Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution
Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endoc...
Saved in:
Published in | Chemosphere (Oxford) Vol. 168; pp. 617 - 622 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-6535 1879-1298 1879-1298 |
DOI | 10.1016/j.chemosphere.2016.11.016 |
Cover
Abstract | Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6–7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.
[Display omitted]
•AgNPs-catalyzed degradation of BPA and EE2 was investigated.•BPA and EE2 were effectively removed with the proposed Fenton-like mechanism.•Solution pH and H2O2 had a significant effect on the degradation performance. |
---|---|
AbstractList | Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6–7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.
[Display omitted]
•AgNPs-catalyzed degradation of BPA and EE2 was investigated.•BPA and EE2 were effectively removed with the proposed Fenton-like mechanism.•Solution pH and H2O2 had a significant effect on the degradation performance. Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment. Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag ) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H O , assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H O exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment. Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6–7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment. |
Author | Yoon, Yeomin Park, Chang Min Heo, Jiyong |
Author_xml | – sequence: 1 givenname: Chang Min surname: Park fullname: Park, Chang Min organization: Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA – sequence: 2 givenname: Jiyong surname: Heo fullname: Heo, Jiyong organization: Department of Civil and Environmental Engineering, Korea Army Academy at Young-Cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk 38900, South Korea – sequence: 3 givenname: Yeomin surname: Yoon fullname: Yoon, Yeomin email: yoony@cec.sc.edu organization: Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27838031$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFuEzEQhi1URNPCKyBz47Jbj51d755QFVFAqtQLnC2vd5Y4OHawnYiceSJehGfCS1qEuNDTWJ5v_hn9_wU588EjIa-A1cCgvdrUZo3bkHZrjFjz8lUD1KU8IQvoZF8B77szsmBs2VRtI5pzcpHShrGCNP0zcs5lJzomYEG-332zo872gHTEz1HP7-BpmOhgZ30fHL2m2o8U5M8fFea19UdHMeXC2tIcjvQGfQ6-cvYLUm2Kls3HWSFZd8BIvfZhp2O2xmGi1lP9dY9hn2gKbj9ve06eTtolfHFfL8mnm7cfV--r27t3H1bXt5VZAsuVbjSXpmFolkOL2AnegjTSjKNuWyFHAC4Eson1fGi5GZB3gxyWPWC71FM7iUvy-qS7i6GckLLa2mTQOe3nexSfDeIgO_lfFDrRl3296Ar68h7dD1sc1S7arY5H9eBxAfoTYGJIKeL0BwGm5jzVRv2Vp5rzVACqlDL75p9ZY_PviIr_1j1KYXVSwOLswWJUyVj0Bkcb0WQ1BvsIlV97zMcV |
CitedBy_id | crossref_primary_10_1016_j_seppur_2022_122641 crossref_primary_10_1016_j_envpol_2019_06_011 crossref_primary_10_1007_s10311_021_01185_z crossref_primary_10_1007_s12274_018_2225_3 crossref_primary_10_1186_s42834_022_00119_w crossref_primary_10_14202_vetworld_2025_547_557 crossref_primary_10_1016_j_ultsonch_2018_10_025 crossref_primary_10_1016_j_jiec_2017_09_009 crossref_primary_10_2139_ssrn_4193816 crossref_primary_10_1016_j_chemosphere_2022_133963 crossref_primary_10_3390_ma17153848 crossref_primary_10_1016_j_seppur_2021_120304 crossref_primary_10_1016_j_ecoenv_2019_109396 crossref_primary_10_1007_s12666_024_03317_9 crossref_primary_10_3390_ijerph16234675 crossref_primary_10_1016_j_pmatsci_2024_101292 crossref_primary_10_1016_j_chemosphere_2019_01_063 crossref_primary_10_1007_s11706_018_0412_5 crossref_primary_10_1021_acsaenm_4c00165 crossref_primary_10_1016_j_apsusc_2021_151305 crossref_primary_10_1007_s00339_022_05704_9 crossref_primary_10_1039_D2MA00500J crossref_primary_10_1016_j_chemosphere_2021_132726 crossref_primary_10_1016_j_enmm_2024_100963 crossref_primary_10_1155_2022_4997205 crossref_primary_10_1016_j_biortech_2019_02_091 crossref_primary_10_1016_j_jhazmat_2020_123309 crossref_primary_10_1080_09593330_2019_1643409 crossref_primary_10_1007_s11270_018_3921_z crossref_primary_10_1016_j_jwpe_2021_102500 crossref_primary_10_1016_j_pce_2023_103506 crossref_primary_10_1016_j_chemosphere_2018_09_033 crossref_primary_10_1016_j_jallcom_2023_169392 crossref_primary_10_1016_j_envc_2022_100534 crossref_primary_10_11001_jksww_2018_32_6_499 crossref_primary_10_1016_j_jcis_2019_05_040 crossref_primary_10_1039_C7RA11705A crossref_primary_10_5004_dwt_2019_23716 crossref_primary_10_1016_j_jece_2021_105748 crossref_primary_10_1016_j_chemosphere_2021_131560 crossref_primary_10_1016_j_chemosphere_2021_132131 crossref_primary_10_1016_j_cej_2018_03_004 crossref_primary_10_5004_dwt_2020_25905 crossref_primary_10_1016_j_memsci_2020_118491 crossref_primary_10_1016_j_apcatb_2017_11_058 crossref_primary_10_1007_s10103_024_03991_7 crossref_primary_10_1007_s11783_019_1149_9 crossref_primary_10_1016_j_matchemphys_2020_123298 crossref_primary_10_1016_j_psep_2018_09_021 crossref_primary_10_1016_j_seppur_2019_03_056 crossref_primary_10_1016_j_cej_2017_09_009 crossref_primary_10_1016_j_seppur_2024_127226 crossref_primary_10_1016_j_memsci_2021_119995 crossref_primary_10_1016_j_jiec_2019_07_009 |
Cites_doi | 10.1021/es505114u 10.1016/j.scitotenv.2013.01.089 10.1016/j.ultsonch.2014.03.026 10.1021/cr900136g 10.1016/j.jhazmat.2007.02.003 10.1007/s11356-008-0052-x 10.1210/er.2009-0002 10.1021/es060357o 10.1016/j.jhazmat.2007.04.056 10.1080/10643389.2013.829765 10.1021/jp1062836 10.1016/j.ultsonch.2005.11.004 10.1021/es803622t 10.1089/109287503768335931 10.1021/es034011e 10.1016/j.chroma.2011.03.034 10.1016/j.watres.2014.12.017 10.1038/44517 10.1021/ie00051a005 10.1016/j.memsci.2005.06.045 10.1007/s11356-009-0234-1 10.1021/es001359q 10.1016/j.watres.2009.07.031 10.1016/j.biomaterials.2012.06.076 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2016.11.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 622 |
ExternalDocumentID | 27838031 10_1016_j_chemosphere_2016_11_016 S0045653516315508 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c410t-a5a27c50ec4b6ee832617c7cdda6637d11233e0f092b62cbe28b7b491e64af6f3 |
IEDL.DBID | AIKHN |
ISSN | 0045-6535 1879-1298 |
IngestDate | Sun Sep 28 01:27:03 EDT 2025 Sun Sep 28 07:33:08 EDT 2025 Mon Jul 21 05:59:49 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Tue Jul 01 00:45:27 EDT 2025 Fri Feb 23 02:24:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Degradation Hydroxyl radicals Bisphenol A 17α-ethinyl estradiol Silver nanoparticle |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-a5a27c50ec4b6ee832617c7cdda6637d11233e0f092b62cbe28b7b491e64af6f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27838031 |
PQID | 1839112938 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000121787 proquest_miscellaneous_1839112938 pubmed_primary_27838031 crossref_primary_10_1016_j_chemosphere_2016_11_016 crossref_citationtrail_10_1016_j_chemosphere_2016_11_016 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_11_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Brillas, Sirés, Oturan (bib4) 2009; 109 He, Zhou, Wamer, Boudreau, Yin (bib10) 2012; 33 Gözmen, Oturan, Oturan, Erbatur (bib8) 2003; 37 Broséus, Vincent, Aboulfadl, Daneshvar, Sauvé, Barbeau, Prévost (bib5) 2009; 43 Weaver, Frederikse (bib25) 2007; 129 Diamanti-Kandarakis, Bourguignon, Giudice, Hauser, Prins, Soto, Zoeller, Gore (bib7) 2009; 30 Howdeshell, Hotchkiss, Thayer, Vandenbergh, Vom Saal (bib12) 1999; 401 Chen, Sun, Zhou, Zhang, Huang (bib6) 2015; 49 Han, Zhang, Zhao, Feng (bib9) 2015; 70 Rubert IV, Pedersen (bib22) 2006; 40 Lin, Liu, Gan (bib17) 2009; 43 Baronti, Curini, D'Ascenzo, Di Corcia, Gentili, Samperi (bib1) 2000; 34 Kidak, Ince (bib13) 2006; 13 Oturan, Aaron (bib18) 2014; 44 Römer, White, Baalousha, Chipman, Viant, Lead (bib21) 2011; 1218 Torres, Abdelmalek, Combet, Pétrier, Pulgarin (bib24) 2007; 146 Kuch, Kern, Metzger, von der Trenck (bib15) 2010; 17 Li, Fu, Zhang, Li, Ma, Wu, Liu (bib16) 2013; 450 Hiemenz, Rajagopalan (bib11) 1997 Oturan, Zhou, Oturan (bib19) 2010; 114 Yoon, Westerhoff, Snyder, Wert (bib26) 2006; 270 Pan, Ning, Xing (bib20) 2009; 16 Kosky, Silva, Guggenheim (bib14) 1991; 30 Basturk, Karatas (bib2) 2014; 21 Behnajady, Modirshahla, Ghanbary (bib3) 2007; 148 Snyder, Westerhoff, Yoon, Sedlak (bib23) 2003; 20 Li (10.1016/j.chemosphere.2016.11.016_bib16) 2013; 450 Oturan (10.1016/j.chemosphere.2016.11.016_bib18) 2014; 44 Snyder (10.1016/j.chemosphere.2016.11.016_bib23) 2003; 20 Broséus (10.1016/j.chemosphere.2016.11.016_bib5) 2009; 43 Yoon (10.1016/j.chemosphere.2016.11.016_bib26) 2006; 270 He (10.1016/j.chemosphere.2016.11.016_bib10) 2012; 33 Hiemenz (10.1016/j.chemosphere.2016.11.016_bib11) 1997 Weaver (10.1016/j.chemosphere.2016.11.016_bib25) 2007; 129 Kidak (10.1016/j.chemosphere.2016.11.016_bib13) 2006; 13 Kosky (10.1016/j.chemosphere.2016.11.016_bib14) 1991; 30 Torres (10.1016/j.chemosphere.2016.11.016_bib24) 2007; 146 Baronti (10.1016/j.chemosphere.2016.11.016_bib1) 2000; 34 Diamanti-Kandarakis (10.1016/j.chemosphere.2016.11.016_bib7) 2009; 30 Römer (10.1016/j.chemosphere.2016.11.016_bib21) 2011; 1218 Kuch (10.1016/j.chemosphere.2016.11.016_bib15) 2010; 17 Chen (10.1016/j.chemosphere.2016.11.016_bib6) 2015; 49 Howdeshell (10.1016/j.chemosphere.2016.11.016_bib12) 1999; 401 Pan (10.1016/j.chemosphere.2016.11.016_bib20) 2009; 16 Lin (10.1016/j.chemosphere.2016.11.016_bib17) 2009; 43 Basturk (10.1016/j.chemosphere.2016.11.016_bib2) 2014; 21 Gözmen (10.1016/j.chemosphere.2016.11.016_bib8) 2003; 37 Oturan (10.1016/j.chemosphere.2016.11.016_bib19) 2010; 114 Han (10.1016/j.chemosphere.2016.11.016_bib9) 2015; 70 Behnajady (10.1016/j.chemosphere.2016.11.016_bib3) 2007; 148 Brillas (10.1016/j.chemosphere.2016.11.016_bib4) 2009; 109 Rubert IV (10.1016/j.chemosphere.2016.11.016_bib22) 2006; 40 |
References_xml | – volume: 1218 start-page: 4226 year: 2011 end-page: 4233 ident: bib21 article-title: Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests publication-title: J. Chromatogr. A – volume: 129 start-page: 724 year: 2007 ident: bib25 article-title: CRC handbook of chemistry and physics publication-title: J. Am. Chem. Soc. – volume: 146 start-page: 546 year: 2007 end-page: 551 ident: bib24 article-title: A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters publication-title: J. Hazard. Mater. – volume: 44 start-page: 2577 year: 2014 end-page: 2641 ident: bib18 article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review publication-title: Crit. Rev. Env. Sci. Tec. – volume: 30 start-page: 462 year: 1991 end-page: 467 ident: bib14 article-title: The aqueous phase in the interfacial synthesis of polycarbonates. Part 1. Ionic equilibria and experimental solubilities in the BPA-sodium hydroxide-water system publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 4707 year: 2009 end-page: 4717 ident: bib5 article-title: Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment publication-title: Water Res. – volume: 21 start-page: 1881 year: 2014 end-page: 1885 ident: bib2 article-title: Advanced oxidation of reactive blue 181 solution: a comparison between fenton and sono-fenton process publication-title: Ultrason. Sonochem. – volume: 401 start-page: 763 year: 1999 end-page: 764 ident: bib12 article-title: Environmental toxins: exposure to bisphenol A advances puberty publication-title: Nature – volume: 148 start-page: 98 year: 2007 end-page: 102 ident: bib3 article-title: A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process publication-title: J. Hazard. Mater. – volume: 70 start-page: 288 year: 2015 end-page: 299 ident: bib9 article-title: Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles publication-title: Water Res. – volume: 109 start-page: 6570 year: 2009 end-page: 6631 ident: bib4 article-title: Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry publication-title: Chem. Rev. – volume: 13 start-page: 195 year: 2006 end-page: 199 ident: bib13 article-title: Ultrasonic destruction of phenol and substituted phenols: a review of current research publication-title: Ultrason. Sonochem. – volume: 30 start-page: 293 year: 2009 end-page: 342 ident: bib7 article-title: Endocrine-disrupting chemicals: an Endocrine Society scientific statement publication-title: Endocr. Rev. – year: 1997 ident: bib11 article-title: Principles of Colloid and Surface Chemistry, Revised and Expanded – volume: 43 start-page: 4480 year: 2009 end-page: 4486 ident: bib17 article-title: Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways publication-title: Environ. Sci. Technol. – volume: 16 start-page: 106 year: 2009 end-page: 116 ident: bib20 article-title: Part V—sorption of pharmaceuticals and personal care products publication-title: Environ. Sci. Pollut. R. – volume: 450 start-page: 162 year: 2013 end-page: 168 ident: bib16 article-title: Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: a field study along the Chaobai River, Beijing publication-title: Sci. Total Environ. – volume: 270 start-page: 88 year: 2006 end-page: 100 ident: bib26 article-title: Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products publication-title: J. Membr. Sci. – volume: 37 start-page: 3716 year: 2003 end-page: 3723 ident: bib8 article-title: Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent publication-title: Environ. Sci. Technol. – volume: 17 start-page: 250 year: 2010 end-page: 260 ident: bib15 article-title: Effect-related monitoring: estrogen-like substances in groundwater publication-title: Environ. Sci. Pollut. R. – volume: 40 start-page: 7216 year: 2006 end-page: 7221 ident: bib22 article-title: Kinetics of oxytetracycline reaction with a hydrous manganese oxide publication-title: Environ. Sci. Technol. – volume: 34 start-page: 5059 year: 2000 end-page: 5066 ident: bib1 article-title: Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water publication-title: Environ. Sci. Technol. – volume: 114 start-page: 10605 year: 2010 end-page: 10611 ident: bib19 article-title: Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst publication-title: J. Phys. Chem. A – volume: 20 start-page: 449 year: 2003 end-page: 469 ident: bib23 article-title: Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry publication-title: Environ. Eng. Sci. – volume: 49 start-page: 4218 year: 2015 end-page: 4225 ident: bib6 article-title: Cu(II)–catalyzed transformation of Benzylpenicillin revisited: the overlooked oxidation publication-title: Environ. Sci. Technol. – volume: 33 start-page: 7547 year: 2012 end-page: 7555 ident: bib10 article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles publication-title: Biomaterials – volume: 49 start-page: 4218 year: 2015 ident: 10.1016/j.chemosphere.2016.11.016_bib6 article-title: Cu(II)–catalyzed transformation of Benzylpenicillin revisited: the overlooked oxidation publication-title: Environ. Sci. Technol. doi: 10.1021/es505114u – volume: 450 start-page: 162 year: 2013 ident: 10.1016/j.chemosphere.2016.11.016_bib16 article-title: Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: a field study along the Chaobai River, Beijing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.01.089 – volume: 21 start-page: 1881 year: 2014 ident: 10.1016/j.chemosphere.2016.11.016_bib2 article-title: Advanced oxidation of reactive blue 181 solution: a comparison between fenton and sono-fenton process publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.03.026 – volume: 109 start-page: 6570 year: 2009 ident: 10.1016/j.chemosphere.2016.11.016_bib4 article-title: Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry publication-title: Chem. Rev. doi: 10.1021/cr900136g – year: 1997 ident: 10.1016/j.chemosphere.2016.11.016_bib11 – volume: 148 start-page: 98 year: 2007 ident: 10.1016/j.chemosphere.2016.11.016_bib3 article-title: A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.02.003 – volume: 16 start-page: 106 year: 2009 ident: 10.1016/j.chemosphere.2016.11.016_bib20 article-title: Part V—sorption of pharmaceuticals and personal care products publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-008-0052-x – volume: 30 start-page: 293 year: 2009 ident: 10.1016/j.chemosphere.2016.11.016_bib7 article-title: Endocrine-disrupting chemicals: an Endocrine Society scientific statement publication-title: Endocr. Rev. doi: 10.1210/er.2009-0002 – volume: 40 start-page: 7216 year: 2006 ident: 10.1016/j.chemosphere.2016.11.016_bib22 article-title: Kinetics of oxytetracycline reaction with a hydrous manganese oxide publication-title: Environ. Sci. Technol. doi: 10.1021/es060357o – volume: 146 start-page: 546 year: 2007 ident: 10.1016/j.chemosphere.2016.11.016_bib24 article-title: A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.04.056 – volume: 44 start-page: 2577 year: 2014 ident: 10.1016/j.chemosphere.2016.11.016_bib18 article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review publication-title: Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2013.829765 – volume: 114 start-page: 10605 year: 2010 ident: 10.1016/j.chemosphere.2016.11.016_bib19 article-title: Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst publication-title: J. Phys. Chem. A doi: 10.1021/jp1062836 – volume: 13 start-page: 195 year: 2006 ident: 10.1016/j.chemosphere.2016.11.016_bib13 article-title: Ultrasonic destruction of phenol and substituted phenols: a review of current research publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2005.11.004 – volume: 43 start-page: 4480 year: 2009 ident: 10.1016/j.chemosphere.2016.11.016_bib17 article-title: Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways publication-title: Environ. Sci. Technol. doi: 10.1021/es803622t – volume: 20 start-page: 449 year: 2003 ident: 10.1016/j.chemosphere.2016.11.016_bib23 article-title: Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry publication-title: Environ. Eng. Sci. doi: 10.1089/109287503768335931 – volume: 37 start-page: 3716 year: 2003 ident: 10.1016/j.chemosphere.2016.11.016_bib8 article-title: Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent publication-title: Environ. Sci. Technol. doi: 10.1021/es034011e – volume: 1218 start-page: 4226 year: 2011 ident: 10.1016/j.chemosphere.2016.11.016_bib21 article-title: Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2011.03.034 – volume: 70 start-page: 288 year: 2015 ident: 10.1016/j.chemosphere.2016.11.016_bib9 article-title: Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles publication-title: Water Res. doi: 10.1016/j.watres.2014.12.017 – volume: 401 start-page: 763 year: 1999 ident: 10.1016/j.chemosphere.2016.11.016_bib12 article-title: Environmental toxins: exposure to bisphenol A advances puberty publication-title: Nature doi: 10.1038/44517 – volume: 30 start-page: 462 year: 1991 ident: 10.1016/j.chemosphere.2016.11.016_bib14 article-title: The aqueous phase in the interfacial synthesis of polycarbonates. Part 1. Ionic equilibria and experimental solubilities in the BPA-sodium hydroxide-water system publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00051a005 – volume: 270 start-page: 88 year: 2006 ident: 10.1016/j.chemosphere.2016.11.016_bib26 article-title: Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.06.045 – volume: 17 start-page: 250 year: 2010 ident: 10.1016/j.chemosphere.2016.11.016_bib15 article-title: Effect-related monitoring: estrogen-like substances in groundwater publication-title: Environ. Sci. Pollut. R. doi: 10.1007/s11356-009-0234-1 – volume: 34 start-page: 5059 year: 2000 ident: 10.1016/j.chemosphere.2016.11.016_bib1 article-title: Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water publication-title: Environ. Sci. Technol. doi: 10.1021/es001359q – volume: 43 start-page: 4707 year: 2009 ident: 10.1016/j.chemosphere.2016.11.016_bib5 article-title: Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment publication-title: Water Res. doi: 10.1016/j.watres.2009.07.031 – volume: 33 start-page: 7547 year: 2012 ident: 10.1016/j.chemosphere.2016.11.016_bib10 article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.06.076 – volume: 129 start-page: 724 year: 2007 ident: 10.1016/j.chemosphere.2016.11.016_bib25 article-title: CRC handbook of chemistry and physics publication-title: J. Am. Chem. Soc. |
SSID | ssj0001659 |
Score | 2.4367015 |
Snippet | Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its... Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag ) and its... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 617 |
SubjectTerms | 17α-ethinyl estradiol antibacterial properties aqueous solutions Benzhydryl Compounds - analysis Bisphenol A Catalysis cations cytotoxicity Degradation Endocrine Disruptors - analysis endocrine-disrupting chemicals equations estradiol Ethinyl Estradiol - analysis hydrogen peroxide Hydrogen Peroxide - chemistry Hydroxyl radicals Metal Nanoparticles - chemistry nanosilver oxidation Oxidation-Reduction Phenols - analysis polyvinylpyrrolidone Povidone - chemistry silver Silver - chemistry Silver nanoparticle Water Pollutants, Chemical - analysis |
Title | Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution |
URI | https://dx.doi.org/10.1016/j.chemosphere.2016.11.016 https://www.ncbi.nlm.nih.gov/pubmed/27838031 https://www.proquest.com/docview/1839112938 https://www.proquest.com/docview/2000121787 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC6SDT4uovG1PkIHvE4y3TM9PQNewpKwKsaLgdyafg2Orj3B3YB78eIv8o_4m6yax6pgIOBpYGaqKaqqq77pqQfACy6sCtzZJDOqSPLgqqR0qU2UtF4I7yveVfG_PS3mZ_nrc3m-BbOxFobSKgff3_v0zlsPdw4HaR5eNA3V-BIaySQiCsLZ5TbsCIz25QR2jl69mZ9uHDIvZI-Cc5kQwU3Y_53mhaL53C6phJ-aZvLigHp60vTzf4epq2BoF45O7sKdAUeyo57Ve7AV4i7cmo3j23bhxnHXj3p9H76_-9r4rr8389Qaop-ixNqa2YZYii2uw0z0jKufP5Kw-tDE9YIFOgTxDT60a4bGTLOGF82nwKgUgiZO0ArLhjKrWTQRP76HHDvWRGaQ-_ZyyUbLfgBnJ8fvZ_NkmL2QuJynq8RII5STaXC5LULAfY9QxynnvUGMojzCtCwLaZ1WwhbC2SBKq2xe8VDkpi7q7CFMYhvDY2AqFa7OqsxWtchr6aoSo6Z3vCpzw1Ump1COotZuaExO8zEWesxA-6j_0JImLeGHi8bLFMSG9KLvznEdopejPvVfpqYxilyHfH-0AY0qpf8rJpJINYFNgq9ZefU7ojv64-gmp_CoN6AN5zT0BGXDn_wfg0_htiDs0aWWP4PJ6stleI7IaWX3YPvgG98b9scvKJwcBg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VraBcEJRHl6crcQ2NH4kTiUu1arWl7XJppd4svyICi1N1txJ75hfxR_hNePJYQKJSJU6RktgazYzHX5yZ-QDeUmakp9YkXMs8Ed6WSWFTk8jMOMacK2lbxX86y6fn4sNFdrEBk6EWBtMq-9jfxfQ2Wvd39npt7l3WNdb4IhrhWUQUiLOLO7ApkNR6BJv7R8fT2Tog0zzrULDIEhxwD3Z_p3lF1XxtFljCj00zaf4Oe3oi-_m_t6mbYGi7HR0-hAc9jiT7naiPYMOHbdiaDPRt23D3oO1HvXoM3z9-q13b35s4bA3RsSiRpiKmRpFCE-chOjhC5c8fiV9-qsNqTjwegrg6PjQrEp0ZuYbn9RdPsBQCGSdwhkWNmdUk6BA_vvscO1IHoqP0zfWCDJ79BM4PD84m06TnXkisoOky0Zlm0mapt8Lk3sd1H6GOldY5HTGKdBGmce7TKi2ZyZk1nhVGGlFSnwtd5RV_CqPQBL8DRKbMVrzkpqyYqDJbFnHXdJaWhdBU8mwMxaBqZfvG5MiPMVdDBtpn9YeVFFopfrioeBkDWw-97Lpz3GbQ-8Ge6i9XU3EXuc3w3cEHVDQp_l_RAVWqEGwifOXFze-w9uiPxjA5hmedA60lR9KTqBv6_P8EfANb07PTE3VyNDt-AfcZ4pA2zfwljJZX1_5VRFFL87pfJb8A1qAd7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+degradation+of+bisphenol+A+and+17%CE%B1-ethinyl+estradiol+by+Fenton-like+activity+of+silver+nanoparticles+in+aqueous+solution&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Park%2C+Chang+Min&rft.au=Heo%2C+Jiyong&rft.au=Yoon%2C+Yeomin&rft.date=2017-02-01&rft.issn=0045-6535&rft.volume=168&rft.spage=617&rft.epage=622&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.11.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2016_11_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |