Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming

Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate v...

Full description

Saved in:
Bibliographic Details
Published inNature climate change Vol. 10; no. 6; pp. 576 - 581
Main Authors Brito-Morales, Isaac, Schoeman, David S., Molinos, Jorge García, Burrows, Michael T., Klein, Carissa J., Arafeh-Dalmau, Nur, Kaschner, Kristin, Garilao, Cristina, Kesner-Reyes, Kathleen, Richardson, Anthony J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1758-678X
1758-6798
DOI10.1038/s41558-020-0773-5

Cover

Abstract Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining. Marine biodiversity is at risk as the ocean warms, but currently the focus has been at the surface as the deep ocean has warmed less. Climate velocity—the speed and direction of isotherm displacement—is calculated to be faster in the deep ocean, and projections show this difference will grow.
AbstractList Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining. Marine biodiversity is at risk as the ocean warms, but currently the focus has been at the surface as the deep ocean has warmed less. Climate velocity—the speed and direction of isotherm displacement—is calculated to be faster in the deep ocean, and projections show this difference will grow.
Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining.Marine biodiversity is at risk as the ocean warms, but currently the focus has been at the surface as the deep ocean has warmed less. Climate velocity—the speed and direction of isotherm displacement—is calculated to be faster in the deep ocean, and projections show this difference will grow.
Author Richardson, Anthony J.
Kaschner, Kristin
Arafeh-Dalmau, Nur
Garilao, Cristina
Kesner-Reyes, Kathleen
Burrows, Michael T.
Schoeman, David S.
Brito-Morales, Isaac
Klein, Carissa J.
Molinos, Jorge García
Author_xml – sequence: 1
  givenname: Isaac
  orcidid: 0000-0003-0073-2431
  surname: Brito-Morales
  fullname: Brito-Morales, Isaac
  email: i.britomorales@uq.edu.au
  organization: School of Earth and Environmental Sciences, The University of Queensland, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP)
– sequence: 2
  givenname: David S.
  orcidid: 0000-0003-1258-0885
  surname: Schoeman
  fullname: Schoeman, David S.
  organization: Global-Change Ecology Research Group, School of Science and Engineering, University of the Sunshine Coast, Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University
– sequence: 3
  givenname: Jorge García
  orcidid: 0000-0001-7516-1835
  surname: Molinos
  fullname: Molinos, Jorge García
  organization: Arctic Research Center, Hokkaido University, Global Station for Arctic Research, Global Institution for Collaborative Research and Education, Hokkaido University, School of Environmental Science, Hokkaido University
– sequence: 4
  givenname: Michael T.
  orcidid: 0000-0003-4620-5899
  surname: Burrows
  fullname: Burrows, Michael T.
  organization: Scottish Association for Marine Science
– sequence: 5
  givenname: Carissa J.
  surname: Klein
  fullname: Klein, Carissa J.
  organization: School of Earth and Environmental Sciences, The University of Queensland
– sequence: 6
  givenname: Nur
  orcidid: 0000-0001-9053-0037
  surname: Arafeh-Dalmau
  fullname: Arafeh-Dalmau, Nur
  organization: School of Earth and Environmental Sciences, The University of Queensland, Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland
– sequence: 7
  givenname: Kristin
  surname: Kaschner
  fullname: Kaschner, Kristin
  organization: Department of Biometry and Environmental Systems Analysis, Albert‐Ludwigs University
– sequence: 8
  givenname: Cristina
  surname: Garilao
  fullname: Garilao, Cristina
  organization: GEOMAR, Helmholtz‐Zentrum für Ozeanforschung
– sequence: 9
  givenname: Kathleen
  surname: Kesner-Reyes
  fullname: Kesner-Reyes, Kathleen
  organization: Quantitative Aquatics, International Rice Research Institute
– sequence: 10
  givenname: Anthony J.
  surname: Richardson
  fullname: Richardson, Anthony J.
  organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland
BookMark eNp9kF1LwzAUhoNMcM79AO8CXleTpkmaSxl-wcAbBb0KaXo6OrqmJu3Uf29KRUFwgZBDeJ9zkucUzVrXAkLnlFxSwvKrkFHO84SkJCFSsoQfoTmV8UZIlc9-6vzlBC1D2JK4JBVMqDl6XTX1zvSA99A4W_ef2MMeTBNw3VoPJtTtBsNH58LgAbsKlwBd4iyYFhe1K-s9-DBivcPV0I-hd-N3kTpDx1XsA8vvc4Geb2-eVvfJ-vHuYXW9TmxGSZ8UnElFuc2hoFZVJDV5JjgvuZG8SAU3ipHSZKzIchJ3RRRPmZWpqAREwLAFupj6dt69DRB6vXWDb-NInWZSyPh3JQ-nKBFCMMVjik4p610IHird-ajHf2pK9KhaT6p1VK1H1Xpk5B8majR97drem7o5SKYTGeKUdgP-903_Q18TYpRB
CitedBy_id crossref_primary_10_1016_j_ocecoaman_2021_105747
crossref_primary_10_1016_j_scitotenv_2024_176854
crossref_primary_10_1016_j_dsr_2022_103871
crossref_primary_10_1038_s41467_022_35550_5
crossref_primary_10_3389_fmars_2020_00591
crossref_primary_10_1038_s41467_024_47975_1
crossref_primary_10_1016_j_jpdc_2024_104938
crossref_primary_10_1016_j_dsr2_2023_105318
crossref_primary_10_3389_fclim_2023_1169665
crossref_primary_10_3390_insects13070578
crossref_primary_10_1038_s42003_024_06070_3
crossref_primary_10_1111_oik_09616
crossref_primary_10_1098_rspb_2022_1994
crossref_primary_10_1111_2041_210X_13675
crossref_primary_10_3390_ijgi11010021
crossref_primary_10_1016_j_biocon_2022_109595
crossref_primary_10_1016_j_jmarsys_2024_103999
crossref_primary_10_1093_icesjms_fsae201
crossref_primary_10_1111_gcb_16134
crossref_primary_10_1038_s41558_025_02256_7
crossref_primary_10_1007_s10641_022_01270_4
crossref_primary_10_3390_jmse12111897
crossref_primary_10_1038_s41558_022_01476_5
crossref_primary_10_5194_bg_18_6567_2021
crossref_primary_10_3389_fmars_2021_764072
crossref_primary_10_1007_s12665_024_11864_z
crossref_primary_10_1016_j_pocean_2024_103352
crossref_primary_10_1073_pnas_2306357120
crossref_primary_10_61186_crpase_9_4_2876
crossref_primary_10_1007_s10531_023_02656_1
crossref_primary_10_1038_s41558_020_0889_7
crossref_primary_10_3389_fmars_2022_1055875
crossref_primary_10_1016_j_jhydrol_2022_128305
crossref_primary_10_1038_s41467_024_49736_6
crossref_primary_10_1038_s41558_022_01323_7
crossref_primary_10_1016_j_measurement_2025_117163
crossref_primary_10_1007_s00227_023_04282_5
crossref_primary_10_3389_fmars_2024_1418435
crossref_primary_10_1111_cobi_14204
crossref_primary_10_1098_rspb_2020_0889
crossref_primary_10_1038_s43247_022_00569_5
crossref_primary_10_1016_j_jnc_2024_126620
crossref_primary_10_1126_sciadv_abg3628
crossref_primary_10_1038_s41467_021_22584_4
crossref_primary_10_1016_j_biocon_2021_109070
crossref_primary_10_3390_microorganisms8081249
crossref_primary_10_1016_j_scitotenv_2022_159995
crossref_primary_10_1038_s41558_023_01790_6
crossref_primary_10_1038_s41598_023_30159_0
crossref_primary_10_1111_gcb_15223
crossref_primary_10_1016_j_pocean_2023_103016
crossref_primary_10_1038_s41598_024_61008_3
crossref_primary_10_1038_s41467_023_37810_4
crossref_primary_10_1038_s41559_025_02650_6
crossref_primary_10_1111_1440_1703_12193
crossref_primary_10_1080_23251042_2021_1973656
crossref_primary_10_1016_j_oneear_2021_10_016
crossref_primary_10_1093_icesjms_fsac074
crossref_primary_10_1111_jbi_14479
crossref_primary_10_1038_s41467_024_46526_y
crossref_primary_10_1007_s10584_022_03418_8
crossref_primary_10_1016_j_ocecoaman_2024_107050
crossref_primary_10_3389_fmars_2023_1130827
crossref_primary_10_3389_fmars_2023_1219368
crossref_primary_10_1038_s41598_021_89192_6
crossref_primary_10_1016_j_tree_2023_09_003
crossref_primary_10_3389_fmars_2021_667048
crossref_primary_10_3390_fluids6020088
crossref_primary_10_1088_1748_9326_ad5f45
crossref_primary_10_5194_bg_21_5407_2024
crossref_primary_10_1016_j_joclim_2022_100114
crossref_primary_10_1038_s41558_022_01315_7
crossref_primary_10_1029_2022PA004502
crossref_primary_10_1029_2021JC017929
crossref_primary_10_1038_s41598_020_77222_8
crossref_primary_10_1016_j_ecolind_2024_111741
crossref_primary_10_1016_j_earscirev_2023_104540
crossref_primary_10_1016_j_dsr_2024_104386
crossref_primary_10_1038_s41598_021_82595_5
crossref_primary_10_1007_s11258_021_01152_2
crossref_primary_10_1016_j_pocean_2023_103036
crossref_primary_10_3389_fmars_2020_584861
crossref_primary_10_1016_j_dsr_2024_104390
crossref_primary_10_1038_s41558_021_01156_w
crossref_primary_10_1016_j_egycc_2023_100116
crossref_primary_10_1016_j_marpol_2024_106151
crossref_primary_10_1016_j_cub_2024_04_065
crossref_primary_10_1007_s10641_022_01321_w
crossref_primary_10_3389_fmars_2020_567877
crossref_primary_10_3389_fmars_2022_917985
crossref_primary_10_1016_j_marpol_2022_105006
crossref_primary_10_1016_j_pocean_2022_102792
crossref_primary_10_1016_j_oneear_2022_10_012
crossref_primary_10_1016_j_ecss_2025_109224
crossref_primary_10_3354_meps13401
crossref_primary_10_1007_s10113_022_01949_5
crossref_primary_10_1016_j_envsci_2024_103803
crossref_primary_10_3389_fmars_2023_1219799
crossref_primary_10_1016_j_dsr2_2022_105227
crossref_primary_10_3389_fclim_2021_720755
crossref_primary_10_1016_j_jpowsour_2022_232444
crossref_primary_10_3389_fmars_2021_691668
crossref_primary_10_1016_j_pocean_2021_102659
crossref_primary_10_1186_s40793_024_00622_0
crossref_primary_10_3389_fmars_2022_1045136
crossref_primary_10_1007_s42995_024_00226_0
crossref_primary_10_1111_geb_13285
crossref_primary_10_1111_faf_12569
Cites_doi 10.1111/nyas.13597
10.1016/j.cub.2017.04.060
10.1038/s41559-019-1058-0
10.1111/2041-210X.12896
10.1175/JCLI-D-16-0396.1
10.1126/science.aaz9327
10.1038/nclimate1539
10.1126/science.1206432
10.1038/nature12976
10.1093/icesjms/fsn028
10.1038/nature08823
10.1126/science.1239352
10.1038/s41558-019-0631-5
10.1016/j.dsr2.2013.12.002
10.1126/science.aad0126
10.1038/s41558-018-0355-y
10.1038/nature09329
10.1126/science.aav7619
10.1016/j.tree.2018.03.009
10.1016/j.margeo.2014.01.011
10.1038/nature08649
10.1111/gcb.12680
10.1111/ele.12474
10.1073/pnas.1701262114
10.1007/s13253-015-0210-9
10.1371/journal.pone.0010223
10.1038/nclimate1958
10.1016/j.tree.2009.01.011
10.1146/annurev-environ-102014-021415
10.1038/s41598-017-01309-y
10.1371/journal.pbio.2001104
10.1093/icesjms/fsz067
10.1038/s41586-019-1132-4
10.1098/rspb.2018.0923
10.1126/science.1210288
10.1038/nclimate2769
10.1111/gcb.12736
10.1126/science.aau1758
10.1371/journal.pone.0140486
10.1002/2014JB011290
10.1111/gcb.12026
10.1111/2041-210X.13295
10.5670/oceanog.2017.116
10.1002/grl.50382
10.1126/science.aav6886
10.1038/ncomms4271
10.1038/ncomms12349
10.1038/ncomms14434
10.1038/srep17539
10.1029/2007GL030295
10.3389/fmars.2016.00062
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
3V.
7ST
7TG
7TN
7XB
88I
8AF
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
H97
HCIFZ
KL.
L.G
M2P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
SOI
DOI 10.1038/s41558-020-0773-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1758-6798
EndPage 581
ExternalDocumentID 10_1038_s41558_020_0773_5
GrantInformation_xml – fundername: Tenure-Track System Promotion Program of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT)
– fundername: Australian Government grant ARC DP190102293
– fundername: The University of Queensland Postdoctoral Fellowship
– fundername: Ministry of Education, Government of Chile | Comisión Nacional de Investigación Científica y Tecnológica (National Commission for Scientific and Technological Research)
  grantid: 72170231
  funderid: https://doi.org/10.13039/501100002848
– fundername: Fundación Bancaria “la Caixa” Postgraduate Fellowship (LCF/BQ/AA16/11580053)
GroupedDBID 0R~
39C
3V.
4.4
53G
5BI
70F
88I
8AF
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACHQT
ADBBV
AENEX
AEUYN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHDO
AGHTU
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
D1K
DWQXO
EBS
EDH
EE.
EJD
EXGXG
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
K6-
M2P
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7ST
7TG
7TN
7XB
8FK
C1K
F1W
H96
H97
KL.
L.G
PKEHL
PQEST
PQUKI
PUEGO
Q9U
SOI
ID FETCH-LOGICAL-c410t-b537915c8eb1c9f02a84655d5a75b265a930da43b480b48f09523c726f6e1c9a3
IEDL.DBID BENPR
ISSN 1758-678X
IngestDate Fri Jul 25 09:04:55 EDT 2025
Sat Aug 23 12:22:00 EDT 2025
Tue Jul 01 03:01:35 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 21 02:38:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-b537915c8eb1c9f02a84655d5a75b265a930da43b480b48f09523c726f6e1c9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7516-1835
0000-0003-1258-0885
0000-0001-9053-0037
0000-0003-0073-2431
0000-0003-4620-5899
PQID 2410666395
PQPubID 1056412
PageCount 6
ParticipantIDs proquest_journals_2476775897
proquest_journals_2410666395
crossref_primary_10_1038_s41558_020_0773_5
crossref_citationtrail_10_1038_s41558_020_0773_5
springer_journals_10_1038_s41558_020_0773_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature climate change
PublicationTitleAbbrev Nat. Clim. Chang
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Carroll, Lawler, Roberts, Hamann (CR57) 2015; 10
Ashford (CR25) 2018; 285
Jorda (CR16) 2020; 4
Morgan, Pike, Moffitt (CR34) 2018; 19
Levin, Bris (CR21) 2015; 350
Webb, Berghe, O’Dor (CR8) 2010; 5
Dobrowski (CR40) 2013; 19
CR2
Sayre (CR19) 2017; 30
CR3
Hamann, Roberts, Barber, Carroll, Nielsen (CR56) 2015; 21
CR6
Rogers (CR43) 2015; 40
Burrows (CR17) 2019; 9
CR45
CR44
Wiens (CR22) 2016; 14
Roberts (CR35) 2017; 114
CR42
CR41
Eyring (CR54) 2019; 9
Game (CR30) 2009; 24
Sunday (CR51) 2015; 18
Pinsky, Worm, Fogarty, Sarmiento, Levin (CR13) 2013; 341
García Molinos (CR14) 2016; 6
Harris, Macmillan-Lawler, Rupp, Baker (CR7) 2014; 352
Balmaseda, Trenberth, Källén (CR23) 2013; 40
Burrows (CR36) 2014; 507
Tittensor (CR46) 2010; 466
Maxwell, Gjerde, Conners, Crowder (CR38) 2020; 367
Desbruyères, McDonagh, King, Thierry (CR10) 2016; 30
Burrows (CR12) 2011; 334
Venegas‐Li, Levin, Possingham, Kark (CR33) 2018; 9
Brown, Thatje (CR52) 2015; 21
Poloczanska (CR1) 2013; 3
Moss (CR18) 2010; 463
Fredston‐Hermann, Gaines, Halpern (CR39) 2018; 1429
Sen Gupta (CR49) 2015; 113
Pinsky, Eikeset, McCauley, Payne, Sunday (CR26) 2019; 569
CR15
CR53
Phrampus, Hornbach, Ruppel, Hart (CR29) 2014; 119
Visconti (CR37) 2019; 364
Costello, Chaudhary (CR5) 2017; 27
Hidalgo, Browman (CR27) 2019; 76
Richardson (CR48) 2008; 65
Chen, Hill, Ohlemüller, Roy, Thomas (CR28) 2011; 333
Sunday, Bates, Dulvy (CR47) 2012; 2
García Molinos, Schoeman, Brown, Burrows (CR50) 2019; 10
Free (CR4) 2019; 363
Schliep, Gelfand, Clark (CR55) 2015; 20
Loarie (CR11) 2009; 462
Cheng, Abraham, Hausfather, Trenberth (CR9) 2019; 363
Brito-Morales (CR32) 2018; 33
CR24
CR20
García Molinos, Burrows, Poloczanska (CR31) 2017; 7
773_CR53
TJ Webb (773_CR8) 2010; 5
C Carroll (773_CR57) 2015; 10
A Sen Gupta (773_CR49) 2015; 113
L Cheng (773_CR9) 2019; 363
773_CR15
R Venegas‐Li (773_CR33) 2018; 9
LA Levin (773_CR21) 2015; 350
MA Balmaseda (773_CR23) 2013; 40
CM Free (773_CR4) 2019; 363
I-C Chen (773_CR28) 2011; 333
EM Schliep (773_CR55) 2015; 20
JJ Wiens (773_CR22) 2016; 14
JM Sunday (773_CR47) 2012; 2
RH Moss (773_CR18) 2010; 463
773_CR41
A Fredston‐Hermann (773_CR39) 2018; 1429
773_CR42
OS Ashford (773_CR25) 2018; 285
773_CR44
773_CR45
I Brito-Morales (773_CR32) 2018; 33
ML Pinsky (773_CR26) 2019; 569
SZ Dobrowski (773_CR40) 2013; 19
ML Pinsky (773_CR13) 2013; 341
A Hamann (773_CR56) 2015; 21
V Eyring (773_CR54) 2019; 9
L Morgan (773_CR34) 2018; 19
ET Game (773_CR30) 2009; 24
AJ Richardson (773_CR48) 2008; 65
SR Loarie (773_CR11) 2009; 462
P Visconti (773_CR37) 2019; 364
D Desbruyères (773_CR10) 2016; 30
ES Poloczanska (773_CR1) 2013; 3
CM Roberts (773_CR35) 2017; 114
MT Burrows (773_CR17) 2019; 9
SM Maxwell (773_CR38) 2020; 367
PT Harris (773_CR7) 2014; 352
MT Burrows (773_CR12) 2011; 334
R Sayre (773_CR19) 2017; 30
AD Rogers (773_CR43) 2015; 40
MJ Costello (773_CR5) 2017; 27
M Hidalgo (773_CR27) 2019; 76
BJ Phrampus (773_CR29) 2014; 119
773_CR20
J García Molinos (773_CR31) 2017; 7
773_CR24
JM Sunday (773_CR51) 2015; 18
A Brown (773_CR52) 2015; 21
773_CR3
MT Burrows (773_CR36) 2014; 507
J García Molinos (773_CR14) 2016; 6
773_CR6
DP Tittensor (773_CR46) 2010; 466
J García Molinos (773_CR50) 2019; 10
773_CR2
G Jorda (773_CR16) 2020; 4
References_xml – volume: 1429
  start-page: 5
  year: 2018
  end-page: 17
  ident: CR39
  article-title: Biogeographic constraints to marine conservation in a changing climate
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/nyas.13597
– ident: CR45
– volume: 27
  start-page: R511
  year: 2017
  end-page: R527
  ident: CR5
  article-title: Marine biodiversity, biogeography, deep-sea gradients, and conservation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.04.060
– volume: 4
  start-page: 109
  year: 2020
  end-page: 114
  ident: CR16
  article-title: Ocean warming compresses the three-dimensional habitat of marine life
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-1058-0
– volume: 9
  start-page: 773
  year: 2018
  end-page: 784
  ident: CR33
  article-title: 3D spatial conservation prioritisation: accounting for depth in marine environments
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12896
– volume: 30
  start-page: 1985
  year: 2016
  end-page: 1997
  ident: CR10
  article-title: Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0396.1
– volume: 367
  start-page: 252
  year: 2020
  end-page: 254
  ident: CR38
  article-title: Mobile protected areas for biodiversity on the high seas
  publication-title: Science
  doi: 10.1126/science.aaz9327
– volume: 2
  start-page: 686
  year: 2012
  end-page: 690
  ident: CR47
  article-title: Thermal tolerance and the global redistribution of animals
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1539
– volume: 333
  start-page: 1024
  year: 2011
  end-page: 1026
  ident: CR28
  article-title: Rapid range shifts of species associated with high levels of climate warming
  publication-title: Science
  doi: 10.1126/science.1206432
– volume: 507
  start-page: 492
  year: 2014
  end-page: 495
  ident: CR36
  article-title: Geographical limits to species-range shifts are suggested by climate velocity
  publication-title: Nature
  doi: 10.1038/nature12976
– ident: CR42
– volume: 65
  start-page: 279
  year: 2008
  end-page: 295
  ident: CR48
  article-title: In hot water: zooplankton and climate change
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsn028
– volume: 463
  start-page: 747
  year: 2010
  end-page: 756
  ident: CR18
  article-title: The next generation of scenarios for climate change research and assessment
  publication-title: Nature
  doi: 10.1038/nature08823
– volume: 341
  start-page: 1239
  year: 2013
  end-page: 1242
  ident: CR13
  article-title: Marine taxa track local climate velocities
  publication-title: Science
  doi: 10.1126/science.1239352
– ident: CR15
– volume: 364
  start-page: 239
  year: 2019
  end-page: 241
  ident: CR37
  article-title: Protected area targets post-2020
  publication-title: Science
– volume: 9
  start-page: 959
  year: 2019
  end-page: 963
  ident: CR17
  article-title: Ocean community warming responses explained by thermal affinities and temperature gradients
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0631-5
– volume: 113
  start-page: 59
  year: 2015
  end-page: 72
  ident: CR49
  article-title: Episodic and non-uniform shifts of thermal habitats in a warming ocean
  publication-title: Deep Sea Res. Part II
  doi: 10.1016/j.dsr2.2013.12.002
– volume: 350
  start-page: 766
  year: 2015
  end-page: 768
  ident: CR21
  article-title: The deep ocean under climate change
  publication-title: Science
  doi: 10.1126/science.aad0126
– volume: 9
  start-page: 102
  year: 2019
  end-page: 110
  ident: CR54
  article-title: Taking climate model evaluation to the next level
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0355-y
– volume: 466
  start-page: 1098
  year: 2010
  end-page: 1101
  ident: CR46
  article-title: Global patterns and predictors of marine biodiversity across taxa
  publication-title: Nature
  doi: 10.1038/nature09329
– volume: 363
  start-page: 128
  year: 2019
  end-page: 129
  ident: CR9
  article-title: How fast are the oceans warming?
  publication-title: Science
  doi: 10.1126/science.aav7619
– volume: 33
  start-page: 441
  year: 2018
  end-page: 457
  ident: CR32
  article-title: Climate velocity can inform conservation in a warming world
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2018.03.009
– volume: 352
  start-page: 4
  year: 2014
  end-page: 24
  ident: CR7
  article-title: Geomorphology of the oceans
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2014.01.011
– volume: 462
  start-page: 1052
  year: 2009
  end-page: 1055
  ident: CR11
  article-title: The velocity of climate change
  publication-title: Nature
  doi: 10.1038/nature08649
– volume: 21
  start-page: 173
  year: 2015
  end-page: 180
  ident: CR52
  article-title: The effects of changing climate on faunal depth distributions determine winners and losers
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12680
– volume: 19
  start-page: 148
  year: 2018
  end-page: 151
  ident: CR34
  article-title: How much of the ocean is protected?
  publication-title: Biodiversity
– volume: 18
  start-page: 944
  year: 2015
  end-page: 953
  ident: CR51
  article-title: Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12474
– ident: CR2
– ident: CR53
– volume: 114
  start-page: 6167
  year: 2017
  end-page: 6175
  ident: CR35
  article-title: Marine reserves can mitigate and promote adaptation to climate change
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1701262114
– volume: 20
  start-page: 323
  year: 2015
  end-page: 342
  ident: CR55
  article-title: Stochastic modeling for velocity of climate change
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-015-0210-9
– volume: 5
  start-page: e10223
  year: 2010
  ident: CR8
  article-title: Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010223
– volume: 3
  start-page: 919
  year: 2013
  end-page: 925
  ident: CR1
  article-title: Global imprint of climate change on marine life
  publication-title: Nat. Clim Change
  doi: 10.1038/nclimate1958
– volume: 24
  start-page: 360
  year: 2009
  end-page: 369
  ident: CR30
  article-title: Pelagic protected areas: the missing dimension in ocean conservation
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2009.01.011
– volume: 40
  start-page: 1
  year: 2015
  end-page: 38
  ident: CR43
  article-title: Environmental change in the deep ocean
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-102014-021415
– ident: CR6
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR31
  article-title: Ocean currents modify the coupling between climate change and biogeographical shifts
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01309-y
– volume: 14
  start-page: e2001104
  year: 2016
  ident: CR22
  article-title: Climate-related local extinctions are already widespread among plant and animal species
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2001104
– volume: 76
  start-page: 609
  year: 2019
  end-page: 615
  ident: CR27
  article-title: Developing the knowledge base needed to sustainably manage mesopelagic resources
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz067
– volume: 569
  start-page: 108
  year: 2019
  end-page: 111
  ident: CR26
  article-title: Greater vulnerability to warming of marine versus terrestrial ectotherms
  publication-title: Nature
  doi: 10.1038/s41586-019-1132-4
– volume: 285
  start-page: 20180923
  year: 2018
  ident: CR25
  article-title: Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2018.0923
– ident: CR44
– volume: 334
  start-page: 652
  year: 2011
  end-page: 655
  ident: CR12
  article-title: The pace of shifting climate in marine and terrestrial ecosystems
  publication-title: Science
  doi: 10.1126/science.1210288
– volume: 6
  start-page: 83
  year: 2016
  end-page: 88
  ident: CR14
  article-title: Climate velocity and the future global redistribution of marine biodiversity
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2769
– volume: 21
  start-page: 997
  year: 2015
  end-page: 1004
  ident: CR56
  article-title: Velocity of climate change algorithms for guiding conservation and management
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12736
– ident: CR3
– volume: 363
  start-page: 979
  year: 2019
  end-page: 983
  ident: CR4
  article-title: Impacts of historical warming on marine fisheries production
  publication-title: Science
  doi: 10.1126/science.aau1758
– volume: 10
  start-page: e0140486
  year: 2015
  ident: CR57
  article-title: Biotic and climatic velocity identify contrasting areas of vulnerability to climate change
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140486
– volume: 119
  start-page: 8594
  year: 2014
  end-page: 8609
  ident: CR29
  article-title: Widespread gas hydrate instability on the upper U.S. Beaufort margin
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011290
– volume: 19
  start-page: 241
  year: 2013
  end-page: 251
  ident: CR40
  article-title: The climate velocity of the contiguous United States during the 20th century
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12026
– ident: CR41
– volume: 10
  start-page: 2195
  year: 2019
  end-page: 2202
  ident: CR50
  article-title: VoCC: an R package for calculating the velocity of climate change and related climatic metrics
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13295
– ident: CR24
– ident: CR20
– volume: 30
  start-page: 90
  year: 2017
  end-page: 103
  ident: CR19
  article-title: A three-dimensional mapping of the ocean based on environmental data
  publication-title: Oceanography
  doi: 10.5670/oceanog.2017.116
– volume: 40
  start-page: 1754
  year: 2013
  end-page: 1759
  ident: CR23
  article-title: Distinctive climate signals in reanalysis of global ocean heat content
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50382
– volume: 9
  start-page: 959
  year: 2019
  ident: 773_CR17
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0631-5
– volume: 367
  start-page: 252
  year: 2020
  ident: 773_CR38
  publication-title: Science
  doi: 10.1126/science.aaz9327
– volume: 113
  start-page: 59
  year: 2015
  ident: 773_CR49
  publication-title: Deep Sea Res. Part II
  doi: 10.1016/j.dsr2.2013.12.002
– volume: 14
  start-page: e2001104
  year: 2016
  ident: 773_CR22
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2001104
– volume: 40
  start-page: 1754
  year: 2013
  ident: 773_CR23
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50382
– volume: 285
  start-page: 20180923
  year: 2018
  ident: 773_CR25
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2018.0923
– volume: 65
  start-page: 279
  year: 2008
  ident: 773_CR48
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsn028
– volume: 350
  start-page: 766
  year: 2015
  ident: 773_CR21
  publication-title: Science
  doi: 10.1126/science.aad0126
– volume: 1429
  start-page: 5
  year: 2018
  ident: 773_CR39
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/nyas.13597
– volume: 507
  start-page: 492
  year: 2014
  ident: 773_CR36
  publication-title: Nature
  doi: 10.1038/nature12976
– volume: 20
  start-page: 323
  year: 2015
  ident: 773_CR55
  publication-title: J. Agric. Biol. Environ. Stat.
  doi: 10.1007/s13253-015-0210-9
– volume: 9
  start-page: 102
  year: 2019
  ident: 773_CR54
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0355-y
– ident: 773_CR45
– volume: 364
  start-page: 239
  year: 2019
  ident: 773_CR37
  publication-title: Science
  doi: 10.1126/science.aav6886
– volume: 569
  start-page: 108
  year: 2019
  ident: 773_CR26
  publication-title: Nature
  doi: 10.1038/s41586-019-1132-4
– volume: 7
  start-page: 1
  year: 2017
  ident: 773_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01309-y
– volume: 19
  start-page: 148
  year: 2018
  ident: 773_CR34
  publication-title: Biodiversity
– volume: 3
  start-page: 919
  year: 2013
  ident: 773_CR1
  publication-title: Nat. Clim Change
  doi: 10.1038/nclimate1958
– ident: 773_CR3
– volume: 462
  start-page: 1052
  year: 2009
  ident: 773_CR11
  publication-title: Nature
  doi: 10.1038/nature08649
– volume: 27
  start-page: R511
  year: 2017
  ident: 773_CR5
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.04.060
– volume: 21
  start-page: 173
  year: 2015
  ident: 773_CR52
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12680
– volume: 463
  start-page: 747
  year: 2010
  ident: 773_CR18
  publication-title: Nature
  doi: 10.1038/nature08823
– volume: 5
  start-page: e10223
  year: 2010
  ident: 773_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010223
– volume: 4
  start-page: 109
  year: 2020
  ident: 773_CR16
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-1058-0
– volume: 2
  start-page: 686
  year: 2012
  ident: 773_CR47
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1539
– volume: 352
  start-page: 4
  year: 2014
  ident: 773_CR7
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2014.01.011
– volume: 10
  start-page: 2195
  year: 2019
  ident: 773_CR50
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13295
– volume: 334
  start-page: 652
  year: 2011
  ident: 773_CR12
  publication-title: Science
  doi: 10.1126/science.1210288
– ident: 773_CR44
– ident: 773_CR6
  doi: 10.1038/ncomms4271
– volume: 363
  start-page: 128
  year: 2019
  ident: 773_CR9
  publication-title: Science
  doi: 10.1126/science.aav7619
– volume: 19
  start-page: 241
  year: 2013
  ident: 773_CR40
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12026
– volume: 333
  start-page: 1024
  year: 2011
  ident: 773_CR28
  publication-title: Science
  doi: 10.1126/science.1206432
– volume: 119
  start-page: 8594
  year: 2014
  ident: 773_CR29
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011290
– ident: 773_CR41
  doi: 10.1038/ncomms12349
– volume: 76
  start-page: 609
  year: 2019
  ident: 773_CR27
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz067
– volume: 18
  start-page: 944
  year: 2015
  ident: 773_CR51
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12474
– volume: 24
  start-page: 360
  year: 2009
  ident: 773_CR30
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2009.01.011
– volume: 6
  start-page: 83
  year: 2016
  ident: 773_CR14
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2769
– volume: 10
  start-page: e0140486
  year: 2015
  ident: 773_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140486
– ident: 773_CR15
  doi: 10.1038/ncomms14434
– volume: 30
  start-page: 1985
  year: 2016
  ident: 773_CR10
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-16-0396.1
– volume: 363
  start-page: 979
  year: 2019
  ident: 773_CR4
  publication-title: Science
  doi: 10.1126/science.aau1758
– volume: 9
  start-page: 773
  year: 2018
  ident: 773_CR33
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12896
– volume: 21
  start-page: 997
  year: 2015
  ident: 773_CR56
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12736
– volume: 114
  start-page: 6167
  year: 2017
  ident: 773_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1701262114
– ident: 773_CR24
– ident: 773_CR53
  doi: 10.1038/srep17539
– ident: 773_CR20
– volume: 341
  start-page: 1239
  year: 2013
  ident: 773_CR13
  publication-title: Science
  doi: 10.1126/science.1239352
– ident: 773_CR42
  doi: 10.1029/2007GL030295
– volume: 40
  start-page: 1
  year: 2015
  ident: 773_CR43
  publication-title: Annu. Rev. Environ. Resour.
  doi: 10.1146/annurev-environ-102014-021415
– ident: 773_CR2
  doi: 10.3389/fmars.2016.00062
– volume: 33
  start-page: 441
  year: 2018
  ident: 773_CR32
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2018.03.009
– volume: 30
  start-page: 90
  year: 2017
  ident: 773_CR19
  publication-title: Oceanography
  doi: 10.5670/oceanog.2017.116
– volume: 466
  start-page: 1098
  year: 2010
  ident: 773_CR46
  publication-title: Nature
  doi: 10.1038/nature09329
SSID ssj0000716369
Score 2.6116943
Snippet Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 576
SubjectTerms 631/158/2165
704/106/694/2739
704/829
Adaptation
Biodiversity
Climate adaptation
Climate Change
Climate Change/Climate Change Impacts
Climatic analysis
Earth and Environmental Science
Environment
Environmental Law/Policy/Ecojustice
Fishing
Greenhouse gases
Mitigation
Ocean warming
Oceans
Protected areas
Surface water
Velocity
Title Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming
URI https://link.springer.com/article/10.1038/s41558-020-0773-5
https://www.proquest.com/docview/2410666395
https://www.proquest.com/docview/2476775897
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9cUXqV94tso-iA_K0jX7mQeRtrQUoYeIhfMp7FfkoCRne6J_vjObpIdC-xDCslk2zExmfjszmQF4QzXSnEmKZxlKmBH1YCsrHmKtRaqDiqV_ysXCnF-qz0u93IHF9C8MpVVOOrEo6tRH8pEfoqUhqC1r_Wn9k1PXKIquTi00_NhaIX0sJcYewC6qZC1msHt8uvjy9dbrggbVyNLnDs2m4_ieyynUKd3hDVlXx-lEJayVXP9rrLYI9L-gabFFZ3vwaASR7Gjg-mPYyd0TmF8g_u2vi5ucvWUnVysEo2X0FL4Po8woQygi8GZUuQklj606go3kMGD5z7onfyHrW5ZyXnM0bb5jYdWnKXmDbXo2VCFhvz1l0fx4Bpdnp99OzvnYVIFHpOCGBy1t_UFHh0o61q2ovKMSakl7q0NltK-lSF7JoJzAq0UIVsloK9OajAu8fA6zru_yC2CmagMaNzwEKadavHtVh0qo3BqbnBRzEBP1mjhWHKfGF1dNiXxL1wwEb5DgDRG80XN4d7tkPZTbuO_hg4klzfjl3TRbOblj2hqLrK_tHN5PXNxO37nXy_v32oeHVREbcs8cwGxz_Su_QrSyCa9HEfwLjp3kmw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuFU-xpQUfgAPIavA7hwpBabWl3RVCrbScQpw4aKUqWbqLCn-uv40ZJ-kKpPbWQxRFjm1pZuz5PDOeAXhJOdKcKRUP0kc3I-6DlRTcF6lOytSrItZPGU_M6FR9nurpGlz2d2EorLLfE-NGXTYF2ch3UNMQ1Japfj__yalqFHlX-xIaeVdaodyNKca6ix1H4c8FHuEWu4efkN-vhDjYP9kb8a7KAC9wyCX3Wtr0nS4c7lpFWiUid5RTrNS51V4YnacyKXMlvXIJPhViEiELK0xlAnbIJY57B9YVGVAGsP5xf_Ll65WVBxW4kbGuHqppx5Eu0961Kt3OgrS543SCS6yVXP-rHFeI9z8nbdR9B_dhowOt7EMrZQ9gLdQPYThGvN2cR7M8e832zmYIfuPXI_jWfgVGEUkFAn1GmaJQ0tmsJphKBgoWfs8bsk-ypmJlCHOOqjSvmZ81ZR8swpYNa7OesIuconZ-PIbTWyHvExjUTR2eAjOi8qhM8dClnKrwnavUi0SFytjSyWQISU-9rOgynFOhjbMsetqly1qCZ0jwjAie6SG8ueoyb9N73PTzVs-SrFvpi2wll9c0W2OR9akdwtuei6vma-favHmuF3B3dDI-zo4PJ0fP4J6IIkSmoS0YLM9_hW1ESkv_vBNHBt9vewX8BRnvIDE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1BfFF6heerZoH9UEJt-Z7H0rRtkdr7VHEwvkUN19yUHavvSvVf9G_qpPsbg-F9q0Py7LsJoHJJL9fZmZnEHqTcqRp6TkJzGY3I-yDkVFiXSkKX1rucv2Uo7HcP-FfJmKygv72_8KksMp-T8wbtW9cspEPAWkS1WalGMYuLOJ4d7Q9OyOpglTytPblNKquzILfyunGup88DsOfSzjOzbcOdmHu31I62vu-s0-6igPEQfcLYgVT5UfhNOxgrowFrXTKL-ZFpYSlUlQlK3zFmeW6gCsCP6HMKSqjDNCgYtDvPbSmAPXhILj2eW98_O3a4gNgLlmusQeQrQnIaNK7WZkezhOya5JOc4VSjIh_gXLJfv9z2GYcHK2jhx2BxZ9ajXuEVkL9GA2OgHs359lEj9_hndMpEOH89AT9aJ8CTtFJDkg_TlmjQOvxtE6UNRkrcPg9a5KtEjcR-xBmBGC1qrGdNr4PHMGLBrcZUPBllSJ4fj1FJ3ci3mdotW7q8BxhSaMFYIUDGNc8wr3ipaUFD1Eqr1kxQEUvPeO6bOep6MapyV53pk0rcAMCN0ngRgzQ--smszbVx20fb_ZTYrpVPzdLHb3htZIKpr5UA_Shn8Xl6xvHenH7WK_RfVgJ5uvB-HADPaBZg5KVaBOtLs4vwksgTQv7qtNGjH7e9QK4AtUsJHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+velocity+reveals+increasing+exposure+of+deep-ocean+biodiversity+to+future+warming&rft.jtitle=Nature+climate+change&rft.au=Brito-Morales%2C+Isaac&rft.au=Schoeman%2C+David+S.&rft.au=Molinos%2C+Jorge+Garc%C3%ADa&rft.au=Burrows%2C+Michael+T.&rft.date=2020-06-01&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=10&rft.issue=6&rft.spage=576&rft.epage=581&rft_id=info:doi/10.1038%2Fs41558-020-0773-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41558_020_0773_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon