Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC
The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed info...
Saved in:
| Published in | Journal of instrumentation Vol. 19; no. 3; p. C03019 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1748-0221 1748-0221 |
| DOI | 10.1088/1748-0221/19/03/C03019 |
Cover
| Abstract | The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed information from sub-detectors at the bunch crossing rate: the upgraded Global Trigger will use high-precision trigger objects to provide the Level-1 decision. Besides cut-based algorithms, novel machine-learning-based algorithms will also be included in the Global Trigger to achieve a higher selection efficiency and detect unexpected signals. Implementation of these novel algorithms is presented, focusing on how the neural network models can be optimized to ensure a feasible hardware implementation. The performance and resource usage of the optimized neural network models are discussed in detail. |
|---|---|
| AbstractList | The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed information from sub-detectors at the bunch crossing rate: the upgraded Global Trigger will use high-precision trigger objects to provide the Level-1 decision. Besides cut-based algorithms, novel machine-learning-based algorithms will also be included in the Global Trigger to achieve a higher selection efficiency and detect unexpected signals. Implementation of these novel algorithms is presented, focusing on how the neural network models can be optimized to ensure a feasible hardware implementation. The performance and resource usage of the optimized neural network models are discussed in detail. |
| Author | Rabady, D. Cepeda, M. Leutgeb, E. Bortolato, G. Huber, B. Sakulin, H. Heikkilä, J. |
| Author_xml | – sequence: 1 givenname: G. orcidid: 0009-0009-2649-8955 surname: Bortolato fullname: Bortolato, G. organization: Department of Physics and Astronomy “Galileo Galilei”, Padova University, Via Marzolo 8, 35131 Padova, Italy – sequence: 2 givenname: M. surname: Cepeda fullname: Cepeda, M. organization: CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain – sequence: 3 givenname: J. surname: Heikkilä fullname: Heikkilä, J. organization: Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland – sequence: 4 givenname: B. surname: Huber fullname: Huber, B. organization: Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria – sequence: 5 givenname: E. surname: Leutgeb fullname: Leutgeb, E. organization: Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria – sequence: 6 givenname: D. surname: Rabady fullname: Rabady, D. organization: Experimental Physics Department, CERN, 1211 Genève 23, Switzerland – sequence: 7 givenname: H. surname: Sakulin fullname: Sakulin, H. organization: Experimental Physics Department, CERN, 1211 Genève 23, Switzerland |
| BookMark | eNqFkMtKxDAUhoMoeH0FCbiuk6QXE3Aj9TJCxYW6DmlyOkY7SU1axbe3Y73hZlbnwPm_n8O3izadd4DQISXHlHA-oycZTwhjdEbFjKSzkqSEig2083PY_LNvo90YnwjJRZ6RHfR6DtEuHFbOYLvsWliC61VvvcO-wQ6GoNpx9G8-PONaRTBYe2fsKhFx4wPuHwGXN3e4gldoE4qvWl-PzH2wiwUEPHSLoAz8ROdVUs3LfbTVqDbCwdfcQw-XF_flPKlur67LsyrRGSV9khMjoFEUIKd1kXJe54XWDdNEmIbzlHGVaZqBgYLVKYCGphCCiLwGY5Rm6R46mXoH16n3N9W2sgt2qcK7pESu9MmVGbkyI6mQJJX6U99IHk1kF_zLALGXT34IbnxWMpHynGVUFGOqmFI6-BgDNGvry-_603-gtpP3PijbrsfZhFvf_T62BvoAXtWkBg |
| CitedBy_id | crossref_primary_10_1140_epjs_s11734_024_01306_z |
| Cites_doi | 10.1088/1748-0221/13/07/P07027 10.1038/s42256-021-00356-5 10.1088/1748-0221/18/01/C01034 10.22323/1.343.0115 10.1088/1748-0221/3/08/S08004 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) 2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: 2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | the CMS collaboration |
| CorporateAuthor_xml | – name: the CMS collaboration |
| DBID | O3W TSCCA AAYXX CITATION 7U5 8FD L7M ADTOC UNPAY |
| DOI | 10.1088/1748-0221/19/03/C03019 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1748-0221 |
| ExternalDocumentID | 10.1088/1748-0221/19/03/c03019 10_1088_1748_0221_19_03_C03019 JINST_052P_1123 |
| GroupedDBID | 1JI 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IJHAN IOP IZVLO KOT LAP MV1 N5L N9A O3W PJBAE RIN RNS ROL RPA SY9 TSCCA VSI W28 ZMT AAYXX ADEQX AEINN CITATION 7U5 8FD L7M 02O 1WK 4.4 AALHV ACARI ADTOC AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. Q02 S3P UNPAY |
| ID | FETCH-LOGICAL-c410t-50d9efa1ee51b6388b56ccf2c09df88328a4c14ede62b3eecef699095beddac23 |
| IEDL.DBID | UNPAY |
| ISSN | 1748-0221 |
| IngestDate | Sun Oct 26 04:13:38 EDT 2025 Mon Jun 30 06:54:09 EDT 2025 Wed Oct 01 02:24:54 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 Sun Aug 18 16:00:26 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-50d9efa1ee51b6388b56ccf2c09df88328a4c14ede62b3eecef699095beddac23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-2649-8955 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1748-0221/19/03/c03019 |
| PQID | 2938524196 |
| PQPubID | 4562433 |
| PageCount | 7 |
| ParticipantIDs | iop_journals_10_1088_1748_0221_19_03_C03019 crossref_citationtrail_10_1088_1748_0221_19_03_C03019 crossref_primary_10_1088_1748_0221_19_03_C03019 unpaywall_primary_10_1088_1748_0221_19_03_c03019 proquest_journals_2938524196 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol |
| PublicationTitle | Journal of instrumentation |
| PublicationTitleAlternate | J. Instrum |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Rose (bdce7e0fb11c3cce0898d9529c9fac76b) 2019; TWEPP2018 Coelho (b97348e13a2d7076d967a3da6a2e67ce1) 2021; 3 b062bcea35a57bb3e42ba4d4ffd02161b CMS Collaboration (b9917a5e368da7f34efc791da2d6a4a36) 2023; 18 Duarte (bfcd28770cc443fd4fb3ab0c8bea5864d) 2018; 13 bc1687720ff88b2ffd8471ba07c3dcc3a bb457824b36da25faea03a90fe4994c2d b4f15415943eca6e5c8e317693052f4e9 bf69f2f2c4a9c1f5cb176d472f040df20 b258b00ae78e6555325434864251a64df CMS Collaboration (b082fcd1f8b319d7e27b31e07597efc68) 2023 bdd77a57c508676b8736eb757f6cc26c4 CMS Collaboration (b9ce67e011851b2e340beb8b2cc0c576e) 2008; 3 |
| References_xml | – volume: 13 year: 2018 ident: bfcd28770cc443fd4fb3ab0c8bea5864d article-title: Fast inference of deep neural networks in FPGAs for particle physics publication-title: JINST doi: 10.1088/1748-0221/13/07/P07027 – ident: bb457824b36da25faea03a90fe4994c2d – ident: b4f15415943eca6e5c8e317693052f4e9 – ident: bf69f2f2c4a9c1f5cb176d472f040df20 – volume: 3 start-page: 675 year: 2021 ident: b97348e13a2d7076d967a3da6a2e67ce1 article-title: Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors publication-title: Nature Mach. Intell. doi: 10.1038/s42256-021-00356-5 – volume: 18 year: 2023 ident: b9917a5e368da7f34efc791da2d6a4a36 article-title: Architecture and prototype of the CMS Global Level-1 Trigger for Phase-2 publication-title: JINST doi: 10.1088/1748-0221/18/01/C01034 – year: 2023 ident: b082fcd1f8b319d7e27b31e07597efc68 article-title: Development of the CMS detector for the CERN LHC Run 3 – volume: TWEPP2018 start-page: 115 year: 2019 ident: bdce7e0fb11c3cce0898d9529c9fac76b article-title: Serenity: An ATCA prototyping platform for CMS Phase-2 publication-title: PoS doi: 10.22323/1.343.0115 – ident: bdd77a57c508676b8736eb757f6cc26c4 – volume: 3 year: 2008 ident: b9ce67e011851b2e340beb8b2cc0c576e article-title: The CMS Experiment at the CERN LHC publication-title: JINST doi: 10.1088/1748-0221/3/08/S08004 – ident: b258b00ae78e6555325434864251a64df – ident: b062bcea35a57bb3e42ba4d4ffd02161b – ident: bc1687720ff88b2ffd8471ba07c3dcc3a |
| SSID | ssj0059540 |
| Score | 2.357408 |
| Snippet | The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the... |
| SourceID | unpaywall proquest crossref iop |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | C03019 |
| SubjectTerms | Algorithms Large Hadron Collider Luminosity Machine learning Neural networks Solenoids Trigger algorithms Trigger concepts and systems (hardware and software) |
| SummonAdditionalLinks | – databaseName: Institute of Physics (IOP) - journals dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYeIA9jG9RNpAfeENu4thO7cepY6pQB0hsEm-RPy7VREmrrgXBX885TsqGhCrEWx58dnL23f3s_HxHyGuV29rqEbBShsBkkIFZGQwzknuhgnAB4nnH-ftycinffVY9m7C9C7NYdq5_iI8pUXBSYUeI0xliaM0w9PCMmywX2TiierNH7gqN8Dje4fvwsXfGyiAi6S8G_1X2Vkzaw3Fvwc17m2Zpf3y38_mNyHP2gLj-nRPh5Mtws3ZD__OPdI7_9VEPyWGHS-lJEnhE7kDzmBzcyFb4hHw7bdke1DaBXn3teedxYumipjExJnbQJFo5jdExUNxsh8QJowiOKYJNOj7_RKeRqcQ4TQUH6MXqajaDFd0sZysbYNt0MmXTyfgpuTx7ezGesK5sA_OS52um8mCgthxAcYfmrZ0qva8Ln5tQa_Qg2krPJQQoCycAPNQlxkSjHIRgfSGekf1m0cBzQgXG1VGsksWFlUJIA7i7k7ZwMCpz79WAqH7iKt_lNI-lNeZV-29d6yrqtYp6rbipclElvQ5ItpVbpqweOyXe4NRVnYFf72x93K-f3yIIrLRCwGTKAcm3a2rn-L7t8cU_jX9E7hcIvhJX7pjsr1cbeIngae1etebxCyLjCUY priority: 102 providerName: IOP Publishing |
| Title | Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC |
| URI | https://iopscience.iop.org/article/10.1088/1748-0221/19/03/C03019 https://www.proquest.com/docview/2938524196 https://doi.org/10.1088/1748-0221/19/03/c03019 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1748-0221 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059540 issn: 1748-0221 databaseCode: IOP dateStart: 20060101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6R9AAcKE8RKJUP3JCb9drerI9VoAoobSrRiHJaee3ZqiJsopCA4Nczjjdpg4QClz3N7MOe2fnG_jwD8FontrJ5D3mmvOfKK8-t8oYbJZzUXpYew3rH6Vk2GKsPl_qySRTDWZit_XtKzggw55zijOgK001k1wUIb1qwl2nC3m3YG5-dH3-Opx6j4PoY8F-VtyJQ63o62wKXd5f1zP78YSeTW3HmZB9G6zeM9JIvR8tFeeR-_VG88d8_4SE8aCAnO4428gjuYP0Y7t8qRPgEvr9dETmYrT27_rqmlIc5Y9OKhZqXdIM6MsZZCHyeUR7tI92LEe5lhCNZ__QjGwYSEhcs9hJgF5T8X-GcLWdXc-txIzoY8uGg_xTGJ-8u-gPedGTgTolkwXXiDVZWIGpRkufmpc6cq1KXGF_l9HPIrXJCoccsLSWiwyqjcGd0id5bl8pn0K6nNT4HJilk9kIDLCGtklIZpMRN2bTEXpY4pzug17NUuKZceeiaMSlW2-Z5XoRxLcK4FsIUiSz6q3HtQHejN4sFO3ZqvCEjKBrf_bZT-mBtLDcqhJlyTVjIZB1INga08_nREl78v8pLuJcSuIpcuANoL-ZLfEXgaFEeQuv96JyuI_npsPGO3zSd_z8 |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLa2IfHjMH4NUTbAB27ITRzbqX2culUFujGJTdrNcmynmihp1LUg-Ot5jpNuQ0IV4paDn628Z_t9Tj5_D6F3IjWlkQNPcu4c4Y47YrhTRHFqmXCscD587zg5zccX_OOluNxCx-u7MPO63fr78BiFgqMLW0KcTABDSwKphyZUJSlLhgHVq6R25Ta616iVhHt8n8-6DVkoQCXd5eC_2t_JS9sw9h3I-WBV1ebnDzOb3co-o8eRJXLdiBYG0snX_mpZ9O2vPyQd__vFnqDdFp_iw2j0FG356hl6dEu18Dn6ftSwPrCpHL761vHPQ4DxvMRBIBM6qCK9HIcs6TAcul3khmEAyRhAJx6efMGTwFgiFMfCA_h8cTWd-gVe1dOFcX7ddDwhk_FwD12Mjs-HY9KWbyCW03RJROqULw31XtAClrksRG5tmdlUuVLCTiINt5R75_OsYN5bX-aQG5UovHPGZuwF2qnmlX-JMIP8OgjVsigznDGuPJzyuMkKP8hTa0UPiS542rba5qHExkw3_9il1MG3OvhWU6VTpqNveyhZ29VR3WOjxXsIn24X-vXG1gfdHLoxAYAlBQAnlfdQup5XG8e3TY-v_mn8t-j-2dFITz6cftpHDzPAY5E-d4B2louVfw14alm8aVbLb3nSDqc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7gH2wDda2UB-4A15jWM7jR-njqlC3UBilcZT5NiXaVpJq9KC4K_nXCfdOgkV3n35ON_lfhf_7g7gnU5sZfM-8kx5z5VXnlvlDTdKOKm9LD2G_x1n59lwrD5e6ssmUQy1MBvn95ScEWDOOcUZ0ROml8ieCxDe7MBupgl7d2B3fP75-GuseowL2zLgvwpvRKCd6-lsA1w-XNYz--unnUzuxJnTJ_CpfcJIL7k5Wi7KI_f7XvPGf3-Fp_C4gZzsONrIM3iA9XPYu9OI8AX8OFkROZitPbv-1lLKw56xacVCz0u6QB0Z4ywEPs8oj_aR7sUI9zLCkWxw9oWNAgmJCxZnCbALSv6vcM6Ws6u59bheOhzx0XDwEsanHy4GQ95MZOBOiWTBdeINVlYgalGS5-alzpyrUpcYX-X0ccitckKhxywtJaLDKqNwZ3SJ3luXylfQqac17gOTFDL7YQCWkFZJqQxS4qZsWmI_S5zTXdDtLhWuaVcepmZMitWxeZ4XQa9F0GshTJHIYrDSaxd6a7lZbNixVeI9GUHR-O73rasPW2O5FSHMlGvCQibrQrI2oK33j5bw-v9FDuBRSuAqcuEOobOYL_ENgaNF-bbxiD9OGP08 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+neural+network+based+conditions+for+the+CMS+Level-1+Global+Trigger+upgrade+for+the+HL-LHC&rft.jtitle=Journal+of+instrumentation&rft.au=Bortolato%2C+G.&rft.au=Cepeda%2C+M.&rft.au=Heikkil%C3%A4%2C+J.&rft.au=Huber%2C+B.&rft.date=2024-03-01&rft.issn=1748-0221&rft.eissn=1748-0221&rft.volume=19&rft.issue=3&rft.spage=C03019&rft_id=info:doi/10.1088%2F1748-0221%2F19%2F03%2FC03019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_0221_19_03_C03019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0221&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0221&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0221&client=summon |