Spectral CT image reconstruction using a constrained optimization approach—An algorithm for AAPM 2022 spectral CT grand challenge and beyond

Background CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconst...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 51; no. 5; pp. 3376 - 3390
Main Authors Hu, Xiaoyu, Jia, Xun
Format Journal Article
LanguageEnglish
Published United States 01.05.2024
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.16877

Cover

Abstract Background CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner‐up team. Purpose This paper reports details of our PROSPECT algorithm (Prior‐based Restricted‐variable Optimization for SPEctral CT) and follow‐up studies regarding the algorithm's accuracy and enhancement of its convergence speed. Methods We formulated the reconstruction task as an optimization problem. PROSPECT employed a one‐step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam‐hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data. Results Prior knowledge allowed a reduction of the number of unknown variables by 85.9%$85.9\%$. PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3×10−6$3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double‐precision projection data reduced RMSE to 1.2×10−11$1.2\,\times \,10^{-11}$. Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time. Conclusions PROSPECT algorithm achieved a high degree of accuracy and computational efficiency.
AbstractList Background CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner‐up team. Purpose This paper reports details of our PROSPECT algorithm (Prior‐based Restricted‐variable Optimization for SPEctral CT) and follow‐up studies regarding the algorithm's accuracy and enhancement of its convergence speed. Methods We formulated the reconstruction task as an optimization problem. PROSPECT employed a one‐step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam‐hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data. Results Prior knowledge allowed a reduction of the number of unknown variables by 85.9%$85.9\%$. PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3×10−6$3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double‐precision projection data reduced RMSE to 1.2×10−11$1.2\,\times \,10^{-11}$. Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time. Conclusions PROSPECT algorithm achieved a high degree of accuracy and computational efficiency.
CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner-up team.BACKGROUNDCT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner-up team.This paper reports details of our PROSPECT algorithm (Prior-based Restricted-variable Optimization for SPEctral CT) and follow-up studies regarding the algorithm's accuracy and enhancement of its convergence speed.PURPOSEThis paper reports details of our PROSPECT algorithm (Prior-based Restricted-variable Optimization for SPEctral CT) and follow-up studies regarding the algorithm's accuracy and enhancement of its convergence speed.We formulated the reconstruction task as an optimization problem. PROSPECT employed a one-step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam-hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data.METHODSWe formulated the reconstruction task as an optimization problem. PROSPECT employed a one-step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam-hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data.Prior knowledge allowed a reduction of the number of unknown variables by 85.9 % $85.9\%$ . PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3 × 10 - 6 $3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double-precision projection data reduced RMSE to 1.2 × 10 - 11 $1.2\,\times \,10^{-11}$ . Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time.RESULTSPrior knowledge allowed a reduction of the number of unknown variables by 85.9 % $85.9\%$ . PROSPECT algorithm achieved the average root of mean square error (RMSE) of 3.3 × 10 - 6 $3.3\,\times \,10^{-6}$ in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double-precision projection data reduced RMSE to 1.2 × 10 - 11 $1.2\,\times \,10^{-11}$ . Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time.PROSPECT algorithm achieved a high degree of accuracy and computational efficiency.CONCLUSIONSPROSPECT algorithm achieved a high degree of accuracy and computational efficiency.
CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge to investigate the challenging inverse problem of spectral CT reconstruction, with the aim of achieving the most accurate reconstruction results. The authors of this paper participated in the challenge and won as a runner-up team. This paper reports details of our PROSPECT algorithm (Prior-based Restricted-variable Optimization for SPEctral CT) and follow-up studies regarding the algorithm's accuracy and enhancement of its convergence speed. We formulated the reconstruction task as an optimization problem. PROSPECT employed a one-step backward iterative scheme to solve this optimization problem by allowing estimation of and correction for the difference between the actual polychromatic projection model and the monochromatic model used in the optimization problem. PROSPECT incorporated various forms of prior information derived by analyzing training data provided by the Grand Challenge to reduce the number of unknown variables. We investigated the impact of projection data precision on the resulting solution accuracy and improved convergence speed of the PROSPECT algorithm by incorporating a beam-hardening correction (BHC) step in the iterative process. We also studied the algorithm's performance under noisy projection data. Prior knowledge allowed a reduction of the number of unknown variables by . PROSPECT algorithm achieved the average root of mean square error (RMSE) of in the test data set provided by the Grand Challenge. Performing the reconstruction with the same algorithm but using double-precision projection data reduced RMSE to . Including the BHC step in the PROSPECT algorithm accelerated the iteration process with a 40% reduction in computation time. PROSPECT algorithm achieved a high degree of accuracy and computational efficiency.
Author Jia, Xun
Hu, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Hu
  fullname: Hu, Xiaoyu
  organization: Johns Hopkins University
– sequence: 2
  givenname: Xun
  surname: Jia
  fullname: Jia, Xun
  email: xunjia@jhu.edu
  organization: Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38078560$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKcFiSdAXpZFhms7iZ0VGo34k1pRibK2PI6TMUrsYCethhVPwIon5EnwTEpVELCyrv35nHvvOUFHzjuD0FMCSwJAX_TDkpSC8wdoQXPOspxCdYQWAFWe0RyKY3QS4ycAKFkBj9AxE8BFUcICffswGD0G1eH1Fba9ag0ORnsXxzDp0XqHp2hdixWeL5V1psZ-GG1vv6gDoIYheKW3P75-X6Wqa32w47bHjQ94tbq8wBQoxfGeTxuUq7Heqq4zLjnuq43ZeVc_Rg8b1UXz5PY8RR9fv7pav83O3795t16dZzonhGes0rRhoDiUvCiZEmYjmlIXBakKVYCCtAxCTU6E3jCRJ5qriuSEClbzUhh2ip7PupMb1O4mNSKHkMYPO0lA7ncq-0EedprYlzM7TJve1Nq4_Rx3vFdW_v7i7Fa2_loSArwknCaFs1uF4D9PJo6yt1GbrlPO-ClKWgGtGKdlkdBn983uXH4lloDlDOjgYwymkdqOhyD24XR_a__sjw__mTSb0Rvbmd0_OXlxOfM_AcUwxPw
CitedBy_id crossref_primary_10_1088_1361_6560_adac9e
Cites_doi 10.2214/AJR.12.9207
10.1109/TMI.1982.4307555
10.1088/0031-9155/49/1/010
10.1016/j.compmedimag.2020.101821
10.1118/1.3371691
10.1137/1.9780898719277
10.1002/mp.12796
10.1088/0031-9155/57/9/2803
10.1259/bjr/35628509
10.1148/radiol.12112707
10.1016/j.crad.2020.06.012
10.1088/0266-5611/25/12/123009
10.1088/0031-9155/53/17/021
10.1002/mp.12345
10.2214/AJR.12.9121
10.1364/JOSAA.1.000612
10.1109/TIP.2010.2058811
10.1007/s00330-008-1122-7
10.1002/mp.14114
10.1088/1361-6560/ab6f51
10.1118/1.3525840
10.1109/TCI.2015.2461492
10.1109/TMI.2018.2823768
10.1002/mp.13687
10.1007/s10549-018-4675-4
10.1088/0031-9155/58/24/8725
10.1088/0031-9155/56/13/004
10.1002/mp.15489
10.1088/0031-9155/56/11/010
ContentType Journal Article
Copyright 2023 American Association of Physicists in Medicine.
Copyright_xml – notice: 2023 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.16877
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 3390
ExternalDocumentID oai:pubmedcentral.nih.gov:11076172
PMC11076172
38078560
10_1002_mp_16877
MP16877
Genre article
Journal Article
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: R01EB032716
– fundername: National Cancer Institute
  funderid: R37CA214639; R01CA227289
– fundername: NIBIB NIH HHS
  grantid: R01 EB032716
– fundername: NCI NIH HHS
  grantid: R37CA214639
– fundername: NCI NIH HHS
  grantid: R01CA227289
– fundername: NCI NIH HHS
  grantid: R01 CA227289
– fundername: NCI NIH HHS
  grantid: R37 CA214639
– fundername: NIBIB NIH HHS
  grantid: R01EB032716
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c4117-39c2f30a7067563a8eb8f6c55195a50a068712e418cb3849c27a9141283d768e3
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Sun Oct 26 04:14:17 EDT 2025
Tue Sep 30 17:03:27 EDT 2025
Thu Sep 04 16:04:25 EDT 2025
Mon Jul 21 05:57:11 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Wed Oct 01 05:34:54 EDT 2025
Wed Jan 22 17:20:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords spectral CT
deep learning
reconstruction
Language English
License 2023 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4117-39c2f30a7067563a8eb8f6c55195a50a068712e418cb3849c27a9141283d768e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11076172
PMID 38078560
PQID 2902937265
PQPubID 23479
PageCount 15
ParticipantIDs unpaywall_primary_10_1002_mp_16877
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11076172
proquest_miscellaneous_2902937265
pubmed_primary_38078560
crossref_citationtrail_10_1002_mp_16877
crossref_primary_10_1002_mp_16877
wiley_primary_10_1002_mp_16877_MP16877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2024
References 2015; 1
2009; 25
2021; 87
2010; 37
2006; 79
2017; 44
2018; 169
2013; 266
2011; 56
2008; 53
2018; 45
2012; 57
2011; 38
2022; 49
2010; 20
2012; 199
2013; 58
2001
1982; 1
2020; 75
1984; 1
2019; 46
2018
2003; 49
2020; 47
2020; 65
2009; 19
2018; 37
2023; 50
e_1_2_8_28_1
Sidky EY (e_1_2_8_17_1) 2023; 50
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 1
  start-page: 612
  year: 1984
  end-page: 619
  article-title: Practical cone‐beam algorithm
  publication-title: Josa a
– volume: 50
  start-page: 1
  year: 2023
  end-page: 14
  article-title: Report on the AAPM deep‐learning spectral CT grand challenge
  publication-title: Med Phys
– year: 2018
  article-title: Multi‐materials beam hardening artifacts correction for computed tomography (CT) based on X‐ray spectrum estimation
– volume: 19
  start-page: 13
  year: 2009
  end-page: 23
  article-title: Dual energy CT: preliminary observations and potential clinical applications in the abdomen
  publication-title: Eur Radiol
– volume: 199
  start-page: S9
  year: 2012
  end-page: S15
  article-title: Dual‐energy CT–based monochromatic imaging
  publication-title: Am J Roentgenol
– volume: 37
  start-page: 1418
  year: 2018
  end-page: 1429
  article-title: Framing U‐Net via deep convolutional framelets: application to sparse‐view CT
  publication-title: IEEE Trans Med Imaging
– volume: 87
  year: 2021
  article-title: Non‐convex primal‐dual algorithm for image reconstruction in spectral CT
  publication-title: Comput Med Imaging Graph
– volume: 37
  start-page: 1757
  year: 2010
  end-page: 1760
  article-title: GPU‐based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation
  publication-title: Med Phys
– year: 2001
– volume: 57
  start-page: 2803
  year: 2012
  article-title: CT metal artifact reduction method correcting for beam hardening and missing projections
  publication-title: Phys Med Biol
– volume: 58
  start-page: 8725
  year: 2013
  article-title: Automatic treatment plan re‐optimization for adaptive radiotherapy guided with the initial plan DVHs*
  publication-title: Phys Med Biol
– volume: 45
  start-page: 1491
  year: 2018
  end-page: 1503
  article-title: Material elemental decomposition in dual and multi‐energy CT via a sparsity‐dictionary approach for proton stopping power ratio calculation
  publication-title: Med Phys
– volume: 25
  year: 2009
  article-title: Why do commercial CT scanners still employ traditional, filtered back‐projection for image reconstruction?
  publication-title: Inverse Problems
– volume: 199
  start-page: S98
  year: 2012
  article-title: Dual‐energy CT: oncologic applications
  publication-title: AJR Am J Roentgenol
– volume: 79
  start-page: S27
  year: 2006
  end-page: S35
  article-title: The role of PET/CT scanning in radiotherapy planning
  publication-title: Br J Radiol
– volume: 44
  start-page: e339
  year: 2017
  end-page: e352
  article-title: Low‐dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge
  publication-title: Med Phys
– volume: 38
  start-page: 245
  year: 2011
  end-page: 255
  article-title: Least squares parameter estimation methods for material decomposition with energy discriminating detectors
  publication-title: Med Phys
– volume: 169
  start-page: 217
  year: 2018
  end-page: 229
  article-title: Rapid review: radiomics and breast cancer
  publication-title: Breast Cancer Res Treat
– volume: 53
  start-page: 4777
  year: 2008
  article-title: Image reconstruction in circular cone‐beam computed tomography by constrained, total‐variation minimization
  publication-title: Phys Med Biol
– volume: 75
  start-page: 886
  year: 2020
  end-page: 902
  article-title: Benefit of dual‐layer spectral CT in emergency imaging of different organ systems
  publication-title: Clin Radiol
– volume: 49
  start-page: 4935
  year: 2022
  end-page: 4943
  article-title: Report on the AAPM deep‐learning sparse‐view CT grand challenge
  publication-title: Med Phys
– volume: 47
  start-page: 2329
  year: 2020
  end-page: 2336
  article-title: Operating a treatment planning system using a deep‐reinforcement learning‐based virtual treatment planner for prostate cancer intensity‐modulated radiation therapy treatment planning
  publication-title: Med Phys
– volume: 1
  start-page: 200
  year: 2015
  end-page: 216
  article-title: A model‐based image reconstruction algorithm with simultaneous beam hardening correction for X‐ray CT
  publication-title: IEEE Trans Comput Imaging
– volume: 56
  start-page: 3787
  year: 2011
  end-page: 3807
  article-title: GPU‐based iterative cone‐beam CT reconstruction using tight frame regularization
  publication-title: Phys Med Biol
– volume: 65
  year: 2020
  article-title: An introduction to deep learning in medical physics advantages, potential, and challenges
  publication-title: Phys Med Biol
– volume: 49
  start-page: 145
  year: 2003
  article-title: Characterization and suppression of edge and aliasing artifacts in iterative x‐ray CT reconstruction
  publication-title: Phys Med Biol
– volume: 20
  start-page: 161
  year: 2010
  end-page: 175
  article-title: Fast model‐based X‐ray CT reconstruction using spatially nonhomogeneous ICD optimization
  publication-title: IEEE Trans Image Process
– volume: 46
  start-page: 3799
  year: 2019
  end-page: 3811
  article-title: SPARE: Sparse‐view reconstruction challenge for 4D cone‐beam CT from a 1‐min scan
  publication-title: Med Phys
– volume: 56
  start-page: 3337
  year: 2011
  article-title: A GPU‐based finite‐size pencil beam algorithm with 3D‐density correction for radiotherapy dose calculation
  publication-title: Phys Med Biol
– volume: 1
  start-page: 81
  year: 1982
  end-page: 94
  article-title: Image restoration by the method of convex projections: part 1. theory
  publication-title: IEEE Trans Med Imaging
– volume: 266
  start-page: 197
  year: 2013
  end-page: 206
  article-title: Filtered back projection, adaptive statistical iterative reconstruction, and a model‐based iterative reconstruction in abdominal CT: an experimental clinical study
  publication-title: Radiology
– ident: e_1_2_8_20_1
  doi: 10.2214/AJR.12.9207
– ident: e_1_2_8_5_1
  doi: 10.1109/TMI.1982.4307555
– ident: e_1_2_8_7_1
  doi: 10.1088/0031-9155/49/1/010
– ident: e_1_2_8_27_1
  doi: 10.1016/j.compmedimag.2020.101821
– ident: e_1_2_8_8_1
  doi: 10.1118/1.3371691
– ident: e_1_2_8_2_1
  doi: 10.1137/1.9780898719277
– ident: e_1_2_8_21_1
  doi: 10.1002/mp.12796
– ident: e_1_2_8_30_1
  doi: 10.1088/0031-9155/57/9/2803
– ident: e_1_2_8_23_1
  doi: 10.1259/bjr/35628509
– ident: e_1_2_8_10_1
  doi: 10.1148/radiol.12112707
– ident: e_1_2_8_26_1
  doi: 10.1016/j.crad.2020.06.012
– ident: e_1_2_8_28_1
– ident: e_1_2_8_4_1
  doi: 10.1088/0266-5611/25/12/123009
– ident: e_1_2_8_6_1
  doi: 10.1088/0031-9155/53/17/021
– ident: e_1_2_8_14_1
  doi: 10.1002/mp.12345
– ident: e_1_2_8_18_1
  doi: 10.2214/AJR.12.9121
– ident: e_1_2_8_3_1
  doi: 10.1364/JOSAA.1.000612
– ident: e_1_2_8_11_1
  doi: 10.1109/TIP.2010.2058811
– ident: e_1_2_8_19_1
  doi: 10.1007/s00330-008-1122-7
– ident: e_1_2_8_25_1
  doi: 10.1002/mp.14114
– volume: 50
  start-page: 1
  year: 2023
  ident: e_1_2_8_17_1
  article-title: Report on the AAPM deep‐learning spectral CT grand challenge
  publication-title: Med Phys
– ident: e_1_2_8_13_1
  doi: 10.1088/1361-6560/ab6f51
– ident: e_1_2_8_31_1
  doi: 10.1118/1.3525840
– ident: e_1_2_8_29_1
  doi: 10.1109/TCI.2015.2461492
– ident: e_1_2_8_12_1
  doi: 10.1109/TMI.2018.2823768
– ident: e_1_2_8_15_1
  doi: 10.1002/mp.13687
– ident: e_1_2_8_32_1
  doi: 10.1007/s10549-018-4675-4
– ident: e_1_2_8_24_1
  doi: 10.1088/0031-9155/58/24/8725
– ident: e_1_2_8_9_1
  doi: 10.1088/0031-9155/56/13/004
– ident: e_1_2_8_16_1
  doi: 10.1002/mp.15489
– ident: e_1_2_8_22_1
  doi: 10.1088/0031-9155/56/11/010
SSID ssj0006350
Score 2.4508653
Snippet Background CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a...
CT reconstruction is of essential importance in medical imaging. In 2022, the American Association of Physicists in Medicine (AAPM) sponsored a Grand Challenge...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3376
SubjectTerms Algorithms
deep learning
Humans
Image Processing, Computer-Assisted - methods
Phantoms, Imaging
reconstruction
spectral CT
Tomography, X-Ray Computed - methods
Title Spectral CT image reconstruction using a constrained optimization approach—An algorithm for AAPM 2022 spectral CT grand challenge and beyond
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.16877
https://www.ncbi.nlm.nih.gov/pubmed/38078560
https://www.proquest.com/docview/2902937265
https://pubmed.ncbi.nlm.nih.gov/PMC11076172
https://www.ncbi.nlm.nih.gov/pmc/articles/11076172
UnpaywallVersion submittedVersion
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFL0aWvHY8Bhe5TEyCMEqaeLYibuMBkYjREeVmErDKrIdp1ORpBVthWDFF7DiC_kSrp2kogwgWEVObh6Wj33uja-PAZ6FXOgizI0XKZN4jMncE7FWXkGNsASIDGL_Q45P4uMpe33Gz_aAdmthXNK-VnO_Liu_np-73MplpYddntjQBiyWdi9BP-bof_egPz2ZpO8auUlmpwu4E0nFKEtwt3UlZUnkMRqMOvXZgA6rpR_GIkl2-eiCk3kxV_Lqpl7KTx9lWe76s46Qjm40iwRXTsfQ5qG89zdr5evPv6g8_l9db8L11j8laXPtFuyZeh-ujNsZ-H247FJG9eo2fLVb19uPJYenZF7huERcdL1VpCU2p35GJGlOSrw_Jwscoqp27SfpBM2_f_mWYqmcLT7M1-cVQUeapOlkTChyP1n99J4ZUmtOdLcDDLEl5Rbh3IHp0avTw2Ov3d3B0yxEaoxGmhZRIBMbs8SRFEaJItbcyt1IHsgAWyekhoVCq0gwtE7kKGTIp1GOMZKJ7kKvXtTmPhDNTZwgGlmYCwxvw1FzMw5eBVdKqwG86No40630ua12mTWizTSrlplDwwCebC2XjdzH72w6mGTYF-0Ei6zNYrPK6ChA7ymhMR_AvQY226c4YX90LwcgdgC1NbA637tXEBJO77tDwQCebrH3l6977kD5R4NsPHHHB__ytIdwDVuaNRmej6CHCDKP0QtbqwPopy_Hb94etN3vB-WYMOk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LjtMwFL0aOuKx4THAEF4yCMEqaeI4ibOMRoxGSB11MZWGVWQ7TqciSatpKwQrvoAVX8iXcO08RBlAsIqc3DwsH_vcG18fA7wKIq7KoNBuKHXiMiYKl8dKuiXV3BAgMoj5Dzk5jU9m7N15dL4HtF8LY5P2lVx4TVV7zeLC5lauajXu88TGJmAxtHsN9uMI_e8R7M9Op9n7Vm6SmemCyIqkYpTFI7t1JWVJ6DLqp736rE_H9coLYp4ku3x0xcm8mit5c9usxKePoqp2_VlLSMd32kWCa6tjaPJQPnjbjfTU519UHv-vrnfhduefkqy9dg_2dHMANybdDPwBXLcpo2p9H76arevNx5KjM7KocVwiNroeFGmJyamfE0HakwLvL8gSh6i6W_tJekHz71--ZViq5svLxeaiJuhIkyybTghF7ifrn94zR2otiOp3gCGmJO0inAcwO357dnTidrs7uIoFSI1hqmgZ-iIxMUscCq4lL2MVGbkbEfnCx9YJqGYBVzLkDK0TkQYM-TQsMEbS4UMYNctGPwKiIh0niEYWFBzD2yBtb8bBq4ykVNKBN30b56qTPjfVrvJWtJnm9Sq3aHDgxWC5auU-fmfTwyTHvmgmWESjl9t1TlMfvaeExpEDhy1shqdYYX90Lx3gO4AaDIzO9-4VhITV--5R4MDLAXt_-brXFpR_NMgnU3t8_C9PewK3sKVZm-H5FEaIIP0MvbCNfN51ux9mjC9V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+CT+image+reconstruction+using+a+constrained+optimization+approach-An+algorithm+for+AAPM+2022+spectral+CT+grand+challenge+and+beyond&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Hu%2C+Xiaoyu&rft.au=Jia%2C+Xun&rft.date=2024-05-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=51&rft.issue=5&rft.spage=3376&rft_id=info:doi/10.1002%2Fmp.16877&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon