An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems
The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T–H code an...
Saved in:
Published in | Reliability engineering & system safety Vol. 95; no. 12; pp. 1300 - 1313 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0951-8320 1879-0836 |
DOI | 10.1016/j.ress.2010.06.007 |
Cover
Abstract | The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T–H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T–H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure.
In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an “important direction” pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling.
Two issues are still open with respect to LS: first, the method relies on the determination of the “important direction”, which requires additional runs of the T–H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models.
The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T–H code to reduce the computational cost associated to the determination of the LS “important direction” and (iii) proposing a new technique for identifying the LS “important direction”, based on the genetic algorithm (GA) minimization of the variance of the LS failure probability estimator.
In addition, this work addresses the second issue by assessing the performance of the LS method in estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of samples.
The issues are investigated within two case studies: the first one deals with the estimation of the failure probability of a nonlinear structural system subject to creep and fatigue damages
[1,2]; the second one regards a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature,
[3]. |
---|---|
AbstractList | The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T–H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T–H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure.
In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an “important direction” pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling.
Two issues are still open with respect to LS: first, the method relies on the determination of the “important direction”, which requires additional runs of the T–H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models.
The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T–H code to reduce the computational cost associated to the determination of the LS “important direction” and (iii) proposing a new technique for identifying the LS “important direction”, based on the genetic algorithm (GA) minimization of the variance of the LS failure probability estimator.
In addition, this work addresses the second issue by assessing the performance of the LS method in estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of samples.
The issues are investigated within two case studies: the first one deals with the estimation of the failure probability of a nonlinear structural system subject to creep and fatigue damages
[1,2]; the second one regards a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature,
[3]. The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T-H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an "important direction" pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling. Two issues are still open with respect to LS: first, the method relies on the determination of the "important direction", which requires additional runs of the T-H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models. The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T-H code to reduce the computational cost associated to the determination of the LS "important direction" and (iii) proposing a new technique for identifying the LS "important direction", based on the genetic algorithm (GA) minimization of the variance of the LS failure probability estimator. In addition, this work addresses the second issue by assessing the performance of the LS method in estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of samples. The issues are investigated within two case studies: the first one deals with the estimation of the failure probability of a nonlinear structural system subject to creep and fatigue damages [1] and [2]; the second one regards a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature, [3]. |
Author | Pedroni, N. Zio, E. |
Author_xml | – sequence: 1 givenname: E. surname: Zio fullname: Zio, E. email: enrico.zio@polimi.it – sequence: 2 givenname: N. surname: Pedroni fullname: Pedroni, N. |
BackLink | https://centralesupelec.hal.science/hal-00609180$$DView record in HAL |
BookMark | eNp9kc1u3CAUhVGVSp2kfYGu2FVZeHrxDwYpm1GUNJVGyqLtGmG47jCyjQPMSJOnD860myyyQjqcD-4955JcTH5CQr4yWDNg_Pt-HTDGdQlZAL4GaD-QFROtLEBU_IKsQDasEFUJn8hljHsAqGXTrsh-M1E_Jze6Z7R06yakv_Q4D276S0dMO29p7wNNO6QYs00n5zPRvyq9dsMhIJ2D73TnBpdOy9V0MAPqQGcdozsijaeYcIyfycdeDxG__DuvyJ_7u9-3D8X28cfP2822MDWDVNja2jynLEVdGs5YIwSXFe94qTstRFmVaDvsO84qWXXQtsyIljd9b6Uw3Orqilyf393pQc0hzxxOymunHjZbtWgAHCQTcGTZ--3szSs8HfKGanTR4DDoCf0hKlHLuuWVaLJTnJ0m-BgD9sq49JpGCjkGxUAtTai9WppQSxMKeP6rzWj5Bv0_1bvQzRnCHNXRYVDROJwMWhfQJGW9ew9_AbA-pSw |
CitedBy_id | crossref_primary_10_1016_j_ress_2023_109192 crossref_primary_10_1016_j_anucene_2020_107347 crossref_primary_10_1109_TEM_2015_2427844 crossref_primary_10_1016_j_istruc_2025_108530 crossref_primary_10_1016_j_anucene_2012_12_015 crossref_primary_10_4028_www_scientific_net_AMM_166_169_1872 crossref_primary_10_3390_en14154688 crossref_primary_10_1016_j_nucengdes_2010_10_029 crossref_primary_10_1016_j_ress_2016_04_020 crossref_primary_10_1016_j_nucengdes_2013_12_058 crossref_primary_10_3390_buildings12071061 crossref_primary_10_1016_j_pnucene_2021_104057 crossref_primary_10_17706_jsw_11_5_481_493 crossref_primary_10_1016_j_apm_2017_04_003 crossref_primary_10_1016_j_ssci_2020_105021 crossref_primary_10_1109_ACCESS_2020_3026104 crossref_primary_10_2514_1_D0020 crossref_primary_10_1016_j_net_2022_03_011 crossref_primary_10_1016_j_cma_2021_113818 crossref_primary_10_1016_j_nucengdes_2014_09_004 crossref_primary_10_1016_j_cma_2023_116068 crossref_primary_10_1137_120877192 crossref_primary_10_1007_s00158_022_03431_6 crossref_primary_10_1016_j_anucene_2014_10_035 crossref_primary_10_1061_AJRUA6_0001129 crossref_primary_10_1080_0305215X_2013_823195 crossref_primary_10_1016_j_ress_2011_08_006 crossref_primary_10_1177_1748006X18764986 crossref_primary_10_1016_j_nucengdes_2024_113484 crossref_primary_10_1016_j_anucene_2018_12_040 crossref_primary_10_1016_j_strusafe_2023_102351 crossref_primary_10_1115_1_4026033 crossref_primary_10_1016_j_ress_2019_04_009 crossref_primary_10_1016_j_cja_2015_06_012 crossref_primary_10_1016_j_istruc_2023_01_072 crossref_primary_10_1016_j_proeng_2014_09_062 crossref_primary_10_1016_j_ress_2022_108446 crossref_primary_10_59876_a_5nqg_nart crossref_primary_10_1016_j_trgeo_2019_100242 crossref_primary_10_2514_1_I010265 crossref_primary_10_1016_j_cma_2021_114218 crossref_primary_10_1016_j_ress_2024_110538 |
Cites_doi | 10.13182/NT149-129 10.1016/j.anucene.2008.08.011 10.1016/j.nucengdes.2008.11.005 10.1016/j.strusafe.2006.07.010 10.13182/NT144-145 10.1016/j.probengmech.2004.05.001 10.1016/j.compstruc.2006.10.009 10.1016/j.ress.2008.06.018 10.1016/j.cma.2004.05.029 10.1016/j.strusafe.2006.07.009 10.1016/j.ress.2008.12.002 10.1016/S0927-0507(06)13019-4 10.1016/j.nucengdes.2008.02.012 10.1016/j.ress.2009.06.008 10.1002/nme.1577 10.1016/j.nucengdes.2009.07.008 10.1016/j.ress.2005.04.005 10.1016/j.ress.2005.11.017 10.1016/j.nucengdes.2007.04.006 10.13182/NT08-A3981 10.1016/j.nucengdes.2007.11.005 10.1126/science.2255906 10.1016/S0167-4730(02)00047-4 10.1016/j.pnucene.2006.10.003 10.1016/j.ress.2005.11.046 10.1016/S0951-8320(03)00058-9 10.1016/j.probengmech.2004.05.004 10.1016/j.ress.2009.05.010 10.1016/j.nucengdes.2005.06.008 10.1016/j.strusafe.2007.10.001 10.1016/j.anucene.2008.12.004 10.1016/j.strusafe.2009.08.004 10.1016/S0142-1123(00)00046-3 10.1016/j.ress.2005.11.018 10.1063/1.1699114 10.13182/04-54CR 10.1016/S0167-4730(02)00039-5 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7T2 7U1 C1K 1XC VOOES |
DOI | 10.1016/j.ress.2010.06.007 |
DatabaseName | CrossRef Health and Safety Science Abstracts (Full archive) Risk Abstracts Environmental Sciences and Pollution Management Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Risk Abstracts Health & Safety Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Risk Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1879-0836 |
EndPage | 1313 |
ExternalDocumentID | oai_HAL_hal_00609180v1 10_1016_j_ress_2010_06_007 S0951832010001419 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7T2 7U1 C1K 1XC AGCQF VOOES |
ID | FETCH-LOGICAL-c410t-d4dd32092842c6115886936b62aba88232edbefb61393b0771c8765ffd98c6da3 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Fri Sep 12 12:30:21 EDT 2025 Sun Sep 28 06:33:58 EDT 2025 Wed Oct 01 02:31:05 EDT 2025 Thu Apr 24 23:04:58 EDT 2025 Fri Feb 23 02:27:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Important direction Genetic algorithm Variance minimization Line Sampling Computational cost Passive system Artificial neural network Functional failure probability |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-d4dd32092842c6115886936b62aba88232edbefb61393b0771c8765ffd98c6da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7108-637X |
OpenAccessLink | https://centralesupelec.hal.science/hal-00609180 |
PQID | 849476385 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_00609180v1 proquest_miscellaneous_849476385 crossref_citationtrail_10_1016_j_ress_2010_06_007 crossref_primary_10_1016_j_ress_2010_06_007 elsevier_sciencedirect_doi_10_1016_j_ress_2010_06_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Mathews, Arul, Parthasarathy, Kumar, Ramakrishnan, Subbaiah (bib15) 2009; 36 Arul, Iyer, Velusamy (bib17) 2009; 94 Schueller, Pradlwarter (bib29) 2007; 29 Helton, Johnson, Sallaberry, Storlie (bib45) 2006; 91 Zio, Pedroni (bib18) 2009; 239 Helton JC. Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the waste isolation power plant, SAND98-0365, Sandia National Laboratories, 1998. Fong, Apostolakis, Langewish, Hejzlar, Todreas, Driscoll (bib4) 2009; 239 Pradlwarter, Pellissetti, Schenk, Schueller, Kreis, Fransen (bib26) 2005; 194 Mao, Mahadevan (bib1) 2000; 22 Koutsourelakis, Pradlwarter, Schueller (bib25) 2004; 19 Huang, Du (bib34) 2006; 66 Ahammed, Malchers (bib39) 2006; 91 Nayak, Gartia, Antony, Vinod, Sinha (bib6) 2008; 238 Apostolakis (bib9) 1990; 250 Patalano, Apostolakis, Hejzlar (bib16) 2008; 163 Schueller (bib20) 2007; 85 Burgazzi (bib10) 2003; 144 Rumelhart, Hinton, Williams (bib41) 1986; vol. 1 USNRC. An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis. NUREG-1.174—Revision 1, US Nuclear Regulatory Commission, Washington, DC, 2002. IAEA. Safety related terms for advanced nuclear plant. IAEA TECDOC-626, 1991. Metropolis, Rosenbluth, Rosenbluth, Taller (bib35) 1953; 21 Lu, Song, Yue, Wang (bib2) 2008; 30 Bassi, Marquès (bib12) 2008; Paper 87376 Au, Beck (bib21) 2003; 25 Helton, Davis (bib23) 2003; 81 NUREG-1150. Severe accident risk: an assessment for five US nuclear power plants, US Nuclear Regulatory Commission, 1990. Pradlwarter, Schueller, Koutsourelakis, Charmpis (bib28) 2007; 29 Valdebenito, Pradlwarter, Schueller (bib36) 2010; 32 Mathews, Ramakrishnan, Parthasarathy, John Arul, Senthil Kumar (bib14) 2008; 238 Zio, Pedroni (bib19) 2009; 94 Fu (bib40) 2006 Pagani, Apostolakis, Hejzlar (bib3) 2005; 149 Burgazzi (bib11) 2007; 49 Schueller, Pradlwarter, Koutsourelakis (bib27) 2004; 19 Helton, Sallaberry (bib24) 2009; 94 Nayak, Jain, Gartia, Srivastava, Prasad, Anthony (bib7) 2008; 35 Cacuci, Ionescu-Bujor (bib22) 2004; 147 Marseguerra, Zio, Martorell (bib38) 2006; 91 Bishop (bib30) 1995 Marquès, Pignatel, Saignes, D’ Auria, Burgazzi, Müller (bib33) 2005; 235 Zio E, Pedroni N. Nuclear passive system reliability assessment by an optimized Line Sampling method. Unpublished results. Konak, Coit, Smith (bib37) 2006; 91 Nayak, Jain, Gartia, Prasad, Anthony, Bhatia (bib8) 2009; 94 Mackay, Apostolakis, Hejzlar (bib13) 2008; 238 Olsson, Sabdberg, Dahlblom (bib32) 2003; 25 10.1016/j.ress.2010.06.007_bib5 Nayak (10.1016/j.ress.2010.06.007_bib7) 2008; 35 Ahammed (10.1016/j.ress.2010.06.007_bib39) 2006; 91 Valdebenito (10.1016/j.ress.2010.06.007_bib36) 2010; 32 Pradlwarter (10.1016/j.ress.2010.06.007_bib28) 2007; 29 Bishop (10.1016/j.ress.2010.06.007_bib30) 1995 Koutsourelakis (10.1016/j.ress.2010.06.007_bib25) 2004; 19 Olsson (10.1016/j.ress.2010.06.007_bib32) 2003; 25 Nayak (10.1016/j.ress.2010.06.007_bib8) 2009; 94 Mathews (10.1016/j.ress.2010.06.007_bib14) 2008; 238 Lu (10.1016/j.ress.2010.06.007_bib2) 2008; 30 Helton (10.1016/j.ress.2010.06.007_bib24) 2009; 94 Fu (10.1016/j.ress.2010.06.007_bib40) 2006 Zio (10.1016/j.ress.2010.06.007_bib18) 2009; 239 Marquès (10.1016/j.ress.2010.06.007_bib33) 2005; 235 Schueller (10.1016/j.ress.2010.06.007_bib27) 2004; 19 Arul (10.1016/j.ress.2010.06.007_bib17) 2009; 94 Zio (10.1016/j.ress.2010.06.007_bib19) 2009; 94 Metropolis (10.1016/j.ress.2010.06.007_bib35) 1953; 21 Marseguerra (10.1016/j.ress.2010.06.007_bib38) 2006; 91 10.1016/j.ress.2010.06.007_bib42 Burgazzi (10.1016/j.ress.2010.06.007_bib11) 2007; 49 Schueller (10.1016/j.ress.2010.06.007_bib20) 2007; 85 10.1016/j.ress.2010.06.007_bib44 10.1016/j.ress.2010.06.007_bib43 Pagani (10.1016/j.ress.2010.06.007_bib3) 2005; 149 Helton (10.1016/j.ress.2010.06.007_bib45) 2006; 91 Konak (10.1016/j.ress.2010.06.007_bib37) 2006; 91 Schueller (10.1016/j.ress.2010.06.007_bib29) 2007; 29 Apostolakis (10.1016/j.ress.2010.06.007_bib9) 1990; 250 Nayak (10.1016/j.ress.2010.06.007_bib6) 2008; 238 Bassi (10.1016/j.ress.2010.06.007_bib12) 2008; Paper 87376 Helton (10.1016/j.ress.2010.06.007_bib23) 2003; 81 Fong (10.1016/j.ress.2010.06.007_bib4) 2009; 239 Au (10.1016/j.ress.2010.06.007_bib21) 2003; 25 Pradlwarter (10.1016/j.ress.2010.06.007_bib26) 2005; 194 Mathews (10.1016/j.ress.2010.06.007_bib15) 2009; 36 Mao (10.1016/j.ress.2010.06.007_bib1) 2000; 22 Burgazzi (10.1016/j.ress.2010.06.007_bib10) 2003; 144 Cacuci (10.1016/j.ress.2010.06.007_bib22) 2004; 147 Mackay (10.1016/j.ress.2010.06.007_bib13) 2008; 238 Rumelhart (10.1016/j.ress.2010.06.007_bib41) 1986; vol. 1 Patalano (10.1016/j.ress.2010.06.007_bib16) 2008; 163 Huang (10.1016/j.ress.2010.06.007_bib34) 2006; 66 10.1016/j.ress.2010.06.007_bib31 |
References_xml | – volume: 144 start-page: 145 year: 2003 end-page: 151 ident: bib10 article-title: Reliability evaluation of passive systems through functional reliability assessment publication-title: Nuclear Technology – volume: 25 start-page: 139 year: 2003 end-page: 163 ident: bib21 article-title: Importance sampling in high dimensions publication-title: Structural Safety – volume: 94 start-page: 699 year: 2009 end-page: 721 ident: bib24 article-title: Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada publication-title: Reliability Engineering and System Safety – volume: 239 start-page: 580 year: 2009 end-page: 599 ident: bib18 article-title: Estimation of the functional failure probability of a thermal–hydraulic passive systems by means of Subset Simulation publication-title: Nuclear Engineering and Design – volume: 66 start-page: 1841 year: 2006 end-page: 1858 ident: bib34 article-title: A robust design method using variable transformation and Gauss–Hermite integration publication-title: International Journal for Numerical Methods in Engineering – volume: 91 start-page: 594 year: 2006 end-page: 601 ident: bib39 article-title: Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis publication-title: Reliability Engineering and System Safety – volume: 29 start-page: 167 year: 2007 end-page: 182 ident: bib29 article-title: Benchmark study on reliability estimation in higher dimensions of structural systems—an overview publication-title: Structural Safety – volume: 250 start-page: 1359 year: 1990 end-page: 1793 ident: bib9 article-title: The concept of probability in safety assessment of technological systems publication-title: Science – volume: 49 start-page: 93 year: 2007 end-page: 102 ident: bib11 article-title: Addressing the uncertainties related to passive system reliability publication-title: Progress in Nuclear Energy – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: bib35 article-title: Equations of state calculations by fast computing machines publication-title: Journal of Chemical Physics – volume: 194 start-page: 1597 year: 2005 end-page: 1617 ident: bib26 article-title: Realistic and efficient reliability estimation for aerospace structures publication-title: Computer Methods in Applied Mechanics and Engineering – year: 1995 ident: bib30 publication-title: Neural networks for pattern recognition – volume: 32 start-page: 101 year: 2010 end-page: 111 ident: bib36 article-title: The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities publication-title: Structural Safety – reference: Helton JC. Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the waste isolation power plant, SAND98-0365, Sandia National Laboratories, 1998. – volume: 25 start-page: 47 year: 2003 end-page: 68 ident: bib32 article-title: On Latin hypercube sampling for structural reliability analysis publication-title: Structural Safety – volume: Paper 87376 year: 2008 ident: bib12 article-title: Reliability assessment of 2400 publication-title: Hindawi Publishing Corporation – reference: IAEA. Safety related terms for advanced nuclear plant. IAEA TECDOC-626, 1991. – volume: 81 start-page: 23 year: 2003 end-page: 69 ident: bib23 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliability Engineering and System Safety – volume: 30 start-page: 517 year: 2008 end-page: 532 ident: bib2 article-title: Reliability sensitivity method by Line Sampling publication-title: Structural Safety – reference: NUREG-1150. Severe accident risk: an assessment for five US nuclear power plants, US Nuclear Regulatory Commission, 1990. – volume: 238 start-page: 2369 year: 2008 end-page: 2376 ident: bib14 article-title: Functional reliability analysis of safety grade decay heat removal system of Indian 500 publication-title: Nuclear Engineering and Design – volume: 235 start-page: 2612 year: 2005 end-page: 2631 ident: bib33 article-title: Methodology for the reliability evaluation of a passive system and its integration into a probabilistic safety assessment publication-title: Nuclear Engineering and Design – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: bib37 article-title: Multi-objective optimization using genetic algorithms: a tutorial publication-title: Reliability Engineering and System Safety – volume: 94 start-page: 1064 year: 2009 end-page: 1075 ident: bib8 article-title: Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology publication-title: Reliability Engineering and System Safety – volume: 29 start-page: 208 year: 2007 end-page: 221 ident: bib28 article-title: Application of line sampling simulation method to reliability benchmark problems publication-title: Structural Safety – volume: 94 start-page: 1917 year: 2009 end-page: 1926 ident: bib17 article-title: Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems publication-title: Reliability Engineering and System Safety – volume: 147 start-page: 204 year: 2004 end-page: 217 ident: bib22 article-title: A comparative review of sensitivity and uncertainty analysis of large scale systems—II: statistical methods publication-title: Nuclear Science and Engineering – volume: 36 start-page: 481 year: 2009 end-page: 492 ident: bib15 article-title: Integration of functional reliability analysis with hardware reliability. An application to safety grade decay heat removal system of Indian 500 publication-title: Annals of Nuclear Energy – volume: 85 start-page: 235 year: 2007 end-page: 243 ident: bib20 article-title: On the treatment of uncertainties in structural mechanics and analysis publication-title: Computers and Structures – volume: 91 start-page: 1175 year: 2006 end-page: 1209 ident: bib45 article-title: Survey on sampling-based methods for uncertainty and sensitivity analysis publication-title: Reliability Engineering and System Safety – volume: 19 start-page: 409 year: 2004 end-page: 417 ident: bib25 article-title: Reliability of structures in high dimensions, Part I: algorithms and application publication-title: Probabilistic Engineering Mechanics – volume: 239 start-page: 2660 year: 2009 end-page: 2671 ident: bib4 article-title: Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor publication-title: Nuclear Engineering and Design – volume: 238 start-page: 1430 year: 2008 end-page: 1440 ident: bib6 article-title: Passive system reliability analysis using the APSRA methodology publication-title: Nuclear Engineering and Design – volume: 163 start-page: 191 year: 2008 end-page: 208 ident: bib16 article-title: Risk-informed design changes in a passive decay heat removal system publication-title: Nuclear Technology – volume: 22 start-page: 789 year: 2000 end-page: 797 ident: bib1 article-title: Reliability analysis of creep–fatigue failure publication-title: International Journal of Fatigue – reference: USNRC. An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis. NUREG-1.174—Revision 1, US Nuclear Regulatory Commission, Washington, DC, 2002. – volume: 19 start-page: 463 year: 2004 end-page: 474 ident: bib27 article-title: A critical appraisal of reliability estimation procedures for high dimensions publication-title: Probabilistic Engineering Mechanics – volume: 149 start-page: 129 year: 2005 end-page: 140 ident: bib3 article-title: The impact of uncertainties on the performance of passive systems publication-title: Nuclear Technology – volume: 238 start-page: 217 year: 2008 end-page: 228 ident: bib13 article-title: Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor publication-title: Nuclear Engineering and Design – volume: 94 start-page: 1764 year: 2009 end-page: 1781 ident: bib19 article-title: Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling publication-title: Reliability Engineering and System Safety – volume: 91 start-page: 977 year: 2006 end-page: 991 ident: bib38 article-title: Basics of genetic algorithms optimization for RAMS applications publication-title: Reliability Engineering and System Safety – year: 2006 ident: bib40 article-title: Stochastic gradient estimation publication-title: Handbook on operation research and management science: simulation – volume: vol. 1 year: 1986 ident: bib41 article-title: Learning internal representations by error back-propagation publication-title: Parallel distributed processing: exploration in the microstructure of cognition – volume: 35 start-page: 2270 year: 2008 end-page: 2279 ident: bib7 article-title: Reliability assessment of passive isolation condenser system using APSRA methodology publication-title: Annals of Nuclear Energy – reference: Zio E, Pedroni N. Nuclear passive system reliability assessment by an optimized Line Sampling method. Unpublished results. – volume: 149 start-page: 129 year: 2005 ident: 10.1016/j.ress.2010.06.007_bib3 article-title: The impact of uncertainties on the performance of passive systems publication-title: Nuclear Technology doi: 10.13182/NT149-129 – volume: 35 start-page: 2270 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib7 article-title: Reliability assessment of passive isolation condenser system using APSRA methodology publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2008.08.011 – volume: 239 start-page: 580 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib18 article-title: Estimation of the functional failure probability of a thermal–hydraulic passive systems by means of Subset Simulation publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2008.11.005 – volume: 29 start-page: 167 issue: 3 year: 2007 ident: 10.1016/j.ress.2010.06.007_bib29 article-title: Benchmark study on reliability estimation in higher dimensions of structural systems—an overview publication-title: Structural Safety doi: 10.1016/j.strusafe.2006.07.010 – volume: 144 start-page: 145 year: 2003 ident: 10.1016/j.ress.2010.06.007_bib10 article-title: Reliability evaluation of passive systems through functional reliability assessment publication-title: Nuclear Technology doi: 10.13182/NT144-145 – ident: 10.1016/j.ress.2010.06.007_bib43 – volume: 19 start-page: 409 year: 2004 ident: 10.1016/j.ress.2010.06.007_bib25 article-title: Reliability of structures in high dimensions, Part I: algorithms and application publication-title: Probabilistic Engineering Mechanics doi: 10.1016/j.probengmech.2004.05.001 – volume: 85 start-page: 235 year: 2007 ident: 10.1016/j.ress.2010.06.007_bib20 article-title: On the treatment of uncertainties in structural mechanics and analysis publication-title: Computers and Structures doi: 10.1016/j.compstruc.2006.10.009 – volume: vol. 1 year: 1986 ident: 10.1016/j.ress.2010.06.007_bib41 article-title: Learning internal representations by error back-propagation – volume: 94 start-page: 699 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib24 article-title: Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2008.06.018 – volume: 194 start-page: 1597 year: 2005 ident: 10.1016/j.ress.2010.06.007_bib26 article-title: Realistic and efficient reliability estimation for aerospace structures publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.05.029 – volume: 29 start-page: 208 year: 2007 ident: 10.1016/j.ress.2010.06.007_bib28 article-title: Application of line sampling simulation method to reliability benchmark problems publication-title: Structural Safety doi: 10.1016/j.strusafe.2006.07.009 – volume: 94 start-page: 1064 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib8 article-title: Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2008.12.002 – year: 2006 ident: 10.1016/j.ress.2010.06.007_bib40 article-title: Stochastic gradient estimation doi: 10.1016/S0927-0507(06)13019-4 – volume: 238 start-page: 2369 issue: 9 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib14 article-title: Functional reliability analysis of safety grade decay heat removal system of Indian 500MWe PFBR publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2008.02.012 – volume: 94 start-page: 1917 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib17 article-title: Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2009.06.008 – volume: 66 start-page: 1841 year: 2006 ident: 10.1016/j.ress.2010.06.007_bib34 article-title: A robust design method using variable transformation and Gauss–Hermite integration publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.1577 – volume: 239 start-page: 2660 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib4 article-title: Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2009.07.008 – volume: 91 start-page: 594 year: 2006 ident: 10.1016/j.ress.2010.06.007_bib39 article-title: Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.04.005 – volume: 91 start-page: 1175 year: 2006 ident: 10.1016/j.ress.2010.06.007_bib45 article-title: Survey on sampling-based methods for uncertainty and sensitivity analysis publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.11.017 – volume: 238 start-page: 217 issue: 1 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib13 article-title: Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2007.04.006 – volume: 163 start-page: 191 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib16 article-title: Risk-informed design changes in a passive decay heat removal system publication-title: Nuclear Technology doi: 10.13182/NT08-A3981 – volume: 238 start-page: 1430 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib6 article-title: Passive system reliability analysis using the APSRA methodology publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2007.11.005 – volume: 250 start-page: 1359 year: 1990 ident: 10.1016/j.ress.2010.06.007_bib9 article-title: The concept of probability in safety assessment of technological systems publication-title: Science doi: 10.1126/science.2255906 – volume: 25 start-page: 139 issue: 2 year: 2003 ident: 10.1016/j.ress.2010.06.007_bib21 article-title: Importance sampling in high dimensions publication-title: Structural Safety doi: 10.1016/S0167-4730(02)00047-4 – volume: 49 start-page: 93 year: 2007 ident: 10.1016/j.ress.2010.06.007_bib11 article-title: Addressing the uncertainties related to passive system reliability publication-title: Progress in Nuclear Energy doi: 10.1016/j.pnucene.2006.10.003 – volume: 91 start-page: 977 issue: 9 year: 2006 ident: 10.1016/j.ress.2010.06.007_bib38 article-title: Basics of genetic algorithms optimization for RAMS applications publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.11.046 – ident: 10.1016/j.ress.2010.06.007_bib44 – volume: 81 start-page: 23 year: 2003 ident: 10.1016/j.ress.2010.06.007_bib23 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliability Engineering and System Safety doi: 10.1016/S0951-8320(03)00058-9 – volume: Paper 87376 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib12 article-title: Reliability assessment of 2400MWth gas-cooled fast reactor natural circulation decay heat removal in pressurized situations. Science and technology of nuclear installations, special issue “Natural circulation in nuclear reactor systems” publication-title: Hindawi Publishing Corporation – volume: 19 start-page: 463 year: 2004 ident: 10.1016/j.ress.2010.06.007_bib27 article-title: A critical appraisal of reliability estimation procedures for high dimensions publication-title: Probabilistic Engineering Mechanics doi: 10.1016/j.probengmech.2004.05.004 – ident: 10.1016/j.ress.2010.06.007_bib42 – volume: 94 start-page: 1764 issue: 11 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib19 article-title: Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2009.05.010 – volume: 235 start-page: 2612 year: 2005 ident: 10.1016/j.ress.2010.06.007_bib33 article-title: Methodology for the reliability evaluation of a passive system and its integration into a probabilistic safety assessment publication-title: Nuclear Engineering and Design doi: 10.1016/j.nucengdes.2005.06.008 – volume: 30 start-page: 517 year: 2008 ident: 10.1016/j.ress.2010.06.007_bib2 article-title: Reliability sensitivity method by Line Sampling publication-title: Structural Safety doi: 10.1016/j.strusafe.2007.10.001 – volume: 36 start-page: 481 year: 2009 ident: 10.1016/j.ress.2010.06.007_bib15 article-title: Integration of functional reliability analysis with hardware reliability. An application to safety grade decay heat removal system of Indian 500MWe PFBR publication-title: Annals of Nuclear Energy doi: 10.1016/j.anucene.2008.12.004 – volume: 32 start-page: 101 issue: 2 year: 2010 ident: 10.1016/j.ress.2010.06.007_bib36 article-title: The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities publication-title: Structural Safety doi: 10.1016/j.strusafe.2009.08.004 – year: 1995 ident: 10.1016/j.ress.2010.06.007_bib30 – ident: 10.1016/j.ress.2010.06.007_bib31 – volume: 22 start-page: 789 year: 2000 ident: 10.1016/j.ress.2010.06.007_bib1 article-title: Reliability analysis of creep–fatigue failure publication-title: International Journal of Fatigue doi: 10.1016/S0142-1123(00)00046-3 – ident: 10.1016/j.ress.2010.06.007_bib5 – volume: 91 start-page: 992 issue: 9 year: 2006 ident: 10.1016/j.ress.2010.06.007_bib37 article-title: Multi-objective optimization using genetic algorithms: a tutorial publication-title: Reliability Engineering and System Safety doi: 10.1016/j.ress.2005.11.018 – volume: 21 start-page: 1087 issue: 6 year: 1953 ident: 10.1016/j.ress.2010.06.007_bib35 article-title: Equations of state calculations by fast computing machines publication-title: Journal of Chemical Physics doi: 10.1063/1.1699114 – volume: 147 start-page: 204 year: 2004 ident: 10.1016/j.ress.2010.06.007_bib22 article-title: A comparative review of sensitivity and uncertainty analysis of large scale systems—II: statistical methods publication-title: Nuclear Science and Engineering doi: 10.13182/04-54CR – volume: 25 start-page: 47 year: 2003 ident: 10.1016/j.ress.2010.06.007_bib32 article-title: On Latin hypercube sampling for structural reliability analysis publication-title: Structural Safety doi: 10.1016/S0167-4730(02)00039-5 |
SSID | ssj0004957 |
Score | 2.1842887 |
Snippet | The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC)... The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC)... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1300 |
SubjectTerms | Artificial neural network Computational cost Functional failure probability Genetic algorithm Important direction Line Sampling Machine Learning Mathematics Optimization and Control Passive system Probability Statistics Variance minimization |
Title | An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems |
URI | https://dx.doi.org/10.1016/j.ress.2010.06.007 https://www.proquest.com/docview/849476385 https://centralesupelec.hal.science/hal-00609180 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4QL3owrhEX0hhvZoTO3uOESHDjgiTcmnbaUYgOhMVED_5235sFl0QOXjt72_ne1_R73yPkXDFmwsDxLZ740nKZURZ3uLI0hFcmWcKUjfnO912_03dvBt6gQlplLgzKKgvszzE9Q-uipVH0ZmMyHDZ6SA5gPjZZxvMz6090_4I5ffnxJfOABUBQlpPHs4vEmVzjhSvaQt6FexLBX8Fp7QlVkr_AOotA7W2yVVBHGuVvt0MqJt0lm98MBffIKErpGEDgZfhuNIV1pqE9iZrx9JHmtaIpkFQKpI-iu0aetkjHSdaSyCFq1CnWmMndu9_wUIqOx3JKJ0CzARpp7v082yf99tVDq2MV1RSs2GXNuaVdreH7OcQjO_aBCIahzx1f-bZUEni2YxutTKIgvnNHNYOAxYCUXpJoHsa-ls4Bqabj1BwSmsRMGoA6WMQyN4DbGAM8xXM0ZsFCTKwRVnajiAurcax48SxKTdlIYNcL7HqRCeuCGrlYXjPJjTZWnu2VoyN-TBcBkWDldWcwlMsHoLd2J7oT2IbONJyFzVdWI7QcaQE_G-6gyNSMFzMRutwFQA69o38-_5hs2Es9zAmpzqcLcwqsZq7q2bStk_Xo-rbT_QR8FvWp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGg5IPpADa9aqLdqlXjfPkYRaCkhF0DiZtlrb0lENxEkSPDrmVl7A0WCQ6_e9T5s7zeftd98A_BTc27zLEoDUaUqiLnVgYiEDgyGV654xXVI-c5n47S4jH9fJVdrMGxzYUhW6bHfYXqD1r6l50ezN59MeudEDnA99nnD88n6cz1OEJM7sD44OS3Gz-mRwhl-UkV56uBzZ5zMiza1XuFFvyWyt-LTh2sSSr7C6yYIHW_BpmePbOAe8DOs2foLbLzwFPwK00HNZogDfyeP1jDcalp2rkg2Xv9hrlw0Q57KkPcxMthwmYtsVjUtlZqQTJ1RmRln4P1Ah2oyPVa3bI5MG9GROfvnu29weXx0MSwCX1AhKGPeXwQmNgbfX2BICssUuWCepyJKdRoqrZBqR6E12lYaQ7yIdD_LeIlgmVSVEXmZGhVtQ6ee1fY7sKrkyiLa4T6WxxlexlqkKklkKBEWw2IXeDuMsvRu41T04ka2srKppKGXNPSy0dZlXfi16jN3Xhvvnp20syP_WTESg8G7_Q5xKlc3IHvtYjCS1EbmNILn_XveBdbOtMTvjX6iqNrOlncyj0WMmJwnO_95_x_wsbg4G8nRyfh0Fz6FK3nMHnQWt0u7jyRnoQ_8In4C2LT4VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+Line+Sampling+method+for+the+estimation+of+the+failure+probability+of+nuclear+passive+systems&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zio%2C+Enrico&rft.au=Pedroni%2C+Nicola&rft.date=2010-12-01&rft.pub=Elsevier&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=95&rft.issue=12&rft.spage=1300&rft.epage=1313&rft_id=info:doi/10.1016%2Fj.ress.2010.06.007&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00609180v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |