A data mining methodology for predicting early stage Parkinson's disease using non-invasive, high-dimensional gait sensor data
Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanc...
Saved in:
| Published in | IIE transactions on healthcare systems engineering Vol. 5; no. 4; pp. 238 - 254 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Taylor & Francis
02.10.2015
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1948-8300 2472-5579 1948-8319 1948-8319 2472-5587 |
| DOI | 10.1080/19488300.2015.1095256 |
Cover
| Abstract | Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining-driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross-validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases. |
|---|---|
| AbstractList | Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining-driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross-validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases. Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases.Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are typically assessed by healthcare providers based on qualitative visual inspection of a patient's movement/gait/posture. More advanced diagnostic techniques such as computed tomography scans that measure brain function, can be cost prohibitive and may expose patients to radiation and other harmful effects. To mitigate these challenges, and open a pathway to remote patient-physician assessment, the authors of this work propose a data mining driven methodology that uses low cost, non-invasive sensors to model and predict the presence (or lack therefore) of PD movement abnormalities and model clinical subtypes. The study presented here evaluates the discriminative ability of non-invasive hardware and data mining algorithms to classify PD cases and controls. A 10-fold cross validation approach is used to compare several data mining algorithms in order to determine that which provides the most consistent results when varying the subject gait data. Next, the predictive accuracy of the data mining model is quantified by testing it against unseen data captured from a test pool of subjects. The proposed methodology demonstrates the feasibility of using non-invasive, low cost, hardware and data mining models to monitor the progression of gait features outside of the traditional healthcare facility, which may ultimately lead to earlier diagnosis of emerging neurological diseases. |
| Author | Black Nembhard, Harriet Lewis, Mechelle Sterling, Nicholas Lee, Wang-Chien Huang, Xuemei Tucker, Conrad Han, Yixiang |
| AuthorAffiliation | 3 Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA 4 Department of Neurology, Penn State, Milton S. Hershey Medical Center, Hershey, PA 17033, USA 1 Industrial and Manufacturing Engineering, Engineering Design, Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA 2 Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA |
| AuthorAffiliation_xml | – name: 1 Industrial and Manufacturing Engineering, Engineering Design, Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA – name: 2 Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA – name: 3 Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA – name: 4 Department of Neurology, Penn State, Milton S. Hershey Medical Center, Hershey, PA 17033, USA |
| Author_xml | – sequence: 1 givenname: Conrad surname: Tucker fullname: Tucker, Conrad email: ctucker4@psu.edu organization: The Pennsylvania State University, Industrial Engineering and Engineering Design, Computer Science and Engineering – sequence: 2 givenname: Yixiang surname: Han fullname: Han, Yixiang organization: The Pennsylvania State University, Industrial Engineering – sequence: 3 givenname: Harriet surname: Black Nembhard fullname: Black Nembhard, Harriet organization: The Pennsylvania State University, Industrial Engineering – sequence: 4 givenname: Wang-Chien surname: Lee fullname: Lee, Wang-Chien organization: The Pennsylvania State University, Computer Science and Engineering – sequence: 5 givenname: Mechelle surname: Lewis fullname: Lewis, Mechelle organization: The Pennsylvania State University, Neurology – sequence: 6 givenname: Nicholas surname: Sterling fullname: Sterling, Nicholas organization: The Pennsylvania State University, Neurology – sequence: 7 givenname: Xuemei surname: Huang fullname: Huang, Xuemei organization: The Pennsylvania State University, Neurology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29541376$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUtFARLaU_AWSJAxxIseM42QgJUVV8SZXgAGfr1XnJujj2Yjtb5cJvx9FuC_QA-OKvmXnzxn5IDpx3SMhjzk45W7GXvK1WK8HYacm4zEetLGV9jxwt58VK8Pbgds3YITmJ8YrlIcqWt_wBOSxbWXHR1EfkxxntIAEdjTNuoCOmte-89cNMex_oJmBndFquEIKdaUwwIP0M4Ztx0btnkXYmIkSkU1xQ2Whh3Bai2eILujbDuujMiC4a78DSAUyiMW-z9lL3Ebnfg414sp-Pydd3b7-cfyguPr3_eH52UeiK87ooARtkjGtR10x0uWFdCWj6CpHpskKpUUjgWDKoc8dNq2vGsWIttry5bLQ4JvVOd3IbmK_BWrUJZoQwK87Ukqm6yVQtmap9ppn4ekfcTJcjdhpdCvCL7MGoP2-cWavBb5VcVY3gPAs83wsE_33CmNRookZrwaGf4lKt4hVrZJmhT-9Ar_wUcmxR8UZIwbOfRfDJ745urdy8aQa82gF08DEG7JU2CVJ-gGzQ2H82LO-w_zeoNzuecfnjjHDtg-1Ugtn60Adw2kQl_i7xE8Fz230 |
| CitedBy_id | crossref_primary_10_15212_bioi_2020_0006 crossref_primary_10_11627_jksie_2023_46_3_161 crossref_primary_10_1002_sys_21414 crossref_primary_10_1080_02664763_2020_1716695 crossref_primary_10_1007_s42979_021_00710_9 crossref_primary_10_1016_j_matpr_2020_12_693 crossref_primary_10_1080_24725579_2019_1673521 crossref_primary_10_1080_24725579_2020_1741738 crossref_primary_10_1007_s10472_023_09888_5 crossref_primary_10_1016_j_clineuro_2019_105442 crossref_primary_10_1016_j_neuri_2022_100064 |
| Cites_doi | 10.1016/j.gaitpost.2011.08.020 10.1136/jnnp.73.5.529 10.1115/1.4004987 10.1155/1999/327643 10.1109/TBME.2008.2005954 10.1016/j.proeng.2012.09.216 10.1145/2398356.2398381 10.1002/mds.870090112 10.1001/archneur.63.2.189 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9 10.1007/978-1-4020-6264-3_67 10.3233/IDA-2002-6504 10.1088/0004-637X/733/1/10 10.1002/mds.870040306 10.1093/brain/awn272 10.1073/pnas.082099299 10.1146/annurev.med.55.091902.104422 10.1007/978-1-4614-3417-7_8 10.1056/NEJM199810083391506 10.1016/S0304-3800(02)00260-0 10.1016/j.gaitpost.2009.10.013 10.1109/TITB.2009.2033471 10.1007/s10916-011-9678-1 10.1016/j.gaitpost.2012.03.033 10.1016/j.compbiomed.2015.08.012 10.1007/11765448_22 10.1371/journal.pone.0051464 10.1136/jnnp.55.3.181 10.1002/mds.870100506 10.1016/j.gaitpost.2011.10.180 10.1111/j.1749-6632.2003.tb07458.x 10.1212/WNL.42.6.1142 10.1016/S0967-5868(03)00192-9 10.1016/j.destud.2015.04.003 10.1017/S0376892997000088 10.1089/g4h.2012.0041 10.1073/pnas.102102699 10.1002/mds.870090103 10.1017/S0317167100031814 10.1007/978-3-540-30115-8_46 10.1136/jnnp.44.9.751 10.1109/TBME.2012.2183367 10.1016/j.neuroscience.2007.04.006 10.1136/jnnp.2003.033530 10.1016/S1474-4422(03)00529-5 |
| ContentType | Journal Article |
| Copyright | Copyright © "IIE" 2015 Copyright © "IIE" |
| Copyright_xml | – notice: Copyright © "IIE" 2015 – notice: Copyright © "IIE" |
| DBID | AAYXX CITATION NPM 7SC 8FD JQ2 K9. L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1080/19488300.2015.1095256 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1948-8319 2472-5587 |
| EndPage | 254 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5847311 PMC5847311 3873738581 29541376 10_1080_19488300_2015_1095256 1095256 |
| Genre | Article Journal Article Feature |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS082151 – fundername: NINDS NIH HHS grantid: R01 NS060722 |
| GroupedDBID | .7F 0BK 4.4 44B AAGDL AALDU AAMIU AAPUL AAQRR ABJNI ABLIJ ABPAQ ABXUL ABXYU ACTIO ADCVX ADGTB ADMLS ADMSI AEISY AFRVT AGDLA AHDSZ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD BLEHA CCCUG CE4 DGEBU EBD EBS EHE EJD GTTXZ H13 HZ~ I-F IPNFZ J.P KYCEM M4Z MK0 MK~ O9- RIG RNANH ROSJB RTWRZ SNACF TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ UU3 ZGOLN AAYXX CITATION ADUMR ADYSH HF~ NPM 0R~ 30N 7SC 8FD ACIWK AEYOC JQ2 K9. L7M L~C L~D PQQKQ 7X8 5PM ADTOC AGBKS TASJS UNPAY |
| ID | FETCH-LOGICAL-c4116-2ae7e001c36603d109c43a7f4ee0c24e5ce35a1e20a630079c601e409e917b7c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1948-8300 2472-5579 1948-8319 |
| IngestDate | Sun Oct 26 03:51:00 EDT 2025 Thu Aug 21 18:04:51 EDT 2025 Thu Sep 04 16:59:50 EDT 2025 Tue Oct 07 06:20:47 EDT 2025 Thu Apr 03 06:57:43 EDT 2025 Wed Oct 01 03:39:23 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Mon Oct 20 23:46:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | non-invasive gait data mining neurological disease telehealth prediction Parkinson’s disease (PD) privacy sensor healthcare |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4116-2ae7e001c36603d109c43a7f4ee0c24e5ce35a1e20a630079c601e409e917b7c3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1080/19488300.2015.1095256 |
| PMID | 29541376 |
| PQID | 1735315631 |
| PQPubID | 436426 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2014140752 pubmed_primary_29541376 unpaywall_primary_10_1080_19488300_2015_1095256 crossref_citationtrail_10_1080_19488300_2015_1095256 proquest_journals_1735315631 crossref_primary_10_1080_19488300_2015_1095256 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5847311 informaworld_taylorfrancis_310_1080_19488300_2015_1095256 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-02 |
| PublicationDateYYYYMMDD | 2015-10-02 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Philadelphia |
| PublicationTitle | IIE transactions on healthcare systems engineering |
| PublicationTitleAlternate | IIE Trans Healthc Syst Eng |
| PublicationYear | 2015 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0034 cit0032 cit0030 Kohavi Ron (cit0035) 1995; 14 cit0070 Freed CurtR. (cit0021) 1992; 327 cit0039 cit0037 cit0038 cit0023 cit0020 cit0064 cit0062 cit0063 Gil, D, and Johnson, M (cit0001) 2006; 9 cit0028 cit0029 cit0026 Rajput A.H. (cit0052) 1991; 18 cit0027 cit0025 cit0069 cit0011 cit0055 cit0012 cit0056 cit0010 cit0054 Quinlan J. (cit0051) 1993 cit0050 Ramani R.Geetha (cit0053) 2011; 9 Gil David (cit0022) 2009; 9 Japkowicz Nathalie (cit0033) 2002; 6 Tsanas Athanasios (cit0060) 2010; 64 cit0019 cit0018 cit0059 cit0016 cit0057 cit0058 cit0044 cit0045 cit0042 cit0040 cit0041 Darley FredericL. (cit0013) 1975; 5 cit0007 cit0004 Hastie Trevor (cit0024) 2005; 27 cit0048 cit0049 cit0002 cit0046 cit0003 |
| References_xml | – ident: cit0055 doi: 10.1016/j.gaitpost.2011.08.020 – ident: cit0056 doi: 10.1136/jnnp.73.5.529 – ident: cit0064 doi: 10.1115/1.4004987 – ident: cit0025 doi: 10.1155/1999/327643 – volume: 327 start-page: 1559 year: 1992 ident: cit0021 publication-title: New England Journal of Medicine – ident: cit0042 doi: 10.1109/TBME.2008.2005954 – ident: cit0023 doi: 10.1016/j.proeng.2012.09.216 – ident: cit0057 doi: 10.1145/2398356.2398381 – ident: cit0046 doi: 10.1002/mds.870090112 – volume: 64 start-page: 63 issue: 8 year: 2010 ident: cit0060 publication-title: Age (years) – ident: cit0027 doi: 10.1001/archneur.63.2.189 – volume-title: C4.5 Programming for Machine Learning year: 1993 ident: cit0051 – ident: cit0026 doi: 10.1002/1531-8257(200101)16:1<58::AID-MDS1018>3.0.CO;2-9 – ident: cit0069 doi: 10.1007/978-1-4020-6264-3_67 – volume: 6 start-page: 429 issue: 5 year: 2002 ident: cit0033 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2002-6504 – ident: cit0054 doi: 10.1088/0004-637X/733/1/10 – ident: cit0020 doi: 10.1002/mds.870040306 – ident: cit0011 doi: 10.1093/brain/awn272 – ident: cit0059 doi: 10.1073/pnas.082099299 – ident: cit0048 doi: 10.1146/annurev.med.55.091902.104422 – ident: cit0045 doi: 10.1007/978-1-4614-3417-7_8 – ident: cit0037 doi: 10.1056/NEJM199810083391506 – ident: cit0016 doi: 10.1016/S0304-3800(02)00260-0 – ident: cit0039 doi: 10.1016/j.gaitpost.2009.10.013 – ident: cit0050 doi: 10.1109/TITB.2009.2033471 – volume: 9 issue: 4 year: 2009 ident: cit0022 publication-title: Global Journal of Computer Science and Technology – ident: cit0049 doi: 10.1007/s10916-011-9678-1 – volume: 5 volume-title: Motor Speech Disorders year: 1975 ident: cit0013 – volume: 14 start-page: 1137 issue: 2 year: 1995 ident: cit0035 publication-title: IJCAI – ident: cit0010 doi: 10.1016/j.gaitpost.2012.03.033 – ident: cit0063 doi: 10.1016/j.compbiomed.2015.08.012 – ident: cit0002 doi: 10.1007/11765448_22 – ident: cit0032 doi: 10.1371/journal.pone.0051464 – ident: cit0030 doi: 10.1136/jnnp.55.3.181 – volume: 9 issue: 32 year: 2011 ident: cit0053 publication-title: International Journal of Computer Applications – ident: cit0058 doi: 10.1002/mds.870100506 – ident: cit0028 doi: 10.1016/j.gaitpost.2011.10.180 – volume: 9 start-page: 63 year: 2006 ident: cit0001 publication-title: Global Journal of Computer Science and Technology – ident: cit0018 doi: 10.1111/j.1749-6632.2003.tb07458.x – ident: cit0029 doi: 10.1212/WNL.42.6.1142 – ident: cit0004 doi: 10.1016/S0967-5868(03)00192-9 – ident: cit0007 doi: 10.1016/j.destud.2015.04.003 – ident: cit0019 doi: 10.1017/S0376892997000088 – ident: cit0034 doi: 10.1089/g4h.2012.0041 – ident: cit0003 doi: 10.1073/pnas.102102699 – ident: cit0044 doi: 10.1002/mds.870090103 – volume: 18 start-page: 275 issue: 3 year: 1991 ident: cit0052 publication-title: The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques doi: 10.1017/S0317167100031814 – ident: cit0070 doi: 10.1007/978-3-540-30115-8_46 – ident: cit0012 doi: 10.1136/jnnp.44.9.751 – ident: cit0062 doi: 10.1109/TBME.2012.2183367 – ident: cit0040 doi: 10.1016/j.neuroscience.2007.04.006 – ident: cit0041 doi: 10.1136/jnnp.2003.033530 – volume: 27 start-page: 83 issue: 2 year: 2005 ident: cit0024 publication-title: The Mathematical Intelligencer – ident: cit0038 doi: 10.1016/S1474-4422(03)00529-5 |
| SSID | ssj0000329191 ssj0001916256 |
| Score | 2.0688932 |
| Snippet | Parkinson's disease (PD) is the second most common neurological disorder after Alzheimer's disease. Key clinical features of PD are motor-related and are... Parkinson’s disease (PD) is the second most common neurological disorder after Alzheimer’s disease. Key clinical features of PD are motor-related and are... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 238 |
| SubjectTerms | Algorithms Alzheimer's disease Data mining gait image mining machine learning non-invasive non-wearable Parkinson's disease sensor |
| Title | A data mining methodology for predicting early stage Parkinson's disease using non-invasive, high-dimensional gait sensor data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/19488300.2015.1095256 https://www.ncbi.nlm.nih.gov/pubmed/29541376 https://www.proquest.com/docview/1735315631 https://www.proquest.com/docview/2014140752 https://pubmed.ncbi.nlm.nih.gov/PMC5847311 http://doi.org/10.1080/19488300.2015.1095256 |
| UnpaywallVersion | submittedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1948-8319 dateEnd: 20161031 omitProxy: false ssIdentifier: ssj0000329191 issn: 1948-8300 databaseCode: ADMLS dateStart: 20110401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1948-8319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000329191 issn: 1948-8300 databaseCode: AHDZW dateStart: 20110301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1948-8319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916256 issn: 1948-8300 databaseCode: 30N dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9t7QPsgW9GYFRGQuKFdEnsxMljBUwV0ioeqBi8RLbjlIqSVWsKggf-du7yRaOBNt5ixd8---58598BPM89nSdBpF2tdeYKIS1hQEo3E2Ee4ZJ7qrq6OJ1F07l4exae7UEbSq5nvo-9Y1Sx45h7HvlghQR9FCKL3odhFKLkPYDhfPZu8rEyHIvYpYx_vv2kfbDzr3p6rKgHVPo3cfOy1-SNbbFWP76r1WqHJZ3chtP2YU_tifJlvC312Py8jPN4rdHegVuNbMomNTHdhT1b3IODHcTC-_BrwsinlH2t4kqwOv50dTPPcFxsfUF2H_KkZpaQkxnKngvL6Gl19crsxYY1FiFGDvcLVpwX7rL4psiJ_iUj7GQ3o3gDNVYIW6hlyTaYxLqp3QcwP3nz_tXUbUI4uEb4fuQGykqLnNDwKPJ4hkMygiuZC2s9EwgbGstD5dvAU4T9JRODCqJFndOiGqml4Q9hgD2xj4CJjBsUjpROdCZiE-vYZiqUSRYr5WVSOiDa1UxNg29OYTZWqd_AoLbTm9L0ps30OjDuiq1rgI-rCiS7pJKW1c1KXodBSfkVZY9aukqbs2KT-pLjQRjiznDgWfcbdzmZblRhz7cbqkSgKizDwIHDmgy73pKl1kc-4YDsEWiXgRDE-3-K5ecKSZxs5NzHdo87Ur7eJDz-7xJP4CYlKz_I4AgG5cXWPkV5rtQj2OfebATDyfT1pw-jZlP_BqwKO_0 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6KG8aKMhISFzINontODmuqlYVUisOrFROke042xVLuupmQXDob2cmLzYqqOUWK3577JnxjL8BeFcEpkij2PjGmNwXQjnCgFR-LmQR45IHur66OD2LT6bi47k834IulNzAfJ8EB6hiJwkPAvLBkgR9JJFF34PtWKLkPYLt6dmnyZfacCwSnzL--Q7T7sHOv-oZsKIBUOnfxM2bXpP31-VS__yhF4sNlnT8EE67hz2NJ8rX8boyY_vrJs7jnUb7CHZb2ZRNGmJ6DFuufAI7G4iFT-F6wsinlH2r40qwJv50fTPPcFxseUV2H_KkZo6QkxnKnjPH6Gl1_crs_Yq1FiFGDvczVl6W_rz8rsmJ_gMj7GQ_p3gDDVYIm-l5xVaYxLqp3WcwPT76fHjityEcfCvCMPYj7ZRDTmh5HAc8xyFZwbUqhHOBjYST1nGpQxcFmrC_VGpRQXSoczpUI42y_DmMsCduD5jIuUXhSJvU5CKxiUlcrqVK80TrIFfKA9GtZmZbfHMKs7HIwhYGtZvejKY3a6fXg3FfbNkAfNxWIN0klayqb1aKJgxKxm8pu9_RVdaeFassVBwPQok7w4O3_W_c5WS60aW7XK-oEoGqsJKRBy8aMux7S5baEPmEB2pAoH0GQhAf_innFzWSONnIeYjtHvSkfLdJePnfJV7BA0rWfpDRPoyqq7V7jfJcZd602_g3fHg5ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+mining+methodology+for+predicting+early+stage+Parkinson%27s+disease+using+non-invasive%2C+high-dimensional+gait+sensor+data&rft.jtitle=IIE+transactions+on+healthcare+systems+engineering&rft.au=Tucker%2C+Conrad&rft.au=Han%2C+Yixiang&rft.au=Nembhard%2C+Harriet+Black&rft.au=Lewis%2C+Mechelle&rft.date=2015-10-02&rft.issn=1948-8300&rft.volume=5&rft.issue=4&rft.spage=238&rft_id=info:doi/10.1080%2F19488300.2015.1095256&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-8300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-8300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-8300&client=summon |