Spatial and temporal variability in the ratio of trace gases emitted from biomass burning
Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets and a better representation of fuel consumption. The spatial and temporal variability in the partitioning of biomass bu...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 11; no. 8; pp. 3611 - 3629 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
19.04.2011
Copernicus Publications |
Online Access | Get full text |
ISSN | 1680-7324 1680-7316 1680-7324 |
DOI | 10.5194/acp-11-3611-2011 |
Cover
Abstract | Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets and a better representation of fuel consumption. The spatial and temporal variability in the partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors (EFs)) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome. In addition, it is unknown whether the available field measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH4, and CO2, our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different measurements of environmental variables that may correlate with part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were lower and explained about 33%, 38%, 19%, and 34% of the variability for respectively CO, CH4, CO2, and the Modified Combustion Efficiency (MCE). This may be partly due to uncertainties in the environmental variables, differences in measurement techniques for EFs, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of EF measurements. We derived new mean EFs, using the relative importance of each measurement location with regard to fire emissions. These weighted averages were relatively similar to the arithmetic mean. When using relations between the environmental variables and EFs to extrapolate to regional and global scales, we found substantial differences, with for savannas 13% and 22% higher CO and CH4 EFs than the arithmetic mean of the field studies, possibly linked to an underrepresentation of woodland fires in EF measurement locations. We argue that from a global modeling perspective, future measurement campaigns could be more beneficial if measurements are made over the full fire season, and if relations between ambient conditions and EFs receive more attention. |
---|---|
AbstractList | Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets and a better representation of fuel consumption. The spatial and temporal variability in the partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors (EFs)) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome. In addition, it is unknown whether the available field measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH4 , and CO2 , our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different measurements of environmental variables that may correlate with part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were lower and explained about 33%, 38%, 19%, and 34% of the variability for respectively CO, CH4 , CO2 , and the Modified Combustion Efficiency (MCE). This may be partly due to uncertainties in the environmental variables, differences in measurement techniques for EFs, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of EF measurements. We derived new mean EFs, using the relative importance of each measurement location with regard to fire emissions. These weighted averages were relatively similar to the arithmetic mean. When using relations between the environmental variables and EFs to extrapolate to regional and global scales, we found substantial differences, with for savannas 13% and 22% higher CO and CH4 EFs than the arithmetic mean of the field studies, possibly linked to an underrepresentation of woodland fires in EF measurement locations. We argue that from a global modeling perspective, future measurement campaigns could be more beneficial if measurements are made over the full fire season, and if relations between ambient conditions and EFs receive more attention. Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets and a better representation of fuel consumption. The spatial and temporal variability in the partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors (EFs)) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome. In addition, it is unknown whether the available field measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH 4 , and CO 2 , our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different measurements of environmental variables that may correlate with part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were lower and explained about 33%, 38%, 19%, and 34% of the variability for respectively CO, CH 4 , CO 2 , and the Modified Combustion Efficiency (MCE). This may be partly due to uncertainties in the environmental variables, differences in measurement techniques for EFs, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of EF measurements. We derived new mean EFs, using the relative importance of each measurement location with regard to fire emissions. These weighted averages were relatively similar to the arithmetic mean. When using relations between the environmental variables and EFs to extrapolate to regional and global scales, we found substantial differences, with for savannas 13% and 22% higher CO and CH 4 EFs than the arithmetic mean of the field studies, possibly linked to an underrepresentation of woodland fires in EF measurement locations. We argue that from a global modeling perspective, future measurement campaigns could be more beneficial if measurements are made over the full fire season, and if relations between ambient conditions and EFs receive more attention. Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved burned area datasets and a better representation of fuel consumption. The spatial and temporal variability in the partitioning of biomass burned into emitted trace gases and aerosols, however, has received relatively little attention. To convert estimates of biomass burned to trace gas and aerosol emissions, most studies have used emission ratios (or emission factors (EFs)) based on the arithmetic mean of field measurement outcomes, stratified by biome. However, EFs vary substantially in time and space, even within a single biome. In addition, it is unknown whether the available field measurement locations provide a representative sample for the various biomes. Here we used the available body of EF literature in combination with satellite-derived information on vegetation characteristics and climatic conditions to better understand the spatio-temporal variability in EFs. While focusing on CO, CH sub(4), and CO sub(2), our findings are also applicable to other trace gases and aerosols. We explored relations between EFs and different measurements of environmental variables that may correlate with part of the variability in EFs (tree cover density, vegetation greenness, temperature, precipitation, and the length of the dry season). Although reasonable correlations were found for specific case studies, correlations based on the full suite of available measurements were lower and explained about 33%, 38%, 19%, and 34% of the variability for respectively CO, CH sub(4), CO sub(2), and the Modified Combustion Efficiency (MCE). This may be partly due to uncertainties in the environmental variables, differences in measurement techniques for EFs, assumptions on the ratio between flaming and smoldering combustion, and incomplete information on the location and timing of EF measurements. We derived new mean EFs, using the relative importance of each measurement location with regard to fire emissions. These weighted averages were relatively similar to the arithmetic mean. When using relations between the environmental variables and EFs to extrapolate to regional and global scales, we found substantial differences, with for savannas 13% and 22% higher CO and CH sub(4) EFs than the arithmetic mean of the field studies, possibly linked to an underrepresentation of woodland fires in EF measurement locations. We argue that from a global modeling perspective, future measurement campaigns could be more beneficial if measurements are made over the full fire season, and if relations between ambient conditions and EFs receive more attention. |
Author | van Leeuwen, T. T. van der Werf, G. R. |
Author_xml | – sequence: 1 givenname: T. T. surname: van Leeuwen fullname: van Leeuwen, T. T. – sequence: 2 givenname: G. R. surname: van der Werf fullname: van der Werf, G. R. |
BookMark | eNp1kc2L1TAUxYOM4Mzo3mVw46qa2-ZzKYOOAwMu1IWrcJOmzzzapiZ5wvz3pj4RGXCTL37nkHPPFblY0xoIeQnsjQDD36LfOoBukG3pGcATcglSs04NPb_45_yMXJVyZKwXDPgl-fZ5wxpxpriOtIZlS7ldfmKO6OIc6wONK63fA80NSzRNtGb0gR6whELDEmsNI51yWqiLacFSqDvlNa6H5-TphHMJL_7s1-Trh_dfbj52959u727e3XeeA6tdkEEMrveGOTc5Jd3oxQQCwOneSAHC9IpPYnRSGOSsZ1qZfpDaK6NdCzVck7uz75jwaLccF8wPNmG0vx9SPljMNfo5WD1MgArBwMi45AJHIwelfRBc4yB2r9dnry2nH6dQql1i8WGecQ3pVKxWHLQRaidfPSKPqeVuQa2WveGCCdEgdoZ8TqXkMP39HjC7t2ZbaxbA7q3ZvbUmkY8kPtZ99Gube5z_L_wFynycjA |
CitedBy_id | crossref_primary_10_5194_acp_22_2871_2022 crossref_primary_10_3390_atmos3010132 crossref_primary_10_5194_gmd_10_3329_2017 crossref_primary_10_1071_WF13015 crossref_primary_10_5194_acp_15_13393_2015 crossref_primary_10_5194_bg_9_527_2012 crossref_primary_10_1080_17538947_2018_1433727 crossref_primary_10_5194_acp_17_6423_2017 crossref_primary_10_1080_10962247_2020_1842822 crossref_primary_10_1002_2017JD026788 crossref_primary_10_1002_ldr_3333 crossref_primary_10_5194_cp_9_289_2013 crossref_primary_10_1016_j_quaint_2020_03_002 crossref_primary_10_1002_grl_50733 crossref_primary_10_1016_j_rse_2019_111466 crossref_primary_10_5194_bg_12_3579_2015 crossref_primary_10_1002_2017GB005709 crossref_primary_10_3390_atmos13030459 crossref_primary_10_5194_acp_16_10111_2016 crossref_primary_10_5194_acp_17_11707_2017 crossref_primary_10_5194_essd_11_529_2019 crossref_primary_10_1002_2014JD022993 crossref_primary_10_1016_j_atmosenv_2025_121069 crossref_primary_10_1029_2017JD027927 crossref_primary_10_5194_acp_16_10133_2016 crossref_primary_10_5194_acp_18_11007_2018 crossref_primary_10_3390_ijgi14020065 crossref_primary_10_1038_s41467_017_02246_0 crossref_primary_10_3390_fire6090365 crossref_primary_10_1016_j_scitotenv_2022_161055 crossref_primary_10_1071_WF23079 crossref_primary_10_1016_j_atmosenv_2014_11_023 crossref_primary_10_5194_acp_12_6845_2012 crossref_primary_10_1016_j_rse_2020_111971 crossref_primary_10_1590_0001_3765201720160707 crossref_primary_10_5194_bg_18_1375_2021 crossref_primary_10_1016_j_atmosenv_2013_02_001 crossref_primary_10_1029_2020GB006916 crossref_primary_10_5194_acp_14_4473_2014 crossref_primary_10_5194_esd_14_1039_2023 crossref_primary_10_1088_1748_9326_aa5986 crossref_primary_10_3390_rs14030549 crossref_primary_10_1016_j_rse_2017_12_016 crossref_primary_10_1016_j_atmosenv_2012_10_001 crossref_primary_10_5194_amt_8_3481_2015 crossref_primary_10_5194_acp_14_2509_2014 crossref_primary_10_5194_bg_18_6229_2021 crossref_primary_10_1016_j_atmosenv_2015_03_015 crossref_primary_10_5194_acp_13_12451_2013 crossref_primary_10_5194_acp_21_8557_2021 crossref_primary_10_5194_acp_13_7241_2013 crossref_primary_10_1088_1748_9326_10_6_065004 crossref_primary_10_1002_2016JD025216 crossref_primary_10_5194_cp_16_799_2020 crossref_primary_10_5194_amt_13_7069_2020 crossref_primary_10_5194_acp_15_5259_2015 crossref_primary_10_1073_pnas_1822035117 crossref_primary_10_5194_acp_14_3589_2014 crossref_primary_10_3390_f7080158 crossref_primary_10_5194_acp_14_11335_2014 crossref_primary_10_1038_srep20719 crossref_primary_10_1134_S1024856019040031 crossref_primary_10_5194_acp_17_4565_2017 crossref_primary_10_3390_rs16111911 crossref_primary_10_5194_acp_14_3929_2014 crossref_primary_10_5194_acp_17_12239_2017 crossref_primary_10_1109_JSTARS_2020_3019261 crossref_primary_10_1016_j_envpol_2017_04_014 crossref_primary_10_5194_acp_11_5839_2011 crossref_primary_10_5194_amt_15_4271_2022 |
Cites_doi | 10.1007/BF00694373 10.1029/2004JD004727 10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2 10.2737/PNW-GTR-251 10.1016/S0034-4257(02)00078-0 10.1007/BF00137988 10.1029/2001GB001466 10.1029/97JD00852 10.1029/2005JG000142 10.1029/93JD01908 10.1029/1999JD900817 10.1007/BF00546762 10.1029/2001JD000354 10.1029/96JD01800 10.1038/nature06059 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 10.1016/0160-4120(91)90095-8 10.1007/s11027-006-1012-8 10.1029/2002JD002322 10.5194/bg-7-1171-2010 10.1029/2001JD000841 10.5194/acp-6-957-2006 10.1029/92JD00622 10.1016/j.rse.2008.05.013 10.1029/95JD02595 10.1029/2006JD008147 10.1080/01431160500168686 10.1071/WF9980227 10.1029/1999JD900835 10.1007/978-1-4615-2812-8_7 10.1029/JD095iD05p05669 10.1029/2009JD011836 10.1029/1998GL900042 10.1080/00022470.1978.10470566 10.1029/2003JD003730 10.1029/2004GL020805 10.1029/JC087iC13p11019 10.5194/acpd-10-27523-2010 10.1126/science.220.4602.1148 10.1029/2003JD003747 10.1029/2002JD002100 10.1126/science.1163886 10.1029/2007GL031567 10.1029/1999JD900091 10.5194/acp-7-5175-2007 10.5194/acp-10-6617-2010 10.1029/98JD02281 10.1029/2000JD900287 10.1029/96JD00123 10.1029/92JD01218 10.1029/95JD02047 10.1007/BF00048045 10.1007/BF00708189 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 10.1038/282253a0 10.1029/2002JD002325 10.1029/96JD01512 10.5194/acp-6-3423-2006 10.5194/acp-10-11115-2010 10.1029/2008JD011361 10.1029/2003JD003874 10.5194/acp-10-1427-2010 10.1126/science.250.4988.1669 10.5194/acp-10-855-2010 10.7551/mitpress/3286.003.0041 10.1029/2000GB001382 10.1029/2004JD005347 10.1109/TGRS.2008.2009000 10.1029/JD095iD04p03599 10.1029/92JD02168 10.1029/93JD01196 10.5194/acp-8-3509-2008 10.1029/2006GL026804 10.1029/2003GL018609 10.1073/pnas.0606377103 |
ContentType | Journal Article |
Copyright | Copyright Copernicus GmbH 2011 |
Copyright_xml | – notice: Copyright Copernicus GmbH 2011 |
DBID | AAYXX CITATION 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7TV DOA |
DOI | 10.5194/acp-11-3611-2011 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Pollution Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Pollution Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 3629 |
ExternalDocumentID | oai_doaj_org_article_83f1a7a191d04645ad96378ce548a350 2326794071 10_5194_acp_11_3611_2011 |
Genre | Feature |
GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1A CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IPNFZ K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS 7TV PUEGO |
ID | FETCH-LOGICAL-c410t-e6e53b2c90bbfb76bdc5f1511b82965159274f5db659a40208792368c798b6803 |
IEDL.DBID | 8FG |
ISSN | 1680-7324 1680-7316 |
IngestDate | Wed Aug 27 01:02:48 EDT 2025 Fri Sep 05 04:38:42 EDT 2025 Sun Jul 13 04:43:54 EDT 2025 Tue Jul 01 02:19:10 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-e6e53b2c90bbfb76bdc5f1511b82965159274f5db659a40208792368c798b6803 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/862945055?pq-origsite=%requestingapplication% |
PQID | 862945055 |
PQPubID | 105744 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_83f1a7a191d04645ad96378ce548a350 proquest_miscellaneous_874189570 proquest_journals_862945055 crossref_primary_10_5194_acp_11_3611_2011 crossref_citationtrail_10_5194_acp_11_3611_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110419 |
PublicationDateYYYYMMDD | 2011-04-19 |
PublicationDate_xml | – month: 04 year: 2011 text: 20110419 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2011 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref37 – ident: ref43 doi: 10.1007/BF00694373 – ident: ref24 doi: 10.1029/2004JD004727 – ident: ref59 doi: 10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2 – ident: ref62 doi: 10.2737/PNW-GTR-251 – ident: ref28 doi: 10.1016/S0034-4257(02)00078-0 – ident: ref65 doi: 10.1007/BF00137988 – ident: ref50 doi: 10.1029/2001GB001466 – ident: ref86 doi: 10.1029/97JD00852 – ident: ref31 doi: 10.1029/2005JG000142 – ident: ref38 doi: 10.1029/93JD01908 – ident: ref87 doi: 10.1029/1999JD900817 – ident: ref23 doi: 10.1007/BF00546762 – ident: ref36 doi: 10.1029/2001JD000354 – ident: ref85 doi: 10.1029/96JD01800 – ident: ref69 doi: 10.1038/nature06059 – ident: ref1 doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 – ident: ref77 doi: 10.1016/0160-4120(91)90095-8 – ident: ref76 – ident: ref60 doi: 10.1007/s11027-006-1012-8 – ident: ref88 doi: 10.1029/2002JD002322 – ident: ref32 doi: 10.5194/bg-7-1171-2010 – ident: ref11 – ident: ref67 doi: 10.1029/2001JD000841 – ident: ref30 doi: 10.5194/acp-6-957-2006 – ident: ref13 – ident: ref83 doi: 10.1029/92JD00622 – ident: ref64 doi: 10.1016/j.rse.2008.05.013 – ident: ref81 doi: 10.1029/95JD02595 – ident: ref6 – ident: ref18 doi: 10.1029/2006JD008147 – ident: ref73 doi: 10.1080/01431160500168686 – ident: ref82 doi: 10.1071/WF9980227 – ident: ref35 doi: 10.1029/1999JD900835 – ident: ref40 – ident: ref75 – ident: ref4 doi: 10.1007/978-1-4615-2812-8_7 – ident: ref39 doi: 10.1029/JD095iD05p05669 – ident: ref55 doi: 10.1029/2009JD011836 – ident: ref19 doi: 10.1029/1998GL900042 – ident: ref61 doi: 10.1080/00022470.1978.10470566 – ident: ref79 – ident: ref48 doi: 10.1029/2003JD003730 – ident: ref84 doi: 10.1029/2004GL020805 – ident: ref54 – ident: ref16 – ident: ref22 doi: 10.1029/JC087iC13p11019 – ident: ref2 doi: 10.5194/acpd-10-27523-2010 – ident: ref3 doi: 10.1126/science.220.4602.1148 – ident: ref71 doi: 10.1029/2003JD003747 – ident: ref9 doi: 10.1029/2002JD002100 – ident: ref10 doi: 10.1126/science.1163886 – ident: ref72 doi: 10.1029/2007GL031567 – ident: ref58 – ident: ref41 doi: 10.1029/1999JD900091 – ident: ref29 – ident: ref89 doi: 10.5194/acp-7-5175-2007 – ident: ref15 doi: 10.5194/acp-10-6617-2010 – ident: ref46 doi: 10.1029/98JD02281 – ident: ref25 – ident: ref34 doi: 10.1029/2000JD900287 – ident: ref27 doi: 10.1029/96JD00123 – ident: ref80 doi: 10.1029/92JD01218 – ident: ref66 doi: 10.1029/95JD02047 – ident: ref8 doi: 10.1007/BF00048045 – ident: ref49 doi: 10.1007/BF00708189 – ident: ref42 doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 – ident: ref78 – ident: ref20 doi: 10.1038/282253a0 – ident: ref68 doi: 10.1029/2002JD002325 – ident: ref70 – ident: ref52 doi: 10.1029/96JD01512 – ident: ref74 doi: 10.5194/acp-6-3423-2006 – ident: ref12 doi: 10.5194/acp-10-11115-2010 – ident: ref14 doi: 10.1029/2008JD011361 – ident: ref17 doi: 10.1029/2003JD003874 – ident: ref44 doi: 10.5194/acp-10-1427-2010 – ident: ref21 doi: 10.1126/science.250.4988.1669 – ident: ref47 doi: 10.5194/acp-10-855-2010 – ident: ref53 doi: 10.7551/mitpress/3286.003.0041 – ident: ref5 doi: 10.1029/2000GB001382 – ident: ref45 doi: 10.1029/2004JD005347 – ident: ref63 doi: 10.1109/TGRS.2008.2009000 – ident: ref26 doi: 10.1029/JD095iD04p03599 – ident: ref51 doi: 10.1029/92JD02168 – ident: ref57 doi: 10.1029/93JD01196 – ident: ref90 doi: 10.5194/acp-8-3509-2008 – ident: ref33 doi: 10.1029/2006GL026804 – ident: ref7 doi: 10.1029/2003GL018609 – ident: ref56 doi: 10.1073/pnas.0606377103 |
SSID | ssj0025014 |
Score | 2.3078203 |
Snippet | Fires are a major source of trace gases and aerosols to the atmosphere. The amount of biomass burned is becoming better known, most importantly due to improved... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3611 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA3iyYv4ifWLOYjgoWy6bdrkqKKIsJ5c0FNI0kQW1q6sVfDfO5N2F0XQi5dC2xTCZNJ5L5O8YewkyCCEkVnqBHLVQuJMN7z2aY7YQYY8SBk3j4_uyptxcfsgHr6U-qI9YZ08cGe4gcxDZiqDtKKOWThTo8tU0nmE2ibv2DpXfEGmeqpF2TKiWqXkKdVm6hKUiFaKgXEvUbqvxAtFv28BKer2__gtx1hzvcHWe5AI513nNtmKb7ZYMkJ8O5vHZXA4hcvpBMFmvNtmj1RZGD0JTFNDrzY1hXfkwZ0M9wdMGkCoB3G8YRagnRvn4Qlj2Cv450mLwBPoqAnQeXwE1IDGpiWTHTa-vrq_vEn7ogmpKzLepr70IrdDp7i1wValrZ0IGNYzK4eK6p4r5KFB1LYUyhB5lKQgWEpXKWnRXPkuW21mjd9jYCWdkq0CH6qssJ5bhE6hDmXugypUFRI2WFhOu15RnApbTDUyC7K1RlsjxdBka022TtjZ8ouXTk3jl7YXNBjLdqSDHR-gd-jeO_Rf3pGwg8VQ6n5yvmokcapA5CcSBsu3OKsoVWIaP3vDJiTqo0TF9_-jFwdsrVuKLtJMHbLVdv7mjxDLtPY4uu0nTUjsow priority: 102 providerName: Directory of Open Access Journals |
Title | Spatial and temporal variability in the ratio of trace gases emitted from biomass burning |
URI | https://www.proquest.com/docview/862945055 https://www.proquest.com/docview/874189570 https://doaj.org/article/83f1a7a191d04645ad96378ce548a350 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcumlNG1C3TTLHEqhB7P22rKlU0lCtqGwoS0NSU5CkqWwsLW3u06h_z4zstZQCrmsWVv2YfQx72k0bxj74IXnXIs8tRy5ailwpuuscWmB2EH4wgsRDo8vrqrL6_LrLb-NZ3O28Vjlbk0MC3XTWdojnyLyliW6a_55_TulolEUXI0VNJ6z_XyGrpYSxedfRr5FITPiW5XIUirQNEQpEbKUU23XQb-vwh9ygf94pSDe_9_aHBzO_BV7GZEinA5de8CeufY1SxYIcrtN2AuHj3C-WiLiDP_esDsqL4zDCXTbQJScWsEfJMODFvdfWLaAeA9Cp0Pnod9o6-AeHdkW3K9lj-gTKN8EKCkfUTWgxWnf5JBdzy9-nl-msXJCass861NXOV6YmZWZMd7UlWks9-jbcyNmkoqfSySjnjem4lITgxQkI1gJW0th0FzFEdtru9a9ZWAEpcrWPpvJvDQuM4iffOOrwnlZytonbLqznLJRVpyqW6wU0guytUJbI89QZGtFtk7Yp_GN9SCp8UTbM-qMsR2JYYcb3eZexbmlROFzXWtknk0I1OoGV5VaWIdsTBc8S9jxritVnKFbNY6nhMH4FKcWxUt067oHbELKPpLX2bsnP3DMXgwbzWWay_dsr988uBNEKr2ZhPE4YftnF1ffftB1vvh-Mwm8_xHPE-j1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8RShPHwAJA7RJnGc2AdUtYVlS7s9tVI5Gduxq5W2ybKbgvqj-h-ZcR4SQuqtl0hJnBzGY8_3eexvCHnvhedcizS2HLhqLmCk66RyMQPsIDzzQoTN4_OTYnaWfz_n51vkZjgLg9sqhzkxTNRVY3GNfALIW-YQrvnu6leMRaMwuTpU0Oi84shd_wHGtvl8-AW690OWTb-eHszivqhAbPM0aWNXOM5MZmVijDdlYSrLPYS91IhMYl1wCTzN88oUXGokVwIV9gphSylMIRIG_71H7ueMMdxBKKbfRn6HKTrkd9AqxoJQXVYUIFI-0XYV9AILuGDI_ScKhmIB_8WCEOCmj8mjHpnSvc6VnpAtVz8l0RxAdbMOa-_0Iz1YLgDhhrtn5AeWMwb3pbquaC9xtaS_gXx32t_XdFFTwJc0OBltPG3X2jp6AYFzQ93logW0S_F8C0URAEDxFHoY12mek7M7MeoLsl03tXtJqBF4NLf0SSbT3LjEAF7zlS-Y8zKXpY_IZLCcsr2MOVbTWCqgM2hrBbYGXqPQ1gptHZFP4xerTsLjlrb72BljOxTfDg-a9YXqx7ISzKe61MB0q5AY1hXMYqWwDtifZjyJyM7QlaqfETZq9N-I0PEtDGXMz-jaNVfQBJWEJC-TV7f-4B15MDudH6vjw5OjHfKwW-TO41S-Jtvt-sq9AZTUmrfBNyn5edeD4S-pxh-5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKyEuqLxEaAEfAIlDtHk5sQ8Voo9VS-mqQlQqJ2M7drXSkiy7Kag_kX_FjONEQki99bLSbrw5jGc83-exvyHkjeOOMcXT2DDgqgWHSFdJbeMcsAN3uePcHx4_m5XHF8WnS3a5Qf4Md2HwWOWwJvqFum4N7pFPAHmLAtI1m7hwKuL8cPph-TPGBlJYaB26aajQZaHe82pj4Y7Hqb35DWxuvXdyCFP_NsumR18PjuPQcCA2RZp0sS0ty3VmRKK101Wpa8McpMRU80xgz3ABHM6xWpdMKCReHNX3Sm4qwXXJkxzee49sVZD0gQdu7R_Nzr-M7A8LeMj-YFyM7aL6mikAqGKizNKrCZbwgQn5nxzpWwn8lyl8-ptuk4cBt9KPvaM9Ihu2eUyiM4Dc7crvzNN39GAxB_zrvz0h37DZMTg3VU1NgwDWgv4Cat4rg9_QeUMBfVLvgrR1tFspY-kVpNU1tT_mHWBhirdfKEoEAManMP-4i_OUXNyJWZ-RzaZt7HNCNceLu5VLMpEW2iYa0JyrXZlbJwpRuYhMBstJE0TOsdfGQgLZQVtLsDWwHom2lmjriLwf_7HsBT5uGbuPkzGOQ2lu_0O7upIh0iXPXaoqBTy49mVjVcMaV3FjgRuqnCUR2RmmUob1Yi1H744IHZ9CoGP1RjW2vYYhqDMkWJW8uPUFr8l9CAz5-WR2ukMe9DvgRZyKXbLZra7tS4BQnX4VnJOS73cdD38BJDwqlA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+and+temporal+variability+in+the+ratio+of+trace+gases+emitted+from+biomass+burning&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=van+Leeuwen%2C+T+T&rft.au=der+Werf%2C+G+R.+van&rft.date=2011-04-19&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=11&rft.issue=8&rft.spage=3611&rft_id=info:doi/10.5194%2Facp-11-3611-2011&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2326794071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |