Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution

Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endoc...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 168; pp. 617 - 622
Main Authors Park, Chang Min, Heo, Jiyong, Yoon, Yeomin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2017
Subjects
Online AccessGet full text
ISSN0045-6535
1879-1298
1879-1298
DOI10.1016/j.chemosphere.2016.11.016

Cover

Abstract Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6–7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment. [Display omitted] •AgNPs-catalyzed degradation of BPA and EE2 was investigated.•BPA and EE2 were effectively removed with the proposed Fenton-like mechanism.•Solution pH and H2O2 had a significant effect on the degradation performance.
AbstractList Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6–7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment. [Display omitted] •AgNPs-catalyzed degradation of BPA and EE2 was investigated.•BPA and EE2 were effectively removed with the proposed Fenton-like mechanism.•Solution pH and H2O2 had a significant effect on the degradation performance.
Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.
Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag ) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H O , assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H O exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6-7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.
Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its soluble complexes. However, to our knowledge, little has been reported about their potential use in degrading organic contaminants such as endocrine-disrupting compounds in aqueous solution. In this first report on the subject, we examined the effectiveness of the oxidative degradation of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) in water by reactive oxygen species formed during the decomposition of H2O2, assisted by polyvinylpyrrolidone (PVP)-stabilized AgNPs. The dissolution of AgNPs accompanied generation of OH at low pH. The fully dispersed PVP-AgNPs in the presence of H2O2 exhibited fast degradation kinetics for EE2 at a typical aquatic condition of pH (6–7). The oxidation kinetics of BPA and EE2 by PVP-AgNPs can be interpreted using three different modeling approaches: an initial pseudo-first-order, a retarded first-order rate, and Behnajady-Modirshahla-Ghanbery kinetic equation. The findings showed that AgNPs may have potential to facilitate the in situ oxidation for emerging contaminants in the aqueous environment.
Author Yoon, Yeomin
Park, Chang Min
Heo, Jiyong
Author_xml – sequence: 1
  givenname: Chang Min
  surname: Park
  fullname: Park, Chang Min
  organization: Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
– sequence: 2
  givenname: Jiyong
  surname: Heo
  fullname: Heo, Jiyong
  organization: Department of Civil and Environmental Engineering, Korea Army Academy at Young-Cheon, 495 Hogook-ro, Kokyungmeon, Young-Cheon, Gyeongbuk 38900, South Korea
– sequence: 3
  givenname: Yeomin
  surname: Yoon
  fullname: Yoon, Yeomin
  email: yoony@cec.sc.edu
  organization: Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27838031$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFuEzEQhi1URNPCKyBz47Jbj51d755QFVFAqtQLnC2vd5Y4OHawnYiceSJehGfCS1qEuNDTWJ5v_hn9_wU588EjIa-A1cCgvdrUZo3bkHZrjFjz8lUD1KU8IQvoZF8B77szsmBs2VRtI5pzcpHShrGCNP0zcs5lJzomYEG-332zo872gHTEz1HP7-BpmOhgZ30fHL2m2o8U5M8fFea19UdHMeXC2tIcjvQGfQ6-cvYLUm2Kls3HWSFZd8BIvfZhp2O2xmGi1lP9dY9hn2gKbj9ve06eTtolfHFfL8mnm7cfV--r27t3H1bXt5VZAsuVbjSXpmFolkOL2AnegjTSjKNuWyFHAC4Eson1fGi5GZB3gxyWPWC71FM7iUvy-qS7i6GckLLa2mTQOe3nexSfDeIgO_lfFDrRl3296Ar68h7dD1sc1S7arY5H9eBxAfoTYGJIKeL0BwGm5jzVRv2Vp5rzVACqlDL75p9ZY_PviIr_1j1KYXVSwOLswWJUyVj0Bkcb0WQ1BvsIlV97zMcV
CitedBy_id crossref_primary_10_1016_j_seppur_2022_122641
crossref_primary_10_1016_j_envpol_2019_06_011
crossref_primary_10_1007_s10311_021_01185_z
crossref_primary_10_1007_s12274_018_2225_3
crossref_primary_10_1186_s42834_022_00119_w
crossref_primary_10_14202_vetworld_2025_547_557
crossref_primary_10_1016_j_ultsonch_2018_10_025
crossref_primary_10_1016_j_jiec_2017_09_009
crossref_primary_10_2139_ssrn_4193816
crossref_primary_10_1016_j_chemosphere_2022_133963
crossref_primary_10_3390_ma17153848
crossref_primary_10_1016_j_seppur_2021_120304
crossref_primary_10_1016_j_ecoenv_2019_109396
crossref_primary_10_1007_s12666_024_03317_9
crossref_primary_10_3390_ijerph16234675
crossref_primary_10_1016_j_pmatsci_2024_101292
crossref_primary_10_1016_j_chemosphere_2019_01_063
crossref_primary_10_1007_s11706_018_0412_5
crossref_primary_10_1021_acsaenm_4c00165
crossref_primary_10_1016_j_apsusc_2021_151305
crossref_primary_10_1007_s00339_022_05704_9
crossref_primary_10_1039_D2MA00500J
crossref_primary_10_1016_j_chemosphere_2021_132726
crossref_primary_10_1016_j_enmm_2024_100963
crossref_primary_10_1155_2022_4997205
crossref_primary_10_1016_j_biortech_2019_02_091
crossref_primary_10_1016_j_jhazmat_2020_123309
crossref_primary_10_1080_09593330_2019_1643409
crossref_primary_10_1007_s11270_018_3921_z
crossref_primary_10_1016_j_jwpe_2021_102500
crossref_primary_10_1016_j_pce_2023_103506
crossref_primary_10_1016_j_chemosphere_2018_09_033
crossref_primary_10_1016_j_jallcom_2023_169392
crossref_primary_10_1016_j_envc_2022_100534
crossref_primary_10_11001_jksww_2018_32_6_499
crossref_primary_10_1016_j_jcis_2019_05_040
crossref_primary_10_1039_C7RA11705A
crossref_primary_10_5004_dwt_2019_23716
crossref_primary_10_1016_j_jece_2021_105748
crossref_primary_10_1016_j_chemosphere_2021_131560
crossref_primary_10_1016_j_chemosphere_2021_132131
crossref_primary_10_1016_j_cej_2018_03_004
crossref_primary_10_5004_dwt_2020_25905
crossref_primary_10_1016_j_memsci_2020_118491
crossref_primary_10_1016_j_apcatb_2017_11_058
crossref_primary_10_1007_s10103_024_03991_7
crossref_primary_10_1007_s11783_019_1149_9
crossref_primary_10_1016_j_matchemphys_2020_123298
crossref_primary_10_1016_j_psep_2018_09_021
crossref_primary_10_1016_j_seppur_2019_03_056
crossref_primary_10_1016_j_cej_2017_09_009
crossref_primary_10_1016_j_seppur_2024_127226
crossref_primary_10_1016_j_memsci_2021_119995
crossref_primary_10_1016_j_jiec_2019_07_009
Cites_doi 10.1021/es505114u
10.1016/j.scitotenv.2013.01.089
10.1016/j.ultsonch.2014.03.026
10.1021/cr900136g
10.1016/j.jhazmat.2007.02.003
10.1007/s11356-008-0052-x
10.1210/er.2009-0002
10.1021/es060357o
10.1016/j.jhazmat.2007.04.056
10.1080/10643389.2013.829765
10.1021/jp1062836
10.1016/j.ultsonch.2005.11.004
10.1021/es803622t
10.1089/109287503768335931
10.1021/es034011e
10.1016/j.chroma.2011.03.034
10.1016/j.watres.2014.12.017
10.1038/44517
10.1021/ie00051a005
10.1016/j.memsci.2005.06.045
10.1007/s11356-009-0234-1
10.1021/es001359q
10.1016/j.watres.2009.07.031
10.1016/j.biomaterials.2012.06.076
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2016.11.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 622
ExternalDocumentID 27838031
10_1016_j_chemosphere_2016_11_016
S0045653516315508
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
~HD
7S9
L.6
ID FETCH-LOGICAL-c410t-a5a27c50ec4b6ee832617c7cdda6637d11233e0f092b62cbe28b7b491e64af6f3
IEDL.DBID AIKHN
ISSN 0045-6535
1879-1298
IngestDate Sun Sep 28 01:27:03 EDT 2025
Sun Sep 28 07:33:08 EDT 2025
Mon Jul 21 05:59:49 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Tue Jul 01 00:45:27 EDT 2025
Fri Feb 23 02:24:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Degradation
Hydroxyl radicals
Bisphenol A
17α-ethinyl estradiol
Silver nanoparticle
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-a5a27c50ec4b6ee832617c7cdda6637d11233e0f092b62cbe28b7b491e64af6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27838031
PQID 1839112938
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000121787
proquest_miscellaneous_1839112938
pubmed_primary_27838031
crossref_primary_10_1016_j_chemosphere_2016_11_016
crossref_citationtrail_10_1016_j_chemosphere_2016_11_016
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_11_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Brillas, Sirés, Oturan (bib4) 2009; 109
He, Zhou, Wamer, Boudreau, Yin (bib10) 2012; 33
Gözmen, Oturan, Oturan, Erbatur (bib8) 2003; 37
Broséus, Vincent, Aboulfadl, Daneshvar, Sauvé, Barbeau, Prévost (bib5) 2009; 43
Weaver, Frederikse (bib25) 2007; 129
Diamanti-Kandarakis, Bourguignon, Giudice, Hauser, Prins, Soto, Zoeller, Gore (bib7) 2009; 30
Howdeshell, Hotchkiss, Thayer, Vandenbergh, Vom Saal (bib12) 1999; 401
Chen, Sun, Zhou, Zhang, Huang (bib6) 2015; 49
Han, Zhang, Zhao, Feng (bib9) 2015; 70
Rubert IV, Pedersen (bib22) 2006; 40
Lin, Liu, Gan (bib17) 2009; 43
Baronti, Curini, D'Ascenzo, Di Corcia, Gentili, Samperi (bib1) 2000; 34
Kidak, Ince (bib13) 2006; 13
Oturan, Aaron (bib18) 2014; 44
Römer, White, Baalousha, Chipman, Viant, Lead (bib21) 2011; 1218
Torres, Abdelmalek, Combet, Pétrier, Pulgarin (bib24) 2007; 146
Kuch, Kern, Metzger, von der Trenck (bib15) 2010; 17
Li, Fu, Zhang, Li, Ma, Wu, Liu (bib16) 2013; 450
Hiemenz, Rajagopalan (bib11) 1997
Oturan, Zhou, Oturan (bib19) 2010; 114
Yoon, Westerhoff, Snyder, Wert (bib26) 2006; 270
Pan, Ning, Xing (bib20) 2009; 16
Kosky, Silva, Guggenheim (bib14) 1991; 30
Basturk, Karatas (bib2) 2014; 21
Behnajady, Modirshahla, Ghanbary (bib3) 2007; 148
Snyder, Westerhoff, Yoon, Sedlak (bib23) 2003; 20
Li (10.1016/j.chemosphere.2016.11.016_bib16) 2013; 450
Oturan (10.1016/j.chemosphere.2016.11.016_bib18) 2014; 44
Snyder (10.1016/j.chemosphere.2016.11.016_bib23) 2003; 20
Broséus (10.1016/j.chemosphere.2016.11.016_bib5) 2009; 43
Yoon (10.1016/j.chemosphere.2016.11.016_bib26) 2006; 270
He (10.1016/j.chemosphere.2016.11.016_bib10) 2012; 33
Hiemenz (10.1016/j.chemosphere.2016.11.016_bib11) 1997
Weaver (10.1016/j.chemosphere.2016.11.016_bib25) 2007; 129
Kidak (10.1016/j.chemosphere.2016.11.016_bib13) 2006; 13
Kosky (10.1016/j.chemosphere.2016.11.016_bib14) 1991; 30
Torres (10.1016/j.chemosphere.2016.11.016_bib24) 2007; 146
Baronti (10.1016/j.chemosphere.2016.11.016_bib1) 2000; 34
Diamanti-Kandarakis (10.1016/j.chemosphere.2016.11.016_bib7) 2009; 30
Römer (10.1016/j.chemosphere.2016.11.016_bib21) 2011; 1218
Kuch (10.1016/j.chemosphere.2016.11.016_bib15) 2010; 17
Chen (10.1016/j.chemosphere.2016.11.016_bib6) 2015; 49
Howdeshell (10.1016/j.chemosphere.2016.11.016_bib12) 1999; 401
Pan (10.1016/j.chemosphere.2016.11.016_bib20) 2009; 16
Lin (10.1016/j.chemosphere.2016.11.016_bib17) 2009; 43
Basturk (10.1016/j.chemosphere.2016.11.016_bib2) 2014; 21
Gözmen (10.1016/j.chemosphere.2016.11.016_bib8) 2003; 37
Oturan (10.1016/j.chemosphere.2016.11.016_bib19) 2010; 114
Han (10.1016/j.chemosphere.2016.11.016_bib9) 2015; 70
Behnajady (10.1016/j.chemosphere.2016.11.016_bib3) 2007; 148
Brillas (10.1016/j.chemosphere.2016.11.016_bib4) 2009; 109
Rubert IV (10.1016/j.chemosphere.2016.11.016_bib22) 2006; 40
References_xml – volume: 1218
  start-page: 4226
  year: 2011
  end-page: 4233
  ident: bib21
  article-title: Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests
  publication-title: J. Chromatogr. A
– volume: 129
  start-page: 724
  year: 2007
  ident: bib25
  article-title: CRC handbook of chemistry and physics
  publication-title: J. Am. Chem. Soc.
– volume: 146
  start-page: 546
  year: 2007
  end-page: 551
  ident: bib24
  article-title: A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters
  publication-title: J. Hazard. Mater.
– volume: 44
  start-page: 2577
  year: 2014
  end-page: 2641
  ident: bib18
  article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
  publication-title: Crit. Rev. Env. Sci. Tec.
– volume: 30
  start-page: 462
  year: 1991
  end-page: 467
  ident: bib14
  article-title: The aqueous phase in the interfacial synthesis of polycarbonates. Part 1. Ionic equilibria and experimental solubilities in the BPA-sodium hydroxide-water system
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 4707
  year: 2009
  end-page: 4717
  ident: bib5
  article-title: Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment
  publication-title: Water Res.
– volume: 21
  start-page: 1881
  year: 2014
  end-page: 1885
  ident: bib2
  article-title: Advanced oxidation of reactive blue 181 solution: a comparison between fenton and sono-fenton process
  publication-title: Ultrason. Sonochem.
– volume: 401
  start-page: 763
  year: 1999
  end-page: 764
  ident: bib12
  article-title: Environmental toxins: exposure to bisphenol A advances puberty
  publication-title: Nature
– volume: 148
  start-page: 98
  year: 2007
  end-page: 102
  ident: bib3
  article-title: A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process
  publication-title: J. Hazard. Mater.
– volume: 70
  start-page: 288
  year: 2015
  end-page: 299
  ident: bib9
  article-title: Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles
  publication-title: Water Res.
– volume: 109
  start-page: 6570
  year: 2009
  end-page: 6631
  ident: bib4
  article-title: Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry
  publication-title: Chem. Rev.
– volume: 13
  start-page: 195
  year: 2006
  end-page: 199
  ident: bib13
  article-title: Ultrasonic destruction of phenol and substituted phenols: a review of current research
  publication-title: Ultrason. Sonochem.
– volume: 30
  start-page: 293
  year: 2009
  end-page: 342
  ident: bib7
  article-title: Endocrine-disrupting chemicals: an Endocrine Society scientific statement
  publication-title: Endocr. Rev.
– year: 1997
  ident: bib11
  article-title: Principles of Colloid and Surface Chemistry, Revised and Expanded
– volume: 43
  start-page: 4480
  year: 2009
  end-page: 4486
  ident: bib17
  article-title: Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 106
  year: 2009
  end-page: 116
  ident: bib20
  article-title: Part V—sorption of pharmaceuticals and personal care products
  publication-title: Environ. Sci. Pollut. R.
– volume: 450
  start-page: 162
  year: 2013
  end-page: 168
  ident: bib16
  article-title: Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: a field study along the Chaobai River, Beijing
  publication-title: Sci. Total Environ.
– volume: 270
  start-page: 88
  year: 2006
  end-page: 100
  ident: bib26
  article-title: Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products
  publication-title: J. Membr. Sci.
– volume: 37
  start-page: 3716
  year: 2003
  end-page: 3723
  ident: bib8
  article-title: Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 250
  year: 2010
  end-page: 260
  ident: bib15
  article-title: Effect-related monitoring: estrogen-like substances in groundwater
  publication-title: Environ. Sci. Pollut. R.
– volume: 40
  start-page: 7216
  year: 2006
  end-page: 7221
  ident: bib22
  article-title: Kinetics of oxytetracycline reaction with a hydrous manganese oxide
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 5059
  year: 2000
  end-page: 5066
  ident: bib1
  article-title: Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water
  publication-title: Environ. Sci. Technol.
– volume: 114
  start-page: 10605
  year: 2010
  end-page: 10611
  ident: bib19
  article-title: Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst
  publication-title: J. Phys. Chem. A
– volume: 20
  start-page: 449
  year: 2003
  end-page: 469
  ident: bib23
  article-title: Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry
  publication-title: Environ. Eng. Sci.
– volume: 49
  start-page: 4218
  year: 2015
  end-page: 4225
  ident: bib6
  article-title: Cu(II)–catalyzed transformation of Benzylpenicillin revisited: the overlooked oxidation
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 7547
  year: 2012
  end-page: 7555
  ident: bib10
  article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles
  publication-title: Biomaterials
– volume: 49
  start-page: 4218
  year: 2015
  ident: 10.1016/j.chemosphere.2016.11.016_bib6
  article-title: Cu(II)–catalyzed transformation of Benzylpenicillin revisited: the overlooked oxidation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505114u
– volume: 450
  start-page: 162
  year: 2013
  ident: 10.1016/j.chemosphere.2016.11.016_bib16
  article-title: Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: a field study along the Chaobai River, Beijing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.01.089
– volume: 21
  start-page: 1881
  year: 2014
  ident: 10.1016/j.chemosphere.2016.11.016_bib2
  article-title: Advanced oxidation of reactive blue 181 solution: a comparison between fenton and sono-fenton process
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.03.026
– volume: 109
  start-page: 6570
  year: 2009
  ident: 10.1016/j.chemosphere.2016.11.016_bib4
  article-title: Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr900136g
– year: 1997
  ident: 10.1016/j.chemosphere.2016.11.016_bib11
– volume: 148
  start-page: 98
  year: 2007
  ident: 10.1016/j.chemosphere.2016.11.016_bib3
  article-title: A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.02.003
– volume: 16
  start-page: 106
  year: 2009
  ident: 10.1016/j.chemosphere.2016.11.016_bib20
  article-title: Part V—sorption of pharmaceuticals and personal care products
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-008-0052-x
– volume: 30
  start-page: 293
  year: 2009
  ident: 10.1016/j.chemosphere.2016.11.016_bib7
  article-title: Endocrine-disrupting chemicals: an Endocrine Society scientific statement
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2009-0002
– volume: 40
  start-page: 7216
  year: 2006
  ident: 10.1016/j.chemosphere.2016.11.016_bib22
  article-title: Kinetics of oxytetracycline reaction with a hydrous manganese oxide
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060357o
– volume: 146
  start-page: 546
  year: 2007
  ident: 10.1016/j.chemosphere.2016.11.016_bib24
  article-title: A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol A degradation in deionised and natural waters
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.04.056
– volume: 44
  start-page: 2577
  year: 2014
  ident: 10.1016/j.chemosphere.2016.11.016_bib18
  article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
  publication-title: Crit. Rev. Env. Sci. Tec.
  doi: 10.1080/10643389.2013.829765
– volume: 114
  start-page: 10605
  year: 2010
  ident: 10.1016/j.chemosphere.2016.11.016_bib19
  article-title: Metomyl degradation by electro-Fenton and electro-Fenton-like processes: a kinetics study of the effect of the nature and concentration of some transition metal ions as catalyst
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp1062836
– volume: 13
  start-page: 195
  year: 2006
  ident: 10.1016/j.chemosphere.2016.11.016_bib13
  article-title: Ultrasonic destruction of phenol and substituted phenols: a review of current research
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2005.11.004
– volume: 43
  start-page: 4480
  year: 2009
  ident: 10.1016/j.chemosphere.2016.11.016_bib17
  article-title: Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803622t
– volume: 20
  start-page: 449
  year: 2003
  ident: 10.1016/j.chemosphere.2016.11.016_bib23
  article-title: Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/109287503768335931
– volume: 37
  start-page: 3716
  year: 2003
  ident: 10.1016/j.chemosphere.2016.11.016_bib8
  article-title: Indirect electrochemical treatment of bisphenol A in water via electrochemically generated Fenton's reagent
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034011e
– volume: 1218
  start-page: 4226
  year: 2011
  ident: 10.1016/j.chemosphere.2016.11.016_bib21
  article-title: Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2011.03.034
– volume: 70
  start-page: 288
  year: 2015
  ident: 10.1016/j.chemosphere.2016.11.016_bib9
  article-title: Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.12.017
– volume: 401
  start-page: 763
  year: 1999
  ident: 10.1016/j.chemosphere.2016.11.016_bib12
  article-title: Environmental toxins: exposure to bisphenol A advances puberty
  publication-title: Nature
  doi: 10.1038/44517
– volume: 30
  start-page: 462
  year: 1991
  ident: 10.1016/j.chemosphere.2016.11.016_bib14
  article-title: The aqueous phase in the interfacial synthesis of polycarbonates. Part 1. Ionic equilibria and experimental solubilities in the BPA-sodium hydroxide-water system
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00051a005
– volume: 270
  start-page: 88
  year: 2006
  ident: 10.1016/j.chemosphere.2016.11.016_bib26
  article-title: Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.06.045
– volume: 17
  start-page: 250
  year: 2010
  ident: 10.1016/j.chemosphere.2016.11.016_bib15
  article-title: Effect-related monitoring: estrogen-like substances in groundwater
  publication-title: Environ. Sci. Pollut. R.
  doi: 10.1007/s11356-009-0234-1
– volume: 34
  start-page: 5059
  year: 2000
  ident: 10.1016/j.chemosphere.2016.11.016_bib1
  article-title: Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001359q
– volume: 43
  start-page: 4707
  year: 2009
  ident: 10.1016/j.chemosphere.2016.11.016_bib5
  article-title: Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.07.031
– volume: 33
  start-page: 7547
  year: 2012
  ident: 10.1016/j.chemosphere.2016.11.016_bib10
  article-title: Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.06.076
– volume: 129
  start-page: 724
  year: 2007
  ident: 10.1016/j.chemosphere.2016.11.016_bib25
  article-title: CRC handbook of chemistry and physics
  publication-title: J. Am. Chem. Soc.
SSID ssj0001659
Score 2.4367015
Snippet Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag+) and its...
Silver nanoparticles (AgNPs) have been reported to have antibacterial activities and cytotoxicity, resulting from the dissolved silver cation (Ag ) and its...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 617
SubjectTerms 17α-ethinyl estradiol
antibacterial properties
aqueous solutions
Benzhydryl Compounds - analysis
Bisphenol A
Catalysis
cations
cytotoxicity
Degradation
Endocrine Disruptors - analysis
endocrine-disrupting chemicals
equations
estradiol
Ethinyl Estradiol - analysis
hydrogen peroxide
Hydrogen Peroxide - chemistry
Hydroxyl radicals
Metal Nanoparticles - chemistry
nanosilver
oxidation
Oxidation-Reduction
Phenols - analysis
polyvinylpyrrolidone
Povidone - chemistry
silver
Silver - chemistry
Silver nanoparticle
Water Pollutants, Chemical - analysis
Title Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution
URI https://dx.doi.org/10.1016/j.chemosphere.2016.11.016
https://www.ncbi.nlm.nih.gov/pubmed/27838031
https://www.proquest.com/docview/1839112938
https://www.proquest.com/docview/2000121787
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC6SDT4uovG1PkIHvE4y3TM9PQNewpKwKsaLgdyafg2Orj3B3YB78eIv8o_4m6yax6pgIOBpYGaqKaqqq77pqQfACy6sCtzZJDOqSPLgqqR0qU2UtF4I7yveVfG_PS3mZ_nrc3m-BbOxFobSKgff3_v0zlsPdw4HaR5eNA3V-BIaySQiCsLZ5TbsCIz25QR2jl69mZ9uHDIvZI-Cc5kQwU3Y_53mhaL53C6phJ-aZvLigHp60vTzf4epq2BoF45O7sKdAUeyo57Ve7AV4i7cmo3j23bhxnHXj3p9H76_-9r4rr8389Qaop-ixNqa2YZYii2uw0z0jKufP5Kw-tDE9YIFOgTxDT60a4bGTLOGF82nwKgUgiZO0ArLhjKrWTQRP76HHDvWRGaQ-_ZyyUbLfgBnJ8fvZ_NkmL2QuJynq8RII5STaXC5LULAfY9QxynnvUGMojzCtCwLaZ1WwhbC2SBKq2xe8VDkpi7q7CFMYhvDY2AqFa7OqsxWtchr6aoSo6Z3vCpzw1Ump1COotZuaExO8zEWesxA-6j_0JImLeGHi8bLFMSG9KLvznEdopejPvVfpqYxilyHfH-0AY0qpf8rJpJINYFNgq9ZefU7ojv64-gmp_CoN6AN5zT0BGXDn_wfg0_htiDs0aWWP4PJ6stleI7IaWX3YPvgG98b9scvKJwcBg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VraBcEJRHl6crcQ2NH4kTiUu1arWl7XJppd4svyICi1N1txJ75hfxR_hNePJYQKJSJU6RktgazYzHX5yZ-QDeUmakp9YkXMs8Ed6WSWFTk8jMOMacK2lbxX86y6fn4sNFdrEBk6EWBtMq-9jfxfQ2Wvd39npt7l3WNdb4IhrhWUQUiLOLO7ApkNR6BJv7R8fT2Tog0zzrULDIEhxwD3Z_p3lF1XxtFljCj00zaf4Oe3oi-_m_t6mbYGi7HR0-hAc9jiT7naiPYMOHbdiaDPRt23D3oO1HvXoM3z9-q13b35s4bA3RsSiRpiKmRpFCE-chOjhC5c8fiV9-qsNqTjwegrg6PjQrEp0ZuYbn9RdPsBQCGSdwhkWNmdUk6BA_vvscO1IHoqP0zfWCDJ79BM4PD84m06TnXkisoOky0Zlm0mapt8Lk3sd1H6GOldY5HTGKdBGmce7TKi2ZyZk1nhVGGlFSnwtd5RV_CqPQBL8DRKbMVrzkpqyYqDJbFnHXdJaWhdBU8mwMxaBqZfvG5MiPMVdDBtpn9YeVFFopfrioeBkDWw-97Lpz3GbQ-8Ge6i9XU3EXuc3w3cEHVDQp_l_RAVWqEGwifOXFze-w9uiPxjA5hmedA60lR9KTqBv6_P8EfANb07PTE3VyNDt-AfcZ4pA2zfwljJZX1_5VRFFL87pfJb8A1qAd7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+degradation+of+bisphenol+A+and+17%CE%B1-ethinyl+estradiol+by+Fenton-like+activity+of+silver+nanoparticles+in+aqueous+solution&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Park%2C+Chang+Min&rft.au=Heo%2C+Jiyong&rft.au=Yoon%2C+Yeomin&rft.date=2017-02-01&rft.issn=0045-6535&rft.volume=168&rft.spage=617&rft.epage=622&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.11.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2016_11_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon