Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets
Identification and analysis of fungal communities commonly rely on internal transcribed spacer-based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high...
        Saved in:
      
    
          | Published in | JCI insight Vol. 7; no. 1 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Society for Clinical Investigation
    
        11.01.2022
     American Society for Clinical investigation  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2379-3708 2379-3708  | 
| DOI | 10.1172/jci.insight.151663 | 
Cover
| Abstract | Identification and analysis of fungal communities commonly rely on internal transcribed spacer-based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high-resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of 11 medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from Aspergillus species, Saccharomyces cerevisiae, and Candida glabrata. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of S. cerevisiae and C. glabrata sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation compared with the naive Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species-level assignment of community members. | 
    
|---|---|
| AbstractList | Identification and analysis of fungal communities commonly rely on internal transcribed spacer–based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high-resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of 11 medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from Aspergillus species, Saccharomyces cerevisiae, and Candida glabrata. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of S. cerevisiae and C. glabrata sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation compared with the naive Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species-level assignment of community members. Identification and analysis of fungal communities commonly rely on internal transcribed spacer-based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high-resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of 11 medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from Aspergillus species, Saccharomyces cerevisiae, and Candida glabrata. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of S. cerevisiae and C. glabrata sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation compared with the naive Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species-level assignment of community members.Identification and analysis of fungal communities commonly rely on internal transcribed spacer-based (ITS-based) amplicon sequencing. There is no gold standard used to infer and classify fungal constituents since methodologies have been adapted from analyses of bacterial communities. To achieve high-resolution inference of fungal constituents, we customized a DADA2-based pipeline using a mix of 11 medically relevant fungi. While DADA2 allowed the discrimination of ITS1 sequences differing by single nucleotides, quality filtering, sequencing bias, and database selection were identified as key variables determining the accuracy of sample inference. Due to species-specific differences in sequencing quality, default filtering settings removed most reads that originated from Aspergillus species, Saccharomyces cerevisiae, and Candida glabrata. By fine-tuning the quality filtering process, we achieved an improved representation of the fungal communities. By adapting a wobble nucleotide in the ITS1 forward primer region, we further increased the yield of S. cerevisiae and C. glabrata sequences. Finally, we showed that a BLAST-based algorithm based on the UNITE+INSD or the NCBI NT database achieved a higher reliability in species-level taxonomic annotation compared with the naive Bayesian classifier implemented in DADA2. These steps optimized a robust fungal ITS1 sequencing pipeline that, in most instances, enabled species-level assignment of community members.  | 
    
| Author | Frame, John Zhai, Bing Rolling, Thierry Hohl, Tobias M. Taur, Ying  | 
    
| AuthorAffiliation | 2 Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA 3 Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 4 Weill Cornell Medical College, New York, New York, USA 1 Infectious Disease Service, Department of Medicine, and  | 
    
| AuthorAffiliation_xml | – name: 3 Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany – name: 4 Weill Cornell Medical College, New York, New York, USA – name: 1 Infectious Disease Service, Department of Medicine, and – name: 2 Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA  | 
    
| Author_xml | – sequence: 1 givenname: Thierry orcidid: 0000-0002-0277-5067 surname: Rolling fullname: Rolling, Thierry – sequence: 2 givenname: Bing orcidid: 0000-0001-6571-7465 surname: Zhai fullname: Zhai, Bing – sequence: 3 givenname: John surname: Frame fullname: Frame, John – sequence: 4 givenname: Tobias M. orcidid: 0000-0002-9097-5412 surname: Hohl fullname: Hohl, Tobias M. – sequence: 5 givenname: Ying orcidid: 0000-0002-6601-8284 surname: Taur fullname: Taur, Ying  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34813499$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNks1uEzEUhUeoiJbSF2CBLLFpFwn-nbE3SFFaIFIlFpS1ZXvs1JFjD_YMqDw9ThOqtgvEylf2OZ_u9bmvm6OYom2atwjOEerwh43xcx-LX9-Oc8RQ25IXzQkmnZiRDvKjR_Vxc1bKBkKIOooh46-aY0I5IlSIk2aznMqYtv63Gn2KIDmgwOXicoFnWhXbg8EPNvhogUsZuCmuVQA-jjbHWoxZxWKy11VYBmVsBgicr26-oQugtkPwpiJ7NSpQ7FjeNC-dCsWeHc7T5vunq5vll9n118-r5eJ6ZihCZKYFU5xS0WqicItcj5Aw1CLjOsqpbXkPXY8FQYL0RFPuNMPccYO7ljnBNDltVntun9RGDtlvVb6TSXl5f5HyWqo8ehOsVK3WQvfEcgdpJ1puu95Ygnusle04rCyyZ01xUHe_VAgPQATlLghZg5CHIOQ-iOr6uHcNk97aSoz1p8KTVp6-RH8r1-mn5HUGyFgFnB8AOf2YbBnl1hdjQ1DRpqlI3EIkOCO8rdL3z6SbNO3SKZJgxjoMKdup3j3u6KGVv4tQBXgvMDmVkq37vzn5M5Px4_0i1al8-Jf1D4es3dY | 
    
| CitedBy_id | crossref_primary_10_1002_edn3_526 crossref_primary_10_1016_j_mib_2023_102361 crossref_primary_10_1002_aps3_11628 crossref_primary_10_1002_ieam_4812 crossref_primary_10_1186_s12864_024_11001_x crossref_primary_10_1016_j_jtct_2022_10_011 crossref_primary_10_1016_j_chom_2024_04_017 crossref_primary_10_3389_fcimb_2024_1441805 crossref_primary_10_1016_j_aquaculture_2022_738643 crossref_primary_10_1029_2024JG008236 crossref_primary_10_1111_1758_2229_70003 crossref_primary_10_3390_jof11030194 crossref_primary_10_1186_s40168_024_01915_9 crossref_primary_10_1093_femsec_fiad023 crossref_primary_10_1128_aem_01537_24 crossref_primary_10_1002_imt2_33 crossref_primary_10_1093_oxfimm_iqae009 crossref_primary_10_1016_j_cris_2024_100102 crossref_primary_10_1128_aem_01869_23  | 
    
| Cites_doi | 10.1073/pnas.0611691104 10.1016/j.ccell.2021.07.002 10.7717/peerj.2584 10.1038/nmeth.3869 10.1093/nar/gkv1276 10.1038/s41591-019-0709-7 10.1093/nar/gky1022 10.1186/s13059-019-1691-6 10.1128/JCM.01811-20 10.1111/1755-0998.13329 10.1101/gr.8.3.186 10.1093/bioinformatics/btv401 10.1128/mSystems.00062-16 10.1111/mec.14995 10.1186/s12859-019-3187-5 10.1093/infdis/jit188 10.1371/journal.pone.0206428 10.1128/AEM.00062-07 10.1056/NEJMra1600266 10.3390/ijms161025067 10.1128/mSystems.00191-16 10.1371/journal.pone.0227434 10.1038/ismej.2017.119 10.7717/peerj.4652 10.1056/NEJMoa1900623 10.14806/ej.17.1.200 10.3389/fmicb.2017.00238 10.1101/081257 10.1093/database/bax072 10.1038/nmeth.2604 10.1186/1471-2180-12-255 10.3389/fphys.2021.699253 10.1128/mSphere.00558-19 10.1073/pnas.1117018109 10.1371/journal.ppat.1004365 10.1093/database/baaa062 10.1016/j.mib.2020.05.004 10.1093/bioinformatics/btq461 10.1093/molbev/msn188  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Rolling et al. 2022 Rolling et al.  | 
    
| Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Rolling et al. 2022 Rolling et al.  | 
    
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1172/jci.insight.151663 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - Not for CDI Discovery url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2379-3708 | 
    
| ExternalDocumentID | oai_doaj_org_article_a6bb9bd3e8f047968e7dce32d2bae780 10.1172/jci.insight.151663 PMC8765055 34813499 10_1172_jci_insight_151663  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI137269 – fundername: NIAID NIH HHS grantid: R21 AI105617 – fundername: NIAID NIH HHS grantid: R21 AI156157 – fundername: NIAID NIH HHS grantid: R01 AI093808 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NIAID NIH HHS grantid: R01 AI139632 – fundername: ; grantid: R01AI139632 – fundername: ; grantid: R01AI137269 – fundername: Ludwig Center For Cancer Research at MSKCC grantid: AWD GC 260193 – fundername: National Institutes of Health grantid: P30 CA008748 – fundername: ; grantid: RO 5328/2-1 – fundername: ; grantid: AWD GC 222153 – fundername: ; grantid: NIAID R21 156157 – fundername: ; grantid: R01AI093808 – fundername: Peter and Susan Solomon Foundation grantid: not applicable  | 
    
| GroupedDBID | 53G AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS CITATION GROUPED_DOAJ HYE M~E OK1 RPM NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GNUQQ HCIFZ K9. LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC HMCUK UKHRP UNPAY  | 
    
| ID | FETCH-LOGICAL-c4113-b95a84496b3a261fd119c4e1cf7484e68d0fd293193d3b48fb528f8c2765f95b3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2379-3708 | 
    
| IngestDate | Tue Oct 14 17:59:53 EDT 2025 Sun Oct 26 04:07:43 EDT 2025 Tue Sep 30 16:33:57 EDT 2025 Fri Jul 11 08:05:57 EDT 2025 Tue Oct 07 07:41:13 EDT 2025 Thu Jan 02 22:55:18 EST 2025 Tue Jul 01 04:27:43 EDT 2025 Thu Apr 24 23:08:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Microbiology Infectious disease Fungal infections  | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4113-b95a84496b3a261fd119c4e1cf7484e68d0fd293193d3b48fb528f8c2765f95b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authorship note: TMH and YT are co–senior authors.  | 
    
| ORCID | 0000-0002-6601-8284 0000-0002-0277-5067 0000-0001-6571-7465 0000-0002-9097-5412  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3255720456?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 34813499 | 
    
| PQID | 3255720456 | 
    
| PQPubID | 7421157 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a6bb9bd3e8f047968e7dce32d2bae780 unpaywall_primary_10_1172_jci_insight_151663 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8765055 proquest_miscellaneous_2601985386 proquest_journals_3255720456 pubmed_primary_34813499 crossref_primary_10_1172_jci_insight_151663 crossref_citationtrail_10_1172_jci_insight_151663  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-11 | 
    
| PublicationDateYYYYMMDD | 2022-01-11 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-11 day: 11  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Ann Arbor  | 
    
| PublicationTitle | JCI insight | 
    
| PublicationTitleAlternate | JCI Insight | 
    
| PublicationYear | 2022 | 
    
| Publisher | American Society for Clinical Investigation American Society for Clinical investigation  | 
    
| Publisher_xml | – name: American Society for Clinical Investigation – name: American Society for Clinical investigation  | 
    
| References | B20 B21 B22 B23 Amir (B9) 2017; 2 B24 B25 B26 Motooka (B11) 2017; 8 B27 B28 B29 Bokulich (B19) 2016; 1 B30 B31 B10 B32 Borman (B12) 2021; 59 B33 B34 B13 B35 B36 B15 B37 B16 B38 B17 B39 B18 Robbertse (B14) 2017; 2017 B1 B2 B3 B4 B5 Wu (B6) 2020; 5 B7 B8  | 
    
| References_xml | – ident: B23 doi: 10.1073/pnas.0611691104 – ident: B4 doi: 10.1016/j.ccell.2021.07.002 – ident: B38 doi: 10.7717/peerj.2584 – ident: B7 doi: 10.1038/nmeth.3869 – ident: B39 doi: 10.1093/nar/gkv1276 – ident: B3 doi: 10.1038/s41591-019-0709-7 – ident: B13 doi: 10.1093/nar/gky1022 – ident: B17 doi: 10.1186/s13059-019-1691-6 – volume: 59 start-page: e01811 issue: 2 year: 2021 ident: B12 article-title: Name changes for fungi of medical importance, 2018-2019 publication-title: J Clin Microbiol doi: 10.1128/JCM.01811-20 – ident: B24 doi: 10.1111/1755-0998.13329 – ident: B15 doi: 10.1101/gr.8.3.186 – ident: B16 doi: 10.1093/bioinformatics/btv401 – volume: 1 start-page: e00062 issue: 5 year: 2016 ident: B19 article-title: mockrobiota: a public resource for microbiome bioinformatics benchmarking publication-title: mSystems doi: 10.1128/mSystems.00062-16 – ident: B27 doi: 10.1111/mec.14995 – ident: B25 doi: 10.1186/s12859-019-3187-5 – ident: B30 doi: 10.1093/infdis/jit188 – ident: B26 doi: 10.1371/journal.pone.0206428 – ident: B31 doi: 10.1128/AEM.00062-07 – ident: B1 doi: 10.1056/NEJMra1600266 – ident: B21 doi: 10.3390/ijms161025067 – volume: 2 start-page: e00191 issue: 2 year: 2017 ident: B9 article-title: Deblur rapidly resolves single-nucleotide community sequence patterns publication-title: mSystems doi: 10.1128/mSystems.00191-16 – ident: B8 doi: 10.1371/journal.pone.0227434 – ident: B20 doi: 10.1038/ismej.2017.119 – ident: B18 doi: 10.7717/peerj.4652 – ident: B34 doi: 10.1056/NEJMoa1900623 – ident: B35 doi: 10.14806/ej.17.1.200 – volume: 8 year: 2017 ident: B11 article-title: Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00238 – ident: B10 doi: 10.1101/081257 – volume: 2017 year: 2017 ident: B14 article-title: Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case publication-title: Database (Oxford) doi: 10.1093/database/bax072 – ident: B36 doi: 10.1038/nmeth.2604 – ident: B33 doi: 10.1186/1471-2180-12-255 – ident: B5 doi: 10.3389/fphys.2021.699253 – volume: 5 start-page: e00558 issue: 1 year: 2020 ident: B6 article-title: Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in sardinia publication-title: mSphere doi: 10.1128/mSphere.00558-19 – ident: B2 doi: 10.1073/pnas.1117018109 – ident: B29 doi: 10.1371/journal.ppat.1004365 – ident: B32 doi: 10.1093/database/baaa062 – ident: B28 doi: 10.1016/j.mib.2020.05.004 – ident: B37 doi: 10.1093/bioinformatics/btq461 – ident: B22 doi: 10.1093/molbev/msn188  | 
    
| SSID | ssj0001742058 | 
    
| Score | 2.3212695 | 
    
| Snippet | Identification and analysis of fungal communities commonly rely on internal transcribed spacer-based (ITS-based) amplicon sequencing. There is no gold standard... Identification and analysis of fungal communities commonly rely on internal transcribed spacer–based (ITS-based) amplicon sequencing. There is no gold standard...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| SubjectTerms | Annotations Bayesian analysis Biological variation Datasets Discrimination Infectious disease Microbiology Microbiota Resource and Technical Advance Ribosomal DNA Saccharomyces cerevisiae Taxonomy Yeast  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwFLRQL3BBINoSKMiVOBRBaGzHX8elpSqVyoVW6s3yp9hqya6aXSH-Pc9JNtpVEXDgmjiR5fecmYn9xgi9kUJwZnkoK-pBoAQmS-09L3WSkdXKM2Lziu7lF3F-XV_c8JuNo77ynrDeHrgfuGMrnNMusKhSdkMXKsrgI6OBOhul6tR6pfSGmOr-roDiq7haV8lIenzrp0Bl26x4PwDKCcG2kKgz7P8dy7y_WfLhqlnYnz_sbLaBRGdP0OOBQuJJ3_Wn6EFsnqHbkxXQuO9DVSWeJ2zx6eR0QsuMUwEvpotceR4xkFQMYAbAgKf938AZXmbAgs-Hg4bwhfHxDhN89PnqK3mLbbflHF6Z95LiNi7bXXR99unq5LwczlEofU0IK53mVtW1Fo5ZEEwpEKJ9HYlP2Ug0ChWqFAD2gcsF5mqVHKcqKU-l4Elzx_bQTjNv4nOEmYT3MAhvorFOwTtGI3AmHS2LVPpUILIeU-MHk_F81sXMdGJDUgNxMEMcTB-HAr0bn1n0Fht_bP0xh2psme2xuwuQNGZIGvO3pCnQwTrQZpizrWGgrvKRPVwU6HC8DbMtL6HYJs5XrckGbBoYjoI2-31ejD3JJc0MBGSB5FbGbHV1-04z_dY5egMkARPlBXo_5tY_DMWL_zEUL9Ejmis6KlIScoB2lner-Ap41tK97qbUL585KgI priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXHuKVUpCROIAgm9iOHzkuLVVBokKii8op8lNs2WZXza4Q_HrGeaxYFSF6TSajxB57volnvkHohRSCM81dmlMLAYpjMi2t5WkZpGeFsozoeKL78UQcT4sPZ_xsBw2dCmd1E2PS8bntjvGH7LAs_ifPwDuBg8wiY1GTLV24gXYFBwg-QrvTk0-Tr20jOVnCosnVUCAjaRaVDYo7FVtOqOXq_xvAvJoneXNdL_XPH3o-_8MJHd1BX4ZSni735Pt4vTJj--sqs-P1vu8uut3DUjzpBO-hHV_fR-cHa4CGF32lJl4ErPHh5HBC0-j7HF7OlrGa3WMAvhgcJDgbPOv-MM7xKjpB2JIMCMKuZf0lJvjl-9PP5BXWbRo7qIz5qbjxq-YBmh69Oz04TvveDKktCGGpKblWRVEKwzQEYcERUtrCExsiOakXyuXBAZQAfOiYKVQwnKqgLJWCh5Ib9hCN6kXtHyPMJOhhYDKB-iI4axj1gMNKr5mn0oYEkWGyKtsTl8f-GfOqDWAkrWA0q35kq24ME_R688yyo-34p_TbaAMbyUi53V6AKar6Kaq0MKY0jnkVIi2_UF6CYTDqqNFeqjxB-4MFVf0-0FQMIrbYBoiLBD3f3IYVHI9ldO0X66aKpG4loCYFMo86g9u8SSyTZhCUJkhumeLWq27fqWffWpZwcHOAbnmC3myM9j-GYu964k_QLRrrQXKSErKPRqvLtX8KKG1lnvVr8jfbYkIE priority: 102 providerName: Unpaywall  | 
    
| Title | Customization of a DADA2-based pipeline for fungal internal transcribed spacer 1 (ITS1) amplicon data sets | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34813499 https://www.proquest.com/docview/3255720456 https://www.proquest.com/docview/2601985386 https://pubmed.ncbi.nlm.nih.gov/PMC8765055 http://insight.jci.org/articles/view/151663/files/pdf https://doaj.org/article/a6bb9bd3e8f047968e7dce32d2bae780  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals - Not for CDI Discovery customDbUrl: eissn: 2379-3708 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001742058 issn: 2379-3708 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2379-3708 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001742058 issn: 2379-3708 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2379-3708 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001742058 issn: 2379-3708 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZ2uwe4IBCvwFIZiQMIwsZ2_MgBoe5LCxLVCrZSOUV-Ll2VNPQhxL9nnCZdKtCKY2LHcjxjzze25xuEXkghONPcpRm14KA4JtPCWp4WQXqWK8uIjie6n4bibJR_HPPxDhp2sTDxWmW3JjYLtZvZuEd-wAD7xoQqXLyvf6Qxa1Q8Xe1SaOg2tYJ711CM7aI9Gpmxemjv8GR4_vl61wU8wYyrLnpG0oMrOwGIu4ie8FuwfkKwLQvVEPn_C33-fYny1qqq9a-fejr9w0Kd3kV3WmiJB2tduId2fHUfXR2tAN59b6Mt8SxgjY8HxwOaRvvlcD2pY0S6xwBeMRg5MBh4st4lnOJlNGSwrBioCCuP9XNM8MsPF1_IK6ybq-jQZLxjihd-uXiARqcnF0dnaZtfIbU5ISw1BdcqzwthmAZHKjhCCpt7YkMkGPVCuSw4gAOA8RwzuQqGUxWUpVLwUHDDHqJeNav8Y4SZhHYYiD1QnwdnDaMesFThNfNU2pAg0o1paVvy8ZgDY1o2ToikJcihbOVQruWQoNebb-o19caNtQ-jqDY1I21282I2vyzbWVhqYUxhHPMqRGp9obwE-THqqNFeqixB-52gy3YuL8przUvQ800xzMJ4tKIrP1stykjMVgDyUVDn0VovNj2Joc4MHMsEyS2N2erqdkk1-dYwfYOpAoTKE_Rmo1v_MRRPbv6Lp-g2jTEcGUkJ2Ue95XzlnwGyWpo-2pVj2W8nTb_Zn4Cn0fB88PU3uQMqPQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeEIivwAAjgQSCbLUdx_HDhLp1U8u2CkEn7S34EzqVtDStpv1z_G2c06SjAk287DV2rMR3vt_vbN8dQq9EmnKmuI1b1ICDYpmIpTE8ll44lmSGERVOdE_6afc0-XjGz9bQryYWJlyrbGxiZajt2IQ98h0G3DcUVOHph8nPOFSNCqerTQkNVZdWsLtVirE6sOPIXV6AC1fu9jog79eUHh4M9rtxXWUgNgkhLNaSqyxJZKqZAnfCW0KkSRwxPqTZdGlmW94CKALTsUwnmdecZj4zVKTcS64ZjHsLbSQskeD8bewd9D99vtrlAc-zxbMmWkfQnXMzBEpdBs97G9A2TdkKIlaFA_7Fdv--tLk5Lybq8kKNRn8g4uFddKemsri90L17aM0V99H5_hzo5I86uhOPPVa40-60aRzw0uLJcBIi4B0GsowBVAGg8HCxKznCswCcYMY0dARLZ9wUE_ymN_hC3mJVXX2HIcOdVly6WfkAnd7ITD9E68W4cI8RZgLGYaBmnrrEW6MZdcDdpFPMUWF8hEgzp7mpk52HmhujvHJ6BM1BDnkth3whhwi9W74zWaT6uLb3XhDVsmdI0109GE-_5fWqz1WqtdSWucyHVP5p5gTIj1FLtXIia0VoqxF0XtuOMr_S9Ai9XDbDqg9HOapw43mZh0RwEphWBn0eLfRi-SUhtBqUUUZIrGjMyqeuthTD71VmcYBGYMQ8Qu-XuvUfU_Hk-r94gTa7g5Pj_LjXP3qKbtMQP9IiMSFbaH02nbtnwOpm-nm9dDD6etOr9Tc_HGJf | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbK9gAXHuKVUpCROIAgm9iOHzkuLVVBokKii8op8lNs2WZXza4Q_HrGeaxYFSF6TSajxB57volnvkHohRSCM81dmlMLAYpjMi2t5WkZpGeFsozoeKL78UQcT4sPZ_xsBw2dCmd1E2PS8bntjvGH7LAs_ifPwDuBg8wiY1GTLV24gXYFBwg-QrvTk0-Tr20jOVnCosnVUCAjaRaVDYo7FVtOqOXq_xvAvJoneXNdL_XPH3o-_8MJHd1BX4ZSni735Pt4vTJj--sqs-P1vu8uut3DUjzpBO-hHV_fR-cHa4CGF32lJl4ErPHh5HBC0-j7HF7OlrGa3WMAvhgcJDgbPOv-MM7xKjpB2JIMCMKuZf0lJvjl-9PP5BXWbRo7qIz5qbjxq-YBmh69Oz04TvveDKktCGGpKblWRVEKwzQEYcERUtrCExsiOakXyuXBAZQAfOiYKVQwnKqgLJWCh5Ib9hCN6kXtHyPMJOhhYDKB-iI4axj1gMNKr5mn0oYEkWGyKtsTl8f-GfOqDWAkrWA0q35kq24ME_R688yyo-34p_TbaAMbyUi53V6AKar6Kaq0MKY0jnkVIi2_UF6CYTDqqNFeqjxB-4MFVf0-0FQMIrbYBoiLBD3f3IYVHI9ldO0X66aKpG4loCYFMo86g9u8SSyTZhCUJkhumeLWq27fqWffWpZwcHOAbnmC3myM9j-GYu964k_QLRrrQXKSErKPRqvLtX8KKG1lnvVr8jfbYkIE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customization+of+a+DADA2-based+pipeline+for+fungal+internal+transcribed+spacer+1+%28ITS1%29+amplicon+data+sets&rft.jtitle=JCI+insight&rft.au=Rolling%2C+Thierry&rft.au=Zhai%2C+Bing&rft.au=Frame%2C+John&rft.au=Hohl%2C+Tobias+M&rft.date=2022-01-11&rft.issn=2379-3708&rft.eissn=2379-3708&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1172%2Fjci.insight.151663&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3708&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3708&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3708&client=summon |