CPPLS-MLP: a method for constructing cell–cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data
In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism’s internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression an...
Saved in:
Published in | Briefings in bioinformatics Vol. 25; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford Publishing Limited (England)
27.03.2024
Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbae198 |
Cover
Abstract | In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism’s internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression and cell functionality. Currently, the mainstream methods for studying intercellular communication are focused on exploring the ligand–receptor–transcription factor and ligand–receptor–subunit scales. However, there is relatively limited research on the association between intercellular communication and highly variable genes (HVGs). As some HVGs are closely related to cell communication, accurately identifying these HVGs can enhance the accuracy of constructing cell communication networks. The rapid development of single-cell sequencing (scRNA-seq) and spatial transcriptomics technologies provides a data foundation for exploring the relationship between intercellular communication and HVGs. Therefore, we propose CPPLS-MLP, which can identify HVGs closely related to intercellular communication and further analyze the impact of Multiple Input Multiple Output cellular communication on the differential expression of these HVGs. By comparing with the commonly used method CCPLS for constructing intercellular communication networks, we validated the superior performance of our method in identifying cell-type-specific HVGs and effectively analyzing the influence of neighboring cell types on HVG expression regulation. Source codes for the CPPLS_MLP R, python packages and the related scripts are available at ‘CPPLS_MLP Github [https://github.com/wuzhenao/CPPLS-MLP]’. |
---|---|
AbstractList | In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism's internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression and cell functionality. Currently, the mainstream methods for studying intercellular communication are focused on exploring the ligand-receptor-transcription factor and ligand-receptor-subunit scales. However, there is relatively limited research on the association between intercellular communication and highly variable genes (HVGs). As some HVGs are closely related to cell communication, accurately identifying these HVGs can enhance the accuracy of constructing cell communication networks. The rapid development of single-cell sequencing (scRNA-seq) and spatial transcriptomics technologies provides a data foundation for exploring the relationship between intercellular communication and HVGs. Therefore, we propose CPPLS-MLP, which can identify HVGs closely related to intercellular communication and further analyze the impact of Multiple Input Multiple Output cellular communication on the differential expression of these HVGs. By comparing with the commonly used method CCPLS for constructing intercellular communication networks, we validated the superior performance of our method in identifying cell-type-specific HVGs and effectively analyzing the influence of neighboring cell types on HVG expression regulation. Source codes for the CPPLS_MLP R, python packages and the related scripts are available at 'CPPLS_MLP Github [https://github.com/wuzhenao/CPPLS-MLP]'.In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism's internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression and cell functionality. Currently, the mainstream methods for studying intercellular communication are focused on exploring the ligand-receptor-transcription factor and ligand-receptor-subunit scales. However, there is relatively limited research on the association between intercellular communication and highly variable genes (HVGs). As some HVGs are closely related to cell communication, accurately identifying these HVGs can enhance the accuracy of constructing cell communication networks. The rapid development of single-cell sequencing (scRNA-seq) and spatial transcriptomics technologies provides a data foundation for exploring the relationship between intercellular communication and HVGs. Therefore, we propose CPPLS-MLP, which can identify HVGs closely related to intercellular communication and further analyze the impact of Multiple Input Multiple Output cellular communication on the differential expression of these HVGs. By comparing with the commonly used method CCPLS for constructing intercellular communication networks, we validated the superior performance of our method in identifying cell-type-specific HVGs and effectively analyzing the influence of neighboring cell types on HVG expression regulation. Source codes for the CPPLS_MLP R, python packages and the related scripts are available at 'CPPLS_MLP Github [https://github.com/wuzhenao/CPPLS-MLP]'. In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism’s internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression and cell functionality. Currently, the mainstream methods for studying intercellular communication are focused on exploring the ligand–receptor–transcription factor and ligand–receptor–subunit scales. However, there is relatively limited research on the association between intercellular communication and highly variable genes (HVGs). As some HVGs are closely related to cell communication, accurately identifying these HVGs can enhance the accuracy of constructing cell communication networks. The rapid development of single-cell sequencing (scRNA-seq) and spatial transcriptomics technologies provides a data foundation for exploring the relationship between intercellular communication and HVGs. Therefore, we propose CPPLS-MLP, which can identify HVGs closely related to intercellular communication and further analyze the impact of Multiple Input Multiple Output cellular communication on the differential expression of these HVGs. By comparing with the commonly used method CCPLS for constructing intercellular communication networks, we validated the superior performance of our method in identifying cell-type-specific HVGs and effectively analyzing the influence of neighboring cell types on HVG expression regulation. Source codes for the CPPLS_MLP R, python packages and the related scripts are available at ‘CPPLS_MLP Github [https://github.com/wuzhenao/CPPLS-MLP]’. |
Author | Wu, Zhenao Wang, Guohua Ren, Jixiang Li, Liangyu Zhang, Ziheng Zhang, Tianjiao |
Author_xml | – sequence: 1 givenname: Tianjiao orcidid: 0000-0001-9807-8620 surname: Zhang fullname: Zhang, Tianjiao – sequence: 2 givenname: Zhenao orcidid: 0009-0007-3774-8660 surname: Wu fullname: Wu, Zhenao – sequence: 3 givenname: Liangyu orcidid: 0009-0004-0594-5625 surname: Li fullname: Li, Liangyu – sequence: 4 givenname: Jixiang orcidid: 0009-0008-3584-6125 surname: Ren fullname: Ren, Jixiang – sequence: 5 givenname: Ziheng orcidid: 0009-0006-0887-9795 surname: Zhang fullname: Zhang, Ziheng – sequence: 6 givenname: Guohua surname: Wang fullname: Wang, Guohua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38678387$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks2KFDEUhQsZcWZaV-4l4EbQcpKupFLtRqTxD1psUNfhVpLqzphKapLUDL3zHXwXH8gnMTXd_g2CqwTud07uPbmnxZHzThfFfYKfEryozlrTnrUtaLJobhUnhHJeUszo0XSvecloXR0XpzGeYzzHvCF3iuOqqXlTNfyk-LZcr1cfyner9TMEqNdp6xXqfEDSu5jCKJNxGyS1td-_fJ2OXOj70RkJyXiHnE5XPnyOCJxCRmmXTLebJEFbSFqhrdls7Q5dQjDQWo022umIWoi5lvUxs1aX185RX4zayUk9ucUhPwEWpQAuymCG5HsjI1KQ4G5xuwMb9b3DOSs-vXr5cfmmXL1__Xb5YlVKSnAq5x0DTDSrZQeyYnPKcMswr7VqKK8ZhpyI6lqqaMNJXbfAJczZQulGLhTuZDUrnux9RzfA7gqsFUMwPYSdIFhM8YscvzjEn_Hne3wY214rmeMI8FviwYi_K85sxcZfCkIwqzFh2eHRwSH4nEZMojdxSgec9mMUFaYNXXBMaUYf3kDP_RhcjkNUc1KxpuL562fFgz9b-tXLzxXIwOM9IIOPMejuPxOSG7Q06XoV8jzG_lPzA2lu2rg |
CitedBy_id | crossref_primary_10_1093_bib_bbae669 crossref_primary_10_1093_bib_bbaf071 crossref_primary_10_1186_s13048_025_01592_8 crossref_primary_10_1093_bib_bbae716 crossref_primary_10_1093_bib_bbae619 |
Cites_doi | 10.1002/wics.51 10.1093/bioinformatics/btaa482 10.1038/s41467-020-18873-z 10.1038/s42003-021-02986-2 10.1093/bib/bbad316 10.1038/s41467-022-30633-9 10.1016/j.cell.2019.05.031 10.1126/science.1222161 10.1016/j.molcel.2019.12.012 10.1093/nar/gkab638 10.1093/bioinformatics/btab370 10.1523/JNEUROSCI.1325-14.2014 10.1371/journal.pone.0072780 10.1038/nrm3044 10.1111/j.2517-6161.1995.tb02031.x 10.1007/s13238-020-00727-5 10.1093/bib/bbaa414 10.1186/1471-2105-15-51 10.1038/nri.2017.108 10.3390/cells9010014 10.1136/annrheumdis-2014-206965 10.1038/s41467-021-21246-9 10.1093/bib/bbac234 10.1038/s41467-023-39717-6 10.1038/s41576-020-00292-x 10.1093/bioinformatics/btad375 10.1007/978-3-319-60801-3_27 10.1016/j.chemolab.2017.09.015 10.1146/annurev-immunol-100219-020937 10.1186/s13059-021-02286-2 10.1186/s13059-019-1874-1 10.1038/s41577-021-00540-z 10.1093/bioinformatics/btac599 10.1038/s41580-023-00615-w 10.1093/nar/gkaa183 10.1186/s41232-021-00170-x 10.1016/j.neuron.2015.11.002 10.1038/s41592-019-0667-5 10.1007/s00424-019-02337-5 10.1038/s41596-020-0292-x 10.1038/nbt.4314 10.1093/bib/bbaa283 10.1002/cmdc.202000160 10.1126/science.1116598 10.3390/cancers15072057 10.1093/bioinformatics/bty1044 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. The Author(s) 2024. Published by Oxford University Press. 2024 |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. – notice: The Author(s) 2024. Published by Oxford University Press. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM ADTOC UNPAY |
DOI | 10.1093/bib/bbae198 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 10.1093/bib/bbae198 PMC11056015 38678387 10_1093_bib_bbae198 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation for Distinguished Young Scholars of China grantid: 62225109 – fundername: National Natural Science Foundation of China grantid: 62172087 – fundername: National Key Research and Development Program of China grantid: 2022YFF1202100 – fundername: ; grantid: 2022YFF1202100 – fundername: ; grantid: 62225109 – fundername: ; grantid: 62172087; 62072095 |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 36B 4.4 48X 53G 5GY 5VS 6J9 70D 77I 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF M49 NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM 1TH 2WC AAGQS AAJQQ AAUQX ADTOC C1A CAG COF DIK EJD GX1 KBUDW NU- O0~ UNPAY W8F |
ID | FETCH-LOGICAL-c410t-2f5a01e56cfac352450b5076ed847650a020dfb4d487166ba7ca259de8c9d0fc3 |
IEDL.DBID | UNPAY |
ISSN | 1467-5463 1477-4054 |
IngestDate | Sun Sep 07 11:25:05 EDT 2025 Tue Sep 30 17:09:14 EDT 2025 Fri Sep 05 11:43:36 EDT 2025 Fri Jul 25 09:41:46 EDT 2025 Wed Feb 19 02:03:55 EST 2025 Wed Oct 01 03:39:10 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | scRNA-seq highly variable genes ST-seq cell communication |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c410t-2f5a01e56cfac352450b5076ed847650a020dfb4d487166ba7ca259de8c9d0fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0004-0594-5625 0009-0008-3584-6125 0000-0001-9807-8620 0009-0007-3774-8660 0009-0006-0887-9795 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bib/bbae198 |
PMID | 38678387 |
PQID | 3213583746 |
PQPubID | 26846 |
ParticipantIDs | unpaywall_primary_10_1093_bib_bbae198 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11056015 proquest_miscellaneous_3048497044 proquest_journals_3213583746 pubmed_primary_38678387 crossref_primary_10_1093_bib_bbae198 crossref_citationtrail_10_1093_bib_bbae198 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Mar-27 |
PublicationDateYYYYMMDD | 2024-03-27 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-Mar-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2024 |
Publisher | Oxford Publishing Limited (England) Oxford University Press |
Publisher_xml | – name: Oxford Publishing Limited (England) – name: Oxford University Press |
References | Armingol (2024042808492200400_ref20) 2021; 22 Zhang (2024042808492200400_ref44) 2023; 24 Peng (2024042808492200400_ref15) 2022; 23 Snijder (2024042808492200400_ref6) 2011; 12 Hou (2024042808492200400_ref21) 2020; 11 Lendahl (2024042808492200400_ref46) 2022; 13 Yuan (2024042808492200400_ref38) 2019; 2 Tolstikhin (2024042808492200400_ref30) 2021; 34 Andrews (2024042808492200400_ref42) 2019; 35 Benjamini (2024042808492200400_ref37) 1995; 57 Yamamoto (2024042808492200400_ref36) 2014; 15 Song (2024042808492200400_ref39) 2021; 22 Behnisch-Cornwell (2024042808492200400_ref48) 2020; 15 Jung (2024042808492200400_ref13) 2021; 22 Akimoto (2024042808492200400_ref23) 2013; 8 Browaeys (2024042808492200400_ref7) 2020; 17 Zhang (2024042808492200400_ref9) 2021; 49 Li (2024042808492200400_ref28) 2017; 171 Solovey (2024042808492200400_ref18) 2020; 36 Interlandi (2024042808492200400_ref10) 2022; 5 Sharpe (2024042808492200400_ref5) 2018; 18 Tsuchiya (2024042808492200400_ref26) 2022; 38 Raskov (2024042808492200400_ref16) 2023; 15 Hu (2024042808492200400_ref8) 2021; 7 Efremova (2024042808492200400_ref12) 2020; 15 Nagasawa (2024042808492200400_ref34) 2021; 41 Hafemeister (2024042808492200400_ref31) 2019; 20 Kim (2024042808492200400_ref50) 2014; 34 Shimizu (2024042808492200400_ref3) 2020; 77 Bengio (2024042808492200400_ref35) Fang (2024042808492200400_ref40) 2023; 14 Jin (2024042808492200400_ref14) 2021; 12 Zhang (2024042808492200400_ref43) 2023; 39 Dries (2024042808492200400_ref25) 2021; 22 Störch (2024042808492200400_ref45) 2016; 75 Savage (2024042808492200400_ref17) 2020; 38 Davidson (2024042808492200400_ref47) 2021; 21 Nagai (2024042808492200400_ref22) 2021; 37 Becht (2024042808492200400_ref41) 2019; 37 Kim (2024042808492200400_ref49) 2015; 88 Janes (2024042808492200400_ref24) 2005; 310 Shao (2024042808492200400_ref1) 2020; 11 Encina-Zelada (2024042808492200400_ref27) 2017; 79 Cabello-Aguilar (2024042808492200400_ref11) 2020; 48 Taud (2024042808492200400_ref29) 2018 Abdi (2024042808492200400_ref33) 2010; 2 Pelkmans (2024042808492200400_ref4) 2012; 336 Baysoy (2024042808492200400_ref2) 2023; 24 Stuart (2024042808492200400_ref32) 2019; 177 Osorio (2024042808492200400_ref19) 2020; 9 Xu (2024042808492200400_ref51) 2020; 472 |
References_xml | – volume: 2 start-page: 97 year: 2010 ident: 2024042808492200400_ref33 article-title: Partial least squares regression and projection on latent structure regression (PLS regression) publication-title: Wiley Interdiscip Rev Comput Stat doi: 10.1002/wics.51 – volume: 36 start-page: 4296 year: 2020 ident: 2024042808492200400_ref18 article-title: COMUNET: a tool to explore and visualize intercellular communication publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa482 – volume: 11 start-page: 5011 year: 2020 ident: 2024042808492200400_ref21 article-title: Predicting cell-to-cell communication networks using NATMI publication-title: Nat Commun doi: 10.1038/s41467-020-18873-z – volume: 5 start-page: 21 year: 2022 ident: 2024042808492200400_ref10 article-title: InterCellar enables interactive analysis and exploration of cell− cell communication in single-cell transcriptomic data publication-title: Communications biology doi: 10.1038/s42003-021-02986-2 – volume: 24 start-page: bbad316 year: 2023 ident: 2024042808492200400_ref44 article-title: DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome publication-title: Brief Bioinform doi: 10.1093/bib/bbad316 – volume: 13 start-page: 3409 year: 2022 ident: 2024042808492200400_ref46 article-title: Identification, discrimination and heterogeneity of fibroblasts publication-title: Nat Commun doi: 10.1038/s41467-022-30633-9 – volume: 177 start-page: 1888 year: 2019 ident: 2024042808492200400_ref32 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 336 start-page: 425 year: 2012 ident: 2024042808492200400_ref4 article-title: Using cell-to-cell variability—a new era in molecular biology publication-title: Science doi: 10.1126/science.1222161 – volume: 77 start-page: 937 year: 2020 ident: 2024042808492200400_ref3 article-title: PD-1 imposes qualitative control of cellular transcriptomes in response to T cell activation publication-title: Mol Cell doi: 10.1016/j.molcel.2019.12.012 – volume: 34 start-page: 24261 year: 2021 ident: 2024042808492200400_ref30 article-title: Mlp-mixer: an all-mlp architecture for vision publication-title: Adv Neural Inf Process Syst – volume: 49 start-page: 8520 year: 2021 ident: 2024042808492200400_ref9 article-title: CellCall: integrating paired ligand–receptor and transcription factor activities for cell–cell communication publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab638 – volume-title: J Mach Learn Res ident: 2024042808492200400_ref35 – volume: 37 start-page: 4263 year: 2021 ident: 2024042808492200400_ref22 article-title: CrossTalkeR: analysis and visualization of ligand–receptor networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab370 – volume: 34 start-page: 9656 year: 2014 ident: 2024042808492200400_ref50 article-title: Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1325-14.2014 – volume: 8 start-page: e72780 year: 2013 ident: 2024042808492200400_ref23 article-title: The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression publication-title: PLoS One doi: 10.1371/journal.pone.0072780 – volume: 12 start-page: 119 year: 2011 ident: 2024042808492200400_ref6 article-title: Origins of regulated cell-to-cell variability publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3044 – volume: 57 start-page: 289 year: 1995 ident: 2024042808492200400_ref37 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 11 start-page: 866 year: 2020 ident: 2024042808492200400_ref1 article-title: New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data publication-title: Protein Cell doi: 10.1007/s13238-020-00727-5 – volume: 22 start-page: bbaa414 year: 2021 ident: 2024042808492200400_ref39 article-title: DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence publication-title: Brief Bioinform doi: 10.1093/bib/bbaa414 – volume: 15 start-page: 1 year: 2014 ident: 2024042808492200400_ref36 article-title: Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-51 – volume: 18 start-page: 153 year: 2018 ident: 2024042808492200400_ref5 article-title: The diverse functions of the PD1 inhibitory pathway publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.108 – volume: 9 start-page: 14 year: 2020 ident: 2024042808492200400_ref19 article-title: Single-cell expression variability implies cell function publication-title: Cells doi: 10.3390/cells9010014 – volume: 75 start-page: 924 year: 2016 ident: 2024042808492200400_ref45 article-title: Activated human B cells induce inflammatory fibroblasts with cartilage-destructive properties and become functionally suppressed in return publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2014-206965 – volume: 12 start-page: 1088 year: 2021 ident: 2024042808492200400_ref14 article-title: Inference and analysis of cell-cell communication using CellChat publication-title: Nat Commun doi: 10.1038/s41467-021-21246-9 – volume: 23 start-page: bbac234 year: 2022 ident: 2024042808492200400_ref15 article-title: Cell–cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies publication-title: Brief Bioinform doi: 10.1093/bib/bbac234 – volume: 14 start-page: 4003 year: 2023 ident: 2024042808492200400_ref40 article-title: Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma publication-title: Nat Commun doi: 10.1038/s41467-023-39717-6 – volume: 22 start-page: 71 year: 2021 ident: 2024042808492200400_ref20 article-title: Deciphering cell–cell interactions and communication from gene expression publication-title: Nat Rev Genet doi: 10.1038/s41576-020-00292-x – volume: 39 start-page: btad375 year: 2023 ident: 2024042808492200400_ref43 article-title: DeepITEH: a deep learning framework for identifying tissue-specific eRNAs from the human genome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btad375 – start-page: 451 volume-title: Geomatic Approaches for Modeling Land Change Scenarios year: 2018 ident: 2024042808492200400_ref29 doi: 10.1007/978-3-319-60801-3_27 – volume: 171 start-page: 40 year: 2017 ident: 2024042808492200400_ref28 article-title: Concurrent probabilistic PLS regression model and its applications in process monitoring publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2017.09.015 – volume: 38 start-page: 421 year: 2020 ident: 2024042808492200400_ref17 article-title: Regulatory T cell development publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-100219-020937 – volume: 22 start-page: 1 year: 2021 ident: 2024042808492200400_ref25 article-title: Giotto: a toolbox for integrative analysis and visualization of spatial expression data publication-title: Genome Biol doi: 10.1186/s13059-021-02286-2 – volume: 20 start-page: 296 year: 2019 ident: 2024042808492200400_ref31 article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression publication-title: Genome Biol doi: 10.1186/s13059-019-1874-1 – volume: 21 start-page: 704 year: 2021 ident: 2024042808492200400_ref47 article-title: Fibroblasts as immune regulators in infection, inflammation and cancer publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00540-z – volume: 38 start-page: 4868 year: 2022 ident: 2024042808492200400_ref26 article-title: CCPLS reveals cell-type-specific spatial dependence of transcriptomes in single cells publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac599 – volume: 24 start-page: 695 year: 2023 ident: 2024042808492200400_ref2 article-title: The technological landscape and applications of single-cell multi-omics publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-023-00615-w – volume: 48 start-page: e55 year: 2020 ident: 2024042808492200400_ref11 article-title: SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa183 – volume: 2 start-page: 226 year: 2019 ident: 2024042808492200400_ref38 article-title: Research on K-value selection method of K-means clustering algorithm publication-title: J – volume: 41 start-page: 1 year: 2021 ident: 2024042808492200400_ref34 article-title: Single-cell and spatial analyses of cancer cells: toward elucidating the molecular mechanisms of clonal evolution and drug resistance acquisition publication-title: Inflamm Regen doi: 10.1186/s41232-021-00170-x – volume: 88 start-page: 1253 year: 2015 ident: 2024042808492200400_ref49 article-title: Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function publication-title: Neuron doi: 10.1016/j.neuron.2015.11.002 – volume: 17 start-page: 159 year: 2020 ident: 2024042808492200400_ref7 article-title: NicheNet: modeling intercellular communication by linking ligands to target genes publication-title: Nat Methods doi: 10.1038/s41592-019-0667-5 – volume: 472 start-page: 117 year: 2020 ident: 2024042808492200400_ref51 article-title: Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan publication-title: Pflugers Arch doi: 10.1007/s00424-019-02337-5 – volume: 15 start-page: 1484 year: 2020 ident: 2024042808492200400_ref12 article-title: CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes publication-title: Nat Protoc doi: 10.1038/s41596-020-0292-x – volume: 37 start-page: 38 year: 2019 ident: 2024042808492200400_ref41 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat Biotechnol doi: 10.1038/nbt.4314 – volume: 22 start-page: bbaa283 year: 2021 ident: 2024042808492200400_ref13 article-title: FunRes: resolving tissue-specific functional cell states based on a cell–cell communication network model publication-title: Brief Bioinform doi: 10.1093/bib/bbaa283 – volume: 79 start-page: 126 year: 2017 ident: 2024042808492200400_ref27 article-title: Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by near-infrared transmission spectroscopy, LWT-food publication-title: Sci Technol – volume: 7 start-page: eabf1356 year: 2021 ident: 2024042808492200400_ref8 article-title: CytoTalk: De novo construction of signal transduction networks using single-cell transcriptomic data, science publication-title: Advances – volume: 15 start-page: 1515 year: 2020 ident: 2024042808492200400_ref48 article-title: Pentathiepins: a novel class of glutathione peroxidase 1 inhibitors that induce oxidative stress, loss of mitochondrial membrane potential and apoptosis in human cancer cells publication-title: ChemMedChem doi: 10.1002/cmdc.202000160 – volume: 310 start-page: 1646 year: 2005 ident: 2024042808492200400_ref24 article-title: A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis publication-title: Science doi: 10.1126/science.1116598 – volume: 15 start-page: 2057 year: 2023 ident: 2024042808492200400_ref16 article-title: The matrix reloaded—the role of the extracellular matrix in cancer publication-title: Cancer doi: 10.3390/cancers15072057 – volume: 35 start-page: 2865 year: 2019 ident: 2024042808492200400_ref42 article-title: M3Drop: dropout-based feature selection for scRNASeq publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1044 |
SSID | ssj0020781 |
Score | 2.4209387 |
Snippet | In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism’s internal environment,... In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism's internal environment,... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Algorithms Animals Cell Communication Cell interactions Cellular communication Communication Communication networks Communications networks Computational Biology - methods Gene expression Gene Expression Profiling - methods Gene Regulatory Networks Genes Genetic diversity Humans Immune system Impact analysis Ligands Problem Solving Protocol Receptors Single-Cell Analysis - methods Software Spatial data Transcriptome Transcriptomics |
Title | CPPLS-MLP: a method for constructing cell–cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38678387 https://www.proquest.com/docview/3213583746 https://www.proquest.com/docview/3048497044 https://pubmed.ncbi.nlm.nih.gov/PMC11056015 https://doi.org/10.1093/bib/bbae198 |
UnpaywallVersion | publishedVersion |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1477-4054 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: ABDBF dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Business Source Ultimate customDbUrl: eissn: 1477-4054 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: AKVCP dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: OVEED dateStart: 20080101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbhMxEB6VVIhe-KddKJUR5YLkdn-8XodbVagq1JZINFI4rWyvt0RdbSolAYUT79B36QPxJMzsn5oWAZckksdebzz2fGPPNwbY9sMscKFzHM235cLIgKvcBjxHV8PGzjdCEhv5-EQeDsXHUTxagdctF2bp_L4f7Zqx2TVGO_SN78CqpFOkHqwOTwZ7X2reUMIpoXv1O0nQG4pFw8K7UXvZ7twCk7djIu_Nywu9-K6L4prBOXgA79uu1nEm5zvzmdmxP25kcfzHuzyE-w3gZHu1hjyCFVc-hrv1FZSLJ3C1PxgcfebHR4N3TLP6PmmGQJbZSZtbtjxjtL3_6-clfWHBNUoJK-sw8inTZcbGFeu3Yk6xiiTjMkb5kIsF-4Y-ObG02BktroyMZ8awPm1VFI5XLTdh3VSbWptSsDd2fUbmtFrciEE9ZRTU-hSGBx9O9w95c5cDtyLwZzzMY-0HLpY21xZBn4h9g1BUugzNI6JEjbA1y43IBHlw0ujEavTMMqdsP_NzGz2DXjkp3QYwqUSEsMpYqRKhVd632mmnTJIr4ZyIPHjbjnRqm0TndN9GkdYH7lGKA5E2A-HBdid8Uef3-LPYZqsyaTPJp2kUBlGMDr6QHrzqinF60n-mSzeZowyukKKf-EJ4sF5rWPecSCFSiFTigVrSvU6AUn8vl5Tjr1UKcARt5ErHHrzp1PRv_X_-n3IvYC1E1EZBdmGyCT3UM_cSUdfMbFW7Ffh5-mm01czA35NyNM0 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwEB2VrRC8cC8NFGREeUFym4vjeHmrClWF2molWKk8Rb6lrIiylXa3aHniH_gXPogvYSY3dVsEPCWSx4kTjz1n7DljgO0wdpGPvedovi0XRkZcFTbiBboaNvWhEZLYyMcn8nAs3p-mp2vwsuPCrOzfD5NdMzG7xmiPvvENWJe0izSA9fHJaO9TwxvKOCV0r--zDL2hVLQsvCu1V-3ONTB5PSby1qI618uvuiwvGZyDu_C2a2oTZ_JlZzE3O_bblSyO__iWe3CnBZxsr9GQ-7DmqwdwszmCcvkQfu6PRkcf-PHR6A3TrDlPmiGQZXba5Zatzhgt7__6_oMuWHCJUsKqJox8xnTl2KRm_dbMKVaTZLxjlA-5XLIL9MmJpcXOaHJlZDwdw_q0VFF6Xj-5Deum2vS0GQV7Y9PnZE7ryY0Y1DNGQa2PYHzw7uP-IW_PcuBWROGcx0Wqw8in0hbaIugTaWgQikrv0DwiStQIW11hhBPkwUmjM6vRM3Ne2aELC5tswKCaVn4TmFQiQVhlrFSZ0KoYWu21VyYrlPBeJAG87no6t22iczpvo8ybDfckx47I244IYLsXPm_ye_xZbKtTmbwd5LM8iaMkRQdfyABe9MU4POmf6cpPFyiDM6QYZqEQATxuNKx_T6IQKSQqC0Ct6F4vQKm_V0uqyec6BTiCNnKl0wBe9Wr6t_Y_-U-5p3A7RtRGQXZxtgUD1DP_DFHX3DxvR91vK2EyvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CPPLS-MLP%3A+a+method+for+constructing+cell-cell+communication+networks+and+identifying+related+highly+variable+genes+based+on+single-cell+sequencing+and+spatial+transcriptomics+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Zhang%2C+Tianjiao&rft.au=Wu%2C+Zhenao&rft.au=Li%2C+Liangyu&rft.au=Ren%2C+Jixiang&rft.date=2024-03-27&rft.eissn=1477-4054&rft.volume=25&rft.issue=3&rft_id=info:doi/10.1093%2Fbib%2Fbbae198&rft_id=info%3Apmid%2F38678387&rft.externalDocID=38678387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |