Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming
Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate v...
Saved in:
Published in | Nature climate change Vol. 10; no. 6; pp. 576 - 581 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1758-678X 1758-6798 |
DOI | 10.1038/s41558-020-0773-5 |
Cover
Abstract | Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining.
Marine biodiversity is at risk as the ocean warms, but currently the focus has been at the surface as the deep ocean has warmed less. Climate velocity—the speed and direction of isotherm displacement—is calculated to be faster in the deep ocean, and projections show this difference will grow. |
---|---|
AbstractList | Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining.
Marine biodiversity is at risk as the ocean warms, but currently the focus has been at the surface as the deep ocean has warmed less. Climate velocity—the speed and direction of isotherm displacement—is calculated to be faster in the deep ocean, and projections show this difference will grow. Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this notion by analysing climate velocity, which provides expectations for species’ range shifts. We find that contemporary (1955–2005) climate velocities are faster in the deep ocean than at the surface. Moreover, projected climate velocities in the future (2050–2100) are faster for all depth layers, except at the surface, under the most aggressive GHG mitigation pathway considered (representative concentration pathway, RCP 2.6). This suggests that while mitigation could limit climate change threats for surface biodiversity, deep-ocean biodiversity faces an unavoidable escalation in climate velocities, most prominently in the mesopelagic (200–1,000 m). To optimize opportunities for climate adaptation among deep-ocean communities, future open-ocean protected areas must be designed to retain species moving at different speeds at different depths under climate change while managing non-climate threats, such as fishing and mining.Marine biodiversity is at risk as the ocean warms, but currently the focus has been at the surface as the deep ocean has warmed less. Climate velocity—the speed and direction of isotherm displacement—is calculated to be faster in the deep ocean, and projections show this difference will grow. |
Author | Richardson, Anthony J. Kaschner, Kristin Arafeh-Dalmau, Nur Garilao, Cristina Kesner-Reyes, Kathleen Burrows, Michael T. Schoeman, David S. Brito-Morales, Isaac Klein, Carissa J. Molinos, Jorge García |
Author_xml | – sequence: 1 givenname: Isaac orcidid: 0000-0003-0073-2431 surname: Brito-Morales fullname: Brito-Morales, Isaac email: i.britomorales@uq.edu.au organization: School of Earth and Environmental Sciences, The University of Queensland, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP) – sequence: 2 givenname: David S. orcidid: 0000-0003-1258-0885 surname: Schoeman fullname: Schoeman, David S. organization: Global-Change Ecology Research Group, School of Science and Engineering, University of the Sunshine Coast, Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University – sequence: 3 givenname: Jorge García orcidid: 0000-0001-7516-1835 surname: Molinos fullname: Molinos, Jorge García organization: Arctic Research Center, Hokkaido University, Global Station for Arctic Research, Global Institution for Collaborative Research and Education, Hokkaido University, School of Environmental Science, Hokkaido University – sequence: 4 givenname: Michael T. orcidid: 0000-0003-4620-5899 surname: Burrows fullname: Burrows, Michael T. organization: Scottish Association for Marine Science – sequence: 5 givenname: Carissa J. surname: Klein fullname: Klein, Carissa J. organization: School of Earth and Environmental Sciences, The University of Queensland – sequence: 6 givenname: Nur orcidid: 0000-0001-9053-0037 surname: Arafeh-Dalmau fullname: Arafeh-Dalmau, Nur organization: School of Earth and Environmental Sciences, The University of Queensland, Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland – sequence: 7 givenname: Kristin surname: Kaschner fullname: Kaschner, Kristin organization: Department of Biometry and Environmental Systems Analysis, Albert‐Ludwigs University – sequence: 8 givenname: Cristina surname: Garilao fullname: Garilao, Cristina organization: GEOMAR, Helmholtz‐Zentrum für Ozeanforschung – sequence: 9 givenname: Kathleen surname: Kesner-Reyes fullname: Kesner-Reyes, Kathleen organization: Quantitative Aquatics, International Rice Research Institute – sequence: 10 givenname: Anthony J. surname: Richardson fullname: Richardson, Anthony J. organization: Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, BioSciences Precinct (QBP), Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland |
BookMark | eNp9kF1LwzAUhoNMcM79AO8CXleTpkmaSxl-wcAbBb0KaXo6OrqmJu3Uf29KRUFwgZBDeJ9zkucUzVrXAkLnlFxSwvKrkFHO84SkJCFSsoQfoTmV8UZIlc9-6vzlBC1D2JK4JBVMqDl6XTX1zvSA99A4W_ef2MMeTBNw3VoPJtTtBsNH58LgAbsKlwBd4iyYFhe1K-s9-DBivcPV0I-hd-N3kTpDx1XsA8vvc4Geb2-eVvfJ-vHuYXW9TmxGSZ8UnElFuc2hoFZVJDV5JjgvuZG8SAU3ipHSZKzIchJ3RRRPmZWpqAREwLAFupj6dt69DRB6vXWDb-NInWZSyPh3JQ-nKBFCMMVjik4p610IHird-ajHf2pK9KhaT6p1VK1H1Xpk5B8majR97drem7o5SKYTGeKUdgP-903_Q18TYpRB |
CitedBy_id | crossref_primary_10_1016_j_ocecoaman_2021_105747 crossref_primary_10_1016_j_scitotenv_2024_176854 crossref_primary_10_1016_j_dsr_2022_103871 crossref_primary_10_1038_s41467_022_35550_5 crossref_primary_10_3389_fmars_2020_00591 crossref_primary_10_1038_s41467_024_47975_1 crossref_primary_10_1016_j_jpdc_2024_104938 crossref_primary_10_1016_j_dsr2_2023_105318 crossref_primary_10_3389_fclim_2023_1169665 crossref_primary_10_3390_insects13070578 crossref_primary_10_1038_s42003_024_06070_3 crossref_primary_10_1111_oik_09616 crossref_primary_10_1098_rspb_2022_1994 crossref_primary_10_1111_2041_210X_13675 crossref_primary_10_3390_ijgi11010021 crossref_primary_10_1016_j_biocon_2022_109595 crossref_primary_10_1016_j_jmarsys_2024_103999 crossref_primary_10_1093_icesjms_fsae201 crossref_primary_10_1111_gcb_16134 crossref_primary_10_1038_s41558_025_02256_7 crossref_primary_10_1007_s10641_022_01270_4 crossref_primary_10_3390_jmse12111897 crossref_primary_10_1038_s41558_022_01476_5 crossref_primary_10_5194_bg_18_6567_2021 crossref_primary_10_3389_fmars_2021_764072 crossref_primary_10_1007_s12665_024_11864_z crossref_primary_10_1016_j_pocean_2024_103352 crossref_primary_10_1073_pnas_2306357120 crossref_primary_10_61186_crpase_9_4_2876 crossref_primary_10_1007_s10531_023_02656_1 crossref_primary_10_1038_s41558_020_0889_7 crossref_primary_10_3389_fmars_2022_1055875 crossref_primary_10_1016_j_jhydrol_2022_128305 crossref_primary_10_1038_s41467_024_49736_6 crossref_primary_10_1038_s41558_022_01323_7 crossref_primary_10_1016_j_measurement_2025_117163 crossref_primary_10_1007_s00227_023_04282_5 crossref_primary_10_3389_fmars_2024_1418435 crossref_primary_10_1111_cobi_14204 crossref_primary_10_1098_rspb_2020_0889 crossref_primary_10_1038_s43247_022_00569_5 crossref_primary_10_1016_j_jnc_2024_126620 crossref_primary_10_1126_sciadv_abg3628 crossref_primary_10_1038_s41467_021_22584_4 crossref_primary_10_1016_j_biocon_2021_109070 crossref_primary_10_3390_microorganisms8081249 crossref_primary_10_1016_j_scitotenv_2022_159995 crossref_primary_10_1038_s41558_023_01790_6 crossref_primary_10_1038_s41598_023_30159_0 crossref_primary_10_1111_gcb_15223 crossref_primary_10_1016_j_pocean_2023_103016 crossref_primary_10_1038_s41598_024_61008_3 crossref_primary_10_1038_s41467_023_37810_4 crossref_primary_10_1038_s41559_025_02650_6 crossref_primary_10_1111_1440_1703_12193 crossref_primary_10_1080_23251042_2021_1973656 crossref_primary_10_1016_j_oneear_2021_10_016 crossref_primary_10_1093_icesjms_fsac074 crossref_primary_10_1111_jbi_14479 crossref_primary_10_1038_s41467_024_46526_y crossref_primary_10_1007_s10584_022_03418_8 crossref_primary_10_1016_j_ocecoaman_2024_107050 crossref_primary_10_3389_fmars_2023_1130827 crossref_primary_10_3389_fmars_2023_1219368 crossref_primary_10_1038_s41598_021_89192_6 crossref_primary_10_1016_j_tree_2023_09_003 crossref_primary_10_3389_fmars_2021_667048 crossref_primary_10_3390_fluids6020088 crossref_primary_10_1088_1748_9326_ad5f45 crossref_primary_10_5194_bg_21_5407_2024 crossref_primary_10_1016_j_joclim_2022_100114 crossref_primary_10_1038_s41558_022_01315_7 crossref_primary_10_1029_2022PA004502 crossref_primary_10_1029_2021JC017929 crossref_primary_10_1038_s41598_020_77222_8 crossref_primary_10_1016_j_ecolind_2024_111741 crossref_primary_10_1016_j_earscirev_2023_104540 crossref_primary_10_1016_j_dsr_2024_104386 crossref_primary_10_1038_s41598_021_82595_5 crossref_primary_10_1007_s11258_021_01152_2 crossref_primary_10_1016_j_pocean_2023_103036 crossref_primary_10_3389_fmars_2020_584861 crossref_primary_10_1016_j_dsr_2024_104390 crossref_primary_10_1038_s41558_021_01156_w crossref_primary_10_1016_j_egycc_2023_100116 crossref_primary_10_1016_j_marpol_2024_106151 crossref_primary_10_1016_j_cub_2024_04_065 crossref_primary_10_1007_s10641_022_01321_w crossref_primary_10_3389_fmars_2020_567877 crossref_primary_10_3389_fmars_2022_917985 crossref_primary_10_1016_j_marpol_2022_105006 crossref_primary_10_1016_j_pocean_2022_102792 crossref_primary_10_1016_j_oneear_2022_10_012 crossref_primary_10_1016_j_ecss_2025_109224 crossref_primary_10_3354_meps13401 crossref_primary_10_1007_s10113_022_01949_5 crossref_primary_10_1016_j_envsci_2024_103803 crossref_primary_10_3389_fmars_2023_1219799 crossref_primary_10_1016_j_dsr2_2022_105227 crossref_primary_10_3389_fclim_2021_720755 crossref_primary_10_1016_j_jpowsour_2022_232444 crossref_primary_10_3389_fmars_2021_691668 crossref_primary_10_1016_j_pocean_2021_102659 crossref_primary_10_1186_s40793_024_00622_0 crossref_primary_10_3389_fmars_2022_1045136 crossref_primary_10_1007_s42995_024_00226_0 crossref_primary_10_1111_geb_13285 crossref_primary_10_1111_faf_12569 |
Cites_doi | 10.1111/nyas.13597 10.1016/j.cub.2017.04.060 10.1038/s41559-019-1058-0 10.1111/2041-210X.12896 10.1175/JCLI-D-16-0396.1 10.1126/science.aaz9327 10.1038/nclimate1539 10.1126/science.1206432 10.1038/nature12976 10.1093/icesjms/fsn028 10.1038/nature08823 10.1126/science.1239352 10.1038/s41558-019-0631-5 10.1016/j.dsr2.2013.12.002 10.1126/science.aad0126 10.1038/s41558-018-0355-y 10.1038/nature09329 10.1126/science.aav7619 10.1016/j.tree.2018.03.009 10.1016/j.margeo.2014.01.011 10.1038/nature08649 10.1111/gcb.12680 10.1111/ele.12474 10.1073/pnas.1701262114 10.1007/s13253-015-0210-9 10.1371/journal.pone.0010223 10.1038/nclimate1958 10.1016/j.tree.2009.01.011 10.1146/annurev-environ-102014-021415 10.1038/s41598-017-01309-y 10.1371/journal.pbio.2001104 10.1093/icesjms/fsz067 10.1038/s41586-019-1132-4 10.1098/rspb.2018.0923 10.1126/science.1210288 10.1038/nclimate2769 10.1111/gcb.12736 10.1126/science.aau1758 10.1371/journal.pone.0140486 10.1002/2014JB011290 10.1111/gcb.12026 10.1111/2041-210X.13295 10.5670/oceanog.2017.116 10.1002/grl.50382 10.1126/science.aav6886 10.1038/ncomms4271 10.1038/ncomms12349 10.1038/ncomms14434 10.1038/srep17539 10.1029/2007GL030295 10.3389/fmars.2016.00062 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION 3V. 7ST 7TG 7TN 7XB 88I 8AF 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 H97 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U SOI |
DOI | 10.1038/s41558-020-0773-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1758-6798 |
EndPage | 581 |
ExternalDocumentID | 10_1038_s41558_020_0773_5 |
GrantInformation_xml | – fundername: Tenure-Track System Promotion Program of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) – fundername: Australian Government grant ARC DP190102293 – fundername: The University of Queensland Postdoctoral Fellowship – fundername: Ministry of Education, Government of Chile | Comisión Nacional de Investigación Científica y Tecnológica (National Commission for Scientific and Technological Research) grantid: 72170231 funderid: https://doi.org/10.13039/501100002848 – fundername: Fundación Bancaria “la Caixa” Postgraduate Fellowship (LCF/BQ/AA16/11580053) |
GroupedDBID | 0R~ 39C 3V. 4.4 53G 5BI 70F 88I 8AF 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACHQT ADBBV AENEX AEUYN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHDO AGHTU AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BHPHI BKKNO BKSAR BPHCQ CCPQU D1K DWQXO EBS EDH EE. EJD EXGXG FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ K6- M2P NNMJJ O9- ODYON PCBAR PQQKQ PROAC RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7ST 7TG 7TN 7XB 8FK C1K F1W H96 H97 KL. L.G PKEHL PQEST PQUKI PUEGO Q9U SOI |
ID | FETCH-LOGICAL-c410t-b537915c8eb1c9f02a84655d5a75b265a930da43b480b48f09523c726f6e1c9a3 |
IEDL.DBID | BENPR |
ISSN | 1758-678X |
IngestDate | Fri Jul 25 09:04:55 EDT 2025 Sat Aug 23 12:22:00 EDT 2025 Tue Jul 01 03:01:35 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 21 02:38:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-b537915c8eb1c9f02a84655d5a75b265a930da43b480b48f09523c726f6e1c9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7516-1835 0000-0003-1258-0885 0000-0001-9053-0037 0000-0003-0073-2431 0000-0003-4620-5899 |
PQID | 2410666395 |
PQPubID | 1056412 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2476775897 proquest_journals_2410666395 crossref_primary_10_1038_s41558_020_0773_5 crossref_citationtrail_10_1038_s41558_020_0773_5 springer_journals_10_1038_s41558_020_0773_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature climate change |
PublicationTitleAbbrev | Nat. Clim. Chang |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Carroll, Lawler, Roberts, Hamann (CR57) 2015; 10 Ashford (CR25) 2018; 285 Jorda (CR16) 2020; 4 Morgan, Pike, Moffitt (CR34) 2018; 19 Levin, Bris (CR21) 2015; 350 Webb, Berghe, O’Dor (CR8) 2010; 5 Dobrowski (CR40) 2013; 19 CR2 Sayre (CR19) 2017; 30 CR3 Hamann, Roberts, Barber, Carroll, Nielsen (CR56) 2015; 21 CR6 Rogers (CR43) 2015; 40 Burrows (CR17) 2019; 9 CR45 CR44 Wiens (CR22) 2016; 14 Roberts (CR35) 2017; 114 CR42 CR41 Eyring (CR54) 2019; 9 Game (CR30) 2009; 24 Sunday (CR51) 2015; 18 Pinsky, Worm, Fogarty, Sarmiento, Levin (CR13) 2013; 341 García Molinos (CR14) 2016; 6 Harris, Macmillan-Lawler, Rupp, Baker (CR7) 2014; 352 Balmaseda, Trenberth, Källén (CR23) 2013; 40 Burrows (CR36) 2014; 507 Tittensor (CR46) 2010; 466 Maxwell, Gjerde, Conners, Crowder (CR38) 2020; 367 Desbruyères, McDonagh, King, Thierry (CR10) 2016; 30 Burrows (CR12) 2011; 334 Venegas‐Li, Levin, Possingham, Kark (CR33) 2018; 9 Brown, Thatje (CR52) 2015; 21 Poloczanska (CR1) 2013; 3 Moss (CR18) 2010; 463 Fredston‐Hermann, Gaines, Halpern (CR39) 2018; 1429 Sen Gupta (CR49) 2015; 113 Pinsky, Eikeset, McCauley, Payne, Sunday (CR26) 2019; 569 CR15 CR53 Phrampus, Hornbach, Ruppel, Hart (CR29) 2014; 119 Visconti (CR37) 2019; 364 Costello, Chaudhary (CR5) 2017; 27 Hidalgo, Browman (CR27) 2019; 76 Richardson (CR48) 2008; 65 Chen, Hill, Ohlemüller, Roy, Thomas (CR28) 2011; 333 Sunday, Bates, Dulvy (CR47) 2012; 2 García Molinos, Schoeman, Brown, Burrows (CR50) 2019; 10 Free (CR4) 2019; 363 Schliep, Gelfand, Clark (CR55) 2015; 20 Loarie (CR11) 2009; 462 Cheng, Abraham, Hausfather, Trenberth (CR9) 2019; 363 Brito-Morales (CR32) 2018; 33 CR24 CR20 García Molinos, Burrows, Poloczanska (CR31) 2017; 7 773_CR53 TJ Webb (773_CR8) 2010; 5 C Carroll (773_CR57) 2015; 10 A Sen Gupta (773_CR49) 2015; 113 L Cheng (773_CR9) 2019; 363 773_CR15 R Venegas‐Li (773_CR33) 2018; 9 LA Levin (773_CR21) 2015; 350 MA Balmaseda (773_CR23) 2013; 40 CM Free (773_CR4) 2019; 363 I-C Chen (773_CR28) 2011; 333 EM Schliep (773_CR55) 2015; 20 JJ Wiens (773_CR22) 2016; 14 JM Sunday (773_CR47) 2012; 2 RH Moss (773_CR18) 2010; 463 773_CR41 A Fredston‐Hermann (773_CR39) 2018; 1429 773_CR42 OS Ashford (773_CR25) 2018; 285 773_CR44 773_CR45 I Brito-Morales (773_CR32) 2018; 33 ML Pinsky (773_CR26) 2019; 569 SZ Dobrowski (773_CR40) 2013; 19 ML Pinsky (773_CR13) 2013; 341 A Hamann (773_CR56) 2015; 21 V Eyring (773_CR54) 2019; 9 L Morgan (773_CR34) 2018; 19 ET Game (773_CR30) 2009; 24 AJ Richardson (773_CR48) 2008; 65 SR Loarie (773_CR11) 2009; 462 P Visconti (773_CR37) 2019; 364 D Desbruyères (773_CR10) 2016; 30 ES Poloczanska (773_CR1) 2013; 3 CM Roberts (773_CR35) 2017; 114 MT Burrows (773_CR17) 2019; 9 SM Maxwell (773_CR38) 2020; 367 PT Harris (773_CR7) 2014; 352 MT Burrows (773_CR12) 2011; 334 R Sayre (773_CR19) 2017; 30 AD Rogers (773_CR43) 2015; 40 MJ Costello (773_CR5) 2017; 27 M Hidalgo (773_CR27) 2019; 76 BJ Phrampus (773_CR29) 2014; 119 773_CR20 J García Molinos (773_CR31) 2017; 7 773_CR24 JM Sunday (773_CR51) 2015; 18 A Brown (773_CR52) 2015; 21 773_CR3 MT Burrows (773_CR36) 2014; 507 J García Molinos (773_CR14) 2016; 6 773_CR6 DP Tittensor (773_CR46) 2010; 466 J García Molinos (773_CR50) 2019; 10 773_CR2 G Jorda (773_CR16) 2020; 4 |
References_xml | – volume: 1429 start-page: 5 year: 2018 end-page: 17 ident: CR39 article-title: Biogeographic constraints to marine conservation in a changing climate publication-title: Ann. NY Acad. Sci. doi: 10.1111/nyas.13597 – ident: CR45 – volume: 27 start-page: R511 year: 2017 end-page: R527 ident: CR5 article-title: Marine biodiversity, biogeography, deep-sea gradients, and conservation publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.04.060 – volume: 4 start-page: 109 year: 2020 end-page: 114 ident: CR16 article-title: Ocean warming compresses the three-dimensional habitat of marine life publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-1058-0 – volume: 9 start-page: 773 year: 2018 end-page: 784 ident: CR33 article-title: 3D spatial conservation prioritisation: accounting for depth in marine environments publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12896 – volume: 30 start-page: 1985 year: 2016 end-page: 1997 ident: CR10 article-title: Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography publication-title: J. Climate doi: 10.1175/JCLI-D-16-0396.1 – volume: 367 start-page: 252 year: 2020 end-page: 254 ident: CR38 article-title: Mobile protected areas for biodiversity on the high seas publication-title: Science doi: 10.1126/science.aaz9327 – volume: 2 start-page: 686 year: 2012 end-page: 690 ident: CR47 article-title: Thermal tolerance and the global redistribution of animals publication-title: Nat. Clim. Change doi: 10.1038/nclimate1539 – volume: 333 start-page: 1024 year: 2011 end-page: 1026 ident: CR28 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science doi: 10.1126/science.1206432 – volume: 507 start-page: 492 year: 2014 end-page: 495 ident: CR36 article-title: Geographical limits to species-range shifts are suggested by climate velocity publication-title: Nature doi: 10.1038/nature12976 – ident: CR42 – volume: 65 start-page: 279 year: 2008 end-page: 295 ident: CR48 article-title: In hot water: zooplankton and climate change publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsn028 – volume: 463 start-page: 747 year: 2010 end-page: 756 ident: CR18 article-title: The next generation of scenarios for climate change research and assessment publication-title: Nature doi: 10.1038/nature08823 – volume: 341 start-page: 1239 year: 2013 end-page: 1242 ident: CR13 article-title: Marine taxa track local climate velocities publication-title: Science doi: 10.1126/science.1239352 – ident: CR15 – volume: 364 start-page: 239 year: 2019 end-page: 241 ident: CR37 article-title: Protected area targets post-2020 publication-title: Science – volume: 9 start-page: 959 year: 2019 end-page: 963 ident: CR17 article-title: Ocean community warming responses explained by thermal affinities and temperature gradients publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0631-5 – volume: 113 start-page: 59 year: 2015 end-page: 72 ident: CR49 article-title: Episodic and non-uniform shifts of thermal habitats in a warming ocean publication-title: Deep Sea Res. Part II doi: 10.1016/j.dsr2.2013.12.002 – volume: 350 start-page: 766 year: 2015 end-page: 768 ident: CR21 article-title: The deep ocean under climate change publication-title: Science doi: 10.1126/science.aad0126 – volume: 9 start-page: 102 year: 2019 end-page: 110 ident: CR54 article-title: Taking climate model evaluation to the next level publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0355-y – volume: 466 start-page: 1098 year: 2010 end-page: 1101 ident: CR46 article-title: Global patterns and predictors of marine biodiversity across taxa publication-title: Nature doi: 10.1038/nature09329 – volume: 363 start-page: 128 year: 2019 end-page: 129 ident: CR9 article-title: How fast are the oceans warming? publication-title: Science doi: 10.1126/science.aav7619 – volume: 33 start-page: 441 year: 2018 end-page: 457 ident: CR32 article-title: Climate velocity can inform conservation in a warming world publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2018.03.009 – volume: 352 start-page: 4 year: 2014 end-page: 24 ident: CR7 article-title: Geomorphology of the oceans publication-title: Mar. Geol. doi: 10.1016/j.margeo.2014.01.011 – volume: 462 start-page: 1052 year: 2009 end-page: 1055 ident: CR11 article-title: The velocity of climate change publication-title: Nature doi: 10.1038/nature08649 – volume: 21 start-page: 173 year: 2015 end-page: 180 ident: CR52 article-title: The effects of changing climate on faunal depth distributions determine winners and losers publication-title: Glob. Change Biol. doi: 10.1111/gcb.12680 – volume: 19 start-page: 148 year: 2018 end-page: 151 ident: CR34 article-title: How much of the ocean is protected? publication-title: Biodiversity – volume: 18 start-page: 944 year: 2015 end-page: 953 ident: CR51 article-title: Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot publication-title: Ecol. Lett. doi: 10.1111/ele.12474 – ident: CR2 – ident: CR53 – volume: 114 start-page: 6167 year: 2017 end-page: 6175 ident: CR35 article-title: Marine reserves can mitigate and promote adaptation to climate change publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1701262114 – volume: 20 start-page: 323 year: 2015 end-page: 342 ident: CR55 article-title: Stochastic modeling for velocity of climate change publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-015-0210-9 – volume: 5 start-page: e10223 year: 2010 ident: CR8 article-title: Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean publication-title: PLoS ONE doi: 10.1371/journal.pone.0010223 – volume: 3 start-page: 919 year: 2013 end-page: 925 ident: CR1 article-title: Global imprint of climate change on marine life publication-title: Nat. Clim Change doi: 10.1038/nclimate1958 – volume: 24 start-page: 360 year: 2009 end-page: 369 ident: CR30 article-title: Pelagic protected areas: the missing dimension in ocean conservation publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2009.01.011 – volume: 40 start-page: 1 year: 2015 end-page: 38 ident: CR43 article-title: Environmental change in the deep ocean publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-102014-021415 – ident: CR6 – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: CR31 article-title: Ocean currents modify the coupling between climate change and biogeographical shifts publication-title: Sci. Rep. doi: 10.1038/s41598-017-01309-y – volume: 14 start-page: e2001104 year: 2016 ident: CR22 article-title: Climate-related local extinctions are already widespread among plant and animal species publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2001104 – volume: 76 start-page: 609 year: 2019 end-page: 615 ident: CR27 article-title: Developing the knowledge base needed to sustainably manage mesopelagic resources publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz067 – volume: 569 start-page: 108 year: 2019 end-page: 111 ident: CR26 article-title: Greater vulnerability to warming of marine versus terrestrial ectotherms publication-title: Nature doi: 10.1038/s41586-019-1132-4 – volume: 285 start-page: 20180923 year: 2018 ident: CR25 article-title: Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2018.0923 – ident: CR44 – volume: 334 start-page: 652 year: 2011 end-page: 655 ident: CR12 article-title: The pace of shifting climate in marine and terrestrial ecosystems publication-title: Science doi: 10.1126/science.1210288 – volume: 6 start-page: 83 year: 2016 end-page: 88 ident: CR14 article-title: Climate velocity and the future global redistribution of marine biodiversity publication-title: Nat. Clim. Change doi: 10.1038/nclimate2769 – volume: 21 start-page: 997 year: 2015 end-page: 1004 ident: CR56 article-title: Velocity of climate change algorithms for guiding conservation and management publication-title: Glob. Change Biol. doi: 10.1111/gcb.12736 – ident: CR3 – volume: 363 start-page: 979 year: 2019 end-page: 983 ident: CR4 article-title: Impacts of historical warming on marine fisheries production publication-title: Science doi: 10.1126/science.aau1758 – volume: 10 start-page: e0140486 year: 2015 ident: CR57 article-title: Biotic and climatic velocity identify contrasting areas of vulnerability to climate change publication-title: PLoS ONE doi: 10.1371/journal.pone.0140486 – volume: 119 start-page: 8594 year: 2014 end-page: 8609 ident: CR29 article-title: Widespread gas hydrate instability on the upper U.S. Beaufort margin publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011290 – volume: 19 start-page: 241 year: 2013 end-page: 251 ident: CR40 article-title: The climate velocity of the contiguous United States during the 20th century publication-title: Glob. Change Biol. doi: 10.1111/gcb.12026 – ident: CR41 – volume: 10 start-page: 2195 year: 2019 end-page: 2202 ident: CR50 article-title: VoCC: an R package for calculating the velocity of climate change and related climatic metrics publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13295 – ident: CR24 – ident: CR20 – volume: 30 start-page: 90 year: 2017 end-page: 103 ident: CR19 article-title: A three-dimensional mapping of the ocean based on environmental data publication-title: Oceanography doi: 10.5670/oceanog.2017.116 – volume: 40 start-page: 1754 year: 2013 end-page: 1759 ident: CR23 article-title: Distinctive climate signals in reanalysis of global ocean heat content publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50382 – volume: 9 start-page: 959 year: 2019 ident: 773_CR17 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0631-5 – volume: 367 start-page: 252 year: 2020 ident: 773_CR38 publication-title: Science doi: 10.1126/science.aaz9327 – volume: 113 start-page: 59 year: 2015 ident: 773_CR49 publication-title: Deep Sea Res. Part II doi: 10.1016/j.dsr2.2013.12.002 – volume: 14 start-page: e2001104 year: 2016 ident: 773_CR22 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2001104 – volume: 40 start-page: 1754 year: 2013 ident: 773_CR23 publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50382 – volume: 285 start-page: 20180923 year: 2018 ident: 773_CR25 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2018.0923 – volume: 65 start-page: 279 year: 2008 ident: 773_CR48 publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsn028 – volume: 350 start-page: 766 year: 2015 ident: 773_CR21 publication-title: Science doi: 10.1126/science.aad0126 – volume: 1429 start-page: 5 year: 2018 ident: 773_CR39 publication-title: Ann. NY Acad. Sci. doi: 10.1111/nyas.13597 – volume: 507 start-page: 492 year: 2014 ident: 773_CR36 publication-title: Nature doi: 10.1038/nature12976 – volume: 20 start-page: 323 year: 2015 ident: 773_CR55 publication-title: J. Agric. Biol. Environ. Stat. doi: 10.1007/s13253-015-0210-9 – volume: 9 start-page: 102 year: 2019 ident: 773_CR54 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0355-y – ident: 773_CR45 – volume: 364 start-page: 239 year: 2019 ident: 773_CR37 publication-title: Science doi: 10.1126/science.aav6886 – volume: 569 start-page: 108 year: 2019 ident: 773_CR26 publication-title: Nature doi: 10.1038/s41586-019-1132-4 – volume: 7 start-page: 1 year: 2017 ident: 773_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-017-01309-y – volume: 19 start-page: 148 year: 2018 ident: 773_CR34 publication-title: Biodiversity – volume: 3 start-page: 919 year: 2013 ident: 773_CR1 publication-title: Nat. Clim Change doi: 10.1038/nclimate1958 – ident: 773_CR3 – volume: 462 start-page: 1052 year: 2009 ident: 773_CR11 publication-title: Nature doi: 10.1038/nature08649 – volume: 27 start-page: R511 year: 2017 ident: 773_CR5 publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.04.060 – volume: 21 start-page: 173 year: 2015 ident: 773_CR52 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12680 – volume: 463 start-page: 747 year: 2010 ident: 773_CR18 publication-title: Nature doi: 10.1038/nature08823 – volume: 5 start-page: e10223 year: 2010 ident: 773_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0010223 – volume: 4 start-page: 109 year: 2020 ident: 773_CR16 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-1058-0 – volume: 2 start-page: 686 year: 2012 ident: 773_CR47 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1539 – volume: 352 start-page: 4 year: 2014 ident: 773_CR7 publication-title: Mar. Geol. doi: 10.1016/j.margeo.2014.01.011 – volume: 10 start-page: 2195 year: 2019 ident: 773_CR50 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13295 – volume: 334 start-page: 652 year: 2011 ident: 773_CR12 publication-title: Science doi: 10.1126/science.1210288 – ident: 773_CR44 – ident: 773_CR6 doi: 10.1038/ncomms4271 – volume: 363 start-page: 128 year: 2019 ident: 773_CR9 publication-title: Science doi: 10.1126/science.aav7619 – volume: 19 start-page: 241 year: 2013 ident: 773_CR40 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12026 – volume: 333 start-page: 1024 year: 2011 ident: 773_CR28 publication-title: Science doi: 10.1126/science.1206432 – volume: 119 start-page: 8594 year: 2014 ident: 773_CR29 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011290 – ident: 773_CR41 doi: 10.1038/ncomms12349 – volume: 76 start-page: 609 year: 2019 ident: 773_CR27 publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz067 – volume: 18 start-page: 944 year: 2015 ident: 773_CR51 publication-title: Ecol. Lett. doi: 10.1111/ele.12474 – volume: 24 start-page: 360 year: 2009 ident: 773_CR30 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2009.01.011 – volume: 6 start-page: 83 year: 2016 ident: 773_CR14 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2769 – volume: 10 start-page: e0140486 year: 2015 ident: 773_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0140486 – ident: 773_CR15 doi: 10.1038/ncomms14434 – volume: 30 start-page: 1985 year: 2016 ident: 773_CR10 publication-title: J. Climate doi: 10.1175/JCLI-D-16-0396.1 – volume: 363 start-page: 979 year: 2019 ident: 773_CR4 publication-title: Science doi: 10.1126/science.aau1758 – volume: 9 start-page: 773 year: 2018 ident: 773_CR33 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12896 – volume: 21 start-page: 997 year: 2015 ident: 773_CR56 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12736 – volume: 114 start-page: 6167 year: 2017 ident: 773_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1701262114 – ident: 773_CR24 – ident: 773_CR53 doi: 10.1038/srep17539 – ident: 773_CR20 – volume: 341 start-page: 1239 year: 2013 ident: 773_CR13 publication-title: Science doi: 10.1126/science.1239352 – ident: 773_CR42 doi: 10.1029/2007GL030295 – volume: 40 start-page: 1 year: 2015 ident: 773_CR43 publication-title: Annu. Rev. Environ. Resour. doi: 10.1146/annurev-environ-102014-021415 – ident: 773_CR2 doi: 10.3389/fmars.2016.00062 – volume: 33 start-page: 441 year: 2018 ident: 773_CR32 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2018.03.009 – volume: 30 start-page: 90 year: 2017 ident: 773_CR19 publication-title: Oceanography doi: 10.5670/oceanog.2017.116 – volume: 466 start-page: 1098 year: 2010 ident: 773_CR46 publication-title: Nature doi: 10.1038/nature09329 |
SSID | ssj0000716369 |
Score | 2.6116943 |
Snippet | Slower warming in the deep ocean encourages a perception that its biodiversity is less exposed to climate change than that of surface waters. We challenge this... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 576 |
SubjectTerms | 631/158/2165 704/106/694/2739 704/829 Adaptation Biodiversity Climate adaptation Climate Change Climate Change/Climate Change Impacts Climatic analysis Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Fishing Greenhouse gases Mitigation Ocean warming Oceans Protected areas Surface water Velocity |
Title | Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming |
URI | https://link.springer.com/article/10.1038/s41558-020-0773-5 https://www.proquest.com/docview/2410666395 https://www.proquest.com/docview/2476775897 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9cUXqV94tso-iA_K0jX7mQeRtrQUoYeIhfMp7FfkoCRne6J_vjObpIdC-xDCslk2zExmfjszmQF4QzXSnEmKZxlKmBH1YCsrHmKtRaqDiqV_ysXCnF-qz0u93IHF9C8MpVVOOrEo6tRH8pEfoqUhqC1r_Wn9k1PXKIquTi00_NhaIX0sJcYewC6qZC1msHt8uvjy9dbrggbVyNLnDs2m4_ieyynUKd3hDVlXx-lEJayVXP9rrLYI9L-gabFFZ3vwaASR7Gjg-mPYyd0TmF8g_u2vi5ucvWUnVysEo2X0FL4Po8woQygi8GZUuQklj606go3kMGD5z7onfyHrW5ZyXnM0bb5jYdWnKXmDbXo2VCFhvz1l0fx4Bpdnp99OzvnYVIFHpOCGBy1t_UFHh0o61q2ovKMSakl7q0NltK-lSF7JoJzAq0UIVsloK9OajAu8fA6zru_yC2CmagMaNzwEKadavHtVh0qo3BqbnBRzEBP1mjhWHKfGF1dNiXxL1wwEb5DgDRG80XN4d7tkPZTbuO_hg4klzfjl3TRbOblj2hqLrK_tHN5PXNxO37nXy_v32oeHVREbcs8cwGxz_Su_QrSyCa9HEfwLjp3kmw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuFU-xpQUfgAPIavA7hwpBabWl3RVCrbScQpw4aKUqWbqLCn-uv40ZJ-kKpPbWQxRFjm1pZuz5PDOeAXhJOdKcKRUP0kc3I-6DlRTcF6lOytSrItZPGU_M6FR9nurpGlz2d2EorLLfE-NGXTYF2ch3UNMQ1Japfj__yalqFHlX-xIaeVdaodyNKca6ix1H4c8FHuEWu4efkN-vhDjYP9kb8a7KAC9wyCX3Wtr0nS4c7lpFWiUid5RTrNS51V4YnacyKXMlvXIJPhViEiELK0xlAnbIJY57B9YVGVAGsP5xf_Ll65WVBxW4kbGuHqppx5Eu0961Kt3OgrS543SCS6yVXP-rHFeI9z8nbdR9B_dhowOt7EMrZQ9gLdQPYThGvN2cR7M8e832zmYIfuPXI_jWfgVGEUkFAn1GmaJQ0tmsJphKBgoWfs8bsk-ypmJlCHOOqjSvmZ81ZR8swpYNa7OesIuconZ-PIbTWyHvExjUTR2eAjOi8qhM8dClnKrwnavUi0SFytjSyWQISU-9rOgynFOhjbMsetqly1qCZ0jwjAie6SG8ueoyb9N73PTzVs-SrFvpi2wll9c0W2OR9akdwtuei6vma-favHmuF3B3dDI-zo4PJ0fP4J6IIkSmoS0YLM9_hW1ESkv_vBNHBt9vewX8BRnvIDE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1BfFF6heerZoH9UEJt-Z7H0rRtkdr7VHEwvkUN19yUHavvSvVf9G_qpPsbg-F9q0Py7LsJoHJJL9fZmZnEHqTcqRp6TkJzGY3I-yDkVFiXSkKX1rucv2Uo7HcP-FfJmKygv72_8KksMp-T8wbtW9cspEPAWkS1WalGMYuLOJ4d7Q9OyOpglTytPblNKquzILfyunGup88DsOfSzjOzbcOdmHu31I62vu-s0-6igPEQfcLYgVT5UfhNOxgrowFrXTKL-ZFpYSlUlQlK3zFmeW6gCsCP6HMKSqjDNCgYtDvPbSmAPXhILj2eW98_O3a4gNgLlmusQeQrQnIaNK7WZkezhOya5JOc4VSjIh_gXLJfv9z2GYcHK2jhx2BxZ9ajXuEVkL9GA2OgHs359lEj9_hndMpEOH89AT9aJ8CTtFJDkg_TlmjQOvxtE6UNRkrcPg9a5KtEjcR-xBmBGC1qrGdNr4PHMGLBrcZUPBllSJ4fj1FJ3ci3mdotW7q8BxhSaMFYIUDGNc8wr3ipaUFD1Eqr1kxQEUvPeO6bOep6MapyV53pk0rcAMCN0ngRgzQ--smszbVx20fb_ZTYrpVPzdLHb3htZIKpr5UA_Shn8Xl6xvHenH7WK_RfVgJ5uvB-HADPaBZg5KVaBOtLs4vwksgTQv7qtNGjH7e9QK4AtUsJHU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+velocity+reveals+increasing+exposure+of+deep-ocean+biodiversity+to+future+warming&rft.jtitle=Nature+climate+change&rft.au=Brito-Morales%2C+Isaac&rft.au=Schoeman%2C+David+S.&rft.au=Molinos%2C+Jorge+Garc%C3%ADa&rft.au=Burrows%2C+Michael+T.&rft.date=2020-06-01&rft.issn=1758-678X&rft.eissn=1758-6798&rft.volume=10&rft.issue=6&rft.spage=576&rft.epage=581&rft_id=info:doi/10.1038%2Fs41558-020-0773-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41558_020_0773_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-678X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-678X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-678X&client=summon |