A data mining methodology for predicting early stage Parkinson's disease using non-invasive, high-dimensional gait sensor data

Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanc...

Full description

Saved in:
Bibliographic Details
Published inIIE transactions on healthcare systems engineering Vol. 5; no. 4; pp. 238 - 254
Main Authors Tucker, Conrad, Han, Yixiang, Black Nembhard, Harriet, Lee, Wang-Chien, Lewis, Mechelle, Sterling, Nicholas, Huang, Xuemei
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.10.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1948-8300
2472-5579
1948-8319
1948-8319
2472-5587
DOI10.1080/19488300.2015.1095256

Cover

Abstract Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining-driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross-validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.
AbstractList Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining-driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross-validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.
Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.
Author Black Nembhard, Harriet
Lewis, Mechelle
Sterling, Nicholas
Lee, Wang-Chien
Huang, Xuemei
Tucker, Conrad
Han, Yixiang
AuthorAffiliation 3 Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA
4 Department of Neurology, Penn State, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
1 Industrial and Manufacturing Engineering, Engineering Design, Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
2 Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
AuthorAffiliation_xml – name: 1 Industrial and Manufacturing Engineering, Engineering Design, Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– name: 2 Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– name: 3 Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– name: 4 Department of Neurology, Penn State, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
Author_xml – sequence: 1
  givenname: Conrad
  surname: Tucker
  fullname: Tucker, Conrad
  email: ctucker4@psu.edu
  organization: The Pennsylvania State University, Industrial Engineering and Engineering Design, Computer Science and Engineering
– sequence: 2
  givenname: Yixiang
  surname: Han
  fullname: Han, Yixiang
  organization: The Pennsylvania State University, Industrial Engineering
– sequence: 3
  givenname: Harriet
  surname: Black Nembhard
  fullname: Black Nembhard, Harriet
  organization: The Pennsylvania State University, Industrial Engineering
– sequence: 4
  givenname: Wang-Chien
  surname: Lee
  fullname: Lee, Wang-Chien
  organization: The Pennsylvania State University, Computer Science and Engineering
– sequence: 5
  givenname: Mechelle
  surname: Lewis
  fullname: Lewis, Mechelle
  organization: The Pennsylvania State University, Neurology
– sequence: 6
  givenname: Nicholas
  surname: Sterling
  fullname: Sterling, Nicholas
  organization: The Pennsylvania State University, Neurology
– sequence: 7
  givenname: Xuemei
  surname: Huang
  fullname: Huang, Xuemei
  organization: The Pennsylvania State University, Neurology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29541376$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFARLaU_AWSJAxxIseM42QgJUVV8SZXgAGfr1XnJujj2Yjtb5cJvx9FuC_QA-OKvmXnzxn5IDpx3SMhjzk45W7GXvK1WK8HYacm4zEetLGV9jxwt58VK8Pbgds3YITmJ8YrlIcqWt_wBOSxbWXHR1EfkxxntIAEdjTNuoCOmte-89cNMex_oJmBndFquEIKdaUwwIP0M4Ztx0btnkXYmIkSkU1xQ2Whh3Bai2eILujbDuujMiC4a78DSAUyiMW-z9lL3Ebnfg414sp-Pydd3b7-cfyguPr3_eH52UeiK87ooARtkjGtR10x0uWFdCWj6CpHpskKpUUjgWDKoc8dNq2vGsWIttry5bLQ4JvVOd3IbmK_BWrUJZoQwK87Ukqm6yVQtmap9ppn4ekfcTJcjdhpdCvCL7MGoP2-cWavBb5VcVY3gPAs83wsE_33CmNRookZrwaGf4lKt4hVrZJmhT-9Ar_wUcmxR8UZIwbOfRfDJ745urdy8aQa82gF08DEG7JU2CVJ-gGzQ2H82LO-w_zeoNzuecfnjjHDtg-1Ugtn60Adw2kQl_i7xE8Fz230
CitedBy_id crossref_primary_10_15212_bioi_2020_0006
crossref_primary_10_11627_jksie_2023_46_3_161
crossref_primary_10_1002_sys_21414
crossref_primary_10_1080_02664763_2020_1716695
crossref_primary_10_1007_s42979_021_00710_9
crossref_primary_10_1016_j_matpr_2020_12_693
crossref_primary_10_1080_24725579_2019_1673521
crossref_primary_10_1080_24725579_2020_1741738
crossref_primary_10_1007_s10472_023_09888_5
crossref_primary_10_1016_j_clineuro_2019_105442
crossref_primary_10_1016_j_neuri_2022_100064
Cites_doi 10.1016/j.gaitpost.2011.08.020
10.1136/jnnp.73.5.529
10.1115/1.4004987
10.1155/1999/327643
10.1109/TBME.2008.2005954
10.1016/j.proeng.2012.09.216
10.1145/2398356.2398381
10.1002/mds.870090112
10.1001/archneur.63.2.189
10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9
10.1007/978-1-4020-6264-3_67
10.3233/IDA-2002-6504
10.1088/0004-637X/733/1/10
10.1002/mds.870040306
10.1093/brain/awn272
10.1073/pnas.082099299
10.1146/annurev.med.55.091902.104422
10.1007/978-1-4614-3417-7_8
10.1056/NEJM199810083391506
10.1016/S0304-3800(02)00260-0
10.1016/j.gaitpost.2009.10.013
10.1109/TITB.2009.2033471
10.1007/s10916-011-9678-1
10.1016/j.gaitpost.2012.03.033
10.1016/j.compbiomed.2015.08.012
10.1007/11765448_22
10.1371/journal.pone.0051464
10.1136/jnnp.55.3.181
10.1002/mds.870100506
10.1016/j.gaitpost.2011.10.180
10.1111/j.1749-6632.2003.tb07458.x
10.1212/WNL.42.6.1142
10.1016/S0967-5868(03)00192-9
10.1016/j.destud.2015.04.003
10.1017/S0376892997000088
10.1089/g4h.2012.0041
10.1073/pnas.102102699
10.1002/mds.870090103
10.1017/S0317167100031814
10.1007/978-3-540-30115-8_46
10.1136/jnnp.44.9.751
10.1109/TBME.2012.2183367
10.1016/j.neuroscience.2007.04.006
10.1136/jnnp.2003.033530
10.1016/S1474-4422(03)00529-5
ContentType Journal Article
Copyright Copyright © "IIE" 2015
Copyright © "IIE"
Copyright_xml – notice: Copyright © "IIE" 2015
– notice: Copyright © "IIE"
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
K9.
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1080/19488300.2015.1095256
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1948-8319
2472-5587
EndPage 254
ExternalDocumentID oai:pubmedcentral.nih.gov:5847311
PMC5847311
3873738581
29541376
10_1080_19488300_2015_1095256
1095256
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U01 NS082151
– fundername: NINDS NIH HHS
  grantid: R01 NS060722
GroupedDBID .7F
0BK
4.4
44B
AAGDL
AALDU
AAMIU
AAPUL
AAQRR
ABJNI
ABLIJ
ABPAQ
ABXUL
ABXYU
ACTIO
ADCVX
ADGTB
ADMLS
ADMSI
AEISY
AFRVT
AGDLA
AHDSZ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
BLEHA
CCCUG
CE4
DGEBU
EBD
EBS
EHE
EJD
GTTXZ
H13
HZ~
I-F
IPNFZ
J.P
KYCEM
M4Z
MK0
MK~
O9-
RIG
RNANH
ROSJB
RTWRZ
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
UU3
ZGOLN
AAYXX
CITATION
ADUMR
ADYSH
HF~
NPM
0R~
30N
7SC
8FD
ACIWK
AEYOC
JQ2
K9.
L7M
L~C
L~D
PQQKQ
7X8
5PM
ADTOC
AGBKS
TASJS
UNPAY
ID FETCH-LOGICAL-c4116-2ae7e001c36603d109c43a7f4ee0c24e5ce35a1e20a630079c601e409e917b7c3
IEDL.DBID UNPAY
ISSN 1948-8300
2472-5579
1948-8319
IngestDate Sun Oct 26 03:51:00 EDT 2025
Thu Aug 21 18:04:51 EDT 2025
Thu Sep 04 16:59:50 EDT 2025
Tue Oct 07 06:20:47 EDT 2025
Thu Apr 03 06:57:43 EDT 2025
Wed Oct 01 03:39:23 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Mon Oct 20 23:46:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords non-invasive
gait
data mining
neurological disease
telehealth
prediction
Parkinson’s disease (PD)
privacy
sensor
healthcare
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4116-2ae7e001c36603d109c43a7f4ee0c24e5ce35a1e20a630079c601e409e917b7c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1080/19488300.2015.1095256
PMID 29541376
PQID 1735315631
PQPubID 436426
PageCount 17
ParticipantIDs proquest_miscellaneous_2014140752
pubmed_primary_29541376
unpaywall_primary_10_1080_19488300_2015_1095256
crossref_citationtrail_10_1080_19488300_2015_1095256
proquest_journals_1735315631
crossref_primary_10_1080_19488300_2015_1095256
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847311
informaworld_taylorfrancis_310_1080_19488300_2015_1095256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-02
PublicationDateYYYYMMDD 2015-10-02
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle IIE transactions on healthcare systems engineering
PublicationTitleAlternate IIE Trans Healthc Syst Eng
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0034
cit0032
cit0030
Kohavi Ron (cit0035) 1995; 14
cit0070
Freed CurtR. (cit0021) 1992; 327
cit0039
cit0037
cit0038
cit0023
cit0020
cit0064
cit0062
cit0063
Gil, D, and Johnson, M (cit0001) 2006; 9
cit0028
cit0029
cit0026
Rajput A.H. (cit0052) 1991; 18
cit0027
cit0025
cit0069
cit0011
cit0055
cit0012
cit0056
cit0010
cit0054
Quinlan J. (cit0051) 1993
cit0050
Ramani R.Geetha (cit0053) 2011; 9
Gil David (cit0022) 2009; 9
Japkowicz Nathalie (cit0033) 2002; 6
Tsanas Athanasios (cit0060) 2010; 64
cit0019
cit0018
cit0059
cit0016
cit0057
cit0058
cit0044
cit0045
cit0042
cit0040
cit0041
Darley FredericL. (cit0013) 1975; 5
cit0007
cit0004
Hastie Trevor (cit0024) 2005; 27
cit0048
cit0049
cit0002
cit0046
cit0003
References_xml – ident: cit0055
  doi: 10.1016/j.gaitpost.2011.08.020
– ident: cit0056
  doi: 10.1136/jnnp.73.5.529
– ident: cit0064
  doi: 10.1115/1.4004987
– ident: cit0025
  doi: 10.1155/1999/327643
– volume: 327
  start-page: 1559
  year: 1992
  ident: cit0021
  publication-title: New England Journal of Medicine
– ident: cit0042
  doi: 10.1109/TBME.2008.2005954
– ident: cit0023
  doi: 10.1016/j.proeng.2012.09.216
– ident: cit0057
  doi: 10.1145/2398356.2398381
– ident: cit0046
  doi: 10.1002/mds.870090112
– volume: 64
  start-page: 63
  issue: 8
  year: 2010
  ident: cit0060
  publication-title: Age (years)
– ident: cit0027
  doi: 10.1001/archneur.63.2.189
– volume-title: C4.5 Programming for Machine Learning
  year: 1993
  ident: cit0051
– ident: cit0026
  doi: 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9
– ident: cit0069
  doi: 10.1007/978-1-4020-6264-3_67
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: cit0033
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6504
– ident: cit0054
  doi: 10.1088/0004-637X/733/1/10
– ident: cit0020
  doi: 10.1002/mds.870040306
– ident: cit0011
  doi: 10.1093/brain/awn272
– ident: cit0059
  doi: 10.1073/pnas.082099299
– ident: cit0048
  doi: 10.1146/annurev.med.55.091902.104422
– ident: cit0045
  doi: 10.1007/978-1-4614-3417-7_8
– ident: cit0037
  doi: 10.1056/NEJM199810083391506
– ident: cit0016
  doi: 10.1016/S0304-3800(02)00260-0
– ident: cit0039
  doi: 10.1016/j.gaitpost.2009.10.013
– ident: cit0050
  doi: 10.1109/TITB.2009.2033471
– volume: 9
  issue: 4
  year: 2009
  ident: cit0022
  publication-title: Global Journal of Computer Science and Technology
– ident: cit0049
  doi: 10.1007/s10916-011-9678-1
– volume: 5
  volume-title: Motor Speech Disorders
  year: 1975
  ident: cit0013
– volume: 14
  start-page: 1137
  issue: 2
  year: 1995
  ident: cit0035
  publication-title: IJCAI
– ident: cit0010
  doi: 10.1016/j.gaitpost.2012.03.033
– ident: cit0063
  doi: 10.1016/j.compbiomed.2015.08.012
– ident: cit0002
  doi: 10.1007/11765448_22
– ident: cit0032
  doi: 10.1371/journal.pone.0051464
– ident: cit0030
  doi: 10.1136/jnnp.55.3.181
– volume: 9
  issue: 32
  year: 2011
  ident: cit0053
  publication-title: International Journal of Computer Applications
– ident: cit0058
  doi: 10.1002/mds.870100506
– ident: cit0028
  doi: 10.1016/j.gaitpost.2011.10.180
– volume: 9
  start-page: 63
  year: 2006
  ident: cit0001
  publication-title: Global Journal of Computer Science and Technology
– ident: cit0018
  doi: 10.1111/j.1749-6632.2003.tb07458.x
– ident: cit0029
  doi: 10.1212/WNL.42.6.1142
– ident: cit0004
  doi: 10.1016/S0967-5868(03)00192-9
– ident: cit0007
  doi: 10.1016/j.destud.2015.04.003
– ident: cit0019
  doi: 10.1017/S0376892997000088
– ident: cit0034
  doi: 10.1089/g4h.2012.0041
– ident: cit0003
  doi: 10.1073/pnas.102102699
– ident: cit0044
  doi: 10.1002/mds.870090103
– volume: 18
  start-page: 275
  issue: 3
  year: 1991
  ident: cit0052
  publication-title: The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques
  doi: 10.1017/S0317167100031814
– ident: cit0070
  doi: 10.1007/978-3-540-30115-8_46
– ident: cit0012
  doi: 10.1136/jnnp.44.9.751
– ident: cit0062
  doi: 10.1109/TBME.2012.2183367
– ident: cit0040
  doi: 10.1016/j.neuroscience.2007.04.006
– ident: cit0041
  doi: 10.1136/jnnp.2003.033530
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  ident: cit0024
  publication-title: The Mathematical Intelligencer
– ident: cit0038
  doi: 10.1016/S1474-4422(03)00529-5
SSID ssj0000329191
ssj0001916256
Score 2.0688932
Snippet Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are...
Parkinson’s disease (PD) is the second most common neurological disorder after Alzheimer’s disease. Key clinical features of PD are motor-related and are...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 238
SubjectTerms Algorithms
Alzheimer's disease
Data mining
gait
image mining
machine learning
non-invasive
non-wearable
Parkinson's disease
sensor
Title A data mining methodology for predicting early stage Parkinson's disease using non-invasive, high-dimensional gait sensor data
URI https://www.tandfonline.com/doi/abs/10.1080/19488300.2015.1095256
https://www.ncbi.nlm.nih.gov/pubmed/29541376
https://www.proquest.com/docview/1735315631
https://www.proquest.com/docview/2014140752
https://pubmed.ncbi.nlm.nih.gov/PMC5847311
http://doi.org/10.1080/19488300.2015.1095256
UnpaywallVersion submittedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1948-8319
  dateEnd: 20161031
  omitProxy: false
  ssIdentifier: ssj0000329191
  issn: 1948-8300
  databaseCode: ADMLS
  dateStart: 20110401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1948-8319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000329191
  issn: 1948-8300
  databaseCode: AHDZW
  dateStart: 20110301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1948-8319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916256
  issn: 1948-8300
  databaseCode: 30N
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9t7QPsgW9GYFRGQuKFdEnsxMljBUwV0ioeqBi8RLbjlIqSVWsKggf-du7yRaOBNt5ixd8---58598BPM89nSdBpF2tdeYKIS1hQEo3E2Ee4ZJ7qrq6OJ1F07l4exae7UEbSq5nvo-9Y1Sx45h7HvlghQR9FCKL3odhFKLkPYDhfPZu8rEyHIvYpYx_vv2kfbDzr3p6rKgHVPo3cfOy1-SNbbFWP76r1WqHJZ3chtP2YU_tifJlvC312Py8jPN4rdHegVuNbMomNTHdhT1b3IODHcTC-_BrwsinlH2t4kqwOv50dTPPcFxsfUF2H_KkZpaQkxnKngvL6Gl19crsxYY1FiFGDvcLVpwX7rL4psiJ_iUj7GQ3o3gDNVYIW6hlyTaYxLqp3QcwP3nz_tXUbUI4uEb4fuQGykqLnNDwKPJ4hkMygiuZC2s9EwgbGstD5dvAU4T9JRODCqJFndOiGqml4Q9hgD2xj4CJjBsUjpROdCZiE-vYZiqUSRYr5WVSOiDa1UxNg29OYTZWqd_AoLbTm9L0ps30OjDuiq1rgI-rCiS7pJKW1c1KXodBSfkVZY9aukqbs2KT-pLjQRjiznDgWfcbdzmZblRhz7cbqkSgKizDwIHDmgy73pKl1kc-4YDsEWiXgRDE-3-K5ecKSZxs5NzHdo87Ur7eJDz-7xJP4CYlKz_I4AgG5cXWPkV5rtQj2OfebATDyfT1pw-jZlP_BqwKO_0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6KG8aKMhISFzINontODmuqlYVUisOrFROke042xVLuupmQXDob2cmLzYqqOUWK3577JnxjL8BeFcEpkij2PjGmNwXQjnCgFR-LmQR45IHur66OD2LT6bi47k834IulNzAfJ8EB6hiJwkPAvLBkgR9JJFF34PtWKLkPYLt6dmnyZfacCwSnzL--Q7T7sHOv-oZsKIBUOnfxM2bXpP31-VS__yhF4sNlnT8EE67hz2NJ8rX8boyY_vrJs7jnUb7CHZb2ZRNGmJ6DFuufAI7G4iFT-F6wsinlH2r40qwJv50fTPPcFxseUV2H_KkZo6QkxnKnjPH6Gl1_crs_Yq1FiFGDvczVl6W_rz8rsmJ_gMj7GQ_p3gDDVYIm-l5xVaYxLqp3WcwPT76fHjityEcfCvCMPYj7ZRDTmh5HAc8xyFZwbUqhHOBjYST1nGpQxcFmrC_VGpRQXSoczpUI42y_DmMsCduD5jIuUXhSJvU5CKxiUlcrqVK80TrIFfKA9GtZmZbfHMKs7HIwhYGtZvejKY3a6fXg3FfbNkAfNxWIN0klayqb1aKJgxKxm8pu9_RVdaeFassVBwPQok7w4O3_W_c5WS60aW7XK-oEoGqsJKRBy8aMux7S5baEPmEB2pAoH0GQhAf_innFzWSONnIeYjtHvSkfLdJePnfJV7BA0rWfpDRPoyqq7V7jfJcZd602_g3fHg5ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+mining+methodology+for+predicting+early+stage+Parkinson%27s+disease+using+non-invasive%2C+high-dimensional+gait+sensor+data&rft.jtitle=IIE+transactions+on+healthcare+systems+engineering&rft.au=Tucker%2C+Conrad&rft.au=Han%2C+Yixiang&rft.au=Nembhard%2C+Harriet+Black&rft.au=Lewis%2C+Mechelle&rft.date=2015-10-02&rft.issn=1948-8300&rft.volume=5&rft.issue=4&rft.spage=238&rft_id=info:doi/10.1080%2F19488300.2015.1095256&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-8300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-8300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-8300&client=summon