Hepatocellular Carcinoma versus Other Hepatic Malignancy in Cirrhosis: Performance of LI-RADS Version 2018

Purpose To evaluate the diagnostic accuracy of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 for differentiating between hepatocellular carcinoma (HCC) and other (hepatic) malignancy (OM) in patients with liver cirrhosis. Materials and Methods From 2008 to 2017, 55 patients with...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 291; no. 1; pp. 72 - 80
Main Authors Kim, Yeun-Yoon, Kim, Myeong-Jin, Kim, Eun Hwa, Roh, Yun Ho, An, Chansik
Format Journal Article
LanguageEnglish
Published United States 01.04.2019
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.2019181995

Cover

Abstract Purpose To evaluate the diagnostic accuracy of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 for differentiating between hepatocellular carcinoma (HCC) and other (hepatic) malignancy (OM) in patients with liver cirrhosis. Materials and Methods From 2008 to 2017, 55 patients with untreated OM and liver cirrhosis were eligible for this retrospective case-control study (mean age, 58 years ± 10 [standard deviation] [range, 32-79 years], with 45 men [mean age, 58 years ± 11] and 10 women [mean age, 62 years ± 7]). Control subjects consisted of 165 treatment-naive patients with HCC and liver cirrhosis (mean age, 58 years ± 10 [range, 29-80 years], with 134 men [mean age, 58 years ± 9] and 31 women [mean age, 59 years ± 11]). Two radiologists blinded to the final diagnosis independently determined the presence of LR-M features and major HCC features (non-rim arterial phase hyperenhancement, non-peripheral washout, and enhancing capsule). The diagnostic performances of each feature, the LR-M criteria (probably or definitely malignant, but not specific for HCC), and the LR-5 criteria (definitely HCC) were calculated and compared by using the generalized estimating equation method. Results Individual LR-M features had a sensitivity of 9%-71% and a specificity of 83%-97% for the diagnosis of OM. Major features of HCC had a sensitivity of 62%-83% and a specificity of 69%-89% for the diagnosis of HCC. The LR-M criteria had a sensitivity of 89% (95% confidence interval [CI]: 81%, 97%) for diagnosing OM, with a specificity of 48% (95% CI: 40%, 56%). The LR-5 criteria had a sensitivity of 74% (95% CI: 67%, 81%) for diagnosing HCC, with a specificity of 89% (95% CI: 81%, 97%). The accuracy of the LR-5 criteria was higher than that of the LR-M criteria (78% [95% CI: 72%, 83%] vs 58% [95% CI: 52%, 65%], P <. 001). Conclusion The LR-5 criteria as well as the LR-M criteria can effectively distinguish hepatocellular carcinoma from other hepatic malignancy in patients with liver cirrhosis. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Furlan in this issue.
AbstractList Purpose To evaluate the diagnostic accuracy of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 for differentiating between hepatocellular carcinoma (HCC) and other (hepatic) malignancy (OM) in patients with liver cirrhosis. Materials and Methods From 2008 to 2017, 55 patients with untreated OM and liver cirrhosis were eligible for this retrospective case-control study (mean age, 58 years ± 10 [standard deviation] [range, 32-79 years], with 45 men [mean age, 58 years ± 11] and 10 women [mean age, 62 years ± 7]). Control subjects consisted of 165 treatment-naive patients with HCC and liver cirrhosis (mean age, 58 years ± 10 [range, 29-80 years], with 134 men [mean age, 58 years ± 9] and 31 women [mean age, 59 years ± 11]). Two radiologists blinded to the final diagnosis independently determined the presence of LR-M features and major HCC features (non-rim arterial phase hyperenhancement, non-peripheral washout, and enhancing capsule). The diagnostic performances of each feature, the LR-M criteria (probably or definitely malignant, but not specific for HCC), and the LR-5 criteria (definitely HCC) were calculated and compared by using the generalized estimating equation method. Results Individual LR-M features had a sensitivity of 9%-71% and a specificity of 83%-97% for the diagnosis of OM. Major features of HCC had a sensitivity of 62%-83% and a specificity of 69%-89% for the diagnosis of HCC. The LR-M criteria had a sensitivity of 89% (95% confidence interval [CI]: 81%, 97%) for diagnosing OM, with a specificity of 48% (95% CI: 40%, 56%). The LR-5 criteria had a sensitivity of 74% (95% CI: 67%, 81%) for diagnosing HCC, with a specificity of 89% (95% CI: 81%, 97%). The accuracy of the LR-5 criteria was higher than that of the LR-M criteria (78% [95% CI: 72%, 83%] vs 58% [95% CI: 52%, 65%], P <. 001). Conclusion The LR-5 criteria as well as the LR-M criteria can effectively distinguish hepatocellular carcinoma from other hepatic malignancy in patients with liver cirrhosis. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Furlan in this issue.
Purpose To evaluate the diagnostic accuracy of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 for differentiating between hepatocellular carcinoma (HCC) and other (hepatic) malignancy (OM) in patients with liver cirrhosis. Materials and Methods From 2008 to 2017, 55 patients with untreated OM and liver cirrhosis were eligible for this retrospective case-control study (mean age, 58 years ± 10 [standard deviation] [range, 32-79 years], with 45 men [mean age, 58 years ± 11] and 10 women [mean age, 62 years ± 7]). Control subjects consisted of 165 treatment-naive patients with HCC and liver cirrhosis (mean age, 58 years ± 10 [range, 29-80 years], with 134 men [mean age, 58 years ± 9] and 31 women [mean age, 59 years ± 11]). Two radiologists blinded to the final diagnosis independently determined the presence of LR-M features and major HCC features (non-rim arterial phase hyperenhancement, non-peripheral washout, and enhancing capsule). The diagnostic performances of each feature, the LR-M criteria (probably or definitely malignant, but not specific for HCC), and the LR-5 criteria (definitely HCC) were calculated and compared by using the generalized estimating equation method. Results Individual LR-M features had a sensitivity of 9%-71% and a specificity of 83%-97% for the diagnosis of OM. Major features of HCC had a sensitivity of 62%-83% and a specificity of 69%-89% for the diagnosis of HCC. The LR-M criteria had a sensitivity of 89% (95% confidence interval [CI]: 81%, 97%) for diagnosing OM, with a specificity of 48% (95% CI: 40%, 56%). The LR-5 criteria had a sensitivity of 74% (95% CI: 67%, 81%) for diagnosing HCC, with a specificity of 89% (95% CI: 81%, 97%). The accuracy of the LR-5 criteria was higher than that of the LR-M criteria (78% [95% CI: 72%, 83%] vs 58% [95% CI: 52%, 65%], P <. 001). Conclusion The LR-5 criteria as well as the LR-M criteria can effectively distinguish hepatocellular carcinoma from other hepatic malignancy in patients with liver cirrhosis. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Furlan in this issue.Purpose To evaluate the diagnostic accuracy of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 for differentiating between hepatocellular carcinoma (HCC) and other (hepatic) malignancy (OM) in patients with liver cirrhosis. Materials and Methods From 2008 to 2017, 55 patients with untreated OM and liver cirrhosis were eligible for this retrospective case-control study (mean age, 58 years ± 10 [standard deviation] [range, 32-79 years], with 45 men [mean age, 58 years ± 11] and 10 women [mean age, 62 years ± 7]). Control subjects consisted of 165 treatment-naive patients with HCC and liver cirrhosis (mean age, 58 years ± 10 [range, 29-80 years], with 134 men [mean age, 58 years ± 9] and 31 women [mean age, 59 years ± 11]). Two radiologists blinded to the final diagnosis independently determined the presence of LR-M features and major HCC features (non-rim arterial phase hyperenhancement, non-peripheral washout, and enhancing capsule). The diagnostic performances of each feature, the LR-M criteria (probably or definitely malignant, but not specific for HCC), and the LR-5 criteria (definitely HCC) were calculated and compared by using the generalized estimating equation method. Results Individual LR-M features had a sensitivity of 9%-71% and a specificity of 83%-97% for the diagnosis of OM. Major features of HCC had a sensitivity of 62%-83% and a specificity of 69%-89% for the diagnosis of HCC. The LR-M criteria had a sensitivity of 89% (95% confidence interval [CI]: 81%, 97%) for diagnosing OM, with a specificity of 48% (95% CI: 40%, 56%). The LR-5 criteria had a sensitivity of 74% (95% CI: 67%, 81%) for diagnosing HCC, with a specificity of 89% (95% CI: 81%, 97%). The accuracy of the LR-5 criteria was higher than that of the LR-M criteria (78% [95% CI: 72%, 83%] vs 58% [95% CI: 52%, 65%], P <. 001). Conclusion The LR-5 criteria as well as the LR-M criteria can effectively distinguish hepatocellular carcinoma from other hepatic malignancy in patients with liver cirrhosis. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Furlan in this issue.
Author Roh, Yun Ho
Kim, Yeun-Yoon
Kim, Eun Hwa
Kim, Myeong-Jin
An, Chansik
Author_xml – sequence: 1
  givenname: Yeun-Yoon
  orcidid: 0000-0003-2018-5332
  surname: Kim
  fullname: Kim, Yeun-Yoon
  organization: From the Department of Radiology (Y.Y.K., M.J.K., C.A.) and Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics (E.H.K., Y.H.R.), Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu Yonsei-ro 50-1, Seoul 03722, Republic of Korea
– sequence: 2
  givenname: Myeong-Jin
  orcidid: 0000-0001-7949-5402
  surname: Kim
  fullname: Kim, Myeong-Jin
  organization: From the Department of Radiology (Y.Y.K., M.J.K., C.A.) and Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics (E.H.K., Y.H.R.), Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu Yonsei-ro 50-1, Seoul 03722, Republic of Korea
– sequence: 3
  givenname: Eun Hwa
  orcidid: 0000-0003-1692-6126
  surname: Kim
  fullname: Kim, Eun Hwa
  organization: From the Department of Radiology (Y.Y.K., M.J.K., C.A.) and Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics (E.H.K., Y.H.R.), Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu Yonsei-ro 50-1, Seoul 03722, Republic of Korea
– sequence: 4
  givenname: Yun Ho
  surname: Roh
  fullname: Roh, Yun Ho
  organization: From the Department of Radiology (Y.Y.K., M.J.K., C.A.) and Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics (E.H.K., Y.H.R.), Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu Yonsei-ro 50-1, Seoul 03722, Republic of Korea
– sequence: 5
  givenname: Chansik
  surname: An
  fullname: An, Chansik
  organization: From the Department of Radiology (Y.Y.K., M.J.K., C.A.) and Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics (E.H.K., Y.H.R.), Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu Yonsei-ro 50-1, Seoul 03722, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30694166$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1KAzEYRYMo2lYfwI1k6WZqvkwmTdxJ_YWK4t92SNOMRjJJTWaUvr2jrQouFALfIudeLqeP1n3wBqFdIEMAJg6imtnghpSABAFSFmuoBwUdZZBDsY56hOR5JhjILdRP6ZkQYIUYbaKtnHDJgPMeej43c9UEbZxrnYp4rKK2PtQKv5qY2oSvmicT8SdlNb5Uzj565fUCW4_HNsankGw6xNcmViHW3Y_BocKTi-zm6PgWP3QlNnjcTRTbaKNSLpmd1R2g-9OTu_F5Nrk6uxgfTTLNgDSZJpWsgOWU0opTMdNC5t0j0uSazgquaSGATLUxXHChprSgXBsqJVDOCdP5ANFlb-vnavGmnCvn0dYqLkog5Ye4cimu_BHXhfaXoXkML61JTVnb9GFFeRPaVFIYScYK0ikdoL0V2k5rM_su_5LaAaMloGNIKZqq1Lbp9AXfRGXdnyvgV_L_5e_Yk5vP
CitedBy_id crossref_primary_10_1007_s00117_021_00965_6
crossref_primary_10_1148_rg_2021210019
crossref_primary_10_1371_journal_pone_0242344
crossref_primary_10_3390_diagnostics12071655
crossref_primary_10_1007_s00761_024_01668_y
crossref_primary_10_3389_fonc_2021_699290
crossref_primary_10_1016_j_asjsur_2022_03_093
crossref_primary_10_1007_s00330_020_07378_4
crossref_primary_10_1177_08465371241306297
crossref_primary_10_1007_s00330_021_07924_8
crossref_primary_10_17998_jlc_2024_04_05
crossref_primary_10_1148_radiol_231160
crossref_primary_10_1148_rg_2021200205
crossref_primary_10_1007_s00261_020_02545_z
crossref_primary_10_1016_j_mric_2021_05_009
crossref_primary_10_1148_radiol_222855
crossref_primary_10_2147_JHC_S394840
crossref_primary_10_2214_AJR_22_27380
crossref_primary_10_1007_s00432_021_03603_9
crossref_primary_10_1007_s00261_020_02562_y
crossref_primary_10_1007_s11377_024_00795_7
crossref_primary_10_3389_fonc_2022_934045
crossref_primary_10_1007_s00330_020_07488_z
crossref_primary_10_1186_s13027_022_00429_z
crossref_primary_10_1007_s00330_024_10813_5
crossref_primary_10_1007_s00330_021_07769_1
crossref_primary_10_1007_s00261_020_02421_w
crossref_primary_10_1007_s00117_020_00726_x
crossref_primary_10_1016_j_clinimag_2023_05_018
crossref_primary_10_1007_s00330_021_07743_x
crossref_primary_10_1016_j_yacr_2020_04_007
crossref_primary_10_1016_j_jacr_2020_06_005
crossref_primary_10_1007_s00261_020_02559_7
crossref_primary_10_1016_j_cld_2020_07_002
crossref_primary_10_1007_s00261_021_02996_y
crossref_primary_10_1016_j_jhepr_2023_100957
crossref_primary_10_1148_radiol_2019182867
crossref_primary_10_3389_fonc_2021_672055
crossref_primary_10_1007_s00330_023_10134_z
crossref_primary_10_3348_kjr_2020_1143
crossref_primary_10_3348_kjr_2020_1341
crossref_primary_10_1177_08465371241280874
crossref_primary_10_3389_fonc_2021_680691
crossref_primary_10_1007_s00261_020_02581_9
crossref_primary_10_1016_j_jceh_2022_02_005
crossref_primary_10_1148_radiol_2021211244
crossref_primary_10_5114_pjr_2022_113193
crossref_primary_10_1007_s11547_025_01995_z
crossref_primary_10_1007_s00261_020_02790_2
crossref_primary_10_1080_07853890_2024_2442072
crossref_primary_10_1007_s00330_023_10006_6
crossref_primary_10_1007_s11604_023_01523_x
crossref_primary_10_1148_radiol_2019182890
crossref_primary_10_3348_jksr_2019_80_3_374
crossref_primary_10_1148_radiol_2021203614
crossref_primary_10_1007_s00261_022_03538_w
crossref_primary_10_13104_imri_2021_25_4_313
crossref_primary_10_1148_radiol_2020201940
crossref_primary_10_1007_s00330_021_08382_y
crossref_primary_10_1002_jmri_27570
crossref_primary_10_1007_s00330_019_06546_5
crossref_primary_10_1007_s00330_020_07159_z
crossref_primary_10_1177_02841851221113265
crossref_primary_10_1186_s13027_021_00393_0
crossref_primary_10_3390_curroncol30120732
crossref_primary_10_1007_s11901_020_00546_6
crossref_primary_10_1053_j_sult_2021_04_001
crossref_primary_10_1055_s_0043_1777715
crossref_primary_10_1016_j_diii_2021_06_004
crossref_primary_10_2214_AJR_21_27186
crossref_primary_10_3348_jksr_2022_0144
crossref_primary_10_3348_kjr_2019_0363
crossref_primary_10_1002_jmri_29748
crossref_primary_10_1097_RCT_0000000000000995
crossref_primary_10_1371_journal_pone_0257308
crossref_primary_10_2147_JHC_S448257
crossref_primary_10_1016_S0140_6736_22_01200_4
crossref_primary_10_1007_s00330_023_10002_w
crossref_primary_10_3389_fonc_2021_641195
crossref_primary_10_1148_radiol_220646
crossref_primary_10_1007_s00330_021_08124_0
crossref_primary_10_1016_j_ejrad_2022_110356
crossref_primary_10_1016_j_acra_2023_02_035
crossref_primary_10_1186_s12880_023_01161_9
crossref_primary_10_1016_j_ejrad_2022_110199
crossref_primary_10_3390_diagnostics12040890
crossref_primary_10_3348_jksr_2021_0178
crossref_primary_10_1016_j_ejrad_2024_111681
Cites_doi 10.1148/radiol.15141132
10.1002/hep.29789
10.1002/sim.688
10.1007/s00330-018-5605-x
10.1148/radiol.2016160639
10.1007/s00261-017-1196-2
10.1007/s00261-017-1261-x
10.1111/j.1600-0676.1984.tb00901.x
10.1002/jmri.26027
10.1097/RLI.0000000000000258
10.1007/s00261-017-1386-y
10.1148/radiol.2017170554
10.1148/radiol.2017170114
10.1002/jmri.25287
10.1148/radiol.2018181494
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1148/radiol.2019181995
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 80
ExternalDocumentID oai:ir.ymlib.yonsei.ac.kr:22282913/170305
30694166
10_1148_radiol_2019181995
Genre Evaluation Study
Journal Article
Comparative Study
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
ZKG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c410t-c0f9f143222f628dc89389309e3c2d56c25810bcee6868ab2526ce299126604c3
IEDL.DBID UNPAY
ISSN 0033-8419
1527-1315
IngestDate Sun Oct 26 03:36:15 EDT 2025
Thu Oct 02 09:24:23 EDT 2025
Wed Feb 19 02:32:13 EST 2025
Wed Oct 01 01:19:03 EDT 2025
Thu Apr 24 23:07:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-c0f9f143222f628dc89389309e3c2d56c25810bcee6868ab2526ce299126604c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-2018-5332
0000-0001-7949-5402
0000-0003-1692-6126
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsna.org/doi/10.1148/radiol.2019181995
PMID 30694166
PQID 2179445000
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1148_radiol_2019181995
proquest_miscellaneous_2179445000
pubmed_primary_30694166
crossref_citationtrail_10_1148_radiol_2019181995
crossref_primary_10_1148_radiol_2019181995
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2019
References r2
r3
r5
r6
r7
r8
r10
r12
r11
r14
r13
r16
r15
r17
r1
30694163 - Radiology. 2019 Apr;291(1):81-82
References_xml – ident: r7
  doi: 10.1148/radiol.15141132
– ident: r16
  doi: 10.1002/hep.29789
– ident: r11
  doi: 10.1002/sim.688
– ident: r14
  doi: 10.1007/s00330-018-5605-x
– ident: r6
  doi: 10.1148/radiol.2016160639
– ident: r3
  doi: 10.1007/s00261-017-1196-2
– ident: r12
  doi: 10.1007/s00261-017-1261-x
– ident: r15
  doi: 10.1111/j.1600-0676.1984.tb00901.x
– ident: r2
  doi: 10.1002/jmri.26027
– ident: r8
  doi: 10.1097/RLI.0000000000000258
– ident: r1
  doi: 10.1007/s00261-017-1386-y
– ident: r17
  doi: 10.1148/radiol.2017170554
– ident: r5
  doi: 10.1148/radiol.2017170114
– ident: r13
  doi: 10.1002/jmri.25287
– ident: r10
  doi: 10.1148/radiol.2018181494
– reference: 30694163 - Radiology. 2019 Apr;291(1):81-82
SSID ssj0014587
Score 2.5831141
Snippet Purpose To evaluate the diagnostic accuracy of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 for differentiating between hepatocellular...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 72
SubjectTerms Adenocarcinoma - diagnostic imaging
Adult
Aged
Aged, 80 and over
Carcinoma, Hepatocellular - diagnosis
Cholangiocarcinoma - diagnostic imaging
Diagnosis, Differential
Female
Hemangiosarcoma - diagnostic imaging
Humans
Liver Cirrhosis - diagnosis
Liver Neoplasms - diagnosis
Magnetic Resonance Imaging - standards
Male
Middle Aged
Retrospective Studies
Tomography, X-Ray Computed - standards
Title Hepatocellular Carcinoma versus Other Hepatic Malignancy in Cirrhosis: Performance of LI-RADS Version 2018
URI https://www.ncbi.nlm.nih.gov/pubmed/30694166
https://www.proquest.com/docview/2179445000
https://pubs.rsna.org/doi/10.1148/radiol.2019181995
UnpaywallVersion submittedVersion
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NIoF42MbX1mkgI_G0KcVJnNTZW9WByqCABpXYU-Q4CQvrkiofmthfv7smhMEmEEoebccf59zPvvvdAezGCJK9iNzKQ4EHFDt0DKm4Nsw-DzwhFO_3iY08PnFHE_Hl0rlseNzEhcFOFL28SNXcit9uayH3chUmGRkL8IQhiVi8AIuugwC8A4uTk7PBtzoAo21IMU_nQflaDdM2ncaW-d827mujfyDmCixX6Uzd_FLT6V9q5-AVXLQdnnub_OhVZdDTvx_EcnzmiF7DywaGskEtN6vwIkrXYGncGNrX4XqEaqrM6Fqf_FTZkFIOpdlPxciNoyrYKQFHNi-VaDZGNH9FoTtuWJKyYZLn37MiKT6xszteAstidnxofB18PmfNLR3DTskNmBzsXwxHRpOWwdDC5KWheezFCLMQWeBKy1Aj5MGXe5GtrdBxteVIkweofV3pShVYjkVpxxCIIhjgQtub0EmzNHoLLNJmSBHvQml5IlD4xDFW4UpaWoeu1wV-uzy-bmKWU-qMqV_zqaVfz6F_N4dd-NBWmdUBOx4rvHO75j5uK5pUlUZZVfgW_agEZYvowptaGNrmbCILm67bhY-tdDz9rXfPKv0eOmVeRVuIeMpgG7H-4dF2I-d_ABnl_BY
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i0TFAVrKYxFUrtQTVRYncbJOb6sFtEUsRcBK9BQ5TtIGlgTlIQS_vjObEKCtQCg52o4f48xnz3wzAF9iBMleRG7locADih06hlRcG2afB54Qivf7xEYeH7mjiTg4d84bHjdxYbATRS8vUjWz4rfbWsidXIVJRsYCPGFIIha_hTnXQQDegbnJ0fHgZx2A0TakmKXzoHythmmbTmPL_G8bT7XRPxBzAd5V6bW6vVHT6SO1s78EZ22HZ94ml72qDHr67q9Yjq8c0XtYbGAoG9Ry8wHeROkyzI8bQ_tHuBihmiozutYnP1U2pJRDaXalGLlxVAX7QcCRzUolmo0Rzf-i0B23LEnZMMnz31mRFN_Y8QMvgWUxO_xunAx2T1lzS8ewU3IFJvt7Z8OR0aRlMLQweWloHnsxwixEFrjSMtQIefDlXmRrK3RcbTnS5AFqX1e6UgWWY1HaMQSiCAa40PYqdNIsjdaBRdoMKeJdKC1PBAqfOMYqXElL69D1usDvl8fXTcxySp0x9Ws-tfTrOfQf5rAL222V6zpgx3OFP9-vuY_biiZVpVFWFb5FPypB2SK6sFYLQ9ucTWRh03W78LWVjpe_tfGq0pvQKfMq2kLEUwafGgn_AzbM-x0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatocellular+Carcinoma+versus+Other+Hepatic+Malignancy+in+Cirrhosis%3A+Performance+of+LI-RADS+Version+2018&rft.jtitle=Radiology&rft.au=Kim%2C+Yeun-Yoon&rft.au=Kim%2C+Myeong-Jin&rft.au=Kim%2C+Eun+Hwa&rft.au=Roh%2C+Yun+Ho&rft.date=2019-04-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=291&rft.issue=1&rft.spage=72&rft.epage=80&rft_id=info:doi/10.1148%2Fradiol.2019181995&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2019181995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon