Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC

The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed info...

Full description

Saved in:
Bibliographic Details
Published inJournal of instrumentation Vol. 19; no. 3; p. C03019
Main Authors Bortolato, G., Cepeda, M., Heikkilä, J., Huber, B., Leutgeb, E., Rabady, D., Sakulin, H.
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2024
Subjects
Online AccessGet full text
ISSN1748-0221
1748-0221
DOI10.1088/1748-0221/19/03/C03019

Cover

Abstract The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed information from sub-detectors at the bunch crossing rate: the upgraded Global Trigger will use high-precision trigger objects to provide the Level-1 decision. Besides cut-based algorithms, novel machine-learning-based algorithms will also be included in the Global Trigger to achieve a higher selection efficiency and detect unexpected signals. Implementation of these novel algorithms is presented, focusing on how the neural network models can be optimized to ensure a feasible hardware implementation. The performance and resource usage of the optimized neural network models are discussed in detail.
AbstractList The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the High-Luminosity LHC operations. In particular, the trigger system (Level-1 and High Level Triggers) will be completely redesigned to utilize detailed information from sub-detectors at the bunch crossing rate: the upgraded Global Trigger will use high-precision trigger objects to provide the Level-1 decision. Besides cut-based algorithms, novel machine-learning-based algorithms will also be included in the Global Trigger to achieve a higher selection efficiency and detect unexpected signals. Implementation of these novel algorithms is presented, focusing on how the neural network models can be optimized to ensure a feasible hardware implementation. The performance and resource usage of the optimized neural network models are discussed in detail.
Author Rabady, D.
Cepeda, M.
Leutgeb, E.
Bortolato, G.
Huber, B.
Sakulin, H.
Heikkilä, J.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0009-0009-2649-8955
  surname: Bortolato
  fullname: Bortolato, G.
  organization: Department of Physics and Astronomy “Galileo Galilei”, Padova University, Via Marzolo 8, 35131 Padova, Italy
– sequence: 2
  givenname: M.
  surname: Cepeda
  fullname: Cepeda, M.
  organization: CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
– sequence: 3
  givenname: J.
  surname: Heikkilä
  fullname: Heikkilä, J.
  organization: Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
– sequence: 4
  givenname: B.
  surname: Huber
  fullname: Huber, B.
  organization: Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria
– sequence: 5
  givenname: E.
  surname: Leutgeb
  fullname: Leutgeb, E.
  organization: Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria
– sequence: 6
  givenname: D.
  surname: Rabady
  fullname: Rabady, D.
  organization: Experimental Physics Department, CERN, 1211 Genève 23, Switzerland
– sequence: 7
  givenname: H.
  surname: Sakulin
  fullname: Sakulin, H.
  organization: Experimental Physics Department, CERN, 1211 Genève 23, Switzerland
BookMark eNqFkMtKxDAUhoMoeH0FCbiuk6QXE3Aj9TJCxYW6DmlyOkY7SU1axbe3Y73hZlbnwPm_n8O3izadd4DQISXHlHA-oycZTwhjdEbFjKSzkqSEig2083PY_LNvo90YnwjJRZ6RHfR6DtEuHFbOYLvsWliC61VvvcO-wQ6GoNpx9G8-PONaRTBYe2fsKhFx4wPuHwGXN3e4gldoE4qvWl-PzH2wiwUEPHSLoAz8ROdVUs3LfbTVqDbCwdfcQw-XF_flPKlur67LsyrRGSV9khMjoFEUIKd1kXJe54XWDdNEmIbzlHGVaZqBgYLVKYCGphCCiLwGY5Rm6R46mXoH16n3N9W2sgt2qcK7pESu9MmVGbkyI6mQJJX6U99IHk1kF_zLALGXT34IbnxWMpHynGVUFGOqmFI6-BgDNGvry-_603-gtpP3PijbrsfZhFvf_T62BvoAXtWkBg
CitedBy_id crossref_primary_10_1140_epjs_s11734_024_01306_z
Cites_doi 10.1088/1748-0221/13/07/P07027
10.1038/s42256-021-00356-5
10.1088/1748-0221/18/01/C01034
10.22323/1.343.0115
10.1088/1748-0221/3/08/S08004
ContentType Journal Article
Copyright 2024 The Author(s)
2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s)
– notice: 2024 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor the CMS collaboration
CorporateAuthor_xml – name: the CMS collaboration
DBID O3W
TSCCA
AAYXX
CITATION
7U5
8FD
L7M
ADTOC
UNPAY
DOI 10.1088/1748-0221/19/03/C03019
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-0221
ExternalDocumentID 10.1088/1748-0221/19/03/c03019
10_1088_1748_0221_19_03_C03019
JINST_052P_1123
GroupedDBID 1JI
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IJHAN
IOP
IZVLO
KOT
LAP
MV1
N5L
N9A
O3W
PJBAE
RIN
RNS
ROL
RPA
SY9
TSCCA
VSI
W28
ZMT
AAYXX
ADEQX
AEINN
CITATION
7U5
8FD
L7M
02O
1WK
4.4
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
S3P
UNPAY
ID FETCH-LOGICAL-c410t-50d9efa1ee51b6388b56ccf2c09df88328a4c14ede62b3eecef699095beddac23
IEDL.DBID UNPAY
ISSN 1748-0221
IngestDate Sun Oct 26 04:13:38 EDT 2025
Mon Jun 30 06:54:09 EDT 2025
Wed Oct 01 02:24:54 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
Sun Aug 18 16:00:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-50d9efa1ee51b6388b56ccf2c09df88328a4c14ede62b3eecef699095beddac23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-2649-8955
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1748-0221/19/03/c03019
PQID 2938524196
PQPubID 4562433
PageCount 7
ParticipantIDs iop_journals_10_1088_1748_0221_19_03_C03019
crossref_citationtrail_10_1088_1748_0221_19_03_C03019
crossref_primary_10_1088_1748_0221_19_03_C03019
unpaywall_primary_10_1088_1748_0221_19_03_c03019
proquest_journals_2938524196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of instrumentation
PublicationTitleAlternate J. Instrum
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Rose (bdce7e0fb11c3cce0898d9529c9fac76b) 2019; TWEPP2018
Coelho (b97348e13a2d7076d967a3da6a2e67ce1) 2021; 3
b062bcea35a57bb3e42ba4d4ffd02161b
CMS Collaboration (b9917a5e368da7f34efc791da2d6a4a36) 2023; 18
Duarte (bfcd28770cc443fd4fb3ab0c8bea5864d) 2018; 13
bc1687720ff88b2ffd8471ba07c3dcc3a
bb457824b36da25faea03a90fe4994c2d
b4f15415943eca6e5c8e317693052f4e9
bf69f2f2c4a9c1f5cb176d472f040df20
b258b00ae78e6555325434864251a64df
CMS Collaboration (b082fcd1f8b319d7e27b31e07597efc68) 2023
bdd77a57c508676b8736eb757f6cc26c4
CMS Collaboration (b9ce67e011851b2e340beb8b2cc0c576e) 2008; 3
References_xml – volume: 13
  year: 2018
  ident: bfcd28770cc443fd4fb3ab0c8bea5864d
  article-title: Fast inference of deep neural networks in FPGAs for particle physics
  publication-title: JINST
  doi: 10.1088/1748-0221/13/07/P07027
– ident: bb457824b36da25faea03a90fe4994c2d
– ident: b4f15415943eca6e5c8e317693052f4e9
– ident: bf69f2f2c4a9c1f5cb176d472f040df20
– volume: 3
  start-page: 675
  year: 2021
  ident: b97348e13a2d7076d967a3da6a2e67ce1
  article-title: Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
  publication-title: Nature Mach. Intell.
  doi: 10.1038/s42256-021-00356-5
– volume: 18
  year: 2023
  ident: b9917a5e368da7f34efc791da2d6a4a36
  article-title: Architecture and prototype of the CMS Global Level-1 Trigger for Phase-2
  publication-title: JINST
  doi: 10.1088/1748-0221/18/01/C01034
– year: 2023
  ident: b082fcd1f8b319d7e27b31e07597efc68
  article-title: Development of the CMS detector for the CERN LHC Run 3
– volume: TWEPP2018
  start-page: 115
  year: 2019
  ident: bdce7e0fb11c3cce0898d9529c9fac76b
  article-title: Serenity: An ATCA prototyping platform for CMS Phase-2
  publication-title: PoS
  doi: 10.22323/1.343.0115
– ident: bdd77a57c508676b8736eb757f6cc26c4
– volume: 3
  year: 2008
  ident: b9ce67e011851b2e340beb8b2cc0c576e
  article-title: The CMS Experiment at the CERN LHC
  publication-title: JINST
  doi: 10.1088/1748-0221/3/08/S08004
– ident: b258b00ae78e6555325434864251a64df
– ident: b062bcea35a57bb3e42ba4d4ffd02161b
– ident: bc1687720ff88b2ffd8471ba07c3dcc3a
SSID ssj0059540
Score 2.357408
Snippet The CMS detector will be upgraded to maintain, or even improve, the physics acceptance under the harsh data taking conditions foreseen during the...
SourceID unpaywall
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage C03019
SubjectTerms Algorithms
Large Hadron Collider
Luminosity
Machine learning
Neural networks
Solenoids
Trigger algorithms
Trigger concepts and systems (hardware and software)
SummonAdditionalLinks – databaseName: Institute of Physics (IOP) - journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYeIA9jG9RNpAfeENu4thO7cepY6pQB0hsEm-RPy7VREmrrgXBX885TsqGhCrEWx58dnL23f3s_HxHyGuV29rqEbBShsBkkIFZGQwzknuhgnAB4nnH-ftycinffVY9m7C9C7NYdq5_iI8pUXBSYUeI0xliaM0w9PCMmywX2TiierNH7gqN8Dje4fvwsXfGyiAi6S8G_1X2Vkzaw3Fvwc17m2Zpf3y38_mNyHP2gLj-nRPh5Mtws3ZD__OPdI7_9VEPyWGHS-lJEnhE7kDzmBzcyFb4hHw7bdke1DaBXn3teedxYumipjExJnbQJFo5jdExUNxsh8QJowiOKYJNOj7_RKeRqcQ4TQUH6MXqajaDFd0sZysbYNt0MmXTyfgpuTx7ezGesK5sA_OS52um8mCgthxAcYfmrZ0qva8Ln5tQa_Qg2krPJQQoCycAPNQlxkSjHIRgfSGekf1m0cBzQgXG1VGsksWFlUJIA7i7k7ZwMCpz79WAqH7iKt_lNI-lNeZV-29d6yrqtYp6rbipclElvQ5ItpVbpqweOyXe4NRVnYFf72x93K-f3yIIrLRCwGTKAcm3a2rn-L7t8cU_jX9E7hcIvhJX7pjsr1cbeIngae1etebxCyLjCUY
  priority: 102
  providerName: IOP Publishing
Title Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC
URI https://iopscience.iop.org/article/10.1088/1748-0221/19/03/C03019
https://www.proquest.com/docview/2938524196
https://doi.org/10.1088/1748-0221/19/03/c03019
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1748-0221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059540
  issn: 1748-0221
  databaseCode: IOP
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6R9AAcKE8RKJUP3JCb9drerI9VoAoobSrRiHJaee3ZqiJsopCA4Nczjjdpg4QClz3N7MOe2fnG_jwD8FontrJ5D3mmvOfKK8-t8oYbJZzUXpYew3rH6Vk2GKsPl_qySRTDWZit_XtKzggw55zijOgK001k1wUIb1qwl2nC3m3YG5-dH3-Opx6j4PoY8F-VtyJQ63o62wKXd5f1zP78YSeTW3HmZB9G6zeM9JIvR8tFeeR-_VG88d8_4SE8aCAnO4428gjuYP0Y7t8qRPgEvr9dETmYrT27_rqmlIc5Y9OKhZqXdIM6MsZZCHyeUR7tI92LEe5lhCNZ__QjGwYSEhcs9hJgF5T8X-GcLWdXc-txIzoY8uGg_xTGJ-8u-gPedGTgTolkwXXiDVZWIGpRkufmpc6cq1KXGF_l9HPIrXJCoccsLSWiwyqjcGd0id5bl8pn0K6nNT4HJilk9kIDLCGtklIZpMRN2bTEXpY4pzug17NUuKZceeiaMSlW2-Z5XoRxLcK4FsIUiSz6q3HtQHejN4sFO3ZqvCEjKBrf_bZT-mBtLDcqhJlyTVjIZB1INga08_nREl78v8pLuJcSuIpcuANoL-ZLfEXgaFEeQuv96JyuI_npsPGO3zSd_z8
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLa2IfHjMH4NUTbAB27ITRzbqX2culUFujGJTdrNcmynmihp1LUg-Ot5jpNuQ0IV4paDn628Z_t9Tj5_D6F3IjWlkQNPcu4c4Y47YrhTRHFqmXCscD587zg5zccX_OOluNxCx-u7MPO63fr78BiFgqMLW0KcTABDSwKphyZUJSlLhgHVq6R25Ta616iVhHt8n8-6DVkoQCXd5eC_2t_JS9sw9h3I-WBV1ebnDzOb3co-o8eRJXLdiBYG0snX_mpZ9O2vPyQd__vFnqDdFp_iw2j0FG356hl6dEu18Dn6ftSwPrCpHL761vHPQ4DxvMRBIBM6qCK9HIcs6TAcul3khmEAyRhAJx6efMGTwFgiFMfCA_h8cTWd-gVe1dOFcX7ddDwhk_FwD12Mjs-HY9KWbyCW03RJROqULw31XtAClrksRG5tmdlUuVLCTiINt5R75_OsYN5bX-aQG5UovHPGZuwF2qnmlX-JMIP8OgjVsigznDGuPJzyuMkKP8hTa0UPiS542rba5qHExkw3_9il1MG3OvhWU6VTpqNveyhZ29VR3WOjxXsIn24X-vXG1gfdHLoxAYAlBQAnlfdQup5XG8e3TY-v_mn8t-j-2dFITz6cftpHDzPAY5E-d4B2louVfw14alm8aVbLb3nSDqc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7gH2wDda2UB-4A15jWM7jR-njqlC3UBilcZT5NiXaVpJq9KC4K_nXCfdOgkV3n35ON_lfhf_7g7gnU5sZfM-8kx5z5VXnlvlDTdKOKm9LD2G_x1n59lwrD5e6ssmUQy1MBvn95ScEWDOOcUZ0ROml8ieCxDe7MBupgl7d2B3fP75-GuseowL2zLgvwpvRKCd6-lsA1w-XNYz--unnUzuxJnTJ_CpfcJIL7k5Wi7KI_f7XvPGf3-Fp_C4gZzsONrIM3iA9XPYu9OI8AX8OFkROZitPbv-1lLKw56xacVCz0u6QB0Z4ywEPs8oj_aR7sUI9zLCkWxw9oWNAgmJCxZnCbALSv6vcM6Ws6u59bheOhzx0XDwEsanHy4GQ95MZOBOiWTBdeINVlYgalGS5-alzpyrUpcYX-X0ccitckKhxywtJaLDKqNwZ3SJ3luXylfQqac17gOTFDL7YQCWkFZJqQxS4qZsWmI_S5zTXdDtLhWuaVcepmZMitWxeZ4XQa9F0GshTJHIYrDSaxd6a7lZbNixVeI9GUHR-O73rasPW2O5FSHMlGvCQibrQrI2oK33j5bw-v9FDuBRSuAqcuEOobOYL_ENgaNF-bbxiD9OGP08
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+neural+network+based+conditions+for+the+CMS+Level-1+Global+Trigger+upgrade+for+the+HL-LHC&rft.jtitle=Journal+of+instrumentation&rft.au=Bortolato%2C+G.&rft.au=Cepeda%2C+M.&rft.au=Heikkil%C3%A4%2C+J.&rft.au=Huber%2C+B.&rft.date=2024-03-01&rft.issn=1748-0221&rft.eissn=1748-0221&rft.volume=19&rft.issue=3&rft.spage=C03019&rft_id=info:doi/10.1088%2F1748-0221%2F19%2F03%2FC03019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_0221_19_03_C03019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0221&client=summon