SS-EMERGE - self-supervised enhancement for multidimension emotion recognition using GNNs for EEG
Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore,...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 14254 - 13 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
24.04.2025
Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-025-98623-7 |
Cover
| Abstract | Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data. |
|---|---|
| AbstractList | Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data. Abstract Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data. Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data.Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data. |
| ArticleNumber | 14254 |
| Author | Sethia, Divyashikha Ahuja, Chirag |
| Author_xml | – sequence: 1 givenname: Chirag surname: Ahuja fullname: Ahuja, Chirag email: cahuja1992@gmail.com organization: Department of Computer Science Engineering, Delhi Technological University, Department of Software Engineering, Delhi Technological University – sequence: 2 givenname: Divyashikha surname: Sethia fullname: Sethia, Divyashikha organization: Department of Software Engineering, Delhi Technological University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40274925$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUUtv1DAQtlARLaV_gAPKkYvBryTOEVVhqVSKROFs2c548SqxFzsp6r_Hu1kqToi5zNj6HqNvXqKzEAMg9JqSd5Rw-T4LWncSE1bjTjaM4_YZumBE1Jhxxs7-ms_RVc47UqpmnaDdC3QuCGtFx-oLpO_vcf-5_7rpK1xlGB3Oyx7Sg88wVBB-6GBhgjBXLqZqWsbZD768s4-hginOh57Axm3wx3nJPmyrzd1dPjL6fvMKPXd6zHB16pfo-8f-2_UnfPtlc3P94RZbQcmMmeCydpZprYfOcmga09TAB-paaawYtG45l7Y1RgwNmNaBA0Jazog2llHDL9HNqjtEvVP75CedHlXUXh0_YtoqnWZvR1C1ZLyTgzVSOyEaboylXbFkEoqnE0WLr1pL2OvHX3ocnwQpUYf81Zq_KvmrY_6qLay3K2uf4s8F8qwmny2Mow4Ql6w47URTM9ocDN6coIuZYHhS_3OYAmArwKaYcwL3fwuc1s4FHLaQ1C4uKZTU_8X6DR4-sFc |
| Cites_doi | 10.1109/SMC42975.2020.9283028 10.1109/TAFFC.2017.2714671 10.1109/TNNLS.2022.3190448 10.1145/3503161.3548243 10.1109/TCYB.2018.2797176 10.1007/978-3-030-58621-8_45 10.1038/nature14539 10.1002/hbm.23730 10.1109/CVPR.2006.100 10.1109/TCDS.2016.2587290 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-025-98623-7 |
| DatabaseName | Springer Nature Open Access Journals (NTUSG) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_582398dcb8af4463bbc193e628e65ef4 10.1038/s41598-025-98623-7 40274925 10_1038_s41598_025_98623_7 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7X8 ADTOC EJD IPNFZ M48 RIG UNPAY |
| ID | FETCH-LOGICAL-c410t-24385fc2aaad9c3e66b65e3d1f78bc4daa7338c7bb4d6eb7fefe007320abc21b3 |
| IEDL.DBID | DOA |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:44:49 EDT 2025 Sun Oct 26 04:07:57 EDT 2025 Fri Sep 05 17:25:27 EDT 2025 Mon Jul 21 05:45:18 EDT 2025 Wed Oct 01 06:27:53 EDT 2025 Fri Apr 25 03:10:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Constrastive Learning Cross-Subject Emotion Recognition Self-Supervised Learning EEG GNN |
| Language | English |
| License | 2025. The Author(s). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-24385fc2aaad9c3e66b65e3d1f78bc4daa7338c7bb4d6eb7fefe007320abc21b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/582398dcb8af4463bbc193e628e65ef4 |
| PMID | 40274925 |
| PQID | 3194652164 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_582398dcb8af4463bbc193e628e65ef4 unpaywall_primary_10_1038_s41598_025_98623_7 proquest_miscellaneous_3194652164 pubmed_primary_40274925 crossref_primary_10_1038_s41598_025_98623_7 springer_journals_10_1038_s41598_025_98623_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-24 |
| PublicationDateYYYYMMDD | 2025-04-24 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
| References | Yann LeCun (98623_CR1) 2015; 521 98623_CR2 98623_CR3 98623_CR4 98623_CR5 98623_CR16 98623_CR38 98623_CR15 98623_CR37 98623_CR14 98623_CR36 98623_CR13 98623_CR35 98623_CR19 98623_CR18 98623_CR17 Wei-Long Zheng (98623_CR12) 2017; 9 98623_CR30 98623_CR34 98623_CR11 98623_CR33 98623_CR10 98623_CR32 98623_CR31 Wei-Long Zheng (98623_CR22) 2018; 49 Wei-Long Zheng (98623_CR9) 2018; 49 98623_CR27 98623_CR26 98623_CR25 98623_CR24 98623_CR29 98623_CR28 98623_CR6 98623_CR23 98623_CR7 98623_CR8 98623_CR21 98623_CR20 |
| References_xml | – ident: 98623_CR25 doi: 10.1109/SMC42975.2020.9283028 – ident: 98623_CR23 – ident: 98623_CR5 – ident: 98623_CR27 – ident: 98623_CR19 – ident: 98623_CR30 doi: 10.1109/TAFFC.2017.2714671 – ident: 98623_CR7 – ident: 98623_CR29 – ident: 98623_CR3 – ident: 98623_CR16 doi: 10.1109/TNNLS.2022.3190448 – ident: 98623_CR17 doi: 10.1145/3503161.3548243 – ident: 98623_CR21 – ident: 98623_CR36 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 98623_CR9 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2797176 – ident: 98623_CR11 – ident: 98623_CR13 – ident: 98623_CR15 – ident: 98623_CR38 doi: 10.1007/978-3-030-58621-8_45 – ident: 98623_CR34 – ident: 98623_CR32 – ident: 98623_CR8 – ident: 98623_CR24 – ident: 98623_CR26 – ident: 98623_CR4 – ident: 98623_CR28 – ident: 98623_CR6 – ident: 98623_CR2 – ident: 98623_CR20 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 98623_CR1 publication-title: Nature doi: 10.1038/nature14539 – ident: 98623_CR14 doi: 10.1002/hbm.23730 – ident: 98623_CR35 – ident: 98623_CR33 – ident: 98623_CR37 – ident: 98623_CR10 doi: 10.1109/CVPR.2006.100 – ident: 98623_CR18 – volume: 9 start-page: 281 issue: 3 year: 2017 ident: 98623_CR12 publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2016.2587290 – ident: 98623_CR31 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 98623_CR22 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2797176 |
| SSID | ssj0000529419 |
| Score | 2.4553196 |
| Snippet | Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio... Abstract Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise... |
| SourceID | doaj unpaywall proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 14254 |
| SubjectTerms | 631/378 631/378/2649 639/705/117 Algorithms Constrastive Learning Cross-Subject Emotion Recognition EEG Electroencephalography - methods Emotions - physiology GNN Humanities and Social Sciences Humans multidisciplinary Neural Networks, Computer Science Science (multidisciplinary) Self-Supervised Learning Supervised Machine Learning |
| SummonAdditionalLinks | – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8anRBwmPimMJCRuFGL1HYS51imrlMPvZRJu1n-hEOVVaQV2n_Pe0kabQIhdosiO7Hfzx-_5_dhgE9ZFpxKqJa4oBMqKDbnVtqMh1haCv2kfCrkbbEqLi7V8iq_OoLJIRbmjv2-Td3d4BZDYWAi5xXSb8nLB3CscWDqERzPZsv1cjhTIauVmlZ9bAxW__Jn5Tv7T5um_2_c8pZd9Ak82tdbe_PLbja3tp7zp3DSc0Y260B-Bkexfg4Pu1skb16AXa85Xdi5mDPOmrhJvNlvaQloYmCx_kG40hkgQ37KWgfCQCn96ZiMxe4WHzb4EeEzucJ_Z4vVqmlrzOeLl3B5Pv92dsH7mxO4V9Nsx4WSOk9eWGtD5WUsClfkUYZpKrXzKlhbomrqS-dUKKIrU0yRbHYis86LqZOvYFRf1_ENsFwqqzInS--jSiFopGg6JimqVGkkZ2P4fJCn2XYJMkxr2JbadNI3KH3TSt-UY_hKIh9KUnLr9gVibvq5YnJNSQmDd9om1Falcx5pZiyEjtiLpMbw8QCYwclAFg5bx-t9Y3A9UQUSkgLLvO6QHH6lSAGvBDZ4coDW9PO1-WeLJwP8_9HBt_f7-jt4LGhwZgoxO4XR7uc-vkeWs3Mf-sH9G13n8i8 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZKKgQ8cB_hkpF4ow4b2-v1PhaUpuIhQioR5cnyWSSiTdTNCpVfz8weUUEVom-r1Vhrj2fH33guQt5mWXAygVnigk5goNicWWEzFmJhMfUT66lgtMVCHS_lp9P8dI-oIRemDdpvS1q2anqIDntfw0GDyWA8ZyWAcMGKySakG2Rf5YDBR2R_ufh8-A07yQFGYQATeJ8hkwl9xeA_TqG2WP9VCPOSd_QOudVUG3vx065Wlw6go3vk6zD1Lu7kx6TZuon_9VdVx-uv7T6522NSethRPiB7sXpIbnZdKi8eEXtywrAh6HxGGa3jKrG62aCKqWOgsfqOcoN3jBTwL20DFAO2DMBrOBq7LkF0F6cEzxhqf0bni0XdjpjN5o_J8mj25eMx6zszMC-n2ZZxKXSePLfWhtKLqJRTeRRhmgrtvAzWFmD6-sI5GVR0RYopok-QZ9Z5PnXiCRlV6yo-IzQX0srMicL7KFMIGiCgjknwMpUawN-YvBt2ymy6AhymdZwLbTrGGWCcaRlnijH5gJu5o8Ti2e2L9fmZ6Rluco1FD4N32iawhoVzHmBsVFxHWEWSY_JmEAUDPxt6UGwV101tQF9JBYBHAc3TTkZ2n5Jo4JccJnwwCI3p9UH9zxkf7ATrPxb4_HrkL8htjnKVSdizl2S0PW_iK0BRW_e6_2V-A-82FNo priority: 102 providerName: Unpaywall |
| Title | SS-EMERGE - self-supervised enhancement for multidimension emotion recognition using GNNs for EEG |
| URI | https://link.springer.com/article/10.1038/s41598-025-98623-7 https://www.ncbi.nlm.nih.gov/pubmed/40274925 https://www.proquest.com/docview/3194652164 https://www.nature.com/articles/s41598-025-98623-7.pdf https://doaj.org/article/582398dcb8af4463bbc193e628e65ef4 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Nature Journals Online customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Link Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgEQIOiDflURmJG2ttajuxc-xW3a56iFaUSuVk-bkcqmxFWqH998wkaVUkBBw4JbIcxZ4vjr-xx98Q8jHLgpMJ3BIXdAIHxebMCpuxEJXFo5-op4LRFlVxuZTzVb46SvWFMWGdPHBnuLNco0Jd8E7bBK6LcM4D54gF17HIY2qVQDNdHjlTnao3L-Wo7E_JZEKfNTBT4WkynrMSWLxg6peZqBXs_x3LPNohfUQe7OqNvf1h1-ujSejiCXncs0c67lr9lNyJ9TNyv8snefuc2MWCYerO2ZQy2sR1Ys1ugz-DJgYa62-IMK4GUmCqtA0lDCjujwtmNHb5fOghogjuMSj-ms6qqmmfmE5nL8jyYvplcsn6HArMy1G2ZVwKnSfPrbWh9GC3woHZRBglpZ2XwVoFTqpXzslQRKdSTBF373hmnecjJ16Sk_qmjq8JzYW0MnNCeR9lCkEDWdMxCV6mUgNNG5BPe3uaTSeVYdotbqFNZ30D1jet9Y0akHM0-aEmyly3BQC-6cE3fwN_QD7sATMwLHCvw9bxZtcY-LPIAqhJAXVedUgeXiXRFS85NPh0D63pR27zxxafHuD_hw6--R8dfEsecvxkMwlIviMn2--7-B5Y0NYNyV21UkNybzyeL-ZwPZ9WV5-hdFJMhu1ggLJldTX--hNeEAbE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlQ4IN5dnkbixlpkY8dxjrDa7gJlL22l3iw_4bBKV82uUP89M0k2agVCcIsiO7Fn_PjGM_MZ4F2WBScTmiUu6IQGii24FTbjIZaWUj-JT4WiLZZqcSa_nBfnezDe5cLc8N-31N0NbjGUBpYXvEL4LXh5C25rtOiIKX-qpsOJCvms5KTqM2Ow8offq97YfVqS_j8hy2te0XtwsK3X9uqnXa2ubTxHD-B-jxjZx07FD2Ev1o_gTneH5NVjsCcnnK7rnM8YZ01cJd5s17QANDGwWP8grdIJIEN0ytrwwUCE_nRIxmJ3hw8boojwmQLhv7P5ctm0NWaz-RM4O5qdThe8vzeBeznJNjyXQhfJ59baUHkRlXKqiCJMUqmdl8HaEg1TXzong4quTDFF8tjlmXU-nzjxFPbrizoeAiuEtDJzovQ-yhSCRoCmYxJ5lSqN0GwE73fyNOuOHsO0bm2hTSd9g9I3rfRNOYJPJPKhJFFbty9Q46afKabQREkYvNM2oa0qnPMIMqPKdcReJDmCtzuFGZwK5N-wdbzYNgZXE6kQjigs86zT5PArSeZ3lWODxzvVmn62Nn9t8XhQ_z908Pn_ff0NHCxOvx2b48_Lry_gbk4DNZOov5ewv7ncxleIdzbudTvMfwG6i_O6 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxFLZKKygcEGsJZTESN-oyGXs8nmOAJCWgCClU6s3yWg7RJOokqvrv-95saqUKwW008njs97x8byfkY5J4KyKIJdarCAKKyZjhJmE-5AZDPzGfCnpbzOXJqZidZWc7RHaxMLXTfp3Ssj6mO--wzxVcNBgMlmasABDOWX689vEe2VM5l7Ca90aj2WLWa1fQfiWGRRslk3B1Rwe3bqI6Yf9dKPOGhfQR2d-Wa3N1aZbLG5fQ5Al53KJHOmrG-5TshPIZud_Uk7x6TsxiwbB053RMGa3CMrJqu8bDoAqehvIPchi1gRSQKq1dCT0m90eFGQ1NPR_aexTBMzrFn9PpfF7VX4zH0xfkdDL-_fWEtTUUmBPDZMNSwVUWXWqM8YXjQUors8D9MObKOuGNyUFIdbm1wstg8xhiQOtdmhjr0qHlL8luuSrDK0IzLoxILM-dCyJ6rwCsqRB5WsRCAUwbkE8dPfW6SZWhaxM3V7qhvgbq65r6Oh-QL0jyviWmua5frC7Odct2nSlMT-idVSaC3MqtdQA4g0xVgFlEMSAfOoZp2BZo6zBlWG0rDSeLkABNJLQ5aDjZ_0qgKF6kMOCjjrW63bnVX0d81LP_Hyb4-v96f08e_Po20T-_z38ckocprtNEAPvekN3NxTa8Beizse_adX4Nv6z6oQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZKKgQ8cB_hkpF4ow4b2-v1PhaUpuIhQioR5cnyWSSiTdTNCpVfz8weUUEVom-r1Vhrj2fH33guQt5mWXAygVnigk5goNicWWEzFmJhMfUT66lgtMVCHS_lp9P8dI-oIRemDdpvS1q2anqIDntfw0GDyWA8ZyWAcMGKySakG2Rf5YDBR2R_ufh8-A07yQFGYQATeJ8hkwl9xeA_TqG2WP9VCPOSd_QOudVUG3vx065Wlw6go3vk6zD1Lu7kx6TZuon_9VdVx-uv7T6522NSethRPiB7sXpIbnZdKi8eEXtywrAh6HxGGa3jKrG62aCKqWOgsfqOcoN3jBTwL20DFAO2DMBrOBq7LkF0F6cEzxhqf0bni0XdjpjN5o_J8mj25eMx6zszMC-n2ZZxKXSePLfWhtKLqJRTeRRhmgrtvAzWFmD6-sI5GVR0RYopok-QZ9Z5PnXiCRlV6yo-IzQX0srMicL7KFMIGiCgjknwMpUawN-YvBt2ymy6AhymdZwLbTrGGWCcaRlnijH5gJu5o8Ti2e2L9fmZ6Rluco1FD4N32iawhoVzHmBsVFxHWEWSY_JmEAUDPxt6UGwV101tQF9JBYBHAc3TTkZ2n5Jo4JccJnwwCI3p9UH9zxkf7ATrPxb4_HrkL8htjnKVSdizl2S0PW_iK0BRW_e6_2V-A-82FNo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SS-EMERGE+-+self-supervised+enhancement+for+multidimension+emotion+recognition+using+GNNs+for+EEG&rft.jtitle=Scientific+reports&rft.au=Chirag+Ahuja&rft.au=Divyashikha+Sethia&rft.date=2025-04-24&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-025-98623-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_582398dcb8af4463bbc193e628e65ef4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |