Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review
The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single ca...
Saved in:
Published in | Progress in biomedical engineering (Bristol) Vol. 5; no. 2; pp. 22001 - 22021 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2516-1091 2516-1091 |
DOI | 10.1088/2516-1091/acc2fe |
Cover
Abstract | The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single cancer patient relies on various images (e.g. radiology, pathology and camera images) and non-image data (e.g. clinical data and genomic data). However, such decision-making procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent advances in multimodal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multimodal information to ultimately provide more objective, quantitative computer-aided clinical decision making? This paper reviews the recent studies on dealing with such a question. Briefly, this review will include the (a) overview of current multimodal learning workflows, (b) summarization of multimodal fusion methods, (c) discussion of the performance, (d) applications in disease diagnosis and prognosis, and (e) challenges and future directions. |
---|---|
AbstractList | The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single cancer patient relies on various images (e.g. radiology, pathology and camera images) and non-image data (e.g. clinical data and genomic data). However, such decision-making procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent advances in multimodal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multimodal information to ultimately provide more objective, quantitative computer-aided clinical decision making? This paper reviews the recent studies on dealing with such a question. Briefly, this review will include the (a) overview of current multimodal learning workflows, (b) summarization of multimodal fusion methods, (c) discussion of the performance, (d) applications in disease diagnosis and prognosis, and (e) challenges and future directions. The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single cancer patient relies on various images (e.g. radiology, pathology and camera images) and non-image data (e.g. clinical data and genomic data). However, such decision-making procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent advances in multimodal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multimodal information to ultimately provide more objective, quantitative computer-aided clinical decision making? This paper reviews the recent studies on dealing with such a question. Briefly, this review will include the (a) overview of current multimodal learning workflows, (b) summarization of multimodal fusion methods, (c) discussion of the performance, (d) applications in disease diagnosis and prognosis, and (e) challenges and future directions.The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet complementary data that are produced during routine practice. For instance, the personalized diagnosis and treatment planning for a single cancer patient relies on various images (e.g. radiology, pathology and camera images) and non-image data (e.g. clinical data and genomic data). However, such decision-making procedures can be subjective, qualitative, and have large inter-subject variabilities. With the recent advances in multimodal deep learning technologies, an increasingly large number of efforts have been devoted to a key question: how do we extract and aggregate multimodal information to ultimately provide more objective, quantitative computer-aided clinical decision making? This paper reviews the recent studies on dealing with such a question. Briefly, this review will include the (a) overview of current multimodal learning workflows, (b) summarization of multimodal fusion methods, (c) discussion of the performance, (d) applications in disease diagnosis and prognosis, and (e) challenges and future directions. |
Author | Asad, Zuhayr Coburn, Lori A Wilson, Keith T Cui, Can Zhao, Shilin Landman, Bennett A Yang, Haichun Huo, Yuankai Wang, Yaohong |
Author_xml | – sequence: 1 givenname: Can orcidid: 0000-0002-2159-5387 surname: Cui fullname: Cui, Can organization: Vanderbilt University Department of Computer Science, Nashville, TN 37235, United States of America – sequence: 2 givenname: Haichun surname: Yang fullname: Yang, Haichun organization: Vanderbilt University Medical Center Department of Pathology, Microbiology and Immunology, Nashville, TN 37215, United States of America – sequence: 3 givenname: Yaohong surname: Wang fullname: Wang, Yaohong organization: Vanderbilt University Medical Center Department of Pathology, Microbiology and Immunology, Nashville, TN 37215, United States of America – sequence: 4 givenname: Shilin surname: Zhao fullname: Zhao, Shilin organization: Vanderbilt University Medical Center Department of Biostatistics, Nashville, TN 37215, United States of America – sequence: 5 givenname: Zuhayr surname: Asad fullname: Asad, Zuhayr organization: Vanderbilt University Department of Computer Science, Nashville, TN 37235, United States of America – sequence: 6 givenname: Lori A surname: Coburn fullname: Coburn, Lori A organization: Veterans Affairs Tennessee Valley Healthcare System , Nashville, TN 37212, United States of America – sequence: 7 givenname: Keith T surname: Wilson fullname: Wilson, Keith T organization: Veterans Affairs Tennessee Valley Healthcare System , Nashville, TN 37212, United States of America – sequence: 8 givenname: Bennett A surname: Landman fullname: Landman, Bennett A organization: Vanderbilt University Department of Electrical and Computer Engineering, Nashville, TN 37235, United States of America – sequence: 9 givenname: Yuankai surname: Huo fullname: Huo, Yuankai organization: Vanderbilt University Department of Electrical and Computer Engineering, Nashville, TN 37235, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37360402$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1PxCAQhonR-LF692S46cHqAFu29Wb8TjbxomfC0mGDaUuFVuO_l7VqjDGGAwx5Xph5dsh661skZJ_BCYOiOOU5kxmDkp1qY7jFNbL9fbX-47xF9mJ8AoB0w0oOm2RLzISEKfBtoi4RO9oMde8aX-ma2iE631JvqWv0EqluK5o-zsaq0r2mrqWVi6hjqp1etj66-MF1wY_VGdU04IvD112yYXUdce9zn5DH66uHi9tsfn9zd3E-z8yUQZ9Ni9RPDjMJDE0140JODZrFIs2Z6zItiYWRHLgR1iIwW1a5LFgpNXIBiGJCjsZ3Uw_PA8ZeNS4arGvdoh-i4oUAzoTMZwk9-ESHRYOV6kKaLbypLykJgBEwwccY0H4jDNRKvVq5VSu3alSfIvJXxLhe98lkH7Sr_wsej0HnO_Xkh9AmS__hh3_gXVguVK64As4BmOoqK94BaCujVQ |
CODEN | PBERB8 |
CitedBy_id | crossref_primary_10_1007_s10278_024_01036_7 crossref_primary_10_1016_j_compbiomed_2024_109399 crossref_primary_10_3389_frai_2025_1481338 crossref_primary_10_1016_j_jbi_2025_104796 crossref_primary_10_1007_s11042_023_14560_5 crossref_primary_10_1016_j_compbiomed_2024_109438 crossref_primary_10_1016_j_cmpb_2024_108568 crossref_primary_10_1002_qub2_93 crossref_primary_10_3390_diagnostics14151634 crossref_primary_10_1136_bmjopen_2024_094110 crossref_primary_10_3389_fmed_2024_1450103 crossref_primary_10_1109_ACCESS_2023_3331315 crossref_primary_10_3390_bioengineering11090872 crossref_primary_10_1007_s10462_023_10582_5 crossref_primary_10_3390_jcm14020550 crossref_primary_10_1115_1_4063954 crossref_primary_10_1007_s11227_025_07083_3 crossref_primary_10_1016_j_inffus_2025_103033 crossref_primary_10_1109_ACCESS_2024_3385340 crossref_primary_10_1016_j_engappai_2025_110554 crossref_primary_10_1190_geo2024_0113_1 crossref_primary_10_1016_j_microc_2025_112870 crossref_primary_10_37394_23205_2023_22_37 crossref_primary_10_1016_j_compbiomed_2023_107373 crossref_primary_10_1109_ACCESS_2024_3412961 crossref_primary_10_1002_sim_10350 crossref_primary_10_1016_j_inffus_2023_102134 crossref_primary_10_1111_jdv_20166 crossref_primary_10_1007_s13198_023_02180_z crossref_primary_10_1109_ACCESS_2024_3427731 crossref_primary_10_3390_diagnostics13020217 crossref_primary_10_3348_kjr_2024_1086 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1109_TVCG_2023_3326929 crossref_primary_10_1007_s10462_023_10588_z crossref_primary_10_1097_RLI_0000000000001106 crossref_primary_10_1109_TAI_2024_3397246 crossref_primary_10_35516_jjps_v17i3_2410 crossref_primary_10_2196_59452 crossref_primary_10_1016_j_compbiomed_2025_109721 crossref_primary_10_1177_20552076241253757 crossref_primary_10_1109_JBHI_2023_3279433 crossref_primary_10_1016_j_compgeo_2024_106697 crossref_primary_10_1088_1361_6501_ad14e2 crossref_primary_10_7717_peerj_cs_2338 crossref_primary_10_1097_WCO_0000000000001280 crossref_primary_10_1002_advs_202407060 crossref_primary_10_1093_bib_bbae449 crossref_primary_10_1088_1361_6501_ad6927 |
Cites_doi | 10.1038/s41586-021-03512-4 10.1117/12.2581127 10.1016/j.eswa.2022.118051 10.1109/JBHI.2021.3062002 10.1016/j.media.2018.06.001 10.1038/s41746-020-00341-z 10.1093/bioinformatics/btw033 10.1212/WNL.0b013e3181cb3e25 10.1016/j.inffus.2021.07.016 10.1109/TMI.2022.3142321 10.1038/s41597-021-00815-z 10.1007/s00371-022-02492-4 10.1109/CVPR52688.2022.01764 10.1109/BIBM49941.2020.9313289 10.1038/s41597-019-0322-0 10.1038/s41551-020-00682-w 10.1093/jamia/ocv080 10.1097/IIO.0000000000000246 10.1109/CVPR.2018.00943 10.1038/s41597-020-00622-y 10.17925/EE.2021.17.1.5 10.1109/iccvw54120.2021.00368 10.1007/978-3-030-87240-3 10.1109/TCBB.2018.2806438 10.1002/hbm.24428 10.1016/j.blre.2020.100693 10.1109/RBME.2009.2034865 10.1111/cup.12485 10.1038/s41568-021-00408-3 10.1080/21681163.2017.1356750 10.1109/cvpr46437.2021.01549 10.1109/ISBI52829.2022.9761567 10.1186/s12911-020-01340-6 10.1016/j.compbiomed.2022.106241 10.1109/CVPR.2017.369 10.1038/s41598-019-47765-6 10.1093/bib/bbab569 10.1007/978-3-030-58577-8_7 10.1016/j.patcog.2013.11.032 10.1109/TPAMI.2018.2798607 10.1109/CVPR.2019.01075 10.1016/j.bspc.2021.103015 10.18653/v1/D19-1514 10.1109/EMBC44109.2020.9176360 10.1111/1751-2980.12992 10.1016/j.acra.2015.05.007 10.1016/j.inffus.2022.01.001 10.1016/j.inffus.2020.09.006 10.1186/s12874-018-0482-1 10.1007/s00429-013-0687-3 10.18653/v1/w19-5034 10.1038/mp.2013.78 10.1016/j.neucom.2020.05.087 10.1016/j.media.2019.01.012 10.3389/fonc.2021.788740 10.1007/978-3-030-87237-3 10.1109/cvprw.2009.5206848 10.1016/S1474-4422(13)70024-3 10.21147/j.issn.1000-9604.2021.05.03 10.1007/978-3-319-66185-8_46 10.1109/TKDE.2019.2932666 10.1093/biomet/28.3-4.321 10.7326/0003-4819-140-3-200402030-00010 10.1007/978-3-030-60946-7_11 10.1186/s13014-019-1385-y 10.1007/978-3-031-18814-5_1 10.18653/v1/d17-1115 10.1145/3394171.3413977 10.1093/bioinformatics/btab185 10.1038/s41598-020-78888-w 10.18653/v1/d19-1371 10.1109/ISBI48211.2021.9433823 10.1007/s12021-013-9204-3.A 10.1109/TCSVT.2021.3063952 10.1016/j.media.2020.101789 10.1109/CVPR46437.2021.01409 10.1007/s11684-020-0782-9 10.1016/j.ejca.2021.10.007 10.1093/bioinformatics/btz318 10.1007/s00330-021-07854-5 10.1007/978-3-030-87240-3_66 10.1111/exd.13777 10.1186/gb-2006-7-10-r100 10.1109/tmi.2020.3021387 10.1007/978-3-030-59713-9_51 10.1109/ICCV48922.2021.00346 10.1162/neco_a_01273 10.1109/JBHI.2018.2824327 10.1093/bioinformatics/btz342 10.1038/s41746-021-00438-z 10.1016/j.jbi.2019.103337 10.1073/pnas.1717139115 10.1007/978-3-030-59713-9_24 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION NPM 7X8 |
DOI | 10.1088/2516-1091/acc2fe |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2516-1091 |
ExternalDocumentID | 37360402 10_1088_2516_1091_acc2fe prgbacc2fe |
Genre | Journal Article |
GrantInformation_xml | – fundername: CAREER grantid: 1452485; I01BX004366; I01CX002171 – fundername: NSF grantid: G-1903-03793 – fundername: Leona M. and Harry B. Helmsley Charitable Trust funderid: http://dx.doi.org/10.13039/100007028 – fundername: BLRD VA grantid: I01 BX004366 – fundername: CSRD VA grantid: I01 CX002171 |
GroupedDBID | AAGCD ABVAM ACHIP AKOSD AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CJUJL IJHAN IOP KOT M~E N5L O3W ROL RPA TSCCA AAYXX ABJNI ADEQX AEINN CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c410t-48604507601ecd72364cecbb0885a9a9a6e8c6202c3ffe01f9d568196ae230ee3 |
IEDL.DBID | IOP |
ISSN | 2516-1091 |
IngestDate | Thu Sep 04 23:41:29 EDT 2025 Wed Feb 19 02:23:21 EST 2025 Wed Oct 01 03:24:41 EDT 2025 Thu Apr 24 22:59:42 EDT 2025 Wed May 17 01:26:54 EDT 2023 Wed Aug 21 03:33:40 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | multimodal learning medical data fusion method diagnosis and prognosis |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-48604507601ecd72364cecbb0885a9a9a6e8c6202c3ffe01f9d568196ae230ee3 |
Notes | PRGB-100107.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2159-5387 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/2516-1091/acc2fe |
PMID | 37360402 |
PQID | 2830213657 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | pubmed_primary_37360402 crossref_primary_10_1088_2516_1091_acc2fe crossref_citationtrail_10_1088_2516_1091_acc2fe proquest_miscellaneous_2830213657 iop_journals_10_1088_2516_1091_acc2fe |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in biomedical engineering (Bristol) |
PublicationTitleAbbrev | PRGB |
PublicationTitleAlternate | Prog. Biomed. Eng |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Huang (prgbacc2febib87) 2020; 10 Rotemberg (prgbacc2febib43) 2021; 8 Lu (prgbacc2febib69) 2022 Schneider (prgbacc2febib13) 2021; 160 Neumann (prgbacc2febib54) 2019 El-Sappagh (prgbacc2febib24) 2020; 412 Zhou (prgbacc2febib84) 2019; 40 Wang (prgbacc2febib79) 2018 Piccialli (prgbacc2febib6) 2021; 66 Di Martino (prgbacc2febib83) 2014; 19 Chen (prgbacc2febib94) 2019 Pacheco (prgbacc2febib88) 2021; 25 Sharifi-Noghabi (prgbacc2febib107) 2019; 35 Mobadersany (prgbacc2febib21) 2018; 115 Ozturk (prgbacc2febib2) 2021; 45 McDonald (prgbacc2febib5) 2015; 22 Aggarwal (prgbacc2febib10) 2021; 4 Katzman (prgbacc2febib17) 2018; 18 Sharma (prgbacc2febib75) 2019; 9 Sun (prgbacc2febib82) 2018; 16 Chen (prgbacc2febib67) 2020; 0062 Yao (prgbacc2febib28) 2017; vol 10434 Jia (prgbacc2febib96) 2009 Baltrusaitis (prgbacc2febib97) 2019; 41 van Sonsbeek (prgbacc2febib90); vol 12445 Chen (prgbacc2febib93) Xu (prgbacc2febib71) 2022 Ye (prgbacc2febib77) 2019 Yang (prgbacc2febib70) 2021; 33 Kawahara (prgbacc2febib45) 2019; 23 Deng (prgbacc2febib8) 2020; 14 Chen (prgbacc2febib26) 2021 Ghosal (prgbacc2febib65) 2021; 11596 Cui (prgbacc2febib35) 2022; vol Part V Wang (prgbacc2febib98) 2021; 31 Li (prgbacc2febib108) 2022; 151 Devlin (prgbacc2febib55) 2019; vol 1 Stahlschmidt (prgbacc2febib15) 2022; 23 Jacenkow (prgbacc2febib72) 2022 Li (prgbacc2febib48) 2020; vol 2020 Huang (prgbacc2febib57) 2019 Li (prgbacc2febib31) 2021 Schulz (prgbacc2febib20) 2021; 11 Demner-Fushman (prgbacc2febib81) 2016; 23 Pölsterl (prgbacc2febib52) 2021 Lu (prgbacc2febib14) 2021; 33 Mwangi (prgbacc2febib63) 2015; 12 Yan (prgbacc2febib27) 2021; 21 Holste (prgbacc2febib16) 2021 Beltagy (prgbacc2febib56) 2020 Vaswani (prgbacc2febib100) 2017; vol 30 Tan (prgbacc2febib92) Yao (prgbacc2febib32) 2020; 65 Cheng (prgbacc2febib106) 2022; 41 Althloothi (prgbacc2febib85) 2014; 47 Yap (prgbacc2febib42) 2018; 27 Yu (prgbacc2febib102) 2020 Li (prgbacc2febib33) 2021 Boehm (prgbacc2febib11) 2021; 22 Silva (prgbacc2febib44) 2020 Lu (prgbacc2febib25) 2021; 5 Gao (prgbacc2febib7) 2020; 32 Date (prgbacc2febib50) 2019; 59 Lu (prgbacc2febib18) 2021; 594 Gurcan (prgbacc2febib19) 2009; 2 Wang (prgbacc2febib112) 2017 Nan (prgbacc2febib104) 2022; 82 Comfere (prgbacc2febib1) 2015; 42 Cao (prgbacc2febib41) 2021; 70 Azizi (prgbacc2febib105) Cui (prgbacc2febib68) 2021; vol 4 Bakas (prgbacc2febib66) 2018 Huang (prgbacc2febib95) 2020 Lee (prgbacc2febib61) 2021 Zadeh (prgbacc2febib73) 2017 Yoo (prgbacc2febib38) 2019; 7 Doherty (prgbacc2febib3) 2013; 12 Bach (prgbacc2febib62) 2017; 18 (prgbacc2febib22) 2023 Johnson (prgbacc2febib89) 2019; 6 Huang (prgbacc2febib12) 2020; 3 Li (prgbacc2febib58) 2020 Whiting (prgbacc2febib4) 2004; 140 Suk (prgbacc2febib86) 2015; 220 Chauhan (prgbacc2febib53) 2020; vol 12262 Singh (prgbacc2febib101) 2022; 207 Wang (prgbacc2febib80) 2017 (prgbacc2febib23) 2023 Schlemper (prgbacc2febib74) 2019; 53 Perez (prgbacc2febib78) 2018 Carpenter (prgbacc2febib30) 2006; 7 Harold (prgbacc2febib99) 1936; 28 Ma (prgbacc2febib103) 2022 Wang (prgbacc2febib60) 2021; vol 2021 Braman (prgbacc2febib34) 2021 Guan (prgbacc2febib36) 2021; vol Petersen (prgbacc2febib37) 2010; 74 Du (prgbacc2febib46) 2016; 32 Wang (prgbacc2febib29) 2021; 37 Harold Li (prgbacc2febib91) Borgli (prgbacc2febib110) 2020; 7 Cheerla (prgbacc2febib47) 2019; 35 Yang (prgbacc2febib109) 2021; 77 Zhang (prgbacc2febib49) 2021; 22 Cai (prgbacc2febib51) 2022 Cassidy (prgbacc2febib111) 2021; 1 Chen (prgbacc2febib64) 2021 Zhou (prgbacc2febib39) 2021; 32 Parisot (prgbacc2febib40) 2018; 48 Xu (prgbacc2febib76) 2019; 14 Ayala Solares (prgbacc2febib9) 2020; 101 Duanmu (prgbacc2febib59) 2020 |
References_xml | – volume: 594 start-page: 106 year: 2021 ident: prgbacc2febib18 article-title: AI-based pathology predicts origins for cancers of unknown primary publication-title: Nature doi: 10.1038/s41586-021-03512-4 – volume: 11596 year: 2021 ident: prgbacc2febib65 article-title: G-MIND: an end-to-end multimodal imaging-genetics framework for biomarker identification and disease classification publication-title: Proc. SPIE doi: 10.1117/12.2581127 – volume: 207 year: 2022 ident: prgbacc2febib101 article-title: A neural architecture search for automated multimodal learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118051 – volume: 25 start-page: 3554 year: 2021 ident: prgbacc2febib88 article-title: An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3062002 – volume: 48 start-page: 117 year: 2018 ident: prgbacc2febib40 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.06.001 – volume: 3 start-page: 2398 year: 2020 ident: prgbacc2febib12 article-title: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines publication-title: npj Digit. Med. doi: 10.1038/s41746-020-00341-z – volume: 32 start-page: 1544 year: 2016 ident: prgbacc2febib46 article-title: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw033 – volume: 74 start-page: 201 year: 2010 ident: prgbacc2febib37 article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization publication-title: Neurology doi: 10.1212/WNL.0b013e3181cb3e25 – volume: 77 start-page: 29 year: 2021 ident: prgbacc2febib109 article-title: Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.07.016 – start-page: 4015 year: 2021 ident: prgbacc2febib26 article-title: Multimodal Co-attention transformer for survival prediction in gigapixel whole slide images – start-page: 568 year: 2020 ident: prgbacc2febib44 article-title: Pan-cancer prognosis prediction using multimodal deep learning – volume: 41 start-page: 1520 year: 2022 ident: prgbacc2febib106 article-title: A fully automated multimodal MRI-based multi-task learning for glioma segmentation and IDH genotyping publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3142321 – volume: 8 start-page: 34 year: 2021 ident: prgbacc2febib43 article-title: A patient-centric dataset of images and metadata for identifying melanomas using clinical context publication-title: Sci. Data doi: 10.1038/s41597-021-00815-z – start-page: 1 year: 2022 ident: prgbacc2febib51 article-title: A multimodal transformer to fuse images and metadata for skin disease classification publication-title: Vis. Comput. doi: 10.1007/s00371-022-02492-4 – year: 2022 ident: prgbacc2febib103 article-title: Are multimodal transformers robust to missing modality? doi: 10.1109/CVPR52688.2022.01764 – year: 2020 ident: prgbacc2febib58 article-title: A comparison of pre-trained vision-and-language models for multimodal representation learning across medical images and reports doi: 10.1109/BIBM49941.2020.9313289 – volume: 6 start-page: 317 year: 2019 ident: prgbacc2febib89 article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports publication-title: Sci. Data doi: 10.1038/s41597-019-0322-0 – volume: 5 start-page: 555 year: 2021 ident: prgbacc2febib25 article-title: Data-efficient and weakly supervised computational pathology on whole-slide images publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00682-w – volume: 23 start-page: 304 year: 2016 ident: prgbacc2febib81 article-title: Preparing a collection of radiology examinations for distribution and retrieval publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocv080 – volume: 59 start-page: 39 year: 2019 ident: prgbacc2febib50 article-title: Applications of deep learning and artificial intelligence in Retina publication-title: Int. Ophthalmol. Clin. doi: 10.1097/IIO.0000000000000246 – start-page: 9049 year: 2018 ident: prgbacc2febib79 article-title: TieNet: text-image embedding network for common thorax disease classification and reporting in chest x-rays doi: 10.1109/CVPR.2018.00943 – year: 2020 ident: prgbacc2febib95 article-title: Pixel-bert: Aligning image pixels with text by deep multi-modal transformers – volume: 7 start-page: 283 year: 2020 ident: prgbacc2febib110 article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy publication-title: Sci. Data doi: 10.1038/s41597-020-00622-y – volume: 1 start-page: 5 year: 2021 ident: prgbacc2febib111 article-title: The DFUC 2020 dataset: analysis towards diabetic foot ulcer detection publication-title: Eur. Endocrinol. doi: 10.17925/EE.2021.17.1.5 – start-page: 3287 year: 2021 ident: prgbacc2febib16 article-title: End-to-end learning of fused image and non-image features for improved breast cancer classification from MRI doi: 10.1109/iccvw54120.2021.00368 – volume: vol year: 2021 ident: prgbacc2febib36 article-title: Predicting esophageal fistula risks using a multimodal self-attention network publication-title: Medical Image Computing and Computer Assisted Intervention—MICCAI doi: 10.1007/978-3-030-87240-3 – volume: 16 start-page: 841 year: 2018 ident: prgbacc2febib82 article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2018.2806438 – volume: 40 start-page: 1001 year: 2019 ident: prgbacc2febib84 article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24428 – volume: 45 year: 2021 ident: prgbacc2febib2 article-title: Non-hematologic diagnosis of systemic mastocytosis: collaboration of radiology and pathology publication-title: Blood Rev. doi: 10.1016/j.blre.2020.100693 – volume: 2 start-page: 147 year: 2009 ident: prgbacc2febib19 article-title: Histopathological image analysis: a review publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2009.2034865 – volume: 18 start-page: 1 year: 2017 ident: prgbacc2febib62 article-title: Breaking the curse of dimensionality with convex neural networks publication-title: J. Mach. Learn. Res. – year: 2023 ident: prgbacc2febib22 – volume: 42 start-page: 333 year: 2015 ident: prgbacc2febib1 article-title: Dermatopathologists’ concerns and challenges with clinical information in the skin biopsy requisition form: a mixed-methods study publication-title: J. Cutan. Pathol. doi: 10.1111/cup.12485 – start-page: 667 year: 2021 ident: prgbacc2febib34 article-title: Deep orthogonal fusion: multimodal prognostic biomarker discovery integrating radiology, pathology, genomic, and clinical data – volume: 22 start-page: 114 year: 2021 ident: prgbacc2febib11 article-title: Harnessing multimodal data integration to advance precision oncology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00408-3 – volume: vol Part V start-page: 626 year: 2022 ident: prgbacc2febib35 article-title: Survival prediction of brain cancer with incomplete radiology, pathology, genomics, and demographic data – volume: 7 start-page: 250 year: 2019 ident: prgbacc2febib38 article-title: Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis. doi: 10.1080/21681163.2017.1356750 – start-page: 15745 year: 2021 ident: prgbacc2febib64 article-title: Exploring simple siamese representation learning doi: 10.1109/cvpr46437.2021.01549 – year: 2022 ident: prgbacc2febib72 article-title: Indication as prior knowledge for multimodal disease classification in chest radiographs with transformers doi: 10.1109/ISBI52829.2022.9761567 – volume: 21 start-page: 1 year: 2021 ident: prgbacc2febib27 article-title: Richer fusion network for breast cancer classification based on multimodal data publication-title: BMC Medical Inform. Decis. Mak. doi: 10.1186/s12911-020-01340-6 – volume: 151 year: 2022 ident: prgbacc2febib108 article-title: Human treelike tubular structure segmentation: a comprehensive review and future perspectives publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106241 – year: 2017 ident: prgbacc2febib112 article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases doi: 10.1109/CVPR.2017.369 – volume: 9 start-page: 1 year: 2019 ident: prgbacc2febib75 article-title: DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture publication-title: Sci. Rep. doi: 10.1038/s41598-019-47765-6 – volume: 23 start-page: 569 year: 2022 ident: prgbacc2febib15 article-title: Multimodal deep learning for biomedical data fusion: a review publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab569 – year: 2022 ident: prgbacc2febib71 article-title: Multimodal learning with transformers: a survey – ident: prgbacc2febib93 article-title: UNITER: uNiversal image-TExt representation learning doi: 10.1007/978-3-030-58577-8_7 – volume: 47 start-page: 1800 year: 2014 ident: prgbacc2febib85 article-title: Human activity recognition using multi-features and multiple kernel learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.11.032 – volume: 41 start-page: 423 year: 2019 ident: prgbacc2febib97 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2798607 – start-page: 10494 year: 2019 ident: prgbacc2febib77 article-title: Cross-modal self-attention network for referring image segmentation doi: 10.1109/CVPR.2019.01075 – volume: 70 year: 2021 ident: prgbacc2febib41 article-title: Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.103015 – ident: prgbacc2febib92 article-title: LXMERT: learning cross-modality encoder representations from transformers doi: 10.18653/v1/D19-1514 – year: 2018 ident: prgbacc2febib66 article-title: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge – volume: vol 2020 start-page: 1384 year: 2020 ident: prgbacc2febib48 article-title: A novel pathological images and genomic data fusion framework for breast cancer survival prediction doi: 10.1109/EMBC44109.2020.9176360 – volume: 22 start-page: 318 year: 2021 ident: prgbacc2febib49 article-title: Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: a systematic review and meta-analysis publication-title: J. Dig. Dis. doi: 10.1111/1751-2980.12992 – year: 2019 ident: prgbacc2febib57 article-title: ClinicalBERT: modeling clinical notes and predicting hospital readmission – ident: prgbacc2febib91 article-title: Work in progress VISUALBERT: a simple and performant baseline for vision and language – volume: 22 start-page: 1191 year: 2015 ident: prgbacc2febib5 article-title: The effects of changes in utilization and technological advancements of cross-sectional imaging onradiologist workload publication-title: Acad Radiol. doi: 10.1016/j.acra.2015.05.007 – volume: 82 start-page: 99 year: 2022 ident: prgbacc2febib104 article-title: Data harmonisation for information fusion in digital healthcare: a state-of-the-art systematic review, meta-analysis and future research directions publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.01.001 – year: 2021 ident: prgbacc2febib61 article-title: A variational information bottleneck approach to multi-omics data integration – volume: 66 start-page: 111 year: 2021 ident: prgbacc2febib6 article-title: A survey on deep learning in medicine: why, how and when? publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.09.006 – volume: 18 start-page: 1 year: 2018 ident: prgbacc2febib17 article-title: DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0482-1 – volume: vol 30 year: 2017 ident: prgbacc2febib100 article-title: Attention is all you need – volume: 220 start-page: 841 year: 2015 ident: prgbacc2febib86 article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0687-3 – start-page: 319 year: 2019 ident: prgbacc2febib54 article-title: ScispaCy: fast and robust models for biomedical natural language processing doi: 10.18653/v1/w19-5034 – volume: 19 start-page: 659 year: 2014 ident: prgbacc2febib83 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 412 start-page: 197 year: 2020 ident: prgbacc2febib24 article-title: Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.087 – volume: 53 start-page: 197 year: 2019 ident: prgbacc2febib74 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.012 – volume: 11 start-page: 1 year: 2021 ident: prgbacc2febib20 article-title: Multimodal deep learning for prognosis prediction in renal cancer publication-title: Front. Oncol. doi: 10.3389/fonc.2021.788740 – start-page: 529 year: 2021 ident: prgbacc2febib31 article-title: Multi-modal multi-instance learning using weakly correlated histopathological images and tabular clinical information doi: 10.1007/978-3-030-87237-3 – start-page: 248 year: 2009 ident: prgbacc2febib96 article-title: ImageNet: a large-scale hierarchical image database doi: 10.1109/cvprw.2009.5206848 – volume: 12 start-page: 381 year: 2013 ident: prgbacc2febib3 article-title: Midbrain and hindbrain malformations: advances in clinical diagnosis, imaging, and genetics publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70024-3 – volume: 33 start-page: 563 year: 2021 ident: prgbacc2febib14 article-title: Integrating pathomics with radiomics and genomics for cancer prognosis: a brief review publication-title: Chin. J. Cancer Res. doi: 10.21147/j.issn.1000-9604.2021.05.03 – volume: vol 10434 start-page: 406 year: 2017 ident: prgbacc2febib28 article-title: Deep correlational learning for survival prediction from multi-modality data doi: 10.1007/978-3-319-66185-8_46 – volume: 33 start-page: 696 year: 2021 ident: prgbacc2febib70 article-title: Semi-supervised multi-modal multi-instance multi-label deep network with optimal transport publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2932666 – volume: 28 start-page: 321 year: 1936 ident: prgbacc2febib99 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – volume: 140 start-page: 189 year: 2004 ident: prgbacc2febib4 article-title: Sources of variation and bias in studies of diagnostic accuracy: a systematic review publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-140-3-200402030-00010 – start-page: 3942 year: 2018 ident: prgbacc2febib78 article-title: FiLM: visual reasoning with a general conditioning layer – volume: vol 12445 start-page: 106 ident: prgbacc2febib90 article-title: Towards automated diagnosis with attentive multi-modal learning using electronic health records and chest x-rays doi: 10.1007/978-3-030-60946-7_11 – volume: 14 start-page: 15 year: 2019 ident: prgbacc2febib76 article-title: Development and validation of a risk prediction model for radiotherapy-related esophageal fistula in esophageal cancer publication-title: Radiat. Oncol. doi: 10.1186/s13014-019-1385-y – start-page: 1 year: 2022 ident: prgbacc2febib69 article-title: M2F: a multi-modal and multi-task fusion network for glioma diagnosis and prognosis doi: 10.1007/978-3-031-18814-5_1 – start-page: 1103 year: 2017 ident: prgbacc2febib73 article-title: Tensor fusion network for multimodal sentiment analysis doi: 10.18653/v1/d17-1115 – start-page: 3743 year: 2020 ident: prgbacc2febib102 article-title: Deep multimodal neural architecture search doi: 10.1145/3394171.3413977 – volume: 37 start-page: 1 year: 2021 ident: prgbacc2febib29 article-title: GPDBN: deep bilinear network integrating both genomic data and pathological images for breast cancer prognosis prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab185 – volume: vol 4 start-page: 657 year: 2021 ident: prgbacc2febib68 doi: 10.1007/978-3-030-87240-3 – volume: 10 year: 2020 ident: prgbacc2febib87 article-title: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection publication-title: Sci. Rep. doi: 10.1038/s41598-020-78888-w – start-page: pp 2097 year: 2017 ident: prgbacc2febib80 article-title: Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – start-page: 3615 year: 2020 ident: prgbacc2febib56 article-title: SCIBERT: a pretrained language model for scientific text doi: 10.18653/v1/d19-1371 – volume: vol 2021 start-page: 1169 year: 2021 ident: prgbacc2febib60 article-title: Modeling uncertainty in multi-modal fusion for lung cancer survival analysis doi: 10.1109/ISBI48211.2021.9433823 – volume: 12 start-page: 229 year: 2015 ident: prgbacc2febib63 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinform doi: 10.1007/s12021-013-9204-3.A – volume: 32 start-page: 1 year: 2021 ident: prgbacc2febib39 article-title: Cohesive multi-modality feature learning and fusion for COVID-19 patient severity prediction publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3063952 – volume: 65 year: 2020 ident: prgbacc2febib32 article-title: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101789 – start-page: 14313 year: 2021 ident: prgbacc2febib33 article-title: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning doi: 10.1109/CVPR46437.2021.01409 – volume: 14 start-page: 470 year: 2020 ident: prgbacc2febib8 article-title: Deep learning in digital pathology image analysis: a survey publication-title: Front. Med. doi: 10.1007/s11684-020-0782-9 – volume: 160 start-page: 80 year: 2021 ident: prgbacc2febib13 article-title: Integration of deep learning-based image analysis and genomic data in cancer pathology: a systematic review publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2021.10.007 – volume: 35 start-page: i501 year: 2019 ident: prgbacc2febib107 article-title: MOLI: multi-omics late integration with deep neural networks for drug response prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz318 – year: 2019 ident: prgbacc2febib94 article-title: Uniter: Learning universal image-text representations – volume: 31 start-page: 8816 year: 2021 ident: prgbacc2febib98 article-title: Correction to: evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging (31 4960–71 10.1007/s00330-020-07266-x) publication-title: Eur. Radiol. doi: 10.1007/s00330-021-07854-5 – year: 2021 ident: prgbacc2febib52 doi: 10.1007/978-3-030-87240-3_66 – volume: 27 start-page: 1261 year: 2018 ident: prgbacc2febib42 article-title: Multimodal skin lesion classification using deep learning publication-title: Exp. Dermatol. doi: 10.1111/exd.13777 – volume: 7 start-page: R100 year: 2006 ident: prgbacc2febib30 article-title: CellProfiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol. doi: 10.1186/gb-2006-7-10-r100 – volume: 0062 start-page: 1 year: 2020 ident: prgbacc2febib67 article-title: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/tmi.2020.3021387 – volume: vol 12262 start-page: 529 year: 2020 ident: prgbacc2febib53 article-title: Joint modeling of chest radiographs and radiology reports for pulmonary edema assessment doi: 10.1007/978-3-030-59713-9_51 – ident: prgbacc2febib105 article-title: Big self-supervised models advance medical image classification doi: 10.1109/ICCV48922.2021.00346 – volume: 32 start-page: 829 year: 2020 ident: prgbacc2febib7 article-title: A survey on deep learning for multimodal data fusion publication-title: Neural Comput. doi: 10.1162/neco_a_01273 – year: 2023 ident: prgbacc2febib23 – volume: 23 start-page: 538 year: 2019 ident: prgbacc2febib45 article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets publication-title: IEEE J. Biomed Health Inform. doi: 10.1109/JBHI.2018.2824327 – volume: 35 start-page: i446 year: 2019 ident: prgbacc2febib47 article-title: Deep learning with multimodal representation for pancancer prognosis prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz342 – volume: 4 start-page: 65 year: 2021 ident: prgbacc2febib10 article-title: Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis publication-title: npj Digit. Med. doi: 10.1038/s41746-021-00438-z – volume: 101 year: 2020 ident: prgbacc2febib9 article-title: Deep learning for electronic health records: a comparative review of multiple deep neural architectures publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2019.103337 – volume: 115 start-page: E2970 year: 2018 ident: prgbacc2febib21 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717139115 – volume: vol 1 start-page: 4171 year: 2019 ident: prgbacc2febib55 article-title: BERT: pre-training of deep bidirectional transformers for language understanding – year: 2020 ident: prgbacc2febib59 article-title: Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using deep learning with integrative imaging, molecular and demographic data doi: 10.1007/978-3-030-59713-9_24 |
SSID | ssj0002511920 |
Score | 2.5565927 |
Snippet | The rapid development of diagnostic technologies in healthcare is leading to higher requirements for physicians to handle and integrate the heterogeneous, yet... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22001 |
SubjectTerms | diagnosis and prognosis fusion method medical data multimodal learning |
Title | Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review |
URI | https://iopscience.iop.org/article/10.1088/2516-1091/acc2fe https://www.ncbi.nlm.nih.gov/pubmed/37360402 https://www.proquest.com/docview/2830213657 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 2516-1091 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511920 issn: 2516-1091 databaseCode: IOP dateStart: 20190101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2516-1091 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511920 issn: 2516-1091 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacuFCi3gtpchIcODg3cTOw25PCFpVSKUcqOgByYqdMVpBk6i7e-HAb2fGzq5UBBVCkZw4GSsTx4-x55sZxl4apVvnpBPKm1YUDRhhTFEIXbRVJsG5EDdzzj5UpxfF-8vycosdbWxh-mEc-qd4mRwFpyocAXF6hjNyJcif5azxXgbYZneUxnUFWe-df9xssJDsbGQ2qib_VPDGVLSNr_u7lBlnm5Nd9mXNZwKZfJuulm7qf_zmwvE_P2SP3RulUP4mkd5nW9A9YPYdwMAjwvCqb_FxWNFWGu8Dn1_hsMObruVd34mUI2wpn3d8VPHgOYL25otIR7ivmDvkDU_2MQ_Zxcnxp7enYoy_IHyRZ0tB8amKklR3Ofi2JlfzHrxzyHvZGDwq0L6SmfQqBMjyYFpyZ2aqBnBhA6AesR3kCp4wXkmnoZQU6loWdRV0cDWogHd8XvtWT9hs_SusH52TU4yM7zYqybW2VFmkLs9tqqwJe70pMSTHHLfQvsJ_YMfeubiFjt-gG66_OltaackcOcvt0IYJe7FuIhY7ImlXmg761cJGT2oEGqwn7HFqOxvGVK2wKjP59B8Z2Wd3Kax9Qgg9YzvL6xUcoPCzdM9jI8f07Ocxpufq8y-4UwBs |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRCXtojXtjyMBAcO3k2cl80NtaxaHqUHKvVmYnuMVm2TqLt76a-vx_auVAQVEsohcTJWJn5OPJ-_IeStLITVmmtWGGlZ2YJkUpYlE6WtMw5au7CY8-24PjwtP59VZynOadgL0w9p6B_7y0gUHIswAeLExM_INUM-y0lrDHcwGazbIPeromowdsPR95P1Igvaz5JnyT35p8y3pqMN_8q_W5phxpluk58rXSPQ5Hy8XOixuf6NxvE_PmaHbCVrlH6M4o_IPegeE3UAMNCANLzsrX_slrikRntHZ5d--KFtZ2nXdyymEGNKZx1Nrh5_DuC92TzIIf4rpD7QlsZ9Mk_I6fTTj_1DluIwMFPm2YJhnKqyQhdeDsY2SDlvwGjt9a9a6Y8ahKl5xk3hHGS5kxZpzWTdgv_BASiekk2vFTwntOZaQMUx5DUvm9oJpxsonL9j8sZYMSKTVXUok0jKMVbGhQrOciEUFhi6zXMVC2xE3q9zDJGg4w7Zd74eVOql8zvk6C254eqXVpXiCrclZ7nydTQib1bNRPkOiV6WtoN-OVeBUQ3Bg82IPIvtZ61Y0RS-KDO--4-KvCYPTg6m6uvR8Zc98hAj3UfQ0AuyubhawktvDy30q9DmbwAblAOr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+multimodal+fusion+of+image+and+non-image+data+in+disease+diagnosis+and+prognosis%3A+a+review&rft.jtitle=Progress+in+biomedical+engineering+%28Bristol%29&rft.au=Cui%2C+Can&rft.au=Yang%2C+Haichun&rft.au=Wang%2C+Yaohong&rft.au=Zhao%2C+Shilin&rft.date=2023-04-01&rft.issn=2516-1091&rft.eissn=2516-1091&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1088%2F2516-1091%2Facc2fe&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-1091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-1091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-1091&client=summon |