Recall Network: A Simple Brain-Inspired Algorithm for Classification
The latest development of neuroscience has deepened the understanding of the information-processing mechanisms in the human brain and inspired a couple of sophisticated computational methods, such as deep learning, memory networks, and hierarchical temporal memory. However, it remains a challenge to...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 52 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
13.08.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/9374946 |
Cover
| Abstract | The latest development of neuroscience has deepened the understanding of the information-processing mechanisms in the human brain and inspired a couple of sophisticated computational methods, such as deep learning, memory networks, and hierarchical temporal memory. However, it remains a challenge to explore simpler models due to the high computational cost of the above-mentioned methods. This paper proposes recall network (RN), an intuitive and simple model, that initializes itself by constructing the network path derived from the correlation of features in the training dataset and then makes classification decisions by recalling the paths that are relevant to the features in the test set. The algorithm has been applied to 263 datasets available from UCI Machine Learning Repository, and the classification results of repeated 10-fold cross-validation experiments on Weka demonstrate its competitive performance with prestigious classification algorithms, such as ANN, J48, and KNN. |
|---|---|
| AbstractList | The latest development of neuroscience has deepened the understanding of the information-processing mechanisms in the human brain and inspired a couple of sophisticated computational methods, such as deep learning, memory networks, and hierarchical temporal memory. However, it remains a challenge to explore simpler models due to the high computational cost of the above-mentioned methods. This paper proposes recall network (RN), an intuitive and simple model, that initializes itself by constructing the network path derived from the correlation of features in the training dataset and then makes classification decisions by recalling the paths that are relevant to the features in the test set. The algorithm has been applied to 263 datasets available from UCI Machine Learning Repository, and the classification results of repeated 10-fold cross-validation experiments on Weka demonstrate its competitive performance with prestigious classification algorithms, such as ANN, J48, and KNN.The latest development of neuroscience has deepened the understanding of the information-processing mechanisms in the human brain and inspired a couple of sophisticated computational methods, such as deep learning, memory networks, and hierarchical temporal memory. However, it remains a challenge to explore simpler models due to the high computational cost of the above-mentioned methods. This paper proposes recall network (RN), an intuitive and simple model, that initializes itself by constructing the network path derived from the correlation of features in the training dataset and then makes classification decisions by recalling the paths that are relevant to the features in the test set. The algorithm has been applied to 263 datasets available from UCI Machine Learning Repository, and the classification results of repeated 10-fold cross-validation experiments on Weka demonstrate its competitive performance with prestigious classification algorithms, such as ANN, J48, and KNN. The latest development of neuroscience has deepened the understanding of the information-processing mechanisms in the human brain and inspired a couple of sophisticated computational methods, such as deep learning, memory networks, and hierarchical temporal memory. However, it remains a challenge to explore simpler models due to the high computational cost of the above-mentioned methods. This paper proposes recall network (RN), an intuitive and simple model, that initializes itself by constructing the network path derived from the correlation of features in the training dataset and then makes classification decisions by recalling the paths that are relevant to the features in the test set. The algorithm has been applied to 263 datasets available from UCI Machine Learning Repository, and the classification results of repeated 10-fold cross-validation experiments on Weka demonstrate its competitive performance with prestigious classification algorithms, such as ANN, J48, and KNN. |
| Audience | Academic |
| Author | Li, Ying Tian, Zhaoning Li, Zhenhua Li, Site |
| AuthorAffiliation | 2 Apple Incorporated Company, Cupertino, CA 95014, USA 1 School of Computer, China University of Geosciences (Wuhan), Wuhan 430074, China |
| AuthorAffiliation_xml | – name: 2 Apple Incorporated Company, Cupertino, CA 95014, USA – name: 1 School of Computer, China University of Geosciences (Wuhan), Wuhan 430074, China |
| Author_xml | – sequence: 1 givenname: Zhaoning surname: Tian fullname: Tian, Zhaoning organization: School of ComputerChina University of Geosciences (Wuhan)Wuhan 430074Chinacug.edu.cn – sequence: 2 givenname: Ying surname: Li fullname: Li, Ying organization: School of ComputerChina University of Geosciences (Wuhan)Wuhan 430074Chinacug.edu.cn – sequence: 3 givenname: Zhenhua orcidid: 0000-0003-1497-4407 surname: Li fullname: Li, Zhenhua organization: School of ComputerChina University of Geosciences (Wuhan)Wuhan 430074Chinacug.edu.cn – sequence: 4 givenname: Site surname: Li fullname: Li, Site organization: Apple Incorporated CompanyCupertinoCA 95014USA |
| BookMark | eNqFkV1rFDEUhoO02Hb1zh8w4I2g0-Y7Gy-Edf1ooSj4cR3STLKbmknGZMal_94Mu1jshV7lwHnynpMnZ-AopmgBeIbgOUKMXWCI8YUkgkrKH4FTxJeiZViQoz81ZyfgrJRbCJlgED8GJ4RJyTmDp-DdF2t0CM0nO-5S_vG6WTVffT8E27zN2sf2KpbBZ9s1q7BJ2Y_bvnEpN-ugS_HOGz36FJ-AY6dDsU8P5wJ8__D-2_qyvf788Wq9um4NRXBsKTeGd5gwyKExxjFDjCXELpfLjgtSO7wjWmAkkDGWcue0JJpb6G4clJySBWj3uVMc9N2u7q2G7Hud7xSCarahZhvqYKPyb_b8MN30tjM2jlnf30naq7870W_VJv2qARJzKGvAi0NATj8nW0bV-2JsCDraNBWFxawUQQEr-vwBepumHKuOmaKCSSHpPbXRwSofXapzzRyqVgJRJgmuX7cAr_aUyamUbN3_nvlyj2997PTO_5v-DdIYqJg |
| Cites_doi | 10.1109/CVPR.2017.195 10.1109/iccmc.2017.8282735 10.1109/TCYB.2021.3071110 10.1126/science.1127647 10.1109/iwcmc48107.2020.9148311 10.1561/2000000039 10.5755/j01.eie.25.1.22735 10.1016/j.physleta.2021.127800 10.3390/a14070201 10.5120/8626-2492 10.1016/j.tics.2007.09.004 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Zhaoning Tian et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Zhaoning Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Zhaoning Tian et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 Zhaoning Tian et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Zhaoning Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Zhaoning Tian et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/9374946 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Oliva, Diego |
| Editor_xml | – sequence: 1 givenname: Diego surname: Oliva fullname: Oliva, Diego |
| EndPage | 52 |
| ExternalDocumentID | 10.1155/2022/9374946 PMC9392609 A714593227 10_1155_2022_9374946 |
| GrantInformation_xml | – fundername: China University of Geosciences, Wuhan grantid: CUG090109 |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK COVID F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 2UF ADTOC C1A EJD IL9 UNPAY UZ4 |
| ID | FETCH-LOGICAL-c410t-46cc6d235060cccf5c3ce33e888d673d236d3a72171cce46ffa93a6e0fbf09643 |
| IEDL.DBID | UNPAY |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:17:12 EDT 2025 Tue Sep 30 17:00:42 EDT 2025 Thu Oct 02 05:44:11 EDT 2025 Tue Oct 07 06:24:05 EDT 2025 Mon Oct 20 22:49:18 EDT 2025 Wed Oct 01 02:22:27 EDT 2025 Sun Jun 02 18:52:08 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-46cc6d235060cccf5c3ce33e888d673d236d3a72171cce46ffa93a6e0fbf09643 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Diego Oliva |
| ORCID | 0000-0003-1497-4407 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2022/9374946.pdf |
| PMID | 35996650 |
| PQID | 2704759794 |
| PQPubID | 237303 |
| PageCount | 52 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_9374946 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9392609 proquest_miscellaneous_2705751070 proquest_journals_2704759794 gale_infotracmisc_A714593227 crossref_primary_10_1155_2022_9374946 hindawi_primary_10_1155_2022_9374946 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-13 |
| PublicationDateYYYYMMDD | 2022-08-13 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | S. Sukhbaatar (5) 2015 22 24 25 I. Witten (9) 2016 T. Mitchell (10) 1997 K. He (12) 2014 M. Othman (23) F. Chollet (11) J. Weston (4) 2015 X. Chen (7) 18 C. Szegedy (14) 2014 A. Vaswani (16) 2017 1 2 3 J. Hawkins (6) 2007 J. Weston (17) 2015 S. Ioffe (13) 2015 8 C. Szegedy (15) 2015 S. A. Kiranmai (19) 2018; 3 20 21 |
| References_xml | – year: 2015 ident: 5 article-title: End-to-end Memory Networks – volume-title: Data Mining: Practical Machine Learning Tools and Techniques, the Morgan Kaufmann Series in Data Management Systems year: 2016 ident: 9 – ident: 11 article-title: Xception: Deep Learning with Depthwise Separable Convolutions doi: 10.1109/CVPR.2017.195 – year: 2014 ident: 14 article-title: Going Deeper with Convolutions – year: 2015 ident: 4 article-title: Memory Networks – volume-title: On Intelligence: How a New Understanding of the Brain Will Lead to the Creation of Truly Intelligent Machines year: 2007 ident: 6 – volume-title: Rethinking the Inception Architecture for Computer Vision year: 2015 ident: 15 – year: 2017 ident: 16 article-title: Attention is all you need – ident: 20 doi: 10.1109/iccmc.2017.8282735 – start-page: 10 volume-title: Machine Learning year: 1997 ident: 10 – start-page: 520 ident: 23 article-title: Comparison of Different Classification Techniques Using Weka for Breast Cancer – ident: 8 doi: 10.1109/TCYB.2021.3071110 – ident: 1 doi: 10.1126/science.1127647 – year: 2015 ident: 17 article-title: Memory Networks – ident: 21 doi: 10.1109/iwcmc48107.2020.9148311 – start-page: 1004 ident: 7 article-title: An Overview of Hierarchical Temporal Memory: A New Neocortex Algorithm – year: 2014 ident: 12 article-title: Convolutional Neural Networks at Constrained Time Cost – ident: 3 doi: 10.1561/2000000039 – year: 2015 ident: 13 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – ident: 25 doi: 10.5755/j01.eie.25.1.22735 – ident: 24 doi: 10.1016/j.physleta.2021.127800 – ident: 22 doi: 10.3390/a14070201 – ident: 18 doi: 10.5120/8626-2492 – volume: 3 start-page: 1 issue: 1 year: 2018 ident: 19 article-title: Data Mining for Classification of Power Quality Problems Using Weka and the Effect of Attributes on Classification Accuracy publication-title: Protection and Control of Modern Power Systems – ident: 2 doi: 10.1016/j.tics.2007.09.004 |
| SSID | ssj0057502 |
| Score | 2.279349 |
| Snippet | The latest development of neuroscience has deepened the understanding of the information-processing mechanisms in the human brain and inspired a couple of... |
| SourceID | unpaywall pubmedcentral proquest gale crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis Brain Classification Computational neuroscience Computing costs Datasets Deep learning Humidity Information processing Machine learning Memory Nervous system Neural networks Neurosciences Rain Recall |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED50IPoi_sTqlAi6t2KbpOnqW_3FFPRBHeyttGniBrMT3Rj7773ruuEU1MeSNm3vksv3JZcvACcSyY3JA-tyrjkSFCXcZub7bpRpSRsdtbW0wfn-QbXa8q4TdCqRpI-fS_g42hE952c4ispIqmVYbirK3HpsdWYBFwHHNLVQYX8htfdZfvu3ZxdGnir-rnSJ-Y57C_jye3bk6qh4SyfjtN__MvTcbMB6hRlZPHXyJiyZYgu24wL58uuENViZxVlOj2_DFeJArII9TNO7z1nMnnqkAMwu6DAI97agpXWTs7j_MnjvDbuvDGErK8_GpKyh0lE70L65fr5sudVJCa6Wvjd0pdJa5VyQWqDW2gZaaCOEQXqbq1BgicpFimQv9LU2UlmbRiJVxrOZ9UiRaxdqxaAwe8CiTElPhkJifQi1ZJTZrCl9zklVRkS5A6czKyZvU0GMpCQSQZCQtZPK2g7UycQJ9RM0o8ZWq5M49GWAiJGHDpxUpv-rlplfkqpzfSQ89EilECOJA8fzYnoBJYwVZjAq76EVJQxoDoQL_py_j4S1F0uKXrcU2I4QNCovcqAx9_yvX7n_v585gDW6pBlpX9ShNnwfmUOENMPsqGzQn7FK61s priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED5BEYKXifFDhJXJSIy3iMR2HII0TelGVZBWTWxIvEWJY9NKJS3QCvHfc-cmHd0De7ZlW3fn83f2-TuAY4nBjSkj63OuOQYoSvhnRRj6SaElfXTU1tIH55991buRV7fR7Qr0m78wlFbZ-ETnqMuxpjvyUx4HRE2H5vNt8uBT1Sh6XW1KaOR1aYXyq6MYW4U1TsxYLVjrXPR_XTe-GbHJPAtR4dYiYvgmFT6K6BaAn-JhLRMCw28OqdpVrw8oSH4eLkHRfxMpN2bVJH95zkejN6dUdws-1PCSpXN7-AgrptqGnbTC0Pr-hZ0wl_DpbtJ34AdCRhyC9eeZ4OcsZb-HRBbMOlQ3wr-s6BXelCwd3aEkpoN7hgiXuTKalGDkdLoLN92LP997fl1UwdcyDKa-VFqrkgsiFtRa20gLbYQwGAmXKhbYokqRY1wYh1obqazNE5ErE9jCBkTetQetalyZfWBJoSQqRUgcD1GZTApbnMmQcyKgEUnpwZdGitlkzp2RuZgjijKSdlZL24M2iTijLYVi1GjgOkvjUEYILnnswXEt-v-N0uglq_fhU_bXajw4WjTTBJRbVpnxzPWhxyf0fR7ES_pczEcc3Mst1XDguLgTxJcqSDw4WWj-3VUevL_KT7BJvenSOhRtaE0fZ-YQUc-0-Fyb8itzcPwj priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4B08ReJjZAyyiTJzHeAontOBhpmrIfFUOCl60Sb1Hi2LRSm7LSivW_585NKorQxmPkxI7u_OP77PN3AAcSyY2tEhdybjgSFCXCkzKOQ10aSRcdjXN0wfniUp315PlVcrUGbbbRxoC3T1I7yifVmwyP_v6Zf8EB_9kP-CQh_s6PcZmVWqp1eIFrlKYkDhdyeZ6AmGQRfahwSJEgfBsC_-jrlcWpmaJf9okc3w1WIOjjAMrNWX1TzO-K4fDB6tTdgtcNrGTZoh-8gTVbv4XtrEZKPZqzQ-YDPf0O-jZ8R6iIVbDLRQT4KcvYrwGJBLOvlC8i_FnT6butWDa8Hk8G0_6IIbJlPn0mBRZ5X-5Ar_vj97ezsEmmEBoZR9NQKmNUxQUJChpjXGKEsUJYZMCVSgWWqEoUyAfT2BgrlXOFFoWykStdRKJdu7BRj2v7DpgulYxkKiTWh2hM6tKVJzLmnIRnhK4C-NRaMb9ZaGbknmskSU7WzhtrB9AhE-fkXDSjwY5t8iyNZYKgkqcBHDSm_18trV_ytvvkPI1IyBAnmwA-LoupAYopq-145t-hQyec8wJIV_y5bI-0t1dL6kHfa3BrxJUq0gEcLj3_z798_0yb7MEreqRd61h0YGM6mdl9hD3T8oPv0feilPlO priority: 102 providerName: Scholars Portal |
| Title | Recall Network: A Simple Brain-Inspired Algorithm for Classification |
| URI | https://dx.doi.org/10.1155/2022/9374946 https://www.proquest.com/docview/2704759794 https://www.proquest.com/docview/2705751070 https://pubmed.ncbi.nlm.nih.gov/PMC9392609 https://downloads.hindawi.com/journals/cin/2022/9374946.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aWiF44TYQGaMy0thbuiR2nAaeMlhXkFZNg0pBQooSx6bVurTaUk3j13NOmhSyB0C8WIls-XZ8-b7k-DPAvkByo3Pf2J6nPCQoktuDzHXtMFOCDjoqY-iA8-lYjibiU-zHW_CuOQuTk0T8Is2v-1PipDezarWu-_X6UCFbRLruHeKuKkIh-8vcbENX-gjEO9CdjM-ir0SxJE4dEn7_9Rzwxu3d91tZtDakelm-Vxfegp13nSbvr4plenuTzue_7UjDR_CtacvaEeWivyqzvvpxR-bxPxv7GB7WSJVF66H1BLZ08RR2ogJZ-uUtO2CV72j1UX4HPiD6xBqy8dqp_C2L2OcZ6Q6zI7qCwv5Y0A99nbNo_n1xNSunlwzBMqtu5CRfpWp4PIPJ8PjL-5Fd389gK-E6pS2kUjL3OGkUKqWMr7jSnGsk1bkMOMbInKdIMQNXKS2kMWnIU6kdkxmHdMCeQ6dYFPoFsDCTwhEBF5gfAjwRZiYbCNfzSMuGh7kFbxojJcu1DEdS0RffT6iLkrqLLNgjCyY0O9FKCueKSqLAFT7iVC-wYL_u6b_l0pg9aayReIFD2oi4flnwehNNBZCbWqEXqyoN_cfCZdSCoDVcNuWRnHc7pphNK1nvEKGqdEILDjYD64-13P3XhC_hAb3Sl3CX70GnvFrpVwilyqwH20EcYDgYnvSge3Q8PjvHt5PYxfBUDDA8H8W9emL9BFRWHb8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LctMwFL1T0mHKhldhcCkgZtrs3NqSLNfMsDANJaFtNrRDd64tyyTT1AnUmUz4KH6FX-JeP0LTRVl1wVqxZCtHV-dKR0cAWxKTG5N6mc255pigKGHvJa5rB4mWdNBRZxkdcD7uq-6p_Hzmna3Ar-YsDMkqm5hYBup0rGmNfJf7DlnTIXxqBeWhmc8wP7t63-vgn7nN-cHHk_2uXV8hYGvpOoUtldYq5YJs9LTWmaeFNkIYzPtS5QssUamIMQvyXa2NVFkWByJWxsmSzCGrKqy3Pflu0y1VtJtbX9lxD1YR5y5vwer-186nbhP7kftUKkeFQ5eM5xupvefRKgPfRTIgAyLb1ybBeiq4P6AkfDZcoro3hZpr03wSz2fxaHRtFjx4BL-b_qvELxc70yLZ0T9vWEv-Px38GB7WhJyF1Qh6AismfwrrYR4X48s5a7NSIlvuPaxDB0k2dgrrV9r5dyxkX4Zkr8w-0E0bdi8n3YJJWTj6hk0Vg0uGOQErLx4lSVY5Cp7B6Z184nNo5ePcvAAWJEpiLwuJ9SGPlUGSJXvS5Zwse0SQWrDd4CKaVG4jUZmleV5E-Ilq_FiwSaCJKAghMDSGBB2Fvis9pOPct2CrBtO_ammQENWR6yr6CwML3i6KqQFS4-VmPC1_Q9t1OFtY4C8hdNEeuZYvl-TDQeleHiAjV05gQXuB5VvfcuP2t3wDa92T46PoqNc_fAkP6Ela8nfFJrSKH1PzCjljkbyuByqD87tG8x9fWHeV |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0am2C88DUQgQFG2vaWNbEdp0FCKKyUlkGFBBN7C4njrBVdWliqqvw0_gp_hnvzUdY9jKc98OzWSZzj63Pj43MBdiQmNyb1MptzzTFBUcJuJ65rB4mWdNBRZxkdcP4wUL0j-e7YO16DX81ZGJJVNjGxDNTpRNM38hb3HbKmQ_i0sloW8bHTfTX9blMFKdppbcppVBA5NIs5pm9nL_sdfNe7nHfffD7o2XWFAVtL1ylsqbRWKRfksqe1zjwttBHCYFqYKl9gi0pFjEmS72ptpMqyOBCxMk6WZA45WWG_12CjrXyFQWHj4Evnba9ZB5AHVYpHhdOYTOgb2b3n0RcH3kJiIAMi3ucWxHpZuD6khHw-WqG9F0Wbm7N8Gi_m8Xh8bkXs3obfzVhWQphv-7Mi2dc_L9hM_p-DfQdu1USdhdXMugtrJr8HW2EeF5PTBdtjpXS23JPYgg6SbxwgNqg09S9YyD6NyHaZvaYKHHY_Jz2DSVk4PsFHK4anDHMFVhYkJalWOTvuw9GVPM8DWM8nuXkILEiUxBEXEvtDfiuDJEva0uWcrHxEkFqw22AkmlYuJFGZvXleRFiKaixZsE0Aiig4IUg0hgodhb4rPaTp3LdgpwbWv3ppUBHVEe0s-gsJC54vm-kCpNLLzWRW_oa28XAVscBfQevyeuRmvtqSj4alq3mATF05gQV7S1xfepePLr_LZ3ADIRu97w8OH8NN-iPtBLhiG9aLHzPzBKlkkTyt5yyDr1eN3D9Vk4Bd |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULaIvVq1itJURat-yTeaWRp_SaqmCi6ALFYSQzMVd3GaXNkupv95zsslq-qDiW8IMcztz-b6ZM98A7EkkN84qH3JuOBIULcLDMo7DtDSSLjoa7-mC84eRPh3L92fqbANed3dhLEnEzwt7OZwQJ72aNrN1266XBwbZItJ1foCrqkylHi6svwWbWiEQH8DmePQx-0IUS-PQIeH3X9-J6Nzeleol0VuQ2mn5dpt5D3bedJq8s6wWxfVVMZv9tiKdbMHXri4rR5Tvw2VdDs2PGzKP_1nZ-3CvRaosW3WtB7DhqoewnVXI0s-v2T5rfEebTflteIPoE0vIRiun8lcsY5-mpDvMjugJivBdRQf6zrJs9m1-Ma0n5wzBMmte5CRfpaZ7PILxydvPx6dh-z5DaGQc1aHUxmjLBWkUGmO8MsI4IRySaqsTgSHaigIpZhIb46T2vkhFoV3kSx-RDthjGFTzyj0BlpZaRjIREtNDgCfT0peHMuactGxEagN42RkpX6xkOPKGviiVUxPlbRMFsEMWzGl0opUMjhWTZ0ksFeJUngSw17b031LpzJ531sh5EpE2Is5fAbxYB1MG5KZWufmyiUPnWDiNBpD0uss6P5Lz7odU00kj650iVNVRGsD-umP9sZRP_zXiM7hLv7QTHosdGNQXS7eLUKoun7dD5idzVBd6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recall+Network%3A+A+Simple+Brain-Inspired+Algorithm+for+Classification&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Tian%2C+Zhaoning&rft.au=Li%2C+Ying&rft.au=Li%2C+Zhenhua&rft.au=Li%2C+Site&rft.date=2022-08-13&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft.spage=1&rft.epage=52&rft_id=info:doi/10.1155%2F2022%2F9374946&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2022_9374946 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |