An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems

The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T–H code an...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 95; no. 12; pp. 1300 - 1313
Main Authors Zio, E., Pedroni, N.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2010.06.007

Cover

Abstract The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T–H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T–H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an “important direction” pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling. Two issues are still open with respect to LS: first, the method relies on the determination of the “important direction”, which requires additional runs of the T–H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models. The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T–H code to reduce the computational cost associated to the determination of the LS “important direction” and (iii) proposing a new technique for identifying the LS “important direction”, based on the genetic algorithm (GA) minimization of the variance of the LS failure probability estimator. In addition, this work addresses the second issue by assessing the performance of the LS method in estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of samples. The issues are investigated within two case studies: the first one deals with the estimation of the failure probability of a nonlinear structural system subject to creep and fatigue damages [1,2]; the second one regards a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature, [3].
AbstractList The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T–H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T–H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an “important direction” pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling. Two issues are still open with respect to LS: first, the method relies on the determination of the “important direction”, which requires additional runs of the T–H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models. The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T–H code to reduce the computational cost associated to the determination of the LS “important direction” and (iii) proposing a new technique for identifying the LS “important direction”, based on the genetic algorithm (GA) minimization of the variance of the LS failure probability estimator. In addition, this work addresses the second issue by assessing the performance of the LS method in estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of samples. The issues are investigated within two case studies: the first one deals with the estimation of the failure probability of a nonlinear structural system subject to creep and fatigue damages [1,2]; the second one regards a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature, [3].
The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters, (ii) computing, for each sample, the system response by a mechanistic T-H code and (iii) comparing the system response with pre-established safety thresholds, which define the success or failure of the safety function. The computational effort involved can be prohibitive because of the large number of (typically long) T-H code simulations that must be performed (one for each sample) for the statistical estimation of the probability of success or failure. In this work, Line Sampling (LS) is adopted for efficient MC sampling. In the LS method, an "important direction" pointing towards the failure domain of interest is determined and a number of conditional one-dimensional problems are solved along such direction; this allows for a significant reduction of the variance of the failure probability estimator, with respect, for example, to standard random sampling. Two issues are still open with respect to LS: first, the method relies on the determination of the "important direction", which requires additional runs of the T-H code; second, although the method has been shown to improve the computational efficiency by reducing the variance of the failure probability estimator, no evidence has been given yet that accurate and precise failure probability estimates can be obtained with a number of samples reduced to below a few hundreds, which may be required in case of long-running models. The work presented in this paper addresses the first issue by (i) quantitatively comparing the efficiency of the methods proposed in the literature to determine the LS important direction; (ii) employing artificial neural network (ANN) regression models as fast-running surrogates of the original, long-running T-H code to reduce the computational cost associated to the determination of the LS "important direction" and (iii) proposing a new technique for identifying the LS "important direction", based on the genetic algorithm (GA) minimization of the variance of the LS failure probability estimator. In addition, this work addresses the second issue by assessing the performance of the LS method in estimating small failure probabilities with a reduced (e.g., lower than one hundred) number of samples. The issues are investigated within two case studies: the first one deals with the estimation of the failure probability of a nonlinear structural system subject to creep and fatigue damages [1] and [2]; the second one regards a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature, [3].
Author Pedroni, N.
Zio, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Zio
  fullname: Zio, E.
  email: enrico.zio@polimi.it
– sequence: 2
  givenname: N.
  surname: Pedroni
  fullname: Pedroni, N.
BackLink https://centralesupelec.hal.science/hal-00609180$$DView record in HAL
BookMark eNp9kc1u3CAUhVGVSp2kfYGu2FVZeHrxDwYpm1GUNJVGyqLtGmG47jCyjQPMSJOnD860myyyQjqcD-4955JcTH5CQr4yWDNg_Pt-HTDGdQlZAL4GaD-QFROtLEBU_IKsQDasEFUJn8hljHsAqGXTrsh-M1E_Jze6Z7R06yakv_Q4D276S0dMO29p7wNNO6QYs00n5zPRvyq9dsMhIJ2D73TnBpdOy9V0MAPqQGcdozsijaeYcIyfycdeDxG__DuvyJ_7u9-3D8X28cfP2822MDWDVNja2jynLEVdGs5YIwSXFe94qTstRFmVaDvsO84qWXXQtsyIljd9b6Uw3Orqilyf393pQc0hzxxOymunHjZbtWgAHCQTcGTZ--3szSs8HfKGanTR4DDoCf0hKlHLuuWVaLJTnJ0m-BgD9sq49JpGCjkGxUAtTai9WppQSxMKeP6rzWj5Bv0_1bvQzRnCHNXRYVDROJwMWhfQJGW9ew9_AbA-pSw
CitedBy_id crossref_primary_10_1016_j_ress_2023_109192
crossref_primary_10_1016_j_anucene_2020_107347
crossref_primary_10_1109_TEM_2015_2427844
crossref_primary_10_1016_j_istruc_2025_108530
crossref_primary_10_1016_j_anucene_2012_12_015
crossref_primary_10_4028_www_scientific_net_AMM_166_169_1872
crossref_primary_10_3390_en14154688
crossref_primary_10_1016_j_nucengdes_2010_10_029
crossref_primary_10_1016_j_ress_2016_04_020
crossref_primary_10_1016_j_nucengdes_2013_12_058
crossref_primary_10_3390_buildings12071061
crossref_primary_10_1016_j_pnucene_2021_104057
crossref_primary_10_17706_jsw_11_5_481_493
crossref_primary_10_1016_j_apm_2017_04_003
crossref_primary_10_1016_j_ssci_2020_105021
crossref_primary_10_1109_ACCESS_2020_3026104
crossref_primary_10_2514_1_D0020
crossref_primary_10_1016_j_net_2022_03_011
crossref_primary_10_1016_j_cma_2021_113818
crossref_primary_10_1016_j_nucengdes_2014_09_004
crossref_primary_10_1016_j_cma_2023_116068
crossref_primary_10_1137_120877192
crossref_primary_10_1007_s00158_022_03431_6
crossref_primary_10_1016_j_anucene_2014_10_035
crossref_primary_10_1061_AJRUA6_0001129
crossref_primary_10_1080_0305215X_2013_823195
crossref_primary_10_1016_j_ress_2011_08_006
crossref_primary_10_1177_1748006X18764986
crossref_primary_10_1016_j_nucengdes_2024_113484
crossref_primary_10_1016_j_anucene_2018_12_040
crossref_primary_10_1016_j_strusafe_2023_102351
crossref_primary_10_1115_1_4026033
crossref_primary_10_1016_j_ress_2019_04_009
crossref_primary_10_1016_j_cja_2015_06_012
crossref_primary_10_1016_j_istruc_2023_01_072
crossref_primary_10_1016_j_proeng_2014_09_062
crossref_primary_10_1016_j_ress_2022_108446
crossref_primary_10_59876_a_5nqg_nart
crossref_primary_10_1016_j_trgeo_2019_100242
crossref_primary_10_2514_1_I010265
crossref_primary_10_1016_j_cma_2021_114218
crossref_primary_10_1016_j_ress_2024_110538
Cites_doi 10.13182/NT149-129
10.1016/j.anucene.2008.08.011
10.1016/j.nucengdes.2008.11.005
10.1016/j.strusafe.2006.07.010
10.13182/NT144-145
10.1016/j.probengmech.2004.05.001
10.1016/j.compstruc.2006.10.009
10.1016/j.ress.2008.06.018
10.1016/j.cma.2004.05.029
10.1016/j.strusafe.2006.07.009
10.1016/j.ress.2008.12.002
10.1016/S0927-0507(06)13019-4
10.1016/j.nucengdes.2008.02.012
10.1016/j.ress.2009.06.008
10.1002/nme.1577
10.1016/j.nucengdes.2009.07.008
10.1016/j.ress.2005.04.005
10.1016/j.ress.2005.11.017
10.1016/j.nucengdes.2007.04.006
10.13182/NT08-A3981
10.1016/j.nucengdes.2007.11.005
10.1126/science.2255906
10.1016/S0167-4730(02)00047-4
10.1016/j.pnucene.2006.10.003
10.1016/j.ress.2005.11.046
10.1016/S0951-8320(03)00058-9
10.1016/j.probengmech.2004.05.004
10.1016/j.ress.2009.05.010
10.1016/j.nucengdes.2005.06.008
10.1016/j.strusafe.2007.10.001
10.1016/j.anucene.2008.12.004
10.1016/j.strusafe.2009.08.004
10.1016/S0142-1123(00)00046-3
10.1016/j.ress.2005.11.018
10.1063/1.1699114
10.13182/04-54CR
10.1016/S0167-4730(02)00039-5
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7T2
7U1
C1K
1XC
VOOES
DOI 10.1016/j.ress.2010.06.007
DatabaseName CrossRef
Health and Safety Science Abstracts (Full archive)
Risk Abstracts
Environmental Sciences and Pollution Management
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Risk Abstracts
Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Risk Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1879-0836
EndPage 1313
ExternalDocumentID oai_HAL_hal_00609180v1
10_1016_j_ress_2010_06_007
S0951832010001419
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7T2
7U1
C1K
1XC
AGCQF
VOOES
ID FETCH-LOGICAL-c410t-d4dd32092842c6115886936b62aba88232edbefb61393b0771c8765ffd98c6da3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Fri Sep 12 12:30:21 EDT 2025
Sun Sep 28 06:33:58 EDT 2025
Wed Oct 01 02:31:05 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
Fri Feb 23 02:27:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Important direction
Genetic algorithm
Variance minimization
Line Sampling
Computational cost
Passive system
Artificial neural network
Functional failure probability
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-d4dd32092842c6115886936b62aba88232edbefb61393b0771c8765ffd98c6da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7108-637X
OpenAccessLink https://centralesupelec.hal.science/hal-00609180
PQID 849476385
PQPubID 23462
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_00609180v1
proquest_miscellaneous_849476385
crossref_citationtrail_10_1016_j_ress_2010_06_007
crossref_primary_10_1016_j_ress_2010_06_007
elsevier_sciencedirect_doi_10_1016_j_ress_2010_06_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Reliability engineering & system safety
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mathews, Arul, Parthasarathy, Kumar, Ramakrishnan, Subbaiah (bib15) 2009; 36
Arul, Iyer, Velusamy (bib17) 2009; 94
Schueller, Pradlwarter (bib29) 2007; 29
Helton, Johnson, Sallaberry, Storlie (bib45) 2006; 91
Zio, Pedroni (bib18) 2009; 239
Helton JC. Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the waste isolation power plant, SAND98-0365, Sandia National Laboratories, 1998.
Fong, Apostolakis, Langewish, Hejzlar, Todreas, Driscoll (bib4) 2009; 239
Pradlwarter, Pellissetti, Schenk, Schueller, Kreis, Fransen (bib26) 2005; 194
Mao, Mahadevan (bib1) 2000; 22
Koutsourelakis, Pradlwarter, Schueller (bib25) 2004; 19
Huang, Du (bib34) 2006; 66
Ahammed, Malchers (bib39) 2006; 91
Nayak, Gartia, Antony, Vinod, Sinha (bib6) 2008; 238
Apostolakis (bib9) 1990; 250
Patalano, Apostolakis, Hejzlar (bib16) 2008; 163
Schueller (bib20) 2007; 85
Burgazzi (bib10) 2003; 144
Rumelhart, Hinton, Williams (bib41) 1986; vol. 1
USNRC. An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis. NUREG-1.174—Revision 1, US Nuclear Regulatory Commission, Washington, DC, 2002.
IAEA. Safety related terms for advanced nuclear plant. IAEA TECDOC-626, 1991.
Metropolis, Rosenbluth, Rosenbluth, Taller (bib35) 1953; 21
Lu, Song, Yue, Wang (bib2) 2008; 30
Bassi, Marquès (bib12) 2008; Paper 87376
Au, Beck (bib21) 2003; 25
Helton, Davis (bib23) 2003; 81
NUREG-1150. Severe accident risk: an assessment for five US nuclear power plants, US Nuclear Regulatory Commission, 1990.
Pradlwarter, Schueller, Koutsourelakis, Charmpis (bib28) 2007; 29
Valdebenito, Pradlwarter, Schueller (bib36) 2010; 32
Mathews, Ramakrishnan, Parthasarathy, John Arul, Senthil Kumar (bib14) 2008; 238
Zio, Pedroni (bib19) 2009; 94
Fu (bib40) 2006
Pagani, Apostolakis, Hejzlar (bib3) 2005; 149
Burgazzi (bib11) 2007; 49
Schueller, Pradlwarter, Koutsourelakis (bib27) 2004; 19
Helton, Sallaberry (bib24) 2009; 94
Nayak, Jain, Gartia, Srivastava, Prasad, Anthony (bib7) 2008; 35
Cacuci, Ionescu-Bujor (bib22) 2004; 147
Marseguerra, Zio, Martorell (bib38) 2006; 91
Bishop (bib30) 1995
Marquès, Pignatel, Saignes, D’ Auria, Burgazzi, Müller (bib33) 2005; 235
Zio E, Pedroni N. Nuclear passive system reliability assessment by an optimized Line Sampling method. Unpublished results.
Konak, Coit, Smith (bib37) 2006; 91
Nayak, Jain, Gartia, Prasad, Anthony, Bhatia (bib8) 2009; 94
Mackay, Apostolakis, Hejzlar (bib13) 2008; 238
Olsson, Sabdberg, Dahlblom (bib32) 2003; 25
10.1016/j.ress.2010.06.007_bib5
Nayak (10.1016/j.ress.2010.06.007_bib7) 2008; 35
Ahammed (10.1016/j.ress.2010.06.007_bib39) 2006; 91
Valdebenito (10.1016/j.ress.2010.06.007_bib36) 2010; 32
Pradlwarter (10.1016/j.ress.2010.06.007_bib28) 2007; 29
Bishop (10.1016/j.ress.2010.06.007_bib30) 1995
Koutsourelakis (10.1016/j.ress.2010.06.007_bib25) 2004; 19
Olsson (10.1016/j.ress.2010.06.007_bib32) 2003; 25
Nayak (10.1016/j.ress.2010.06.007_bib8) 2009; 94
Mathews (10.1016/j.ress.2010.06.007_bib14) 2008; 238
Lu (10.1016/j.ress.2010.06.007_bib2) 2008; 30
Helton (10.1016/j.ress.2010.06.007_bib24) 2009; 94
Fu (10.1016/j.ress.2010.06.007_bib40) 2006
Zio (10.1016/j.ress.2010.06.007_bib18) 2009; 239
Marquès (10.1016/j.ress.2010.06.007_bib33) 2005; 235
Schueller (10.1016/j.ress.2010.06.007_bib27) 2004; 19
Arul (10.1016/j.ress.2010.06.007_bib17) 2009; 94
Zio (10.1016/j.ress.2010.06.007_bib19) 2009; 94
Metropolis (10.1016/j.ress.2010.06.007_bib35) 1953; 21
Marseguerra (10.1016/j.ress.2010.06.007_bib38) 2006; 91
10.1016/j.ress.2010.06.007_bib42
Burgazzi (10.1016/j.ress.2010.06.007_bib11) 2007; 49
Schueller (10.1016/j.ress.2010.06.007_bib20) 2007; 85
10.1016/j.ress.2010.06.007_bib44
10.1016/j.ress.2010.06.007_bib43
Pagani (10.1016/j.ress.2010.06.007_bib3) 2005; 149
Helton (10.1016/j.ress.2010.06.007_bib45) 2006; 91
Konak (10.1016/j.ress.2010.06.007_bib37) 2006; 91
Schueller (10.1016/j.ress.2010.06.007_bib29) 2007; 29
Apostolakis (10.1016/j.ress.2010.06.007_bib9) 1990; 250
Nayak (10.1016/j.ress.2010.06.007_bib6) 2008; 238
Bassi (10.1016/j.ress.2010.06.007_bib12) 2008; Paper 87376
Helton (10.1016/j.ress.2010.06.007_bib23) 2003; 81
Fong (10.1016/j.ress.2010.06.007_bib4) 2009; 239
Au (10.1016/j.ress.2010.06.007_bib21) 2003; 25
Pradlwarter (10.1016/j.ress.2010.06.007_bib26) 2005; 194
Mathews (10.1016/j.ress.2010.06.007_bib15) 2009; 36
Mao (10.1016/j.ress.2010.06.007_bib1) 2000; 22
Burgazzi (10.1016/j.ress.2010.06.007_bib10) 2003; 144
Cacuci (10.1016/j.ress.2010.06.007_bib22) 2004; 147
Mackay (10.1016/j.ress.2010.06.007_bib13) 2008; 238
Rumelhart (10.1016/j.ress.2010.06.007_bib41) 1986; vol. 1
Patalano (10.1016/j.ress.2010.06.007_bib16) 2008; 163
Huang (10.1016/j.ress.2010.06.007_bib34) 2006; 66
10.1016/j.ress.2010.06.007_bib31
References_xml – volume: 144
  start-page: 145
  year: 2003
  end-page: 151
  ident: bib10
  article-title: Reliability evaluation of passive systems through functional reliability assessment
  publication-title: Nuclear Technology
– volume: 25
  start-page: 139
  year: 2003
  end-page: 163
  ident: bib21
  article-title: Importance sampling in high dimensions
  publication-title: Structural Safety
– volume: 94
  start-page: 699
  year: 2009
  end-page: 721
  ident: bib24
  article-title: Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada
  publication-title: Reliability Engineering and System Safety
– volume: 239
  start-page: 580
  year: 2009
  end-page: 599
  ident: bib18
  article-title: Estimation of the functional failure probability of a thermal–hydraulic passive systems by means of Subset Simulation
  publication-title: Nuclear Engineering and Design
– volume: 66
  start-page: 1841
  year: 2006
  end-page: 1858
  ident: bib34
  article-title: A robust design method using variable transformation and Gauss–Hermite integration
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 91
  start-page: 594
  year: 2006
  end-page: 601
  ident: bib39
  article-title: Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis
  publication-title: Reliability Engineering and System Safety
– volume: 29
  start-page: 167
  year: 2007
  end-page: 182
  ident: bib29
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems—an overview
  publication-title: Structural Safety
– volume: 250
  start-page: 1359
  year: 1990
  end-page: 1793
  ident: bib9
  article-title: The concept of probability in safety assessment of technological systems
  publication-title: Science
– volume: 49
  start-page: 93
  year: 2007
  end-page: 102
  ident: bib11
  article-title: Addressing the uncertainties related to passive system reliability
  publication-title: Progress in Nuclear Energy
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: bib35
  article-title: Equations of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– volume: 194
  start-page: 1597
  year: 2005
  end-page: 1617
  ident: bib26
  article-title: Realistic and efficient reliability estimation for aerospace structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1995
  ident: bib30
  publication-title: Neural networks for pattern recognition
– volume: 32
  start-page: 101
  year: 2010
  end-page: 111
  ident: bib36
  article-title: The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities
  publication-title: Structural Safety
– reference: Helton JC. Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the waste isolation power plant, SAND98-0365, Sandia National Laboratories, 1998.
– volume: 25
  start-page: 47
  year: 2003
  end-page: 68
  ident: bib32
  article-title: On Latin hypercube sampling for structural reliability analysis
  publication-title: Structural Safety
– volume: Paper 87376
  year: 2008
  ident: bib12
  article-title: Reliability assessment of 2400
  publication-title: Hindawi Publishing Corporation
– reference: IAEA. Safety related terms for advanced nuclear plant. IAEA TECDOC-626, 1991.
– volume: 81
  start-page: 23
  year: 2003
  end-page: 69
  ident: bib23
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliability Engineering and System Safety
– volume: 30
  start-page: 517
  year: 2008
  end-page: 532
  ident: bib2
  article-title: Reliability sensitivity method by Line Sampling
  publication-title: Structural Safety
– reference: NUREG-1150. Severe accident risk: an assessment for five US nuclear power plants, US Nuclear Regulatory Commission, 1990.
– volume: 238
  start-page: 2369
  year: 2008
  end-page: 2376
  ident: bib14
  article-title: Functional reliability analysis of safety grade decay heat removal system of Indian 500
  publication-title: Nuclear Engineering and Design
– volume: 235
  start-page: 2612
  year: 2005
  end-page: 2631
  ident: bib33
  article-title: Methodology for the reliability evaluation of a passive system and its integration into a probabilistic safety assessment
  publication-title: Nuclear Engineering and Design
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: bib37
  article-title: Multi-objective optimization using genetic algorithms: a tutorial
  publication-title: Reliability Engineering and System Safety
– volume: 94
  start-page: 1064
  year: 2009
  end-page: 1075
  ident: bib8
  article-title: Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology
  publication-title: Reliability Engineering and System Safety
– volume: 29
  start-page: 208
  year: 2007
  end-page: 221
  ident: bib28
  article-title: Application of line sampling simulation method to reliability benchmark problems
  publication-title: Structural Safety
– volume: 94
  start-page: 1917
  year: 2009
  end-page: 1926
  ident: bib17
  article-title: Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems
  publication-title: Reliability Engineering and System Safety
– volume: 147
  start-page: 204
  year: 2004
  end-page: 217
  ident: bib22
  article-title: A comparative review of sensitivity and uncertainty analysis of large scale systems—II: statistical methods
  publication-title: Nuclear Science and Engineering
– volume: 36
  start-page: 481
  year: 2009
  end-page: 492
  ident: bib15
  article-title: Integration of functional reliability analysis with hardware reliability. An application to safety grade decay heat removal system of Indian 500
  publication-title: Annals of Nuclear Energy
– volume: 85
  start-page: 235
  year: 2007
  end-page: 243
  ident: bib20
  article-title: On the treatment of uncertainties in structural mechanics and analysis
  publication-title: Computers and Structures
– volume: 91
  start-page: 1175
  year: 2006
  end-page: 1209
  ident: bib45
  article-title: Survey on sampling-based methods for uncertainty and sensitivity analysis
  publication-title: Reliability Engineering and System Safety
– volume: 19
  start-page: 409
  year: 2004
  end-page: 417
  ident: bib25
  article-title: Reliability of structures in high dimensions, Part I: algorithms and application
  publication-title: Probabilistic Engineering Mechanics
– volume: 239
  start-page: 2660
  year: 2009
  end-page: 2671
  ident: bib4
  article-title: Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor
  publication-title: Nuclear Engineering and Design
– volume: 238
  start-page: 1430
  year: 2008
  end-page: 1440
  ident: bib6
  article-title: Passive system reliability analysis using the APSRA methodology
  publication-title: Nuclear Engineering and Design
– volume: 163
  start-page: 191
  year: 2008
  end-page: 208
  ident: bib16
  article-title: Risk-informed design changes in a passive decay heat removal system
  publication-title: Nuclear Technology
– volume: 22
  start-page: 789
  year: 2000
  end-page: 797
  ident: bib1
  article-title: Reliability analysis of creep–fatigue failure
  publication-title: International Journal of Fatigue
– reference: USNRC. An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis. NUREG-1.174—Revision 1, US Nuclear Regulatory Commission, Washington, DC, 2002.
– volume: 19
  start-page: 463
  year: 2004
  end-page: 474
  ident: bib27
  article-title: A critical appraisal of reliability estimation procedures for high dimensions
  publication-title: Probabilistic Engineering Mechanics
– volume: 149
  start-page: 129
  year: 2005
  end-page: 140
  ident: bib3
  article-title: The impact of uncertainties on the performance of passive systems
  publication-title: Nuclear Technology
– volume: 238
  start-page: 217
  year: 2008
  end-page: 228
  ident: bib13
  article-title: Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor
  publication-title: Nuclear Engineering and Design
– volume: 94
  start-page: 1764
  year: 2009
  end-page: 1781
  ident: bib19
  article-title: Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling
  publication-title: Reliability Engineering and System Safety
– volume: 91
  start-page: 977
  year: 2006
  end-page: 991
  ident: bib38
  article-title: Basics of genetic algorithms optimization for RAMS applications
  publication-title: Reliability Engineering and System Safety
– year: 2006
  ident: bib40
  article-title: Stochastic gradient estimation
  publication-title: Handbook on operation research and management science: simulation
– volume: vol. 1
  year: 1986
  ident: bib41
  article-title: Learning internal representations by error back-propagation
  publication-title: Parallel distributed processing: exploration in the microstructure of cognition
– volume: 35
  start-page: 2270
  year: 2008
  end-page: 2279
  ident: bib7
  article-title: Reliability assessment of passive isolation condenser system using APSRA methodology
  publication-title: Annals of Nuclear Energy
– reference: Zio E, Pedroni N. Nuclear passive system reliability assessment by an optimized Line Sampling method. Unpublished results.
– volume: 149
  start-page: 129
  year: 2005
  ident: 10.1016/j.ress.2010.06.007_bib3
  article-title: The impact of uncertainties on the performance of passive systems
  publication-title: Nuclear Technology
  doi: 10.13182/NT149-129
– volume: 35
  start-page: 2270
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib7
  article-title: Reliability assessment of passive isolation condenser system using APSRA methodology
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2008.08.011
– volume: 239
  start-page: 580
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib18
  article-title: Estimation of the functional failure probability of a thermal–hydraulic passive systems by means of Subset Simulation
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2008.11.005
– volume: 29
  start-page: 167
  issue: 3
  year: 2007
  ident: 10.1016/j.ress.2010.06.007_bib29
  article-title: Benchmark study on reliability estimation in higher dimensions of structural systems—an overview
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2006.07.010
– volume: 144
  start-page: 145
  year: 2003
  ident: 10.1016/j.ress.2010.06.007_bib10
  article-title: Reliability evaluation of passive systems through functional reliability assessment
  publication-title: Nuclear Technology
  doi: 10.13182/NT144-145
– ident: 10.1016/j.ress.2010.06.007_bib43
– volume: 19
  start-page: 409
  year: 2004
  ident: 10.1016/j.ress.2010.06.007_bib25
  article-title: Reliability of structures in high dimensions, Part I: algorithms and application
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/j.probengmech.2004.05.001
– volume: 85
  start-page: 235
  year: 2007
  ident: 10.1016/j.ress.2010.06.007_bib20
  article-title: On the treatment of uncertainties in structural mechanics and analysis
  publication-title: Computers and Structures
  doi: 10.1016/j.compstruc.2006.10.009
– volume: vol. 1
  year: 1986
  ident: 10.1016/j.ress.2010.06.007_bib41
  article-title: Learning internal representations by error back-propagation
– volume: 94
  start-page: 699
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib24
  article-title: Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2008.06.018
– volume: 194
  start-page: 1597
  year: 2005
  ident: 10.1016/j.ress.2010.06.007_bib26
  article-title: Realistic and efficient reliability estimation for aerospace structures
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.05.029
– volume: 29
  start-page: 208
  year: 2007
  ident: 10.1016/j.ress.2010.06.007_bib28
  article-title: Application of line sampling simulation method to reliability benchmark problems
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2006.07.009
– volume: 94
  start-page: 1064
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib8
  article-title: Reliability assessment of passive isolation condenser system of AHWR using APSRA methodology
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2008.12.002
– year: 2006
  ident: 10.1016/j.ress.2010.06.007_bib40
  article-title: Stochastic gradient estimation
  doi: 10.1016/S0927-0507(06)13019-4
– volume: 238
  start-page: 2369
  issue: 9
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib14
  article-title: Functional reliability analysis of safety grade decay heat removal system of Indian 500MWe PFBR
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2008.02.012
– volume: 94
  start-page: 1917
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib17
  article-title: Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2009.06.008
– volume: 66
  start-page: 1841
  year: 2006
  ident: 10.1016/j.ress.2010.06.007_bib34
  article-title: A robust design method using variable transformation and Gauss–Hermite integration
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.1577
– volume: 239
  start-page: 2660
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib4
  article-title: Reliability analysis of a passive cooling system using a response surface with an application to the flexible conversion ratio reactor
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2009.07.008
– volume: 91
  start-page: 594
  year: 2006
  ident: 10.1016/j.ress.2010.06.007_bib39
  article-title: Gradient and parameter sensitivity estimation for systems evaluated using Monte Carlo analysis
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.04.005
– volume: 91
  start-page: 1175
  year: 2006
  ident: 10.1016/j.ress.2010.06.007_bib45
  article-title: Survey on sampling-based methods for uncertainty and sensitivity analysis
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.11.017
– volume: 238
  start-page: 217
  issue: 1
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib13
  article-title: Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2007.04.006
– volume: 163
  start-page: 191
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib16
  article-title: Risk-informed design changes in a passive decay heat removal system
  publication-title: Nuclear Technology
  doi: 10.13182/NT08-A3981
– volume: 238
  start-page: 1430
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib6
  article-title: Passive system reliability analysis using the APSRA methodology
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2007.11.005
– volume: 250
  start-page: 1359
  year: 1990
  ident: 10.1016/j.ress.2010.06.007_bib9
  article-title: The concept of probability in safety assessment of technological systems
  publication-title: Science
  doi: 10.1126/science.2255906
– volume: 25
  start-page: 139
  issue: 2
  year: 2003
  ident: 10.1016/j.ress.2010.06.007_bib21
  article-title: Importance sampling in high dimensions
  publication-title: Structural Safety
  doi: 10.1016/S0167-4730(02)00047-4
– volume: 49
  start-page: 93
  year: 2007
  ident: 10.1016/j.ress.2010.06.007_bib11
  article-title: Addressing the uncertainties related to passive system reliability
  publication-title: Progress in Nuclear Energy
  doi: 10.1016/j.pnucene.2006.10.003
– volume: 91
  start-page: 977
  issue: 9
  year: 2006
  ident: 10.1016/j.ress.2010.06.007_bib38
  article-title: Basics of genetic algorithms optimization for RAMS applications
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.11.046
– ident: 10.1016/j.ress.2010.06.007_bib44
– volume: 81
  start-page: 23
  year: 2003
  ident: 10.1016/j.ress.2010.06.007_bib23
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/S0951-8320(03)00058-9
– volume: Paper 87376
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib12
  article-title: Reliability assessment of 2400MWth gas-cooled fast reactor natural circulation decay heat removal in pressurized situations. Science and technology of nuclear installations, special issue “Natural circulation in nuclear reactor systems”
  publication-title: Hindawi Publishing Corporation
– volume: 19
  start-page: 463
  year: 2004
  ident: 10.1016/j.ress.2010.06.007_bib27
  article-title: A critical appraisal of reliability estimation procedures for high dimensions
  publication-title: Probabilistic Engineering Mechanics
  doi: 10.1016/j.probengmech.2004.05.004
– ident: 10.1016/j.ress.2010.06.007_bib42
– volume: 94
  start-page: 1764
  issue: 11
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib19
  article-title: Functional failure analysis of a thermal–hydraulic passive system by means of Line Sampling
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2009.05.010
– volume: 235
  start-page: 2612
  year: 2005
  ident: 10.1016/j.ress.2010.06.007_bib33
  article-title: Methodology for the reliability evaluation of a passive system and its integration into a probabilistic safety assessment
  publication-title: Nuclear Engineering and Design
  doi: 10.1016/j.nucengdes.2005.06.008
– volume: 30
  start-page: 517
  year: 2008
  ident: 10.1016/j.ress.2010.06.007_bib2
  article-title: Reliability sensitivity method by Line Sampling
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2007.10.001
– volume: 36
  start-page: 481
  year: 2009
  ident: 10.1016/j.ress.2010.06.007_bib15
  article-title: Integration of functional reliability analysis with hardware reliability. An application to safety grade decay heat removal system of Indian 500MWe PFBR
  publication-title: Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2008.12.004
– volume: 32
  start-page: 101
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2010.06.007_bib36
  article-title: The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2009.08.004
– year: 1995
  ident: 10.1016/j.ress.2010.06.007_bib30
– ident: 10.1016/j.ress.2010.06.007_bib31
– volume: 22
  start-page: 789
  year: 2000
  ident: 10.1016/j.ress.2010.06.007_bib1
  article-title: Reliability analysis of creep–fatigue failure
  publication-title: International Journal of Fatigue
  doi: 10.1016/S0142-1123(00)00046-3
– ident: 10.1016/j.ress.2010.06.007_bib5
– volume: 91
  start-page: 992
  issue: 9
  year: 2006
  ident: 10.1016/j.ress.2010.06.007_bib37
  article-title: Multi-objective optimization using genetic algorithms: a tutorial
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2005.11.018
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.ress.2010.06.007_bib35
  article-title: Equations of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
  doi: 10.1063/1.1699114
– volume: 147
  start-page: 204
  year: 2004
  ident: 10.1016/j.ress.2010.06.007_bib22
  article-title: A comparative review of sensitivity and uncertainty analysis of large scale systems—II: statistical methods
  publication-title: Nuclear Science and Engineering
  doi: 10.13182/04-54CR
– volume: 25
  start-page: 47
  year: 2003
  ident: 10.1016/j.ress.2010.06.007_bib32
  article-title: On Latin hypercube sampling for structural reliability analysis
  publication-title: Structural Safety
  doi: 10.1016/S0167-4730(02)00039-5
SSID ssj0004957
Score 2.1842887
Snippet The quantitative reliability assessment of a thermal–hydraulic (T–H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC)...
The quantitative reliability assessment of a thermal-hydraulic (T-H) passive safety system of a nuclear power plant can be obtained by (i) Monte Carlo (MC)...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1300
SubjectTerms Artificial neural network
Computational cost
Functional failure probability
Genetic algorithm
Important direction
Line Sampling
Machine Learning
Mathematics
Optimization and Control
Passive system
Probability
Statistics
Variance minimization
Title An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems
URI https://dx.doi.org/10.1016/j.ress.2010.06.007
https://www.proquest.com/docview/849476385
https://centralesupelec.hal.science/hal-00609180
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFG4QL3owrhEX0hhvZoTO3uOESHDjgiTcmnbaUYgOhMVED_5235sFl0QOXjt72_ne1_R73yPkXDFmwsDxLZ740nKZURZ3uLI0hFcmWcKUjfnO912_03dvBt6gQlplLgzKKgvszzE9Q-uipVH0ZmMyHDZ6SA5gPjZZxvMz6090_4I5ffnxJfOABUBQlpPHs4vEmVzjhSvaQt6FexLBX8Fp7QlVkr_AOotA7W2yVVBHGuVvt0MqJt0lm98MBffIKErpGEDgZfhuNIV1pqE9iZrx9JHmtaIpkFQKpI-iu0aetkjHSdaSyCFq1CnWmMndu9_wUIqOx3JKJ0CzARpp7v082yf99tVDq2MV1RSs2GXNuaVdreH7OcQjO_aBCIahzx1f-bZUEni2YxutTKIgvnNHNYOAxYCUXpJoHsa-ls4Bqabj1BwSmsRMGoA6WMQyN4DbGAM8xXM0ZsFCTKwRVnajiAurcax48SxKTdlIYNcL7HqRCeuCGrlYXjPJjTZWnu2VoyN-TBcBkWDldWcwlMsHoLd2J7oT2IbONJyFzVdWI7QcaQE_G-6gyNSMFzMRutwFQA69o38-_5hs2Es9zAmpzqcLcwqsZq7q2bStk_Xo-rbT_QR8FvWp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGg5IPpADa9aqLdqlXjfPkYRaCkhF0DiZtlrb0lENxEkSPDrmVl7A0WCQ6_e9T5s7zeftd98A_BTc27zLEoDUaUqiLnVgYiEDgyGV654xXVI-c5n47S4jH9fJVdrMGxzYUhW6bHfYXqD1r6l50ezN59MeudEDnA99nnD88n6cz1OEJM7sD44OS3Gz-mRwhl-UkV56uBzZ5zMiza1XuFFvyWyt-LTh2sSSr7C6yYIHW_BpmePbOAe8DOs2foLbLzwFPwK00HNZogDfyeP1jDcalp2rkg2Xv9hrlw0Q57KkPcxMthwmYtsVjUtlZqQTJ1RmRln4P1Ah2oyPVa3bI5MG9GROfvnu29weXx0MSwCX1AhKGPeXwQmNgbfX2BICssUuWCepyJKdRoqrZBqR6E12lYaQ7yIdD_LeIlgmVSVEXmZGhVtQ6ee1fY7sKrkyiLa4T6WxxlexlqkKklkKBEWw2IXeDuMsvRu41T04ka2srKppKGXNPSy0dZlXfi16jN3Xhvvnp20syP_WTESg8G7_Q5xKlc3IHvtYjCS1EbmNILn_XveBdbOtMTvjX6iqNrOlncyj0WMmJwnO_95_x_wsbg4G8nRyfh0Fz6FK3nMHnQWt0u7jyRnoQ_8In4C2LT4VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+Line+Sampling+method+for+the+estimation+of+the+failure+probability+of+nuclear+passive+systems&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zio%2C+Enrico&rft.au=Pedroni%2C+Nicola&rft.date=2010-12-01&rft.pub=Elsevier&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=95&rft.issue=12&rft.spage=1300&rft.epage=1313&rft_id=info:doi/10.1016%2Fj.ress.2010.06.007&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_00609180v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon