SS-EMERGE - self-supervised enhancement for multidimension emotion recognition using GNNs for EEG

Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore,...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 14254 - 13
Main Authors Ahuja, Chirag, Sethia, Divyashikha
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.04.2025
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-98623-7

Cover

Abstract Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data.
AbstractList Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data.
Abstract Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data.
Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data.Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subject tasks such as Emotion Recognition. Therefore, this study introduces a hybrid SSL framework: Self-Supervised Enhancement for Multidimension Emotion Recognition using Graph Neural Networks (SS-EMERGE). This model enhances cross-subject EEG-based emotion recognition by incorporating Causal Convolutions for temporal feature extraction, Graph Attention Transformers (GAT) for spatial modelling, and Spectral Embedding for spectral domain analysis. The approach utilises meiosis-based contrastive learning for pretraining, followed by fine-tuning with minimal labelled data, thereby enriching dataset diversity and specificity. Evaluations on the widely-used Emotion recognition datasets, SEED and SEED-IV, reveal that SS-EMERGE achieves impressive Leave-One-Subject-Out (LOSO) accuracies of 92.35% and 81.51%, respectively. It also proposes a foundation model pre-trained on combined SEED and SEED-IV datasets, demonstrating performance comparable to individual models. These results emphasise the potential of SS-EMERGE in advancing EEG-based emotion recognition with high accuracy and minimal labelled data.
ArticleNumber 14254
Author Sethia, Divyashikha
Ahuja, Chirag
Author_xml – sequence: 1
  givenname: Chirag
  surname: Ahuja
  fullname: Ahuja, Chirag
  email: cahuja1992@gmail.com
  organization: Department of Computer Science Engineering, Delhi Technological University, Department of Software Engineering, Delhi Technological University
– sequence: 2
  givenname: Divyashikha
  surname: Sethia
  fullname: Sethia, Divyashikha
  organization: Department of Software Engineering, Delhi Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40274925$$D View this record in MEDLINE/PubMed
BookMark eNqNUUtv1DAQtlARLaV_gAPKkYvBryTOEVVhqVSKROFs2c548SqxFzsp6r_Hu1kqToi5zNj6HqNvXqKzEAMg9JqSd5Rw-T4LWncSE1bjTjaM4_YZumBE1Jhxxs7-ms_RVc47UqpmnaDdC3QuCGtFx-oLpO_vcf-5_7rpK1xlGB3Oyx7Sg88wVBB-6GBhgjBXLqZqWsbZD768s4-hginOh57Axm3wx3nJPmyrzd1dPjL6fvMKPXd6zHB16pfo-8f-2_UnfPtlc3P94RZbQcmMmeCydpZprYfOcmga09TAB-paaawYtG45l7Y1RgwNmNaBA0Jazog2llHDL9HNqjtEvVP75CedHlXUXh0_YtoqnWZvR1C1ZLyTgzVSOyEaboylXbFkEoqnE0WLr1pL2OvHX3ocnwQpUYf81Zq_KvmrY_6qLay3K2uf4s8F8qwmny2Mow4Ql6w47URTM9ocDN6coIuZYHhS_3OYAmArwKaYcwL3fwuc1s4FHLaQ1C4uKZTU_8X6DR4-sFc
Cites_doi 10.1109/SMC42975.2020.9283028
10.1109/TAFFC.2017.2714671
10.1109/TNNLS.2022.3190448
10.1145/3503161.3548243
10.1109/TCYB.2018.2797176
10.1007/978-3-030-58621-8_45
10.1038/nature14539
10.1002/hbm.23730
10.1109/CVPR.2006.100
10.1109/TCDS.2016.2587290
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-025-98623-7
DatabaseName Springer Nature Open Access Journals (NTUSG)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_582398dcb8af4463bbc193e628e65ef4
10.1038/s41598-025-98623-7
40274925
10_1038_s41598_025_98623_7
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
EJD
IPNFZ
M48
RIG
UNPAY
ID FETCH-LOGICAL-c410t-24385fc2aaad9c3e66b65e3d1f78bc4daa7338c7bb4d6eb7fefe007320abc21b3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:44:49 EDT 2025
Sun Oct 26 04:07:57 EDT 2025
Fri Sep 05 17:25:27 EDT 2025
Mon Jul 21 05:45:18 EDT 2025
Wed Oct 01 06:27:53 EDT 2025
Fri Apr 25 03:10:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Constrastive Learning
Cross-Subject Emotion Recognition
Self-Supervised Learning
EEG
GNN
Language English
License 2025. The Author(s).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-24385fc2aaad9c3e66b65e3d1f78bc4daa7338c7bb4d6eb7fefe007320abc21b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/582398dcb8af4463bbc193e628e65ef4
PMID 40274925
PQID 3194652164
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_582398dcb8af4463bbc193e628e65ef4
unpaywall_primary_10_1038_s41598_025_98623_7
proquest_miscellaneous_3194652164
pubmed_primary_40274925
crossref_primary_10_1038_s41598_025_98623_7
springer_journals_10_1038_s41598_025_98623_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-24
PublicationDateYYYYMMDD 2025-04-24
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Yann LeCun (98623_CR1) 2015; 521
98623_CR2
98623_CR3
98623_CR4
98623_CR5
98623_CR16
98623_CR38
98623_CR15
98623_CR37
98623_CR14
98623_CR36
98623_CR13
98623_CR35
98623_CR19
98623_CR18
98623_CR17
Wei-Long Zheng (98623_CR12) 2017; 9
98623_CR30
98623_CR34
98623_CR11
98623_CR33
98623_CR10
98623_CR32
98623_CR31
Wei-Long Zheng (98623_CR22) 2018; 49
Wei-Long Zheng (98623_CR9) 2018; 49
98623_CR27
98623_CR26
98623_CR25
98623_CR24
98623_CR29
98623_CR28
98623_CR6
98623_CR23
98623_CR7
98623_CR8
98623_CR21
98623_CR20
References_xml – ident: 98623_CR25
  doi: 10.1109/SMC42975.2020.9283028
– ident: 98623_CR23
– ident: 98623_CR5
– ident: 98623_CR27
– ident: 98623_CR19
– ident: 98623_CR30
  doi: 10.1109/TAFFC.2017.2714671
– ident: 98623_CR7
– ident: 98623_CR29
– ident: 98623_CR3
– ident: 98623_CR16
  doi: 10.1109/TNNLS.2022.3190448
– ident: 98623_CR17
  doi: 10.1145/3503161.3548243
– ident: 98623_CR21
– ident: 98623_CR36
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 98623_CR9
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2797176
– ident: 98623_CR11
– ident: 98623_CR13
– ident: 98623_CR15
– ident: 98623_CR38
  doi: 10.1007/978-3-030-58621-8_45
– ident: 98623_CR34
– ident: 98623_CR32
– ident: 98623_CR8
– ident: 98623_CR24
– ident: 98623_CR26
– ident: 98623_CR4
– ident: 98623_CR28
– ident: 98623_CR6
– ident: 98623_CR2
– ident: 98623_CR20
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 98623_CR1
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 98623_CR14
  doi: 10.1002/hbm.23730
– ident: 98623_CR35
– ident: 98623_CR33
– ident: 98623_CR37
– ident: 98623_CR10
  doi: 10.1109/CVPR.2006.100
– ident: 98623_CR18
– volume: 9
  start-page: 281
  issue: 3
  year: 2017
  ident: 98623_CR12
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2016.2587290
– ident: 98623_CR31
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 98623_CR22
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2797176
SSID ssj0000529419
Score 2.4553196
Snippet Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio...
Abstract Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise...
SourceID doaj
unpaywall
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14254
SubjectTerms 631/378
631/378/2649
639/705/117
Algorithms
Constrastive Learning
Cross-Subject Emotion Recognition
EEG
Electroencephalography - methods
Emotions - physiology
GNN
Humanities and Social Sciences
Humans
multidisciplinary
Neural Networks, Computer
Science
Science (multidisciplinary)
Self-Supervised Learning
Supervised Machine Learning
SummonAdditionalLinks – databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH8anRBwmPimMJCRuFGL1HYS51imrlMPvZRJu1n-hEOVVaQV2n_Pe0kabQIhdosiO7Hfzx-_5_dhgE9ZFpxKqJa4oBMqKDbnVtqMh1haCv2kfCrkbbEqLi7V8iq_OoLJIRbmjv2-Td3d4BZDYWAi5xXSb8nLB3CscWDqERzPZsv1cjhTIauVmlZ9bAxW__Jn5Tv7T5um_2_c8pZd9Ak82tdbe_PLbja3tp7zp3DSc0Y260B-Bkexfg4Pu1skb16AXa85Xdi5mDPOmrhJvNlvaQloYmCx_kG40hkgQ37KWgfCQCn96ZiMxe4WHzb4EeEzucJ_Z4vVqmlrzOeLl3B5Pv92dsH7mxO4V9Nsx4WSOk9eWGtD5WUsClfkUYZpKrXzKlhbomrqS-dUKKIrU0yRbHYis86LqZOvYFRf1_ENsFwqqzInS--jSiFopGg6JimqVGkkZ2P4fJCn2XYJMkxr2JbadNI3KH3TSt-UY_hKIh9KUnLr9gVibvq5YnJNSQmDd9om1Falcx5pZiyEjtiLpMbw8QCYwclAFg5bx-t9Y3A9UQUSkgLLvO6QHH6lSAGvBDZ4coDW9PO1-WeLJwP8_9HBt_f7-jt4LGhwZgoxO4XR7uc-vkeWs3Mf-sH9G13n8i8
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZKKgQ8cB_hkpF4ow4b2-v1PhaUpuIhQioR5cnyWSSiTdTNCpVfz8weUUEVom-r1Vhrj2fH33guQt5mWXAygVnigk5goNicWWEzFmJhMfUT66lgtMVCHS_lp9P8dI-oIRemDdpvS1q2anqIDntfw0GDyWA8ZyWAcMGKySakG2Rf5YDBR2R_ufh8-A07yQFGYQATeJ8hkwl9xeA_TqG2WP9VCPOSd_QOudVUG3vx065Wlw6go3vk6zD1Lu7kx6TZuon_9VdVx-uv7T6522NSethRPiB7sXpIbnZdKi8eEXtywrAh6HxGGa3jKrG62aCKqWOgsfqOcoN3jBTwL20DFAO2DMBrOBq7LkF0F6cEzxhqf0bni0XdjpjN5o_J8mj25eMx6zszMC-n2ZZxKXSePLfWhtKLqJRTeRRhmgrtvAzWFmD6-sI5GVR0RYopok-QZ9Z5PnXiCRlV6yo-IzQX0srMicL7KFMIGiCgjknwMpUawN-YvBt2ymy6AhymdZwLbTrGGWCcaRlnijH5gJu5o8Ti2e2L9fmZ6Rluco1FD4N32iawhoVzHmBsVFxHWEWSY_JmEAUDPxt6UGwV101tQF9JBYBHAc3TTkZ2n5Jo4JccJnwwCI3p9UH9zxkf7ATrPxb4_HrkL8htjnKVSdizl2S0PW_iK0BRW_e6_2V-A-82FNo
  priority: 102
  providerName: Unpaywall
Title SS-EMERGE - self-supervised enhancement for multidimension emotion recognition using GNNs for EEG
URI https://link.springer.com/article/10.1038/s41598-025-98623-7
https://www.ncbi.nlm.nih.gov/pubmed/40274925
https://www.proquest.com/docview/3194652164
https://www.nature.com/articles/s41598-025-98623-7.pdf
https://doaj.org/article/582398dcb8af4463bbc193e628e65ef4
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Nature Journals Online
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Link Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgEQIOiDflURmJG2ttajuxc-xW3a56iFaUSuVk-bkcqmxFWqH998wkaVUkBBw4JbIcxZ4vjr-xx98Q8jHLgpMJ3BIXdAIHxebMCpuxEJXFo5-op4LRFlVxuZTzVb46SvWFMWGdPHBnuLNco0Jd8E7bBK6LcM4D54gF17HIY2qVQDNdHjlTnao3L-Wo7E_JZEKfNTBT4WkynrMSWLxg6peZqBXs_x3LPNohfUQe7OqNvf1h1-ujSejiCXncs0c67lr9lNyJ9TNyv8snefuc2MWCYerO2ZQy2sR1Ys1ugz-DJgYa62-IMK4GUmCqtA0lDCjujwtmNHb5fOghogjuMSj-ms6qqmmfmE5nL8jyYvplcsn6HArMy1G2ZVwKnSfPrbWh9GC3woHZRBglpZ2XwVoFTqpXzslQRKdSTBF373hmnecjJ16Sk_qmjq8JzYW0MnNCeR9lCkEDWdMxCV6mUgNNG5BPe3uaTSeVYdotbqFNZ30D1jet9Y0akHM0-aEmyly3BQC-6cE3fwN_QD7sATMwLHCvw9bxZtcY-LPIAqhJAXVedUgeXiXRFS85NPh0D63pR27zxxafHuD_hw6--R8dfEsecvxkMwlIviMn2--7-B5Y0NYNyV21UkNybzyeL-ZwPZ9WV5-hdFJMhu1ggLJldTX--hNeEAbE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlQ4IN5dnkbixlpkY8dxjrDa7gJlL22l3iw_4bBKV82uUP89M0k2agVCcIsiO7Fn_PjGM_MZ4F2WBScTmiUu6IQGii24FTbjIZaWUj-JT4WiLZZqcSa_nBfnezDe5cLc8N-31N0NbjGUBpYXvEL4LXh5C25rtOiIKX-qpsOJCvms5KTqM2Ow8offq97YfVqS_j8hy2te0XtwsK3X9uqnXa2ubTxHD-B-jxjZx07FD2Ev1o_gTneH5NVjsCcnnK7rnM8YZ01cJd5s17QANDGwWP8grdIJIEN0ytrwwUCE_nRIxmJ3hw8boojwmQLhv7P5ctm0NWaz-RM4O5qdThe8vzeBeznJNjyXQhfJ59baUHkRlXKqiCJMUqmdl8HaEg1TXzong4quTDFF8tjlmXU-nzjxFPbrizoeAiuEtDJzovQ-yhSCRoCmYxJ5lSqN0GwE73fyNOuOHsO0bm2hTSd9g9I3rfRNOYJPJPKhJFFbty9Q46afKabQREkYvNM2oa0qnPMIMqPKdcReJDmCtzuFGZwK5N-wdbzYNgZXE6kQjigs86zT5PArSeZ3lWODxzvVmn62Nn9t8XhQ_z908Pn_ff0NHCxOvx2b48_Lry_gbk4DNZOov5ewv7ncxleIdzbudTvMfwG6i_O6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxFLZKKygcEGsJZTESN-oyGXs8nmOAJCWgCClU6s3yWg7RJOokqvrv-95saqUKwW008njs97x8byfkY5J4KyKIJdarCAKKyZjhJmE-5AZDPzGfCnpbzOXJqZidZWc7RHaxMLXTfp3Ssj6mO--wzxVcNBgMlmasABDOWX689vEe2VM5l7Ca90aj2WLWa1fQfiWGRRslk3B1Rwe3bqI6Yf9dKPOGhfQR2d-Wa3N1aZbLG5fQ5Al53KJHOmrG-5TshPIZud_Uk7x6TsxiwbB053RMGa3CMrJqu8bDoAqehvIPchi1gRSQKq1dCT0m90eFGQ1NPR_aexTBMzrFn9PpfF7VX4zH0xfkdDL-_fWEtTUUmBPDZMNSwVUWXWqM8YXjQUors8D9MObKOuGNyUFIdbm1wstg8xhiQOtdmhjr0qHlL8luuSrDK0IzLoxILM-dCyJ6rwCsqRB5WsRCAUwbkE8dPfW6SZWhaxM3V7qhvgbq65r6Oh-QL0jyviWmua5frC7Odct2nSlMT-idVSaC3MqtdQA4g0xVgFlEMSAfOoZp2BZo6zBlWG0rDSeLkABNJLQ5aDjZ_0qgKF6kMOCjjrW63bnVX0d81LP_Hyb4-v96f08e_Po20T-_z38ckocprtNEAPvekN3NxTa8Beizse_adX4Nv6z6oQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZKKgQ8cB_hkpF4ow4b2-v1PhaUpuIhQioR5cnyWSSiTdTNCpVfz8weUUEVom-r1Vhrj2fH33guQt5mWXAygVnigk5goNicWWEzFmJhMfUT66lgtMVCHS_lp9P8dI-oIRemDdpvS1q2anqIDntfw0GDyWA8ZyWAcMGKySakG2Rf5YDBR2R_ufh8-A07yQFGYQATeJ8hkwl9xeA_TqG2WP9VCPOSd_QOudVUG3vx065Wlw6go3vk6zD1Lu7kx6TZuon_9VdVx-uv7T6522NSethRPiB7sXpIbnZdKi8eEXtywrAh6HxGGa3jKrG62aCKqWOgsfqOcoN3jBTwL20DFAO2DMBrOBq7LkF0F6cEzxhqf0bni0XdjpjN5o_J8mj25eMx6zszMC-n2ZZxKXSePLfWhtKLqJRTeRRhmgrtvAzWFmD6-sI5GVR0RYopok-QZ9Z5PnXiCRlV6yo-IzQX0srMicL7KFMIGiCgjknwMpUawN-YvBt2ymy6AhymdZwLbTrGGWCcaRlnijH5gJu5o8Ti2e2L9fmZ6Rluco1FD4N32iawhoVzHmBsVFxHWEWSY_JmEAUDPxt6UGwV101tQF9JBYBHAc3TTkZ2n5Jo4JccJnwwCI3p9UH9zxkf7ATrPxb4_HrkL8htjnKVSdizl2S0PW_iK0BRW_e6_2V-A-82FNo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SS-EMERGE+-+self-supervised+enhancement+for+multidimension+emotion+recognition+using+GNNs+for+EEG&rft.jtitle=Scientific+reports&rft.au=Chirag+Ahuja&rft.au=Divyashikha+Sethia&rft.date=2025-04-24&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-025-98623-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_582398dcb8af4463bbc193e628e65ef4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon