The Analysis of Environmental Cost Control of Manufacturing Enterprises Using Deep Learning Optimization Algorithm and Internet of Things
Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 11 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
30.09.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/1721157 |
Cover
| Abstract | Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of production efficiency. First, the environmental cost under the background of IoT is analyzed. Also, the environmental cost control methods in the production process of traditional manufacturing enterprises are investigated. Second, based on the principle of traditional genetic algorithm, the fast-nondominated sorting genetic algorithm (NSGA-II) of multiobjective genetic algorithm is introduced to complete the optimization of BP neural network (BPNN) algorithm in deep learning (DL), and the multiobjective GA optimization BPNN model is established. Finally, the multiobjective GA algorithm is used to empirically analyze the environmental cost control capability of a paper-making enterprise. It is compared with enterprises with excellent and poor environmental cost control capabilities in the same industry to find out secondary indexes. The results show that environmental costs have long-term and economic characteristics. The global search ability of BPNN optimized by multiobjective GA is improved, and the local optimal dilemma is avoided. Through empirical analysis, it is found that the comprehensive capability of the environmental cost control of the enterprise is better, scored 79 or more, and the indexes of insufficient development and advantages are obtained. As IoT rapidly develops, it is necessary to further improve the ability of enterprises in environmental cost management, which is very important to promote the development of enterprises and enhance their core competitiveness. It is hoped that this investigation can provide certain reference significance for improving the environmental cost management capability of enterprises, increasing production efficiency, and reducing environmental costs. |
|---|---|
| AbstractList | Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of production efficiency. First, the environmental cost under the background of IoT is analyzed. Also, the environmental cost control methods in the production process of traditional manufacturing enterprises are investigated. Second, based on the principle of traditional genetic algorithm, the fast-nondominated sorting genetic algorithm (NSGA-II) of multiobjective genetic algorithm is introduced to complete the optimization of BP neural network (BPNN) algorithm in deep learning (DL), and the multiobjective GA optimization BPNN model is established. Finally, the multiobjective GA algorithm is used to empirically analyze the environmental cost control capability of a paper-making enterprise. It is compared with enterprises with excellent and poor environmental cost control capabilities in the same industry to find out secondary indexes. The results show that environmental costs have long-term and economic characteristics. The global search ability of BPNN optimized by multiobjective GA is improved, and the local optimal dilemma is avoided. Through empirical analysis, it is found that the comprehensive capability of the environmental cost control of the enterprise is better, scored 79 or more, and the indexes of insufficient development and advantages are obtained. As IoT rapidly develops, it is necessary to further improve the ability of enterprises in environmental cost management, which is very important to promote the development of enterprises and enhance their core competitiveness. It is hoped that this investigation can provide certain reference significance for improving the environmental cost management capability of enterprises, increasing production efficiency, and reducing environmental costs. Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of production efficiency. First, the environmental cost under the background of IoT is analyzed. Also, the environmental cost control methods in the production process of traditional manufacturing enterprises are investigated. Second, based on the principle of traditional genetic algorithm, the fast-nondominated sorting genetic algorithm (NSGA-II) of multiobjective genetic algorithm is introduced to complete the optimization of BP neural network (BPNN) algorithm in deep learning (DL), and the multiobjective GA optimization BPNN model is established. Finally, the multiobjective GA algorithm is used to empirically analyze the environmental cost control capability of a paper-making enterprise. It is compared with enterprises with excellent and poor environmental cost control capabilities in the same industry to find out secondary indexes. The results show that environmental costs have long-term and economic characteristics. The global search ability of BPNN optimized by multiobjective GA is improved, and the local optimal dilemma is avoided. Through empirical analysis, it is found that the comprehensive capability of the environmental cost control of the enterprise is better, scored 79 or more, and the indexes of insufficient development and advantages are obtained. As IoT rapidly develops, it is necessary to further improve the ability of enterprises in environmental cost management, which is very important to promote the development of enterprises and enhance their core competitiveness. It is hoped that this investigation can provide certain reference significance for improving the environmental cost management capability of enterprises, increasing production efficiency, and reducing environmental costs.Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost control in the production process of manufacturing enterprises are discussed to reduce the environmental cost and promote the improvement of production efficiency. First, the environmental cost under the background of IoT is analyzed. Also, the environmental cost control methods in the production process of traditional manufacturing enterprises are investigated. Second, based on the principle of traditional genetic algorithm, the fast-nondominated sorting genetic algorithm (NSGA-II) of multiobjective genetic algorithm is introduced to complete the optimization of BP neural network (BPNN) algorithm in deep learning (DL), and the multiobjective GA optimization BPNN model is established. Finally, the multiobjective GA algorithm is used to empirically analyze the environmental cost control capability of a paper-making enterprise. It is compared with enterprises with excellent and poor environmental cost control capabilities in the same industry to find out secondary indexes. The results show that environmental costs have long-term and economic characteristics. The global search ability of BPNN optimized by multiobjective GA is improved, and the local optimal dilemma is avoided. Through empirical analysis, it is found that the comprehensive capability of the environmental cost control of the enterprise is better, scored 79 or more, and the indexes of insufficient development and advantages are obtained. As IoT rapidly develops, it is necessary to further improve the ability of enterprises in environmental cost management, which is very important to promote the development of enterprises and enhance their core competitiveness. It is hoped that this investigation can provide certain reference significance for improving the environmental cost management capability of enterprises, increasing production efficiency, and reducing environmental costs. |
| Audience | Academic |
| Author | Chen, Wenzhuo Qiu, Jin |
| AuthorAffiliation | 1 Guangdong University of Science and Technology, Dongguan 523000, China 2 Department of Electronics and Information Engineering, North China Institute of Science and Technology, Langfang 065201, China |
| AuthorAffiliation_xml | – name: 2 Department of Electronics and Information Engineering, North China Institute of Science and Technology, Langfang 065201, China – name: 1 Guangdong University of Science and Technology, Dongguan 523000, China |
| Author_xml | – sequence: 1 givenname: Jin surname: Qiu fullname: Qiu, Jin organization: Guangdong University of Science and TechnologyDongguan 523000Chinagdst.cc – sequence: 2 givenname: Wenzhuo orcidid: 0000-0001-9639-4419 surname: Chen fullname: Chen, Wenzhuo organization: Department of Electronics and Information EngineeringNorth China Institute of Science and TechnologyLangfang 065201Chinancist.edu.cn |
| BookMark | eNqFkcFu1DAQhiNUJNrCjQeIxAUJQm0njpML0mopUGlRL8vZGieTXVeOHWyn1fIGvDUOu6KCA1xsj-eb3-N_LrIz6yxm2UtK3lHK-RUjjF1RwVIgnmTntG5EwZkoz36fa_4suwjhjhAuOGHn2Y_tHvOVBXMIOuRuyK_tvfbOjmgjmHztQkyLjd6ZJfsF7DxAF2ev7S6xEf3kdcCQfw3LzQfEKd8geLtEt1PUo_4OUTubr8zOeR33Yw62z2-WUotxEd3uExyeZ08HMAFfnPbLbPvxerv-XGxuP92sV5uiqyiJBZCOd-2AijGhYOi7XomacFUzpVoggrW8aktQbd2AGLBUPR1Ug6UQSCgO5WVWHGVnO8HhAYyR6Qcj-IOkRC42ysVGebIx8e-P_DSrEfsu-eLhscaBln9mrN7LnbuXqY-65iwJvD4JePdtxhDlqEOHxoBFNwfJBCurpqpLktBXf6F3bvZpOL8o1opSMP5I7cCg1HZw6d1uEZWr1HTd0oZWiXp7pDrvQvA4_O-bb454mkUPD_rf9E9XLMGA |
| Cites_doi | 10.1155/2018/6123874 10.1007/978-3-319-42559-7_1 10.1016/j.jclepro.2014.08.074 10.1016/j.energy.2017.12.094 10.1016/j.technovation.2021.102398 10.1016/j.enpol.2018.01.040 10.1016/j.jclepro.2018.11.237 10.1007/978-3-030-11479-4 10.1016/j.eswa.2022.117555 10.1016/j.jclepro.2017.10.260 10.1016/j.powtec.2022.117193 10.1016/j.jclepro.2010.01.026 10.1016/j.bspc.2022.103658 10.5053/ekoloji.2008.698 10.2166/hydro.2018.086 10.1080/00207543.2016.1140918 10.1080/09720529.2018.1449322 10.1109/tevc.2016.2634625 10.1016/j.enpol.2018.08.043 10.1088/0964-1726/9/4/319 10.3390/ijerph17062063 10.1007/s00477-006-0042-9 10.1109/tcss.2020.2989295 10.1016/j.jmsy.2018.01.003 10.1007/s10898-018-0609-2 10.1145/3072959.3073637 10.1007/s11269-015-1189-2 10.1109/tmtt.2021.3119316 10.26480/gws.02.2019.18.21 10.1109/tevc.2008.925798 10.1109/tie.2017.2714133 10.7717/peerj-cs.613 10.1016/j.neucom.2009.11.013 10.1109/tits.2020.3040909 10.1016/j.sigpro.2018.01.021 10.1016/j.ress.2007.03.027 10.1109/access.2021.3108178 10.26480/aim.01.2020.22.25 10.15666/aeer/1702_48694882 10.1109/jiot.2021.3065966 10.1371/journal.pone.0120298 10.1017/s0373463318000048 10.1016/j.jclepro.2019.06.146 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Jin Qiu and Wenzhuo Chen. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Jin Qiu and Wenzhuo Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Jin Qiu and Wenzhuo Chen. 2022 |
| Copyright_xml | – notice: Copyright © 2022 Jin Qiu and Wenzhuo Chen. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Jin Qiu and Wenzhuo Chen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Jin Qiu and Wenzhuo Chen. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/1721157 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Cao, Ning |
| Editor_xml | – sequence: 1 givenname: Ning surname: Cao fullname: Cao, Ning |
| EndPage | 11 |
| ExternalDocumentID | 10.1155/2022/1721157 PMC9546652 A721691814 10_1155_2022_1721157 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Science and Technology Bureau of Hebei Province grantid: 22375411D |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 2UF ADTOC C1A EJD IL9 UNPAY UZ4 |
| ID | FETCH-LOGICAL-c410t-a0c5c9feb227bafdcdb7605b62bb9a07295493ab968a7fe3bd1fb8e377e01ef3 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:10:04 EDT 2025 Tue Sep 30 17:19:39 EDT 2025 Sun Sep 28 13:23:22 EDT 2025 Tue Oct 07 06:07:40 EDT 2025 Mon Oct 20 22:49:03 EDT 2025 Wed Oct 01 02:22:30 EDT 2025 Sun Jun 02 18:51:49 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-a0c5c9feb227bafdcdb7605b62bb9a07295493ab968a7fe3bd1fb8e377e01ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Ning Cao |
| ORCID | 0000-0001-9639-4419 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/1721157 |
| PQID | 2722973725 |
| PQPubID | 237303 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_1721157 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9546652 proquest_miscellaneous_2723484630 proquest_journals_2722973725 gale_infotracmisc_A721691814 crossref_primary_10_1155_2022_1721157 hindawi_primary_10_1155_2022_1721157 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-30 |
| PublicationDateYYYYMMDD | 2022-09-30 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 44 23 45 46 47 X. Yao (31) 27 28 Z. Dong (25) 2018; 2018 29 S. Jeschke (30) 2017 M. Ahmad (48) 2022; 6 B. Cao (36) 2021 10 32 11 33 12 13 Z. Lv (34) 2022 35 14 15 37 16 38 17 39 18 19 1 2 A. Roy (26) 2017 3 4 5 6 7 8 9 A. Balas (24) 2019 40 41 20 42 21 43 |
| References_xml | – volume: 2018 year: 2018 ident: 25 article-title: An adaptive multiobjective genetic algorithm with fuzzy-means for automatic data clustering publication-title: Mathematical Problems in Engineering doi: 10.1155/2018/6123874 – start-page: 3 volume-title: Industrial Internet of Things year: 2017 ident: 30 article-title: Industrial internet of things and cyber manufacturing systems doi: 10.1007/978-3-319-42559-7_1 – year: 2022 ident: 34 article-title: Safety poka yoke in zero-defect manufacturing based on digital twins publication-title: IEEE transactions on industrial informatics, advance online publication – ident: 11 doi: 10.1016/j.jclepro.2014.08.074 – ident: 27 doi: 10.1016/j.energy.2017.12.094 – ident: 42 doi: 10.1016/j.technovation.2021.102398 – ident: 3 doi: 10.1016/j.enpol.2018.01.040 – ident: 9 doi: 10.1016/j.jclepro.2018.11.237 – volume-title: Handbook of Deep Learning Applications year: 2019 ident: 24 doi: 10.1007/978-3-030-11479-4 – ident: 44 doi: 10.1016/j.eswa.2022.117555 – ident: 10 doi: 10.1016/j.jclepro.2017.10.260 – ident: 35 doi: 10.1016/j.powtec.2022.117193 – ident: 5 doi: 10.1016/j.jclepro.2010.01.026 – ident: 40 doi: 10.1016/j.bspc.2022.103658 – ident: 2 doi: 10.5053/ekoloji.2008.698 – ident: 20 doi: 10.2166/hydro.2018.086 – ident: 17 doi: 10.1080/00207543.2016.1140918 – ident: 19 doi: 10.1080/09720529.2018.1449322 – ident: 21 doi: 10.1109/tevc.2016.2634625 – ident: 1 doi: 10.1016/j.enpol.2018.08.043 – ident: 15 doi: 10.1088/0964-1726/9/4/319 – ident: 32 doi: 10.3390/ijerph17062063 – ident: 7 doi: 10.1007/s00477-006-0042-9 – ident: 23 doi: 10.1109/tcss.2020.2989295 – ident: 6 doi: 10.1016/j.jmsy.2018.01.003 – ident: 22 doi: 10.1007/s10898-018-0609-2 – ident: 45 doi: 10.1145/3072959.3073637 – ident: 4 doi: 10.1007/s11269-015-1189-2 – ident: 38 doi: 10.1109/tmtt.2021.3119316 – volume-title: International Conference on Mathematics and Computing year: 2017 ident: 26 article-title: A deep learning-based artificial neural network approach for intrusion detection – ident: 47 doi: 10.26480/gws.02.2019.18.21 – ident: 31 article-title: From intelligent manufacturing to smart manufacturing for industry 4.0 driven by next-generation artificial intelligence and further on – ident: 13 doi: 10.1109/tevc.2008.925798 – ident: 18 doi: 10.1109/tie.2017.2714133 – ident: 39 doi: 10.7717/peerj-cs.613 – ident: 28 doi: 10.1016/j.neucom.2009.11.013 – ident: 43 doi: 10.1109/tits.2020.3040909 – ident: 29 doi: 10.1016/j.sigpro.2018.01.021 – volume: 6 start-page: 34 issue: 2 year: 2022 ident: 48 article-title: Conceptual design impacts in new normal era: the use of artificial intelligence (AI) and internet of things (IOT) (case studies: class room And restaurant) publication-title: Acta Informatica Malaysia – ident: 14 doi: 10.1016/j.ress.2007.03.027 – year: 2021 ident: 36 article-title: Recommendation based on large-scale many-objective optimization for the intelligent internet of things system publication-title: IEEE Internet of Things Journal, Advance Online Publication – ident: 37 doi: 10.1109/access.2021.3108178 – ident: 46 doi: 10.26480/aim.01.2020.22.25 – ident: 12 doi: 10.15666/aeer/1702_48694882 – ident: 41 doi: 10.1109/jiot.2021.3065966 – ident: 8 doi: 10.1371/journal.pone.0120298 – ident: 16 doi: 10.1017/s0373463318000048 – ident: 33 doi: 10.1016/j.jclepro.2019.06.146 |
| SSID | ssj0057502 |
| Score | 2.277157 |
| Snippet | Under the background of the Internet of things (IoT), the problems between the actual production and the environment are also prominent. The environmental cost... |
| SourceID | unpaywall pubmedcentral proquest gale crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial neural networks Back propagation Back propagation networks Competitiveness Control methods Cost analysis Cost control Costs Deep learning Economic development Empirical analysis Environmental management Environmental protection Expenditures Genetic algorithms Internet of Things Machine learning Manufacturing Mathematical optimization Methods Multiple objective analysis Neural networks Optimization Optimization algorithms Papermaking Production methods Sorting algorithms |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXYJAQvCBiIwEBGGnurSJ3YTh6r0qlCGkhoSH2LbMdeK7VOtaSa9hP419zrOIUOCXiMnDgfxx_3OOceE3ImuVFlirqw1JVAUAyMg2ysR5JlphBGG20xd_jyi5h_zz8v-CKaJLV__sKH2Q7pOfsYmAqXR-SoEKjc-jZfDAMuBBy9tFBAf0G390Hffu_ag5knjr8Pl8h8b1cH8eV9deSjnd-qu1u1Xv829Vw8JU9izEgnPcjPyAPrn5OTiQe-vLmj5zSoOMPy-An5AbjTwWmENo7OfmWyQR3Tpu3otJenY-ml8jvMbQjJinTWKxBXrW1p0BLQT9ZuafRgvaZfYXzZxMRNOllfNzerbrmhyte0X1m0HVba7wX6glxdzK6m81HcbmFk8nHajVRquCkdUG0mtXK1qbUEsqMF07pU6DAOXDJTuhSFks5muh47XdhMSpuOrctekmPfePuK0Fxplyqu81Sb3BpXWF2yItUQ22hR52VCPgxIVNveVKMKZITzChGrImIJOUWYKuxrAIWBlm-qCdoNlRCY5Ak5i_D9q5YB2yp20LZikuGuXZLxhLzfF-MNUHTmbbML52Q5xGdZmhB50Cb290Nz7sMSv1oGk274WEJwlpDzfev561O-_r-XeUMe42GvWDklx93Nzr6FsKjT70Kn-Ak_mQfF priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwED6NTgheEDAQgYGMNPYWLXXiOHlAqJROE9IKQkPaW2Q7zlqpTQpNNe1P4L_mznG6lYfxbMu2cj9853z3HcCRFEblEeHCoirHBMWgH-RDHUoemyw12mhLtcPn0_TsZ_L1UlzuwbSvhSFYZe8TnaMuG0Nv5CdccmqzJLn4tPoVUtco-rvat9BQvrVC-dFRjD2AfU7MWAPY_zyZfv_R-2aMTToUYoqmRcTwPRReCHoF4CcuIaKr6s4l5V31wxklydfznVD0XyDlo029UjfXarG4c0udPoUnPrxko04fnsGerZ_DwajG1Hp5w46ZA3y6l_QD-IMqwnpSEtZUbHJb9IZrjJt1y8Ydkp1Gz1W9oTIIV9fIJh1Ycb62a-ZgB-yLtSvm6Vqv2Dd0RUtf48lGiyv8lO1syVRdsu4R0ra0aNc29AVcnE4uxmeh78wQmmQYtaGKjDB5hVk5l1pVpSm1xLxIp1zrXBEZOaadsdJ5milZ2ViXw0pnNpbSRkNbxS9hUDe1fQUsUbqKlNBJpE1iTZVZnfMs0hgG6bRM8gA-9JIoVh3_RuHyFiEKkljhJRbAIYmpILNEURg0ElOMiJkoxxgmCeDIi-9_q_SyLbwtr4tbzQvg_XaYNiB8Wm2bjZsTJxjKxVEAckcntvsRj_fuSD2fOT5v_FhpKngAx1vtufeUr-8_5Rt4TLM7UMshDNrfG_sWI6dWv_Pm8Bc0Ghih priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0anRC8jI-ByBjISGNv7VInjhvxFJVOE9IGD5s0JKTIduy1ok2qJdE0_gH_muvE6cgeAPGWyJYdX18791jnHgMccKZE7FtemG9iBCgK90E6lkNOAzWJlFRS29zh07Po5CL8dMkut-BDlwuTWYn4QmTlaG4x6c2i2a2dXcsjhWgR4To9apAL46N1Zh7AdsQwEB_A9sXZl-SrhVgRLh0r_H73zIOO9s5Yr4neD8ltyw9d572w8z5p8lGdr8XtjVguf_sjHT-Bb91YWiLK91FdyZH6cU_m8T8H-xR2XKRKkta1nsGWzp_DbpIjSl_dkkPScEebQ_ld-IneRjp9E1IYMrvLn8M2pkVZkWlLirelpyKvbUZFkyJJZi3vcVHqkjQMBvJR6zVxyq9X5DPuaiuXLkqS5VVxvajmKyLyjLTnmbqyjbY3kL6A8-PZ-fRk6C55GKpw7FdD4SumYoMAn3IpTKYyyRFiyYhKGQura44INhAyjiaCGx3IbGzkRAeca3-sTfASBnmR61dAQiGNL5gMfalCrcxEy5hOfIkRlYyyMPbgfTfR6bqV8kgbCMRYas2cOjN7sG-9ILUrHGda4XpTaWJFjmIMh0IPDtxs_a2VznXSbkZTyqm9K4xT5sG7TbHtwFLdcl3UTZ0gxKgw8D3gPZfb9Gclwfsl-WLeSIOjsaKIUQ8ON875x6_c-9eKr-GxfW2ZMvswqK5r_QbDsUq-dcvuF5fCM8M priority: 102 providerName: Unpaywall |
| Title | The Analysis of Environmental Cost Control of Manufacturing Enterprises Using Deep Learning Optimization Algorithm and Internet of Things |
| URI | https://dx.doi.org/10.1155/2022/1721157 https://www.proquest.com/docview/2722973725 https://www.proquest.com/docview/2723484630 https://pubmed.ncbi.nlm.nih.gov/PMC9546652 https://downloads.hindawi.com/journals/cin/2022/1721157.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQwheEDAQgVEZaeytkC_HyQNCobSrkFqmaZXCU2Q7zlqpTUqbavRP4L_m7CSFTgh4iWQ5sSPfnX2_5Hd3AGeMSh7Zmhdm5xECFIn7oOuILnM9GQZSSKF07PBoHAwn_ueEJgfQVhttFnD9R2in60lNVvO3379tP6DBvzcGT6nG7-47A2UoO4RjPKMiXcRh5O_-J6BPUrMPAzQpnRC-pcDfeXrvcGq26HtTDY5vZ3su6F0C5f1NseTbWz6f_3Y6DR7Bw8atJHGtB4_hQBVP4CQuEFIvtuScGKKn-YJ-Aj9QNUibjISUOen_CnbDMXrluiK9msGue0e82OjwBxPPSPo1SXG2Vmti6Abkk1JL0qRpvSFfcAtaNLGdJJ7flKtZNV0QXmSk_vioKj1oXS70KVwP-te9YbepyNCVvmNXXW5LKqMc0bjLBM8zmQmGeEgErhAR10nIEW56XERByFmuPJE5uQiVx5iyHZV7z-CoKAv1HIjPRW5zKnxbSF_JPFQickNboPsjgsyPLHjTSiJd1nk3UoNXKE21xNJGYhacajGlWkFQFBKNQ6axzkgUoe_iW3DWiO9fo7SyTVsVTF3m6sJezKUWvN516wk0L61Q5cbc4_nownm2BWxPJ3bz6fzd-z3FbGryeONiBQF1LTjfac9f3_LFf67JS3igmzWr5RSOqtVGvULXqRIdOGQJw2s4uOjA8cf--PIKWxeJ0zH2gterYYI9k_Fl_PUn4Kcc0w |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VVKhc-CsVhgKL1OaW1ln_HzhESUpKm3IJojdrd71uIhI7EFtReAMehlfhmZjxT9r0UE49cN5kvVp_Mzuz_uYbgAPPUSIwiRdmxgEmKAr9IG_Llsct5btKKqmpdnh44Q6-2J8uncst-F3XwhCtsvaJhaOOUkV35Mfc49RmyeM1g_JMr5aYny0-nPbwZR5yftIfdQetqoVAS9ltM2sJUzkqiDF95J4UcaQi6WEAL10uZSBINRvzI0vIwPWFF2tLRu1Y-tryPG22dWzhtM359xY1qaKPuVXHjgewjTBv8wZsd7_2Pg5q14-hT0lydNFySXe-Zto7Dl0y8OMi36KT8MYZWJ0ED8eUgy8nG5HubZ7mTp7MxWopptMbh-DJE_hTb1_Jffl2lGfySP28pSz53-zvU3hcheOsU9rPM9jSyXPY7SQiS2cr1mQFQbb48rALv9CkWC3iwtKY9a-LBHGObrrIWLdk_tPoUCQ5lY0UdaCsX5I7Jwu9YAVNg_W0nrNK3vaKfUbXPatqYllneoVrzcYzJpKIlZe2OqNJyzarL2B0H9u0B40kTfRLYLaQsSkcaZtS2VrFvpYB902JYaN0Izsw4LCGVjgv9UrCIs9znJAgGFYQNGCfcBeSG0NsKXQqKuyQklOAMZ9twEGFx3_NUoMprHzfIrxGkgHv18P0AOLzJTrNi99YNoa-lmmAtwHy9fNI93xzJJmMC_1z3CzXdbgBzbU53LnKV3ev8h3sDEbD8_D89OLsNTyif5aEoH1oZD9y_Qajzky-rWydQXjPBvEXpiaVmg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVjwuvArCUGCR2t7SOOvH2geEojxIKS0ciujN2l2vm4jEDsRRFP4BP4m_wq9hxo-06aGceuC89toaf_NafzMDsCs8LUObeGF2EmKCotEO8pZqCO7owNdKK0O1w8cn_uCL--HMO9uA33UtDNEqa5tYGOo403RG3uSC05glwb1mUtEiPnf776bfGzRBiv601uM0SogcmeUC07fZ28Mufus9zvu9086gUU0YaGi3ZecNaWtPhwlml1womcQ6VgLje-VzpUJJTbUxfXKkCv1AisQ4Km4lKjCOEMZumcTBbW_BVuALH23CVudr9_2gdgMYBpWERx-1mHrQ16x7z6MDB94sci_yipf8YeUVbg8pH1-M1qLeq5zNu_N0KpcLOR5fcoj9B_CnFmXJg_l2MM_Vgf55pcvkfynrh3C_CtNZu9SrR7Bh0sew3U5lnk2WbJ8VxNnij8Q2_EJVY3VzF5YlrHdRPIh7dLJZzjplRQCtHst0TuUkRX0o65Wkz9HMzFhB32BdY6asant7zj6hSZ9UtbKsPT5H0eTDCZNpzMrDXJPTpuX41SdwehMyeQqbaZaaZ8BcqRJbesq1lXaNTgKjQh7YCsNJ5cduaMFeDbNoWvYxiYr8z_MigmNUwdGCHcJgROYNcabR2OioTR2eQowFXQt2K2z-a5caWFFlE2fRBaoseLNapgcQzy812by4xnExJHZsC8Qa4FfPo37o6yvpaFj0RUdh-b7HLdhfqca1b_n8-rd8DXcQ9dHHw5OjF3CPbix5Qjuwmf-Ym5cYjObqVaX2DKIbBv9fvB2eYg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0anRC8jI-ByBjISGNv7VInjhvxFJVOE9IGD5s0JKTIduy1ok2qJdE0_gH_muvE6cgeAPGWyJYdX18791jnHgMccKZE7FtemG9iBCgK90E6lkNOAzWJlFRS29zh07Po5CL8dMkut-BDlwuTWYn4QmTlaG4x6c2i2a2dXcsjhWgR4To9apAL46N1Zh7AdsQwEB_A9sXZl-SrhVgRLh0r_H73zIOO9s5Yr4neD8ltyw9d572w8z5p8lGdr8XtjVguf_sjHT-Bb91YWiLK91FdyZH6cU_m8T8H-xR2XKRKkta1nsGWzp_DbpIjSl_dkkPScEebQ_ld-IneRjp9E1IYMrvLn8M2pkVZkWlLirelpyKvbUZFkyJJZi3vcVHqkjQMBvJR6zVxyq9X5DPuaiuXLkqS5VVxvajmKyLyjLTnmbqyjbY3kL6A8-PZ-fRk6C55GKpw7FdD4SumYoMAn3IpTKYyyRFiyYhKGQura44INhAyjiaCGx3IbGzkRAeca3-sTfASBnmR61dAQiGNL5gMfalCrcxEy5hOfIkRlYyyMPbgfTfR6bqV8kgbCMRYas2cOjN7sG-9ILUrHGda4XpTaWJFjmIMh0IPDtxs_a2VznXSbkZTyqm9K4xT5sG7TbHtwFLdcl3UTZ0gxKgw8D3gPZfb9Gclwfsl-WLeSIOjsaKIUQ8ON875x6_c-9eKr-GxfW2ZMvswqK5r_QbDsUq-dcvuF5fCM8M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Analysis+of+Environmental+Cost+Control+of+Manufacturing+Enterprises+Using+Deep+Learning+Optimization+Algorithm+and+Internet+of+Things&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Qiu%2C+Jin&rft.au=Chen%2C+Wenzhuo&rft.date=2022-09-30&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1155%2F2022%2F1721157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_1721157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |