 – ident: e_1_2_8_24_1 doi: 10.1088/0031-9155/58/24/8725 – ident: e_1_2_8_9_1 doi: 10.1088/0031-9155/56/13/004 – ident: e_1_2_8_16_1 doi: 10.1002/mp.15489 – ident: e_1_2_8_22_1 doi: 10.1088/0031-9155/56/11/010  | 
    
| SSID | ssj0006350 | 
    
| Score | 2.4508653 | 
    
| Snippet | Background
CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a... CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3376 | 
    
| SubjectTerms | Algorithms deep learning Humans Image Processing, Computer-Assisted - methods Phantoms, Imaging reconstruction spectral CT Tomography, X-Ray Computed - methods  | 
    
| Title | Spectral CT image reconstruction using a constrained optimization approach—An algorithm for AAPM 2022 spectral CT grand challenge and beyond | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.16877 https://www.ncbi.nlm.nih.gov/pubmed/38078560 https://www.proquest.com/docview/2902937265 https://pubmed.ncbi.nlm.nih.gov/PMC11076172 https://www.ncbi.nlm.nih.gov/pmc/articles/11076172  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 51 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFL0aWvHY8Bhe5TEyCMEqaeLYibuMBkYjREeVmErDKrIdp1ORpBVthWDFF7DiC_kSrp2kogwgWEVObh6Wj33uja-PAZ6FXOgizI0XKZN4jMncE7FWXkGNsASIDGL_Q45P4uMpe33Gz_aAdmthXNK-VnO_Liu_np-73MplpYddntjQBiyWdi9BP-bof_egPz2ZpO8auUlmpwu4E0nFKEtwt3UlZUnkMRqMOvXZgA6rpR_GIkl2-eiCk3kxV_Lqpl7KTx9lWe76s46Qjm40iwRXTsfQ5qG89zdr5evPv6g8_l9db8L11j8laXPtFuyZeh-ujNsZ-H247FJG9eo2fLVb19uPJYenZF7huERcdL1VpCU2p35GJGlOSrw_Jwscoqp27SfpBM2_f_mWYqmcLT7M1-cVQUeapOlkTChyP1n99J4ZUmtOdLcDDLEl5Rbh3IHp0avTw2Ov3d3B0yxEaoxGmhZRIBMbs8SRFEaJItbcyt1IHsgAWyekhoVCq0gwtE7kKGTIp1GOMZKJ7kKvXtTmPhDNTZwgGlmYCwxvw1FzMw5eBVdKqwG86No40630ua12mTWizTSrlplDwwCebC2XjdzH72w6mGTYF-0Ei6zNYrPK6ChA7ymhMR_AvQY226c4YX90LwcgdgC1NbA637tXEBJO77tDwQCebrH3l6977kD5R4NsPHHHB__ytIdwDVuaNRmej6CHCDKP0QtbqwPopy_Hb94etN3vB-WYMOk | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFL0aOuKx4THAEF4yCMEqaeI4ibOMRoxGSB11MZWGVWQ7TqciSatpKwQrvoAVX8iXcO08RBlAsIqc3DwsH_vcG18fA7wKIq7KoNBuKHXiMiYKl8dKuiXV3BAgMoj5Dzk5jU9m7N15dL4HtF8LY5P2lVx4TVV7zeLC5lauajXu88TGJmAxtHsN9uMI_e8R7M9Op9n7Vm6SmemCyIqkYpTFI7t1JWVJ6DLqp736rE_H9coLYp4ku3x0xcm8mit5c9usxKePoqp2_VlLSMd32kWCa6tjaPJQPnjbjfTU519UHv-vrnfhduefkqy9dg_2dHMANybdDPwBXLcpo2p9H76arevNx5KjM7KocVwiNroeFGmJyamfE0HakwLvL8gSh6i6W_tJekHz71--ZViq5svLxeaiJuhIkyybTghF7ifrn94zR2otiOp3gCGmJO0inAcwO357dnTidrs7uIoFSI1hqmgZ-iIxMUscCq4lL2MVGbkbEfnCx9YJqGYBVzLkDK0TkQYM-TQsMEbS4UMYNctGPwKiIh0niEYWFBzD2yBtb8bBq4ykVNKBN30b56qTPjfVrvJWtJnm9Sq3aHDgxWC5auU-fmfTwyTHvmgmWESjl9t1TlMfvaeExpEDhy1shqdYYX90Lx3gO4AaDIzO9-4VhITV--5R4MDLAXt_-brXFpR_NMgnU3t8_C9PewK3sKVZm-H5FEaIIP0MvbCNfN51ux9mjC9V | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+CT+image+reconstruction+using+a+constrained+optimization+approach-An+algorithm+for+AAPM+2022+spectral+CT+grand+challenge+and+beyond&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Hu%2C+Xiaoyu&rft.au=Jia%2C+Xun&rft.date=2024-05-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=51&rft.issue=5&rft.spage=3376&rft_id=info:doi/10.1002%2Fmp.16877&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |