DPb-MOPSO: A Dynamic Pareto bi-level Multi-objective Particle Swarm Optimization Algorithm
Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-objective problems (DMOPs). Tracking the most effective solutions over time and ensu...
Saved in:
| Published in | Applied soft computing Vol. 129; p. 109622 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 1872-9681 |
| DOI | 10.1016/j.asoc.2022.109622 |
Cover
| Abstract | Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-objective problems (DMOPs). Tracking the most effective solutions over time and ensuring good exploitation and exploration are the main challenges of solving DMOP. This study proposes a Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm including two parallel optimization levels. At the first level, all solutions are managed in a single search space. When a dynamic change is successfully detected in the objective values, the Pareto ranking operator is used to enable multiple sub-swarm’ subdivisions and processing which drives the second level of enhanced exploitation. A dynamic handling strategy based on random detectors is used to track the changes in the objective function due to time-varying parameters. A response strategy consisting in reevaluating all unimproved solutions and replacing them with newly generated ones is also implemented. The DPb-MOPSO system is tested on DMOPs with different types of time-varying Pareto Optimal Set (POS) and Pareto Optimal Front (POF). Inverted generational distance (IGD), mean inverted generational distance (MIGD), hypervolume difference (HVD), Robust IGD (RIGD), and Robust General Distance (RGD) metrics are used to assess the DPb-MOPSO performance. Quantitative results are analyzed using Friedman’s analysis of variance, and the Wilcoxon sum ranks test, while the stability is analyzed using Lyapunov’s theorem. The DPb-MOPSO is more robust than several dynamic multi-objective evolutionary algorithms in solving 21 complex problems over a range of changes in both the POS and POF. On IGD and HVD, DPb-MOPSO can solve 8/13 and 8/13 of the 13 UDF and ZJZ functions with moderate changes. DPb-MOPSO can resolve 7/8 FDA and DMOP benchmarks with severe changes to the MIGD, and 6/8 with moderate changes. DPb-MOPSO assumes 7/8, 6/8, and 5/8 for solving FDA, and dMOP functions on IGD and 6/8, 5/8, and 5/8 on HVD metrics considering severe, moderate, and slight environmental changes respectively. Also, it is the winner for solving 8 DMOPs based on RIGD, and RGD metrics.
•Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO).•Distributed MOPSO allows higher diversity during the search process.•Distributed sub-swarms conduct independent search with separate pools of best solutions.•The DPb-MOPSO system includes a dynamic handling strategy to manage the evolution of the search space.•The dynamic switch mechanism allows to recover from any engagement within a local optimum. |
|---|---|
| AbstractList | Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-objective problems (DMOPs). Tracking the most effective solutions over time and ensuring good exploitation and exploration are the main challenges of solving DMOP. This study proposes a Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm including two parallel optimization levels. At the first level, all solutions are managed in a single search space. When a dynamic change is successfully detected in the objective values, the Pareto ranking operator is used to enable multiple sub-swarm’ subdivisions and processing which drives the second level of enhanced exploitation. A dynamic handling strategy based on random detectors is used to track the changes in the objective function due to time-varying parameters. A response strategy consisting in reevaluating all unimproved solutions and replacing them with newly generated ones is also implemented. The DPb-MOPSO system is tested on DMOPs with different types of time-varying Pareto Optimal Set (POS) and Pareto Optimal Front (POF). Inverted generational distance (IGD), mean inverted generational distance (MIGD), hypervolume difference (HVD), Robust IGD (RIGD), and Robust General Distance (RGD) metrics are used to assess the DPb-MOPSO performance. Quantitative results are analyzed using Friedman’s analysis of variance, and the Wilcoxon sum ranks test, while the stability is analyzed using Lyapunov’s theorem. The DPb-MOPSO is more robust than several dynamic multi-objective evolutionary algorithms in solving 21 complex problems over a range of changes in both the POS and POF. On IGD and HVD, DPb-MOPSO can solve 8/13 and 8/13 of the 13 UDF and ZJZ functions with moderate changes. DPb-MOPSO can resolve 7/8 FDA and DMOP benchmarks with severe changes to the MIGD, and 6/8 with moderate changes. DPb-MOPSO assumes 7/8, 6/8, and 5/8 for solving FDA, and dMOP functions on IGD and 6/8, 5/8, and 5/8 on HVD metrics considering severe, moderate, and slight environmental changes respectively. Also, it is the winner for solving 8 DMOPs based on RIGD, and RGD metrics.
•Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO).•Distributed MOPSO allows higher diversity during the search process.•Distributed sub-swarms conduct independent search with separate pools of best solutions.•The DPb-MOPSO system includes a dynamic handling strategy to manage the evolution of the search space.•The dynamic switch mechanism allows to recover from any engagement within a local optimum. |
| ArticleNumber | 109622 |
| Author | Dhahri, Habib Hussain, Amir Aboud, Ahlem Qahtani, Abdulrahman M. Rokbani, Nizar Fdhila, Raja Almutiry, Omar Alimi, Adel M. |
| Author_xml | – sequence: 1 givenname: Ahlem orcidid: 0000-0003-3915-7104 surname: Aboud fullname: Aboud, Ahlem email: ahlem.aboud@regim.usf.tn organization: University of Sousse, ISITCom, 4011, Sousse, Tunisia – sequence: 2 givenname: Nizar orcidid: 0000-0003-4848-5855 surname: Rokbani fullname: Rokbani, Nizar email: nizar.rokbani@ieee.org organization: REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia – sequence: 3 givenname: Raja surname: Fdhila fullname: Fdhila, Raja email: raja.fdhila@ieee.org organization: REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia – sequence: 4 givenname: Abdulrahman M. surname: Qahtani fullname: Qahtani, Abdulrahman M. email: amqahtani@tu.edu.sa organization: Department of Computer Science, College of Computers and Information Technology, Taif University, P.O.Box. 11099, Taif 21944, Saudi Arabia – sequence: 5 givenname: Omar surname: Almutiry fullname: Almutiry, Omar email: oalmutiry@ksu.edu.sa organization: College of Applied Computer Science, King Saud University, Riyadh, Saudi Arabia – sequence: 6 givenname: Habib orcidid: 0000-0003-4668-7840 surname: Dhahri fullname: Dhahri, Habib email: hdhahri@ksu.edu.sa organization: College of Applied Computer Science, King Saud University, Riyadh, Saudi Arabia – sequence: 7 givenname: Amir surname: Hussain fullname: Hussain, Amir email: a.hussain@napier.ac.uk organization: Edinburgh Napier University, School of Computing, Edinburgh EH10 5DT, Scotland, UK – sequence: 8 givenname: Adel M. surname: Alimi fullname: Alimi, Adel M. email: adel.alimi@ieee.org organization: REsearch Groups in Intelligent Machines (REGIM Lab), University of Sfax, National Engineering School of Sfax (ENIS), BP 1173, Sfax, 3038, Tunisia |
| BookMark | eNqNkE1OwzAQRi1UJNrCBVjlAim2kyYOYlO1_ElFqVTYsLHsiQOunLhy3Fbl9CSEFYuK1Yzm05vRvBEa1LZWCF0TPCGYJDebiWgsTCimtB1kCaVnaEhYSsMsYWTQ9tOEhXEWJxdo1DQb3EIZZUP0vljJ8CVfrfPbYBYsjrWoNAQr4ZS3gdShUXtlgped8Tq0cqPA673qcq_BqGB9EK4K8q3Xlf4SXts6mJkP67T_rC7ReSlMo65-6xi9Pdy_zp_CZf74PJ8tQ4gJ9qHISiYzksiSAInlNEpTKLIyJhClREWMFQRDzKBUWQqlwClICawQFKsURCKiMYr6vbt6K44HYQzfOl0Jd-QE804P3_BOD-_08F5PS7GeAmebxqmSg_Y_H3gntDmN0j_ov-7d9ZBqVey1crwBrWpQhXatVV5YfQr_Bmyyk_U |
| CitedBy_id | crossref_primary_10_3390_app12199627 crossref_primary_10_1016_j_energy_2023_129784 crossref_primary_10_1016_j_asoc_2023_111081 crossref_primary_10_1108_K_11_2023_2491 crossref_primary_10_3390_app13031246 crossref_primary_10_1007_s11356_023_25573_w crossref_primary_10_1061_JIDEDH_IRENG_10103 crossref_primary_10_1109_ACCESS_2024_3426104 crossref_primary_10_1111_exsy_13410 crossref_primary_10_1007_s11227_024_06899_9 crossref_primary_10_1049_cth2_12648 crossref_primary_10_1016_j_chaos_2024_114695 crossref_primary_10_1038_s41598_023_40080_1 crossref_primary_10_1016_j_asoc_2024_111317 crossref_primary_10_1016_j_marpolbul_2024_117214 crossref_primary_10_1016_j_ins_2024_120794 crossref_primary_10_1016_j_buildenv_2024_111185 crossref_primary_10_3390_sym14122619 |
| Cites_doi | 10.1109/TEVC.2016.2574621 10.1109/4235.585893 10.1109/TSMC.2018.2884523 10.1504/IJBIC.2016.079575 10.1016/j.advengsoft.2011.05.014 10.1109/TCYB.2020.2989465 10.1109/TSMCA.2011.2159585 10.1016/j.asoc.2007.07.005 10.3390/s91209977 10.1109/4235.996017 10.1007/s00500-020-05406-5 10.1109/TEVC.2007.892759 10.1016/j.swevo.2011.02.002 10.1162/106365602760234108 10.1109/TEVC.2019.2951217 10.1109/TEVC.2008.920671 10.1109/TNNLS.2018.2846646 10.1109/TEVC.2004.831456 10.1162/ARTL_r_00209 10.1109/TCYB.2013.2245892 10.1109/TCYB.2015.2490738 10.1109/TEVC.2017.2771451 10.1109/TEVC.2019.2925722 10.1016/j.swevo.2019.03.015 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.asoc.2022.109622 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | oai:repository@napier.ac.uk:2940981 10_1016_j_asoc_2022_109622 S1568494622006718 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c410t-a9f8b916bf1c14b5377cd9f41c371e388d10c48cfe97cfa07cbbc8da20e7ca6a3 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 1872-9681 |
| IngestDate | Fri Oct 03 06:31:51 EDT 2025 Wed Oct 29 21:27:00 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Fri Feb 23 02:42:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic response Wilcoxon test Dynamic multi-objective optimization problem Dynamic particle swarm optimization Lyapunov theorem Detectors Friedman analysis of variance |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-a9f8b916bf1c14b5377cd9f41c371e388d10c48cfe97cfa07cbbc8da20e7ca6a3 |
| ORCID | 0000-0003-4668-7840 0000-0003-3915-7104 0000-0003-4848-5855 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://researchrepository.napier.ac.uk/Output/2940981 |
| ParticipantIDs | unpaywall_primary_10_1016_j_asoc_2022_109622 crossref_citationtrail_10_1016_j_asoc_2022_109622 crossref_primary_10_1016_j_asoc_2022_109622 elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109622 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Muruganantham, Tan, Vadakkepat (b20) 2016; 46 Aboud, Fdhila, Alimi (b13) 2017 Zhang (b7) 2008; 8 Nichele (b50) 2016; 22 Lyapunov (b49) 2007 Nasiri, Meybodi (b12) 2016; 8 Guo, Zhang, Gong, Zhang, Yang (b44) 2020; 24 Song, Chen, Gu, Yuan, Kwong, Zhang (b4) 2021; 51 Deb, Pratap, Agarwal, Meyarivan (b2) 2002; 6 Li, Zhang (b30) 2009; 13 Hu, Eberhart (b11) 2002 Wang, Li (b5) 2012; 42 Azzouz, Bechikh, ben Said (b34) 2015; 21 Hughes (b37) 2007 Carlisle, Dozier (b10) 2001 Lee, Kim (b27) 2014 Deb, Jain (b29) 2013 Azzouz, Bechikh, ben Said (b14) 2017; 20 Kennedy, Eberhart (b3) 1995 Aboud, Fdhila, Alimi (b18) 2017; vol. 10637 Raquel, Naval (b40) 2005 Rokbani (b47) 2021; 25 Zhang, Li (b24) 2007; 11 Ji, Guo, Gao, Gong, Wang (b48) 2021 Raquel, Yao (b31) 2013; 490 Derrac, García, Molina, Herrera (b46) 2011; 1 Coello Coello, Lechuga (b17) 2002 B, C (b51) 2002; 66 Wolpert, Macready (b39) 1997; 1 Cámara, Ortega, Toro (b36) 2007 Guo, Yang, Chen, Cheng, Gong (b23) 2019; 48 Durillo, Nebro (b45) 2011; 42 Farina, Deb, Amato (b1) 2004; 8 Goh, Tan (b25) 2009; 13 Taguchi, Jugulum, Taguchi (b42) 2004 Zhou, Jin, Zhang (b26) 2014; 44 Fdhila, Walha, Hamdani, Alimi (b15) 2014 Azzouz, Bechikh, ben Said (b33) 2015 Liu, Wang (b8) 2007 Chen, Li, Chen (b6) 2009 Jiang, Huang, Qiu, Huang, Yen (b22) 2018; 22 Bhattacharya, Konar, Das, Han (b52) 2009; 9 Jiang, Yang, Yao, Tan, Kaiser, Krasnogor (b32) 2018 Jiang, Wang, Qiu, Guo, Gao, Tan (b16) 2020; 51 Kim, Hiroyasu, Miki, Watanabe (b28) 2004; vol. 3242 Laumanns, Thiele, Deb, Zitzler (b41) 2002; 10 Biswas, Das, Suganthan, Coello (b35) 2014 Seifollahi-Aghmiuni, Bozorg Haddad (b38) 2018; 32 Gao, Zhou, Wang, Cheng, Yachi, Wang (b43) 2019; 30 Jiang, Yang (b19) 2017; 21 Deb, N., Karthik (b9) 2007; vol. 4403 Cao, Xu, Goodman, Bao, Zhu (b21) 2020; 24 Wolpert (10.1016/j.asoc.2022.109622_b39) 1997; 1 Rokbani (10.1016/j.asoc.2022.109622_b47) 2021; 25 Aboud (10.1016/j.asoc.2022.109622_b18) 2017; vol. 10637 Hughes (10.1016/j.asoc.2022.109622_b37) 2007 Nichele (10.1016/j.asoc.2022.109622_b50) 2016; 22 Carlisle (10.1016/j.asoc.2022.109622_b10) 2001 Azzouz (10.1016/j.asoc.2022.109622_b14) 2017; 20 Gao (10.1016/j.asoc.2022.109622_b43) 2019; 30 Azzouz (10.1016/j.asoc.2022.109622_b34) 2015; 21 Song (10.1016/j.asoc.2022.109622_b4) 2021; 51 Jiang (10.1016/j.asoc.2022.109622_b22) 2018; 22 Kim (10.1016/j.asoc.2022.109622_b28) 2004; vol. 3242 Deb (10.1016/j.asoc.2022.109622_b2) 2002; 6 Li (10.1016/j.asoc.2022.109622_b30) 2009; 13 Bhattacharya (10.1016/j.asoc.2022.109622_b52) 2009; 9 Laumanns (10.1016/j.asoc.2022.109622_b41) 2002; 10 Chen (10.1016/j.asoc.2022.109622_b6) 2009 Jiang (10.1016/j.asoc.2022.109622_b16) 2020; 51 Aboud (10.1016/j.asoc.2022.109622_b13) 2017 Coello Coello (10.1016/j.asoc.2022.109622_b17) 2002 Biswas (10.1016/j.asoc.2022.109622_b35) 2014 Jiang (10.1016/j.asoc.2022.109622_b19) 2017; 21 Taguchi (10.1016/j.asoc.2022.109622_b42) 2004 Guo (10.1016/j.asoc.2022.109622_b23) 2019; 48 Jiang (10.1016/j.asoc.2022.109622_b32) 2018 Derrac (10.1016/j.asoc.2022.109622_b46) 2011; 1 Zhang (10.1016/j.asoc.2022.109622_b24) 2007; 11 Nasiri (10.1016/j.asoc.2022.109622_b12) 2016; 8 Lyapunov (10.1016/j.asoc.2022.109622_b49) 2007 Cámara (10.1016/j.asoc.2022.109622_b36) 2007 Lee (10.1016/j.asoc.2022.109622_b27) 2014 Muruganantham (10.1016/j.asoc.2022.109622_b20) 2016; 46 Durillo (10.1016/j.asoc.2022.109622_b45) 2011; 42 Farina (10.1016/j.asoc.2022.109622_b1) 2004; 8 Deb (10.1016/j.asoc.2022.109622_b29) 2013 Azzouz (10.1016/j.asoc.2022.109622_b33) 2015 B (10.1016/j.asoc.2022.109622_b51) 2002; 66 Seifollahi-Aghmiuni (10.1016/j.asoc.2022.109622_b38) 2018; 32 Liu (10.1016/j.asoc.2022.109622_b8) 2007 Raquel (10.1016/j.asoc.2022.109622_b31) 2013; 490 Cao (10.1016/j.asoc.2022.109622_b21) 2020; 24 Zhou (10.1016/j.asoc.2022.109622_b26) 2014; 44 Ji (10.1016/j.asoc.2022.109622_b48) 2021 Zhang (10.1016/j.asoc.2022.109622_b7) 2008; 8 Guo (10.1016/j.asoc.2022.109622_b44) 2020; 24 Wang (10.1016/j.asoc.2022.109622_b5) 2012; 42 Goh (10.1016/j.asoc.2022.109622_b25) 2009; 13 Fdhila (10.1016/j.asoc.2022.109622_b15) 2014 Raquel (10.1016/j.asoc.2022.109622_b40) 2005 Deb (10.1016/j.asoc.2022.109622_b9) 2007; vol. 4403 Hu (10.1016/j.asoc.2022.109622_b11) 2002 Kennedy (10.1016/j.asoc.2022.109622_b3) 1995 |
| References_xml | – volume: 10 start-page: 263 year: 2002 end-page: 282 ident: b41 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evolut. Comput. – volume: vol. 3242 start-page: 742 year: 2004 end-page: 751 ident: b28 publication-title: SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 – start-page: 1942 year: 1995 end-page: 1948 ident: b3 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4 – volume: 24 start-page: 305 year: 2020 end-page: 319 ident: b21 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 326 year: 2016 end-page: 339 ident: b12 article-title: History-driven firefly algorithm for optimisation in dynamic and uncertain environments publication-title: Int. J. Bio-Inspired Comput. – volume: 20 start-page: 31 year: 2017 end-page: 70 ident: b14 article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey publication-title: Adapt. Learn. Optim. – volume: 8 start-page: 425 year: 2004 end-page: 442 ident: b1 article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: b24 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 3775 year: 2021 end-page: 3794 ident: b47 article-title: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem publication-title: Soft Comput. – volume: vol. 4403 start-page: 803 year: 2007 end-page: 817 ident: b9 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: vol. 10637 start-page: 258 year: 2017 end-page: 268 ident: b18 article-title: Dynamic multi objective particle swarm optimization based on a new environment change detection strategy publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – year: 2021 ident: b48 article-title: Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing publication-title: IEEE Trans. Cybern. – start-page: 3944 year: 2007 end-page: 3951 ident: b37 article-title: MSOPS-II: A general-purpose many-objective optimiser publication-title: 2007 IEEE Congress on Evolutionary Computation, CEC 2007 – volume: 42 start-page: 760 year: 2011 end-page: 771 ident: b45 article-title: Jmetal: A java framework for multi-objective optimization publication-title: Adv. Eng. Softw. – start-page: 257 year: 2005 end-page: 264 ident: b40 article-title: An effective use of crowding distance in multiobjective particle swarm optimization publication-title: GECCO 2005 - Genetic and Evolutionary Computation Conference – volume: 490 start-page: 85 year: 2013 end-page: 106 ident: b31 article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art publication-title: Stud. Comput. Intell. – start-page: 203 year: 2014 end-page: 208 ident: b15 article-title: Hierarchical design for distributed MOPSO using sub-swarms based on a population Pareto fronts analysis for the grasp planning problem publication-title: 13th International Conference on Hybrid Intelligent Systems, HIS 2013 – volume: 44 start-page: 40 year: 2014 end-page: 53 ident: b26 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b2 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 8 start-page: 959 year: 2008 end-page: 971 ident: b7 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl. Soft Comput. – start-page: 531 year: 2007 end-page: 534 ident: b49 article-title: The general problem of the stability of motion – volume: 24 start-page: 750 year: 2020 end-page: 764 ident: b44 article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks publication-title: IEEE Trans. Evol. Comput. – start-page: 3096 year: 2014 end-page: 3102 ident: b27 article-title: DMOPSO: Dual multi-objective particle swarm optimization publication-title: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 – volume: 13 start-page: 103 year: 2009 end-page: 127 ident: b25 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 22 start-page: 501 year: 2018 end-page: 514 ident: b22 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. – year: 2001 ident: b10 article-title: Adapting particle swarm optimizationto dynamic environments – start-page: 3918 year: 2017 end-page: 3923 ident: b13 article-title: MOPSO for dynamic feature selection problem based big data fusion publication-title: 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings – start-page: 456 year: 2007 end-page: 459 ident: b8 article-title: Dynamic multi-objective optimization evolutionary algorithm publication-title: Proceedings - Third International Conference on Natural Computation, ICNC 2007, Vol. 4 – volume: 48 start-page: 156 year: 2019 end-page: 171 ident: b23 article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods publication-title: Swarm Evol. Comput. – year: 2018 ident: b32 article-title: Benchmark problems for CEC2018 competition on dynamic multiobjective optimisation – volume: 22 start-page: 424 year: 2016 end-page: 427 ident: b50 article-title: Introduction to the modeling and analysis of complex systems. h. Sayama (ed.). (2015, open SUNY textbooks). Free open access PDF, 498 pp. ISBN 978-1-942341-06-2 (deluxe color edition). ISBN 978-1-942341-08-6 (print edition). ISBN 978-1-942341-09-3 (ebook) publication-title: Artif. Life – volume: 51 start-page: 927 year: 2021 end-page: 942 ident: b4 article-title: Distributed virtual network embedding system with historical archives and set-based particle swarm optimization publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b46 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – start-page: 1051 year: 2002 end-page: 1056 ident: b17 article-title: MOPSO: A proposal for multiple objective particle swarm optimization publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Vol. 2 – volume: 32 start-page: 4013 year: 2018 end-page: 4030 ident: b38 article-title: Multi objective optimization with a new evolutionary algorithm publication-title: Water Resour. Manag. 2018 32:12 – volume: 30 start-page: 601 year: 2019 end-page: 614 ident: b43 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 51 start-page: 3417 year: 2020 end-page: 3428 ident: b16 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b39 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 66 start-page: 18 year: 2002 ident: b51 article-title: Stochastic neural network model for spontaneous bursting in hippocampal slices publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys. – start-page: 615 year: 2015 end-page: 622 ident: b33 article-title: Multi-objective optimization with dynamic constraints and objectives: New challenges for evolutionary algorithms publication-title: GECCO 2015 - Proceedings of the 2015 Genetic and Evolutionary Computation Conference – volume: 46 start-page: 2862 year: 2016 end-page: 2873 ident: b20 article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction publication-title: IEEE Trans. Cybern. – volume: 21 start-page: 65 year: 2017 end-page: 82 ident: b19 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 year: 2009 ident: b30 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 42 start-page: 464 year: 2012 end-page: 474 ident: b5 article-title: Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search publication-title: IEEE Trans. Syst. Man, Cybern. Part A:Syst. Hum. – start-page: 1666 year: 2002 end-page: 1670 ident: b11 article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems publication-title: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Vol. 2 – year: 2013 ident: b29 article-title: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints – year: 2007 ident: b36 article-title: Parallel processing for multi-objective optimization in dynamic environments publication-title: Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM – start-page: 240 year: 2004 ident: b42 article-title: Computer-based robust engineering : An essential for DFSS – start-page: 3192 year: 2014 end-page: 3199 ident: b35 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions publication-title: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 – volume: 9 start-page: 9977 year: 2009 ident: b52 article-title: A Lyapunov-based extension to particle swarm dynamics for continuous function optimization publication-title: Sensors (Basel) – start-page: 484 year: 2009 end-page: 487 ident: b6 article-title: Using diversity as an additional-objective in dynamic multi-objective optimization algorithms publication-title: 2nd International Symposium on Electronic Commerce and Security, ISECS 2009, Vol. 1 – volume: 21 start-page: 885 year: 2015 end-page: 906 ident: b34 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. 2015 21:4 – year: 2001 ident: 10.1016/j.asoc.2022.109622_b10 – volume: 21 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.asoc.2022.109622_b19 article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2574621 – start-page: 240 year: 2004 ident: 10.1016/j.asoc.2022.109622_b42 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.asoc.2022.109622_b39 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 51 start-page: 927 issue: 2 year: 2021 ident: 10.1016/j.asoc.2022.109622_b4 article-title: Distributed virtual network embedding system with historical archives and set-based particle swarm optimization publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2018.2884523 – start-page: 456 year: 2007 ident: 10.1016/j.asoc.2022.109622_b8 article-title: Dynamic multi-objective optimization evolutionary algorithm – volume: 8 start-page: 326 issue: 5 year: 2016 ident: 10.1016/j.asoc.2022.109622_b12 article-title: History-driven firefly algorithm for optimisation in dynamic and uncertain environments publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2016.079575 – volume: 42 start-page: 760 issue: 10 year: 2011 ident: 10.1016/j.asoc.2022.109622_b45 article-title: Jmetal: A java framework for multi-objective optimization publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.05.014 – volume: 51 start-page: 3417 issue: 7 year: 2020 ident: 10.1016/j.asoc.2022.109622_b16 article-title: A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989465 – volume: 42 start-page: 464 issue: 2 year: 2012 ident: 10.1016/j.asoc.2022.109622_b5 article-title: Heterogeneous redundancy allocation for series-parallel multi-state systems using hybrid particle swarm optimization and local search publication-title: IEEE Trans. Syst. Man, Cybern. Part A:Syst. Hum. doi: 10.1109/TSMCA.2011.2159585 – start-page: 203 year: 2014 ident: 10.1016/j.asoc.2022.109622_b15 article-title: Hierarchical design for distributed MOPSO using sub-swarms based on a population Pareto fronts analysis for the grasp planning problem – volume: 8 start-page: 959 issue: 2 year: 2008 ident: 10.1016/j.asoc.2022.109622_b7 article-title: Multiobjective optimization immune algorithm in dynamic environments and its application to greenhouse control publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.07.005 – volume: 9 start-page: 9977 issue: 12 year: 2009 ident: 10.1016/j.asoc.2022.109622_b52 article-title: A Lyapunov-based extension to particle swarm dynamics for continuous function optimization publication-title: Sensors (Basel) doi: 10.3390/s91209977 – start-page: 257 year: 2005 ident: 10.1016/j.asoc.2022.109622_b40 article-title: An effective use of crowding distance in multiobjective particle swarm optimization – volume: 21 start-page: 885 issue: 4 year: 2015 ident: 10.1016/j.asoc.2022.109622_b34 article-title: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy publication-title: Soft Comput. 2015 21:4 – start-page: 3944 year: 2007 ident: 10.1016/j.asoc.2022.109622_b37 article-title: MSOPS-II: A general-purpose many-objective optimiser – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.asoc.2022.109622_b2 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 32 start-page: 4013 issue: 12 year: 2018 ident: 10.1016/j.asoc.2022.109622_b38 article-title: Multi objective optimization with a new evolutionary algorithm publication-title: Water Resour. Manag. 2018 32:12 – volume: 25 start-page: 3775 issue: 5 year: 2021 ident: 10.1016/j.asoc.2022.109622_b47 article-title: Bi-heuristic ant colony optimization-based approaches for traveling salesman problem publication-title: Soft Comput. doi: 10.1007/s00500-020-05406-5 – year: 2018 ident: 10.1016/j.asoc.2022.109622_b32 – volume: 66 start-page: 18 issue: 5 year: 2002 ident: 10.1016/j.asoc.2022.109622_b51 article-title: Stochastic neural network model for spontaneous bursting in hippocampal slices publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys. – year: 2013 ident: 10.1016/j.asoc.2022.109622_b29 – start-page: 3918 year: 2017 ident: 10.1016/j.asoc.2022.109622_b13 article-title: MOPSO for dynamic feature selection problem based big data fusion – year: 2021 ident: 10.1016/j.asoc.2022.109622_b48 article-title: Q-learning-based hyperheuristic evolutionary algorithm for dynamic task allocation of crowdsensing publication-title: IEEE Trans. Cybern. – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.asoc.2022.109622_b24 article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 20 start-page: 31 year: 2017 ident: 10.1016/j.asoc.2022.109622_b14 article-title: Dynamic multi-objective optimization using evolutionary algorithms: A survey publication-title: Adapt. Learn. Optim. – start-page: 615 year: 2015 ident: 10.1016/j.asoc.2022.109622_b33 article-title: Multi-objective optimization with dynamic constraints and objectives: New challenges for evolutionary algorithms – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.asoc.2022.109622_b46 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: vol. 4403 start-page: 803 year: 2007 ident: 10.1016/j.asoc.2022.109622_b9 article-title: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling – volume: 10 start-page: 263 issue: 3 year: 2002 ident: 10.1016/j.asoc.2022.109622_b41 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evolut. Comput. doi: 10.1162/106365602760234108 – volume: 490 start-page: 85 year: 2013 ident: 10.1016/j.asoc.2022.109622_b31 article-title: Dynamic multi-objective optimization: A survey of the state-of-the-art publication-title: Stud. Comput. Intell. – year: 2007 ident: 10.1016/j.asoc.2022.109622_b36 article-title: Parallel processing for multi-objective optimization in dynamic environments – start-page: 3192 year: 2014 ident: 10.1016/j.asoc.2022.109622_b35 article-title: Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions – volume: 24 start-page: 750 issue: 4 year: 2020 ident: 10.1016/j.asoc.2022.109622_b44 article-title: Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2951217 – volume: 13 start-page: 103 issue: 1 year: 2009 ident: 10.1016/j.asoc.2022.109622_b25 article-title: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – volume: 30 start-page: 601 issue: 2 year: 2019 ident: 10.1016/j.asoc.2022.109622_b43 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2846646 – volume: 8 start-page: 425 issue: 5 year: 2004 ident: 10.1016/j.asoc.2022.109622_b1 article-title: Dynamic multiobjective optimization problems: Test cases, approximations, and applications publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.831456 – start-page: 1051 year: 2002 ident: 10.1016/j.asoc.2022.109622_b17 article-title: MOPSO: A proposal for multiple objective particle swarm optimization – volume: vol. 3242 start-page: 742 year: 2004 ident: 10.1016/j.asoc.2022.109622_b28 – volume: 22 start-page: 424 issue: 3 year: 2016 ident: 10.1016/j.asoc.2022.109622_b50 article-title: Introduction to the modeling and analysis of complex systems. h. Sayama (ed.). (2015, open SUNY textbooks). Free open access PDF, 498 pp. ISBN 978-1-942341-06-2 (deluxe color edition). ISBN 978-1-942341-08-6 (print edition). ISBN 978-1-942341-09-3 (ebook) publication-title: Artif. Life doi: 10.1162/ARTL_r_00209 – volume: 44 start-page: 40 issue: 1 year: 2014 ident: 10.1016/j.asoc.2022.109622_b26 article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2245892 – start-page: 1942 year: 1995 ident: 10.1016/j.asoc.2022.109622_b3 article-title: Particle swarm optimization – start-page: 531 year: 2007 ident: 10.1016/j.asoc.2022.109622_b49 – volume: 46 start-page: 2862 issue: 12 year: 2016 ident: 10.1016/j.asoc.2022.109622_b20 article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2490738 – start-page: 1666 year: 2002 ident: 10.1016/j.asoc.2022.109622_b11 article-title: Adaptive particle swarm optimization: Detection and response to dynamic systems – volume: 22 start-page: 501 issue: 4 year: 2018 ident: 10.1016/j.asoc.2022.109622_b22 article-title: Transfer learning-based dynamic multiobjective optimization algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2771451 – start-page: 3096 year: 2014 ident: 10.1016/j.asoc.2022.109622_b27 article-title: DMOPSO: Dual multi-objective particle swarm optimization – volume: vol. 10637 start-page: 258 year: 2017 ident: 10.1016/j.asoc.2022.109622_b18 article-title: Dynamic multi objective particle swarm optimization based on a new environment change detection strategy – volume: 13 issue: 2 year: 2009 ident: 10.1016/j.asoc.2022.109622_b30 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – start-page: 484 year: 2009 ident: 10.1016/j.asoc.2022.109622_b6 article-title: Using diversity as an additional-objective in dynamic multi-objective optimization algorithms – volume: 24 start-page: 305 issue: 2 year: 2020 ident: 10.1016/j.asoc.2022.109622_b21 article-title: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2925722 – volume: 48 start-page: 156 year: 2019 ident: 10.1016/j.asoc.2022.109622_b23 article-title: Ensemble prediction-based dynamic robust multi-objective optimization methods publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.03.015 |
| SSID | ssj0016928 |
| Score | 2.5044377 |
| Snippet | Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms is very efficient for static multi-objective... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 109622 |
| SubjectTerms | Detectors Dynamic multi-objective optimization problem Dynamic particle swarm optimization Dynamic response Friedman analysis of variance Lyapunov theorem Wilcoxon test |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1je_DJu6io5ME3zeglTRPfhhdE0A10or6UJE11s-vGbBn6602WVARR3HOThvAl-U7a75wDwKFHsiBUIUc4lTHSpx9BGjdHKMCxFDjVEHlu03l9Qy77-OohemiA2qnQKdy8mA_mbwPzm7ld8IlOEI5Z1a3KSaVv7ExfSwzhukUiDcGboNW_6XUe59qohCLMLKtID4QYob4jy9i6Lq5nre-FQWCUlEgQ_JaQlqpiwt9nPM-_JZyLFXBf03ZsnclruypFW378VHFcbC6rYNlBUNixa2YNNFSxDlZqewfodvsGeDrrCXTd7d12T2AHnlnretgztrhjKAYoN_VGcM7gRWMxtCeneT5_L7yd8ekIdvWRNHJcT9jJn8fTQfky2gT9i_O700vkrBiQxL5XIs4yKjSSFJkvfSyiMI5lyjLsyzD2VUhp6nsSU5kpFsuMezrQQtKUB56KJSc83ALNYlyobQAZZRFLY6FSo1SpJA1STxCusYPgSjK5A_w6Hol0OuXGLiNP6oK0YWJimJgYJjaGO-Doq8_EqnT82Tqqw5w4nGHxQ6LTyJ_9jr_WxD-G2V2s-R5oltNK7WuMU4oDt6I_AU2Z_YQ priority: 102 providerName: Unpaywall |
| Title | DPb-MOPSO: A Dynamic Pareto bi-level Multi-objective Particle Swarm Optimization Algorithm |
| URI | https://dx.doi.org/10.1016/j.asoc.2022.109622 http://researchrepository.napier.ac.uk/Output/2940981 |
| UnpaywallVersion | submittedVersion |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDLDwRjwrD2xgmjhOHLNFLai82ohSCVgi23GgKH2oKkIs_HbsxKlgACEmK8k5ju6cz3fS3X0AHDpBhj3lcURSSZFGvwBpv9lHmFApSKpd5IKm86YdtHrk8t6_nwONqhbGpFVa7C8xvUBre6dutVkf9_v1ro48QsJIgE1UrCHWVLATalgMTj5maR5uwAp-VSOMjLQtnClzvLjWgI4RMTZdlQKMfzqcFl-HY_7-xvP8y-FzvgqWrdcIo_LD1sCcGq6DlYqRAdofdAM8NmOBbjpxt3MKI9gs2eZhbJhsR1D0UW5ShGBRdItG4qUEO_O8eC_svvHJAHY0igxseSaM8qfRpD99HmyC3vnZXaOFLHsCksR1poizLBTa-ROZK10ifI9SmbKMuNKjrvLCMHUdSUKZKUZlxh1tGyHDlGNHUckD7m2B-eFoqLYBZCHzWUqFSk1zSSVDnDoi4Pq4F1xJJneAW6ktkba1uGG4yJMqh-wlMapOjKqTUtU74Gg2Z1w21vhV2q-skXzbHolG_l_nHc9M94dldv-5zB5YMldljeI-mJ9OXtWBdlamolbsxhpYiBq317EZL65abT322nH08AkbIurS |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRpSnBzYwTRwnjtmqAiqP0koFqWKJbMeBVulDVauKhd-OnTgVDFSINT7H0Z3z3Z10dx8AZ06QYE95HJFYUqTRL0A6bvYRJlQKEusQOaPpbDwF9Rdy3_E7S6BW9MKYskqL_TmmZ2htn1SsNiujbrfS1plHSBgJsMmKNcQugxXiY2oysMvPeZ2HG7CMYNVIIyNuO2fyIi-uVaCTRIzNWKUA49-80-p0MOIfM56m37zP7SZYt2EjrOZftgWW1GAbbBSUDND-oTvg9bolUKPZajevYBVe53TzsGWobIdQdFFqaoRg1nWLhqKXo51Zz94L2zM-7sOmhpG-7c-E1fRtOO5O3vu74OX25rlWR5Y-AUniOhPEWRIKHf2JxJUuEb5HqYxZQlzpUVd5YRi7jiShTBSjMuGONo6QYcyxo6jkAff2QGkwHKh9AFnIfBZToWIzXVLJEMeOCLj294IryWQZuIXaImlnixuKizQqish6kVF1ZFQd5aoug_P5nlE-WWOhtF9YI_pxPyIN_Qv3XcxN94djDv55zClYrT83HqPHu6eHQ7BmVvKGxSNQmoyn6lhHLhNxkt3ML_bf6SI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1je_DJu6io5ME3zeglTRPfhhdE0A10or6UJE11s-vGbBn6602WVARR3HOThvAl-U7a75wDwKFHsiBUIUc4lTHSpx9BGjdHKMCxFDjVEHlu03l9Qy77-OohemiA2qnQKdy8mA_mbwPzm7ld8IlOEI5Z1a3KSaVv7ExfSwzhukUiDcGboNW_6XUe59qohCLMLKtID4QYob4jy9i6Lq5nre-FQWCUlEgQ_JaQlqpiwt9nPM-_JZyLFXBf03ZsnclruypFW378VHFcbC6rYNlBUNixa2YNNFSxDlZqewfodvsGeDrrCXTd7d12T2AHnlnretgztrhjKAYoN_VGcM7gRWMxtCeneT5_L7yd8ekIdvWRNHJcT9jJn8fTQfky2gT9i_O700vkrBiQxL5XIs4yKjSSFJkvfSyiMI5lyjLsyzD2VUhp6nsSU5kpFsuMezrQQtKUB56KJSc83ALNYlyobQAZZRFLY6FSo1SpJA1STxCusYPgSjK5A_w6Hol0OuXGLiNP6oK0YWJimJgYJjaGO-Doq8_EqnT82Tqqw5w4nGHxQ6LTyJ_9jr_WxD-G2V2s-R5oltNK7WuMU4oDt6I_AU2Z_YQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DPb-MOPSO%3A+A+Dynamic+Pareto+bi-level+Multi-objective+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Applied+soft+computing&rft.au=Aboud%2C+Ahlem&rft.au=Rokbani%2C+Nizar&rft.au=Fdhila%2C+Raja&rft.au=Qahtani%2C+Abdulrahman+M.&rft.date=2022-11-01&rft.issn=1568-4946&rft.volume=129&rft.spage=109622&rft_id=info:doi/10.1016%2Fj.asoc.2022.109622&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109622 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |