DPb-MOPSO: A Dynamic Pareto bi-level Multi-objective Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-objective problems (DMOPs). Tracking the most effective solutions over time and ensu...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 129; p. 109622
Main Authors Aboud, Ahlem, Rokbani, Nizar, Fdhila, Raja, Qahtani, Abdulrahman M., Almutiry, Omar, Dhahri, Habib, Hussain, Amir, Alimi, Adel M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
1872-9681
DOI10.1016/j.asoc.2022.109622

Cover

Abstract Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-objective problems (DMOPs). Tracking the most effective solutions over time and ensuring good exploitation and exploration are the main challenges of solving DMOP. This study proposes a Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm including two parallel optimization levels. At the first level, all solutions are managed in a single search space. When a dynamic change is successfully detected in the objective values, the Pareto ranking operator is used to enable multiple sub-swarm’ subdivisions and processing which drives the second level of enhanced exploitation. A dynamic handling strategy based on random detectors is used to track the changes in the objective function due to time-varying parameters. A response strategy consisting in reevaluating all unimproved solutions and replacing them with newly generated ones is also implemented. The DPb-MOPSO system is tested on DMOPs with different types of time-varying Pareto Optimal Set (POS) and Pareto Optimal Front (POF). Inverted generational distance (IGD), mean inverted generational distance (MIGD), hypervolume difference (HVD), Robust IGD (RIGD), and Robust General Distance (RGD) metrics are used to assess the DPb-MOPSO performance. Quantitative results are analyzed using Friedman’s analysis of variance, and the Wilcoxon sum ranks test, while the stability is analyzed using Lyapunov’s theorem. The DPb-MOPSO is more robust than several dynamic multi-objective evolutionary algorithms in solving 21 complex problems over a range of changes in both the POS and POF. On IGD and HVD, DPb-MOPSO can solve 8/13 and 8/13 of the 13 UDF and ZJZ functions with moderate changes. DPb-MOPSO can resolve 7/8 FDA and DMOP benchmarks with severe changes to the MIGD, and 6/8 with moderate changes. DPb-MOPSO assumes 7/8, 6/8, and 5/8 for solving FDA, and dMOP functions on IGD and 6/8, 5/8, and 5/8 on HVD metrics considering severe, moderate, and slight environmental changes respectively. Also, it is the winner for solving 8 DMOPs based on RIGD, and RGD metrics. •Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO).•Distributed MOPSO allows higher diversity during the search process.•Distributed sub-swarms conduct independent search with separate pools of best solutions.•The DPb-MOPSO system includes a dynamic handling strategy to manage the evolution of the search space.•The dynamic switch mechanism allows to recover from any engagement within a local optimum.
AbstractList Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-objective problems (DMOPs). Tracking the most effective solutions over time and ensuring good exploitation and exploration are the main challenges of solving DMOP. This study proposes a Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm including two parallel optimization levels. At the first level, all solutions are managed in a single search space. When a dynamic change is successfully detected in the objective values, the Pareto ranking operator is used to enable multiple sub-swarm’ subdivisions and processing which drives the second level of enhanced exploitation. A dynamic handling strategy based on random detectors is used to track the changes in the objective function due to time-varying parameters. A response strategy consisting in reevaluating all unimproved solutions and replacing them with newly generated ones is also implemented. The DPb-MOPSO system is tested on DMOPs with different types of time-varying Pareto Optimal Set (POS) and Pareto Optimal Front (POF). Inverted generational distance (IGD), mean inverted generational distance (MIGD), hypervolume difference (HVD), Robust IGD (RIGD), and Robust General Distance (RGD) metrics are used to assess the DPb-MOPSO performance. Quantitative results are analyzed using Friedman’s analysis of variance, and the Wilcoxon sum ranks test, while the stability is analyzed using Lyapunov’s theorem. The DPb-MOPSO is more robust than several dynamic multi-objective evolutionary algorithms in solving 21 complex problems over a range of changes in both the POS and POF. On IGD and HVD, DPb-MOPSO can solve 8/13 and 8/13 of the 13 UDF and ZJZ functions with moderate changes. DPb-MOPSO can resolve 7/8 FDA and DMOP benchmarks with severe changes to the MIGD, and 6/8 with moderate changes. DPb-MOPSO assumes 7/8, 6/8, and 5/8 for solving FDA, and dMOP functions on IGD and 6/8, 5/8, and 5/8 on HVD metrics considering severe, moderate, and slight environmental changes respectively. Also, it is the winner for solving 8 DMOPs based on RIGD, and RGD metrics. •Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO).•Distributed MOPSO allows higher diversity during the search process.•Distributed sub-swarms conduct independent search with separate pools of best solutions.•The DPb-MOPSO system includes a dynamic handling strategy to manage the evolution of the search space.•The dynamic switch mechanism allows to recover from any engagement within a local optimum.
ArticleNumber 109622
Author Dhahri, Habib
Hussain, Amir
Aboud, Ahlem
Qahtani, Abdulrahman M.
Rokbani, Nizar
Fdhila, Raja
Almutiry, Omar
Alimi, Adel M.
Author_xml – sequence: 1
  givenname: Ahlem
  orcidid: 0000-0003-3915-7104
  surname: Aboud
  fullname: Aboud, Ahlem
  email: ahlem.aboud@regim.usf.tn
  organization: University of Sousse, ISITCom, 4011, Sousse, Tunisia
– sequence: 2
  givenname: Nizar
  orcidid: 0000-0003-4848-5855
  surname: Rokbani
  fullname: Rokbani, Nizar
  email: nizar.rokbani@ieee.org
  organization: REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia
– sequence: 3
  givenname: Raja
  surname: Fdhila
  fullname: Fdhila, Raja
  email: raja.fdhila@ieee.org
  organization: REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia
– sequence: 4
  givenname: Abdulrahman M.
  surname: Qahtani
  fullname: Qahtani, Abdulrahman M.
  email: amqahtani@tu.edu.sa
  organization: Department of Computer Science, College of Computers and Information Technology, Taif University, P.O.Box. 11099, Taif 21944, Saudi Arabia
– sequence: 5
  givenname: Omar
  surname: Almutiry
  fullname: Almutiry, Omar
  email: oalmutiry@ksu.edu.sa
  organization: College of Applied Computer Science, King Saud University, Riyadh, Saudi Arabia
– sequence: 6
  givenname: Habib
  orcidid: 0000-0003-4668-7840
  surname: Dhahri
  fullname: Dhahri, Habib
  email: hdhahri@ksu.edu.sa
  organization: College of Applied Computer Science, King Saud University, Riyadh, Saudi Arabia
– sequence: 7
  givenname: Amir
  surname: Hussain
  fullname: Hussain, Amir
  email: a.hussain@napier.ac.uk
  organization: Edinburgh Napier University, School of Computing, Edinburgh EH10 5DT, Scotland, UK
– sequence: 8
  givenname: Adel M.
  surname: Alimi
  fullname: Alimi, Adel M.
  email: adel.alimi@ieee.org
  organization: REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia
BookMark eNqNkE1OwzAQRi1UJNrCBVjlAim2kyYOYlO1_ElFqVTYsLHsiQOunLhy3Fbl9CSEFYuK1Yzm05vRvBEa1LZWCF0TPCGYJDebiWgsTCimtB1kCaVnaEhYSsMsYWTQ9tOEhXEWJxdo1DQb3EIZZUP0vljJ8CVfrfPbYBYsjrWoNAQr4ZS3gdShUXtlgped8Tq0cqPA673qcq_BqGB9EK4K8q3Xlf4SXts6mJkP67T_rC7ReSlMo65-6xi9Pdy_zp_CZf74PJ8tQ4gJ9qHISiYzksiSAInlNEpTKLIyJhClREWMFQRDzKBUWQqlwClICawQFKsURCKiMYr6vbt6K44HYQzfOl0Jd-QE804P3_BOD-_08F5PS7GeAmebxqmSg_Y_H3gntDmN0j_ov-7d9ZBqVey1crwBrWpQhXatVV5YfQr_Bmyyk_U
CitedBy_id crossref_primary_10_3390_app12199627
crossref_primary_10_1016_j_energy_2023_129784
crossref_primary_10_1016_j_asoc_2023_111081
crossref_primary_10_1108_K_11_2023_2491
crossref_primary_10_3390_app13031246
crossref_primary_10_1007_s11356_023_25573_w
crossref_primary_10_1061_JIDEDH_IRENG_10103
crossref_primary_10_1109_ACCESS_2024_3426104
crossref_primary_10_1111_exsy_13410
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1049_cth2_12648
crossref_primary_10_1016_j_chaos_2024_114695
crossref_primary_10_1038_s41598_023_40080_1
crossref_primary_10_1016_j_asoc_2024_111317
crossref_primary_10_1016_j_marpolbul_2024_117214
crossref_primary_10_1016_j_ins_2024_120794
crossref_primary_10_1016_j_buildenv_2024_111185
crossref_primary_10_3390_sym14122619
Cites_doi 10.1109/TEVC.2016.2574621
10.1109/4235.585893
10.1109/TSMC.2018.2884523
10.1504/IJBIC.2016.079575
10.1016/j.advengsoft.2011.05.014
10.1109/TCYB.2020.2989465
10.1109/TSMCA.2011.2159585
10.1016/j.asoc.2007.07.005
10.3390/s91209977
10.1109/4235.996017
10.1007/s00500-020-05406-5
10.1109/TEVC.2007.892759
10.1016/j.swevo.2011.02.002
10.1162/106365602760234108
10.1109/TEVC.2019.2951217
10.1109/TEVC.2008.920671
10.1109/TNNLS.2018.2846646
10.1109/TEVC.2004.831456
10.1162/ARTL_r_00209
10.1109/TCYB.2013.2245892
10.1109/TCYB.2015.2490738
10.1109/TEVC.2017.2771451
10.1109/TEVC.2019.2925722
10.1016/j.swevo.2019.03.015
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.asoc.2022.109622
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID oai:repository@napier.ac.uk:2940981
10_1016_j_asoc_2022_109622
S1568494622006718
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c410t-a9f8b916bf1c14b5377cd9f41c371e388d10c48cfe97cfa07cbbc8da20e7ca6a3
IEDL.DBID .~1
ISSN 1568-4946
1872-9681
IngestDate Fri Oct 03 06:31:51 EDT 2025
Wed Oct 29 21:27:00 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Fri Feb 23 02:42:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dynamic response
Wilcoxon test
Dynamic multi-objective optimization problem
Dynamic particle swarm optimization
Lyapunov theorem
Detectors
Friedman analysis of variance
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-a9f8b916bf1c14b5377cd9f41c371e388d10c48cfe97cfa07cbbc8da20e7ca6a3
ORCID 0000-0003-4668-7840
0000-0003-3915-7104
0000-0003-4848-5855
OpenAccessLink https://proxy.k.utb.cz/login?url=http://researchrepository.napier.ac.uk/Output/2940981
ParticipantIDs unpaywall_primary_10_1016_j_asoc_2022_109622
crossref_citationtrail_10_1016_j_asoc_2022_109622
crossref_primary_10_1016_j_asoc_2022_109622
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109622
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Muruganantham, Tan, Vadakkepat (b20) 2016; 46
Aboud, Fdhila, Alimi (b13) 2017
Zhang (b7) 2008; 8
Nichele (b50) 2016; 22
Lyapunov (b49) 2007
Nasiri, Meybodi (b12) 2016; 8
Guo, Zhang, Gong, Zhang, Yang (b44) 2020; 24
Song, Chen, Gu, Yuan, Kwong, Zhang (b4) 2021; 51
Deb, Pratap, Agarwal, Meyarivan (b2) 2002; 6
Li, Zhang (b30) 2009; 13
Hu, Eberhart (b11) 2002
Wang, Li (b5) 2012; 42
Azzouz, Bechikh, ben Said (b34) 2015; 21
Hughes (b37) 2007
Carlisle, Dozier (b10) 2001
Lee, Kim (b27) 2014
Deb, Jain (b29) 2013
Azzouz, Bechikh, ben Said (b14) 2017; 20
Kennedy, Eberhart (b3) 1995
Aboud, Fdhila, Alimi (b18) 2017; vol. 10637
Raquel, Naval (b40) 2005
Rokbani (b47) 2021; 25
Zhang, Li (b24) 2007; 11
Ji, Guo, Gao, Gong, Wang (b48) 2021
Raquel, Yao (b31) 2013; 490
Derrac, García, Molina, Herrera (b46) 2011; 1
Coello Coello, Lechuga (b17) 2002
B, C (b51) 2002; 66
Wolpert, Macready (b39) 1997; 1
Cámara, Ortega, Toro (b36) 2007
Guo, Yang, Chen, Cheng, Gong (b23) 2019; 48
Durillo, Nebro (b45) 2011; 42
Farina, Deb, Amato (b1) 2004; 8
Goh, Tan (b25) 2009; 13
Taguchi, Jugulum, Taguchi (b42) 2004
Zhou, Jin, Zhang (b26) 2014; 44
Fdhila, Walha, Hamdani, Alimi (b15) 2014
Azzouz, Bechikh, ben Said (b33) 2015
Liu, Wang (b8) 2007
Chen, Li, Chen (b6) 2009
Jiang, Huang, Qiu, Huang, Yen (b22) 2018; 22
Bhattacharya, Konar, Das, Han (b52) 2009; 9
Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (b32) 2018
Jiang, Wang, Qiu, Guo, Gao, Tan (b16) 2020; 51
Kim, Hiroyasu, Miki, Watanabe (b28) 2004; vol. 3242
Laumanns, Thiele, Deb, Zitzler (b41) 2002; 10
Biswas, Das, Suganthan, Coello (b35) 2014
Seifollahi-Aghmiuni, Bozorg Haddad (b38) 2018; 32
Gao, Zhou, Wang, Cheng, Yachi, Wang (b43) 2019; 30
Jiang, Yang (b19) 2017; 21
Deb, N., Karthik (b9) 2007; vol. 4403
Cao, Xu, Goodman, Bao, Zhu (b21) 2020; 24
Wolpert (10.1016/j.asoc.2022.109622_b39) 1997; 1
Rokbani (10.1016/j.asoc.2022.109622_b47) 2021; 25
Aboud (10.1016/j.asoc.2022.109622_b18) 2017; vol. 10637
Hughes (10.1016/j.asoc.2022.109622_b37) 2007
Nichele (10.1016/j.asoc.2022.109622_b50) 2016; 22
Carlisle (10.1016/j.asoc.2022.109622_b10) 2001
Azzouz (10.1016/j.asoc.2022.109622_b14) 2017; 20
Gao (10.1016/j.asoc.2022.109622_b43) 2019; 30
Azzouz (10.1016/j.asoc.2022.109622_b34) 2015; 21
Song (10.1016/j.asoc.2022.109622_b4) 2021; 51
Jiang (10.1016/j.asoc.2022.109622_b22) 2018; 22
Kim (10.1016/j.asoc.2022.109622_b28) 2004; vol. 3242
Deb (10.1016/j.asoc.2022.109622_b2) 2002; 6
Li (10.1016/j.asoc.2022.109622_b30) 2009; 13
Bhattacharya (10.1016/j.asoc.2022.109622_b52) 2009; 9
Laumanns (10.1016/j.asoc.2022.109622_b41) 2002; 10
Chen (10.1016/j.asoc.2022.109622_b6) 2009
Jiang (10.1016/j.asoc.2022.109622_b16) 2020; 51
Aboud (10.1016/j.asoc.2022.109622_b13) 2017
Coello Coello (10.1016/j.asoc.2022.109622_b17) 2002
Biswas (10.1016/j.asoc.2022.109622_b35) 2014
Jiang (10.1016/j.asoc.2022.109622_b19) 2017; 21
Taguchi (10.1016/j.asoc.2022.109622_b42) 2004
Guo (10.1016/j.asoc.2022.109622_b23) 2019; 48
Jiang (10.1016/j.asoc.2022.109622_b32) 2018
Derrac (10.1016/j.asoc.2022.109622_b46) 2011; 1
Zhang (10.1016/j.asoc.2022.109622_b24) 2007; 11
Nasiri (10.1016/j.asoc.2022.109622_b12) 2016; 8
Lyapunov (10.1016/j.asoc.2022.109622_b49) 2007
Cámara (10.1016/j.asoc.2022.109622_b36) 2007
Lee (10.1016/j.asoc.2022.109622_b27) 2014
Muruganantham (10.1016/j.asoc.2022.109622_b20) 2016; 46
Durillo (10.1016/j.asoc.2022.109622_b45) 2011; 42
Farina (10.1016/j.asoc.2022.109622_b1) 2004; 8
Deb (10.1016/j.asoc.2022.109622_b29) 2013
Azzouz (10.1016/j.asoc.2022.109622_b33) 2015
B (10.1016/j.asoc.2022.109622_b51) 2002; 66
Seifollahi-Aghmiuni (10.1016/j.asoc.2022.109622_b38) 2018; 32
Liu (10.1016/j.asoc.2022.109622_b8) 2007
Raquel (10.1016/j.asoc.2022.109622_b31) 2013; 490
Cao (10.1016/j.asoc.2022.109622_b21) 2020; 24
Zhou (10.1016/j.asoc.2022.109622_b26) 2014; 44
Ji (10.1016/j.asoc.2022.109622_b48) 2021
Zhang (10.1016/j.asoc.2022.109622_b7) 2008; 8
Guo (10.1016/j.asoc.2022.109622_b44) 2020; 24
Wang (10.1016/j.asoc.2022.109622_b5) 2012; 42
Goh (10.1016/j.asoc.2022.109622_b25) 2009; 13
Fdhila (10.1016/j.asoc.2022.109622_b15) 2014
Raquel (10.1016/j.asoc.2022.109622_b40) 2005
Deb (10.1016/j.asoc.2022.109622_b9) 2007; vol. 4403
Hu (10.1016/j.asoc.2022.109622_b11) 2002
Kennedy (10.1016/j.asoc.2022.109622_b3) 1995
References_xml – volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: b41
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evolut. Comput.
– volume: vol. 3242
  start-page: 742
  year: 2004
  end-page: 751
  ident: b28
  publication-title: SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b3
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4
– volume: 24
  start-page: 305
  year: 2020
  end-page: 319
  ident: b21
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 326
  year: 2016
  end-page: 339
  ident: b12
  article-title: History-driven firefly algorithm for optimisation in dynamic and uncertain environments
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 20
  start-page: 31
  year: 2017
  end-page: 70
  ident: b14
  article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey
  publication-title: Adapt. Learn. Optim.
– volume: 8
  start-page: 425
  year: 2004
  end-page: 442
  ident: b1
  article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b24
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 3775
  year: 2021
  end-page: 3794
  ident: b47
  article-title: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem
  publication-title: Soft Comput.
– volume: vol. 4403
  start-page: 803
  year: 2007
  end-page: 817
  ident: b9
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: vol. 10637
  start-page: 258
  year: 2017
  end-page: 268
  ident: b18
  article-title: Dynamic multi objective particle swarm optimization based on a new environment change detection strategy
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2021
  ident: b48
  article-title: Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing
  publication-title: IEEE Trans. Cybern.
– start-page: 3944
  year: 2007
  end-page: 3951
  ident: b37
  article-title: MSOPS-II: A general-purpose many-objective optimiser
  publication-title: 2007 IEEE Congress on Evolutionary Computation, CEC 2007
– volume: 42
  start-page: 760
  year: 2011
  end-page: 771
  ident: b45
  article-title: Jmetal: A java framework for multi-objective optimization
  publication-title: Adv. Eng. Softw.
– start-page: 257
  year: 2005
  end-page: 264
  ident: b40
  article-title: An effective use of crowding distance in multiobjective particle swarm optimization
  publication-title: GECCO 2005 - Genetic and Evolutionary Computation Conference
– volume: 490
  start-page: 85
  year: 2013
  end-page: 106
  ident: b31
  article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art
  publication-title: Stud. Comput. Intell.
– start-page: 203
  year: 2014
  end-page: 208
  ident: b15
  article-title: Hierarchical design for distributed MOPSO using sub-swarms based on a population Pareto fronts analysis for the grasp planning problem
  publication-title: 13th International Conference on Hybrid Intelligent Systems, HIS 2013
– volume: 44
  start-page: 40
  year: 2014
  end-page: 53
  ident: b26
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b2
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 959
  year: 2008
  end-page: 971
  ident: b7
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
– start-page: 531
  year: 2007
  end-page: 534
  ident: b49
  article-title: The general problem of the stability of motion
– volume: 24
  start-page: 750
  year: 2020
  end-page: 764
  ident: b44
  article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 3096
  year: 2014
  end-page: 3102
  ident: b27
  article-title: DMOPSO: Dual multi-objective particle swarm optimization
  publication-title: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014
– volume: 13
  start-page: 103
  year: 2009
  end-page: 127
  ident: b25
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 501
  year: 2018
  end-page: 514
  ident: b22
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
– year: 2001
  ident: b10
  article-title: Adapting particle swarm optimizationto dynamic environments
– start-page: 3918
  year: 2017
  end-page: 3923
  ident: b13
  article-title: MOPSO for dynamic feature selection problem based big data fusion
  publication-title: 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings
– start-page: 456
  year: 2007
  end-page: 459
  ident: b8
  article-title: Dynamic multi-objective optimization evolutionary algorithm
  publication-title: Proceedings - Third International Conference on Natural Computation, ICNC 2007, Vol. 4
– volume: 48
  start-page: 156
  year: 2019
  end-page: 171
  ident: b23
  article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods
  publication-title: Swarm Evol. Comput.
– year: 2018
  ident: b32
  article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation
– volume: 22
  start-page: 424
  year: 2016
  end-page: 427
  ident: b50
  article-title: Introduction to the modeling and analysis of complex systems. h. Sayama (ed.). (2015, open SUNY textbooks). Free open access PDF, 498 pp. ISBN 978-1-942341-06-2 (deluxe color edition). ISBN 978-1-942341-08-6 (print edition). ISBN 978-1-942341-09-3 (ebook)
  publication-title: Artif. Life
– volume: 51
  start-page: 927
  year: 2021
  end-page: 942
  ident: b4
  article-title: Distributed virtual network embedding system with historical archives and set-based particle swarm optimization
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b46
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– start-page: 1051
  year: 2002
  end-page: 1056
  ident: b17
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Vol. 2
– volume: 32
  start-page: 4013
  year: 2018
  end-page: 4030
  ident: b38
  article-title: Multi objective optimization with a new evolutionary algorithm
  publication-title: Water Resour. Manag. 2018 32:12
– volume: 30
  start-page: 601
  year: 2019
  end-page: 614
  ident: b43
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 51
  start-page: 3417
  year: 2020
  end-page: 3428
  ident: b16
  article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning
  publication-title: IEEE Trans. Cybern.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b39
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 66
  start-page: 18
  year: 2002
  ident: b51
  article-title: Stochastic neural network model for spontaneous bursting in hippocampal slices
  publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys.
– start-page: 615
  year: 2015
  end-page: 622
  ident: b33
  article-title: Multi-objective optimization with dynamic constraints and objectives: New challenges for evolutionary algorithms
  publication-title: GECCO 2015 - Proceedings of the 2015 Genetic and Evolutionary Computation Conference
– volume: 46
  start-page: 2862
  year: 2016
  end-page: 2873
  ident: b20
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Trans. Cybern.
– volume: 21
  start-page: 65
  year: 2017
  end-page: 82
  ident: b19
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  year: 2009
  ident: b30
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 42
  start-page: 464
  year: 2012
  end-page: 474
  ident: b5
  article-title: Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search
  publication-title: IEEE Trans. Syst. Man, Cybern. Part A:Syst. Hum.
– start-page: 1666
  year: 2002
  end-page: 1670
  ident: b11
  article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Vol. 2
– year: 2013
  ident: b29
  article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints
– year: 2007
  ident: b36
  article-title: Parallel processing for multi-objective optimization in dynamic environments
  publication-title: Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
– start-page: 240
  year: 2004
  ident: b42
  article-title: Computer-based robust engineering : An essential for DFSS
– start-page: 3192
  year: 2014
  end-page: 3199
  ident: b35
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
  publication-title: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014
– volume: 9
  start-page: 9977
  year: 2009
  ident: b52
  article-title: A Lyapunov-based extension to particle swarm dynamics for continuous function optimization
  publication-title: Sensors (Basel)
– start-page: 484
  year: 2009
  end-page: 487
  ident: b6
  article-title: Using diversity as an additional-objective in dynamic multi-objective optimization algorithms
  publication-title: 2nd International Symposium on Electronic Commerce and Security, ISECS 2009, Vol. 1
– volume: 21
  start-page: 885
  year: 2015
  end-page: 906
  ident: b34
  article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
  publication-title: Soft Comput. 2015 21:4
– year: 2001
  ident: 10.1016/j.asoc.2022.109622_b10
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2022.109622_b19
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– start-page: 240
  year: 2004
  ident: 10.1016/j.asoc.2022.109622_b42
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2022.109622_b39
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 51
  start-page: 927
  issue: 2
  year: 2021
  ident: 10.1016/j.asoc.2022.109622_b4
  article-title: Distributed virtual network embedding system with historical archives and set-based particle swarm optimization
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2018.2884523
– start-page: 456
  year: 2007
  ident: 10.1016/j.asoc.2022.109622_b8
  article-title: Dynamic multi-objective optimization evolutionary algorithm
– volume: 8
  start-page: 326
  issue: 5
  year: 2016
  ident: 10.1016/j.asoc.2022.109622_b12
  article-title: History-driven firefly algorithm for optimisation in dynamic and uncertain environments
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2016.079575
– volume: 42
  start-page: 760
  issue: 10
  year: 2011
  ident: 10.1016/j.asoc.2022.109622_b45
  article-title: Jmetal: A java framework for multi-objective optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.05.014
– volume: 51
  start-page: 3417
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2022.109622_b16
  article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989465
– volume: 42
  start-page: 464
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2022.109622_b5
  article-title: Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search
  publication-title: IEEE Trans. Syst. Man, Cybern. Part A:Syst. Hum.
  doi: 10.1109/TSMCA.2011.2159585
– start-page: 203
  year: 2014
  ident: 10.1016/j.asoc.2022.109622_b15
  article-title: Hierarchical design for distributed MOPSO using sub-swarms based on a population Pareto fronts analysis for the grasp planning problem
– volume: 8
  start-page: 959
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2022.109622_b7
  article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.07.005
– volume: 9
  start-page: 9977
  issue: 12
  year: 2009
  ident: 10.1016/j.asoc.2022.109622_b52
  article-title: A Lyapunov-based extension to particle swarm dynamics for continuous function optimization
  publication-title: Sensors (Basel)
  doi: 10.3390/s91209977
– start-page: 257
  year: 2005
  ident: 10.1016/j.asoc.2022.109622_b40
  article-title: An effective use of crowding distance in multiobjective particle swarm optimization
– volume: 21
  start-page: 885
  issue: 4
  year: 2015
  ident: 10.1016/j.asoc.2022.109622_b34
  article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy
  publication-title: Soft Comput. 2015 21:4
– start-page: 3944
  year: 2007
  ident: 10.1016/j.asoc.2022.109622_b37
  article-title: MSOPS-II: A general-purpose many-objective optimiser
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.asoc.2022.109622_b2
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 32
  start-page: 4013
  issue: 12
  year: 2018
  ident: 10.1016/j.asoc.2022.109622_b38
  article-title: Multi objective optimization with a new evolutionary algorithm
  publication-title: Water Resour. Manag. 2018 32:12
– volume: 25
  start-page: 3775
  issue: 5
  year: 2021
  ident: 10.1016/j.asoc.2022.109622_b47
  article-title: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05406-5
– year: 2018
  ident: 10.1016/j.asoc.2022.109622_b32
– volume: 66
  start-page: 18
  issue: 5
  year: 2002
  ident: 10.1016/j.asoc.2022.109622_b51
  article-title: Stochastic neural network model for spontaneous bursting in hippocampal slices
  publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys.
– year: 2013
  ident: 10.1016/j.asoc.2022.109622_b29
– start-page: 3918
  year: 2017
  ident: 10.1016/j.asoc.2022.109622_b13
  article-title: MOPSO for dynamic feature selection problem based big data fusion
– year: 2021
  ident: 10.1016/j.asoc.2022.109622_b48
  article-title: Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.asoc.2022.109622_b24
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 20
  start-page: 31
  year: 2017
  ident: 10.1016/j.asoc.2022.109622_b14
  article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey
  publication-title: Adapt. Learn. Optim.
– start-page: 615
  year: 2015
  ident: 10.1016/j.asoc.2022.109622_b33
  article-title: Multi-objective optimization with dynamic constraints and objectives: New challenges for evolutionary algorithms
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2022.109622_b46
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: vol. 4403
  start-page: 803
  year: 2007
  ident: 10.1016/j.asoc.2022.109622_b9
  article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.asoc.2022.109622_b41
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evolut. Comput.
  doi: 10.1162/106365602760234108
– volume: 490
  start-page: 85
  year: 2013
  ident: 10.1016/j.asoc.2022.109622_b31
  article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art
  publication-title: Stud. Comput. Intell.
– year: 2007
  ident: 10.1016/j.asoc.2022.109622_b36
  article-title: Parallel processing for multi-objective optimization in dynamic environments
– start-page: 3192
  year: 2014
  ident: 10.1016/j.asoc.2022.109622_b35
  article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions
– volume: 24
  start-page: 750
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2022.109622_b44
  article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2951217
– volume: 13
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2022.109622_b25
  article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– volume: 30
  start-page: 601
  issue: 2
  year: 2019
  ident: 10.1016/j.asoc.2022.109622_b43
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2846646
– volume: 8
  start-page: 425
  issue: 5
  year: 2004
  ident: 10.1016/j.asoc.2022.109622_b1
  article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.831456
– start-page: 1051
  year: 2002
  ident: 10.1016/j.asoc.2022.109622_b17
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– volume: vol. 3242
  start-page: 742
  year: 2004
  ident: 10.1016/j.asoc.2022.109622_b28
– volume: 22
  start-page: 424
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2022.109622_b50
  article-title: Introduction to the modeling and analysis of complex systems. h. Sayama (ed.). (2015, open SUNY textbooks). Free open access PDF, 498 pp. ISBN 978-1-942341-06-2 (deluxe color edition). ISBN 978-1-942341-08-6 (print edition). ISBN 978-1-942341-09-3 (ebook)
  publication-title: Artif. Life
  doi: 10.1162/ARTL_r_00209
– volume: 44
  start-page: 40
  issue: 1
  year: 2014
  ident: 10.1016/j.asoc.2022.109622_b26
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– start-page: 1942
  year: 1995
  ident: 10.1016/j.asoc.2022.109622_b3
  article-title: Particle swarm optimization
– start-page: 531
  year: 2007
  ident: 10.1016/j.asoc.2022.109622_b49
– volume: 46
  start-page: 2862
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2022.109622_b20
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– start-page: 1666
  year: 2002
  ident: 10.1016/j.asoc.2022.109622_b11
  article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems
– volume: 22
  start-page: 501
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2022.109622_b22
  article-title: Transfer learning-based dynamic multiobjective optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2771451
– start-page: 3096
  year: 2014
  ident: 10.1016/j.asoc.2022.109622_b27
  article-title: DMOPSO: Dual multi-objective particle swarm optimization
– volume: vol. 10637
  start-page: 258
  year: 2017
  ident: 10.1016/j.asoc.2022.109622_b18
  article-title: Dynamic multi objective particle swarm optimization based on a new environment change detection strategy
– volume: 13
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2022.109622_b30
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 484
  year: 2009
  ident: 10.1016/j.asoc.2022.109622_b6
  article-title: Using diversity as an additional-objective in dynamic multi-objective optimization algorithms
– volume: 24
  start-page: 305
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2022.109622_b21
  article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2925722
– volume: 48
  start-page: 156
  year: 2019
  ident: 10.1016/j.asoc.2022.109622_b23
  article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.03.015
SSID ssj0016928
Score 2.5044377
Snippet Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109622
SubjectTerms Detectors
Dynamic multi-objective optimization problem
Dynamic particle swarm optimization
Dynamic response
Friedman analysis of variance
Lyapunov theorem
Wilcoxon test
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1je_DJu6io5ME3zeglTRPfhhdE0A10or6UJE11s-vGbBn6602WVARR3HOThvAl-U7a75wDwKFHsiBUIUc4lTHSpx9BGjdHKMCxFDjVEHlu03l9Qy77-OohemiA2qnQKdy8mA_mbwPzm7ld8IlOEI5Z1a3KSaVv7ExfSwzhukUiDcGboNW_6XUe59qohCLMLKtID4QYob4jy9i6Lq5nre-FQWCUlEgQ_JaQlqpiwt9nPM-_JZyLFXBf03ZsnclruypFW378VHFcbC6rYNlBUNixa2YNNFSxDlZqewfodvsGeDrrCXTd7d12T2AHnlnretgztrhjKAYoN_VGcM7gRWMxtCeneT5_L7yd8ekIdvWRNHJcT9jJn8fTQfky2gT9i_O700vkrBiQxL5XIs4yKjSSFJkvfSyiMI5lyjLsyzD2VUhp6nsSU5kpFsuMezrQQtKUB56KJSc83ALNYlyobQAZZRFLY6FSo1SpJA1STxCusYPgSjK5A_w6Hol0OuXGLiNP6oK0YWJimJgYJjaGO-Doq8_EqnT82Tqqw5w4nGHxQ6LTyJ_9jr_WxD-G2V2s-R5oltNK7WuMU4oDt6I_AU2Z_YQ
  priority: 102
  providerName: Unpaywall
Title DPb-MOPSO: A Dynamic Pareto bi-level Multi-objective Particle Swarm Optimization Algorithm
URI https://dx.doi.org/10.1016/j.asoc.2022.109622
http://researchrepository.napier.ac.uk/Output/2940981
UnpaywallVersion submittedVersion
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwRjwrD2xgmjhOHLNFLai82ohSCVgi23GgKH2oKkIs_HbsxKlgACEmK8k5ju6cz3fS3X0AHDpBhj3lcURSSZFGvwBpv9lHmFApSKpd5IKm86YdtHrk8t6_nwONqhbGpFVa7C8xvUBre6dutVkf9_v1ro48QsJIgE1UrCHWVLATalgMTj5maR5uwAp-VSOMjLQtnClzvLjWgI4RMTZdlQKMfzqcFl-HY_7-xvP8y-FzvgqWrdcIo_LD1sCcGq6DlYqRAdofdAM8NmOBbjpxt3MKI9gs2eZhbJhsR1D0UW5ShGBRdItG4qUEO_O8eC_svvHJAHY0igxseSaM8qfRpD99HmyC3vnZXaOFLHsCksR1poizLBTa-ROZK10ifI9SmbKMuNKjrvLCMHUdSUKZKUZlxh1tGyHDlGNHUckD7m2B-eFoqLYBZCHzWUqFSk1zSSVDnDoi4Pq4F1xJJneAW6ktkba1uGG4yJMqh-wlMapOjKqTUtU74Gg2Z1w21vhV2q-skXzbHolG_l_nHc9M94dldv-5zB5YMldljeI-mJ9OXtWBdlamolbsxhpYiBq317EZL65abT322nH08AkbIurS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRpSnBzYwTRwnjtmqAiqP0koFqWKJbMeBVulDVauKhd-OnTgVDFSINT7H0Z3z3Z10dx8AZ06QYE95HJFYUqTRL0A6bvYRJlQKEusQOaPpbDwF9Rdy3_E7S6BW9MKYskqL_TmmZ2htn1SsNiujbrfS1plHSBgJsMmKNcQugxXiY2oysMvPeZ2HG7CMYNVIIyNuO2fyIi-uVaCTRIzNWKUA49-80-p0MOIfM56m37zP7SZYt2EjrOZftgWW1GAbbBSUDND-oTvg9bolUKPZajevYBVe53TzsGWobIdQdFFqaoRg1nWLhqKXo51Zz94L2zM-7sOmhpG-7c-E1fRtOO5O3vu74OX25rlWR5Y-AUniOhPEWRIKHf2JxJUuEb5HqYxZQlzpUVd5YRi7jiShTBSjMuGONo6QYcyxo6jkAff2QGkwHKh9AFnIfBZToWIzXVLJEMeOCLj294IryWQZuIXaImlnixuKizQqish6kVF1ZFQd5aoug_P5nlE-WWOhtF9YI_pxPyIN_Qv3XcxN94djDv55zClYrT83HqPHu6eHQ7BmVvKGxSNQmoyn6lhHLhNxkt3ML_bf6SI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1je_DJu6io5ME3zeglTRPfhhdE0A10or6UJE11s-vGbBn6602WVARR3HOThvAl-U7a75wDwKFHsiBUIUc4lTHSpx9BGjdHKMCxFDjVEHlu03l9Qy77-OohemiA2qnQKdy8mA_mbwPzm7ld8IlOEI5Z1a3KSaVv7ExfSwzhukUiDcGboNW_6XUe59qohCLMLKtID4QYob4jy9i6Lq5nre-FQWCUlEgQ_JaQlqpiwt9nPM-_JZyLFXBf03ZsnclruypFW378VHFcbC6rYNlBUNixa2YNNFSxDlZqewfodvsGeDrrCXTd7d12T2AHnlnretgztrhjKAYoN_VGcM7gRWMxtCeneT5_L7yd8ekIdvWRNHJcT9jJn8fTQfky2gT9i_O700vkrBiQxL5XIs4yKjSSFJkvfSyiMI5lyjLsyzD2VUhp6nsSU5kpFsuMezrQQtKUB56KJSc83ALNYlyobQAZZRFLY6FSo1SpJA1STxCusYPgSjK5A_w6Hol0OuXGLiNP6oK0YWJimJgYJjaGO-Doq8_EqnT82Tqqw5w4nGHxQ6LTyJ_9jr_WxD-G2V2s-R5oltNK7WuMU4oDt6I_AU2Z_YQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DPb-MOPSO%3A+A+Dynamic+Pareto+bi-level+Multi-objective+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Applied+soft+computing&rft.au=Aboud%2C+Ahlem&rft.au=Rokbani%2C+Nizar&rft.au=Fdhila%2C+Raja&rft.au=Qahtani%2C+Abdulrahman+M.&rft.date=2022-11-01&rft.issn=1568-4946&rft.volume=129&rft.spage=109622&rft_id=info:doi/10.1016%2Fj.asoc.2022.109622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109622
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon