Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model–based Iterative Reconstruction Algorithm

Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospe...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 284; no. 3; pp. 777 - 787
Main Authors Solomon, Justin, Marin, Daniele, Roy Choudhury, Kingshuk, Patel, Bhavik, Samei, Ehsan
Format Journal Article
LanguageEnglish
Published United States 01.09.2017
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.2017161736

Cover

Abstract Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. RSNA, 2017 Online supplemental material is available for this article.
AbstractList Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. RSNA, 2017 Online supplemental material is available for this article.
Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article.Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article.
Author Solomon, Justin
Roy Choudhury, Kingshuk
Samei, Ehsan
Patel, Bhavik
Marin, Daniele
Author_xml – sequence: 1
  givenname: Justin
  surname: Solomon
  fullname: Solomon, Justin
  organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
– sequence: 2
  givenname: Daniele
  surname: Marin
  fullname: Marin, Daniele
  organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
– sequence: 3
  givenname: Kingshuk
  surname: Roy Choudhury
  fullname: Roy Choudhury, Kingshuk
  organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
– sequence: 4
  givenname: Bhavik
  surname: Patel
  fullname: Patel, Bhavik
  organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
– sequence: 5
  givenname: Ehsan
  surname: Samei
  fullname: Samei, Ehsan
  organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28170300$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAURQMqotPChh0b5CWLSfGLM07CrkxbOtIUUCnryLFfBhcnHmynaHb8A3_Il-CZDCAhASvrWffcd63ro-Sgtz0myVOgJwB5-cIJpa05ySgUwKFg_H4ygVlWpMBgdpBMKGUsLXOoDpMj728phXxWFg-Tw6yEgjJKJ_eenLctykBsS66jmwja9uTMeiTXqAa5G0Wv4iRt74PbX52alXU6fOxIHBadWCF5Y7XHKZnbPjjhwzQi3pphK5_uLM4wxE2i0UaHzXbh-6EJBsnlZm1FCNgPcXu_Ikt9h44s0UfSExHI1WCCVjvaOjK_eUkutAnoUJFXQn4i75y9xTFXJP0QoRij69BJLQy5sgrN96_fGuEjsYhg3HOHf33So-RBK4zHx_vzOPlwcX4zv0yXb18v5qfLVOZAQ5qBahusFEjMOMMi55LRnPJ2NlOskryBijHOJXDBKpXlWYsoGqBNJagqyoIdJ9noO_RrsfkijKnXTnfCbWqg9bbgeiy4_l1whJ6P0NrZzwP6UHfaSzRG9GgHX0PJeVYVkFdR-mwvHZoO1S_zn-VHQTEKpLPeO2xrqcPuB8QGtflnCviD_H_yH8p23Ig
CitedBy_id crossref_primary_10_1148_radiol_211838
crossref_primary_10_3390_jcm12144718
crossref_primary_10_1177_02841851211070119
crossref_primary_10_2214_AJR_17_19102
crossref_primary_10_1117_1_JMI_9_5_055501
crossref_primary_10_1148_radiol_2019191422
crossref_primary_10_2214_AJR_19_22332
crossref_primary_10_1016_j_crad_2017_09_006
crossref_primary_10_1097_RCT_0000000000000789
crossref_primary_10_3390_ijms25052569
crossref_primary_10_1002_mp_13763
crossref_primary_10_1007_s10278_024_01303_7
crossref_primary_10_1148_rg_2018180041
crossref_primary_10_1007_s00330_021_08380_0
crossref_primary_10_1016_j_ejrad_2023_110981
crossref_primary_10_3389_fonc_2021_757973
crossref_primary_10_1259_bjr_20180546
crossref_primary_10_1016_j_ejmp_2021_05_025
crossref_primary_10_1007_s00330_017_5159_3
crossref_primary_10_1117_1_JMI_4_3_031213
crossref_primary_10_1016_j_acra_2022_11_008
crossref_primary_10_2214_AJR_22_28407
crossref_primary_10_1007_s00330_021_07952_4
crossref_primary_10_1007_s00330_017_5113_4
crossref_primary_10_1088_1361_6560_ac65d4
crossref_primary_10_1007_s00247_018_4217_6
crossref_primary_10_1002_mp_13353
crossref_primary_10_1259_bjr_20210601
crossref_primary_10_1007_s00261_019_02150_9
crossref_primary_10_1259_bjr_20170632
crossref_primary_10_1007_s40134_022_00399_5
crossref_primary_10_1371_journal_pone_0232688
crossref_primary_10_1002_mp_14319
crossref_primary_10_3233_XST_230333
crossref_primary_10_1088_1361_6560_ab1a45
crossref_primary_10_1088_1361_6560_abe760
crossref_primary_10_1016_j_ejrad_2021_109808
crossref_primary_10_1259_bjr_20220915
crossref_primary_10_1088_1361_6498_ace729
crossref_primary_10_1186_s41747_024_00486_6
crossref_primary_10_1002_mp_17064
crossref_primary_10_1016_j_crad_2020_10_011
crossref_primary_10_2214_AJR_22_27806
crossref_primary_10_1177_0284185118809544
crossref_primary_10_52668_kjar_2022_00136
crossref_primary_10_32628_IJSRST24116181
crossref_primary_10_1007_s00330_022_09206_3
crossref_primary_10_1097_RCT_0000000000000960
crossref_primary_10_1002_mp_17422
crossref_primary_10_1186_s13244_024_01888_1
crossref_primary_10_1016_j_radphyschem_2022_110739
crossref_primary_10_1016_j_ejrad_2020_109487
crossref_primary_10_1007_s10278_024_01080_3
crossref_primary_10_1016_j_acra_2025_03_001
crossref_primary_10_1007_s10278_021_00531_5
crossref_primary_10_1051_radiopro_2023013
crossref_primary_10_1148_radiol_211931
crossref_primary_10_1371_journal_pone_0180302
crossref_primary_10_1007_s00330_018_5654_1
crossref_primary_10_1148_radiol_2018181657
crossref_primary_10_1148_radiol_230803
crossref_primary_10_1016_j_flowmeasinst_2021_101917
crossref_primary_10_1016_j_clinimag_2022_10_016
crossref_primary_10_1148_radiol_2018180125
crossref_primary_10_1016_j_jvcir_2019_102607
crossref_primary_10_1007_s10140_021_02012_2
crossref_primary_10_1038_s41598_018_36045_4
crossref_primary_10_1016_j_ejmp_2020_04_020
crossref_primary_10_1093_rpd_ncy153
crossref_primary_10_3390_s23042233
crossref_primary_10_1097_HP_0000000000000997
crossref_primary_10_1002_mp_14657
crossref_primary_10_1007_s00330_021_08185_1
crossref_primary_10_1016_j_ejmp_2020_06_004
crossref_primary_10_1016_j_ejrad_2023_111267
crossref_primary_10_3348_kjr_2021_0683
crossref_primary_10_1055_s_0044_1781470
crossref_primary_10_1002_acm2_14069
crossref_primary_10_3348_kjr_2018_0715
crossref_primary_10_1007_s00261_023_03846_9
crossref_primary_10_3390_diagnostics10121072
crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1360
crossref_primary_10_1016_j_ejmp_2024_103365
crossref_primary_10_1259_bjr_20180137
Cites_doi 10.1148/radiol.2015150849
10.1088/0031-9155/59/21/6637
10.1148/radiol.14131928
10.1097/RLI.0b013e3182899104
10.1016/j.jcct.2012.04.008
10.1007/s00330-011-2227-y
10.1120/jacmp.v14i4.4347
10.1007/s00330-011-2169-4
10.1186/s12880-015-0075-y
10.1016/j.ejrad.2012.10.021
10.1118/1.4893497
10.1097/RCT.0000000000000313
10.2214/AJR.14.14185
10.1117/1.JMI.3.3.033501
10.1148/radiol.2016151281
10.1148/radiol.13122349
10.1118/1.4935530
10.1118/1.4794498
10.6009/jjrt.2015_JSRT_71.12.1201
10.1118/1.3560428
10.1177/0284185115617347
10.2214/AJR.11.7421
10.1097/RLI.0000000000000243
10.1148/radiol.14132381
10.1148/radiol.15142047
10.1088/0031-9155/49/11/007
10.1016/j.ejmp.2012.01.003
10.1148/radiol.15142005
10.1118/1.4923172
10.1118/1.4901670
10.1117/12.2008378
10.1007/s00261-015-0384-1
10.1148/radiol.14140676
10.1118/1.1358303
10.1148/radiol.2015141991
10.1007/s00330-011-2271-7
10.1371/journal.pone.0056875
10.1097/RCT.0b013e31825586c0
10.1088/0031-9155/60/7/2881
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1148/radiol.2017161736
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 787
ExternalDocumentID oai:pubmedcentral.nih.gov:5702911
28170300
10_1148_radiol_2017161736
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB001838
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
ACRZS
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
ZKG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c410t-21dfbe9d1ce263e746c30406f55d39c6b193366c16a39d242feeab10b9a0d7873
IEDL.DBID UNPAY
ISSN 0033-8419
1527-1315
IngestDate Wed Oct 29 11:21:34 EDT 2025
Wed Oct 01 14:58:26 EDT 2025
Thu Apr 03 06:57:01 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Wed Oct 01 04:01:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-21dfbe9d1ce263e746c30406f55d39c6b193366c16a39d242feeab10b9a0d7873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5702911
PMID 28170300
PQID 1866297149
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1148_radiol_2017161736
proquest_miscellaneous_1866297149
pubmed_primary_28170300
crossref_citationtrail_10_1148_radiol_2017161736
crossref_primary_10_1148_radiol_2017161736
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-00
2017-Sep
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2017
References r2
r3
r4
r5
r6
r7
Ellmann S (r17) 2016; 51
r8
r9
r10
r32
r31
r12
r34
r11
r33
r14
r36
r13
r35
r16
Solomon J (r30) 2016; 9783
r38
r15
r37
r18
r39
r19
r41
r21
r43
r20
r42
r23
r22
r44
r25
Hernandez-Giron I (r28) 2011; 38
Robins M (r40) 2016; 9783
r24
r27
r26
r29
r1
21626910 - Med Phys. 2011 Apr;38(4):1754-68
26286596 - BMC Med Imaging. 2015 Aug 19;15:32
22733888 - AJR Am J Roentgenol. 2012 Jul;199(1):8-18
26663036 - Acta Radiol. 2016 Sep;57(9):1079-88
26020436 - Radiology. 2015 Aug;276(2):465-78
23556902 - Med Phys. 2013 Apr;40(4):041908
22682262 - J Cardiovasc Comput Tomogr. 2012 May-Jun;6(3):200-4
27429998 - J Med Imaging (Bellingham). 2016 Jul;3(3):033501
26466107 - J Comput Assist Tomogr. 2016 Jan-Feb;40(1):96-101
26685831 - Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015 Dec;71(12 ):1201-8
25776521 - Phys Med Biol. 2015 Apr 7;60(7):2881-901
25751228 - Radiology. 2015 Jun;275(3):735-45
26496550 - AJR Am J Roentgenol. 2015 Nov;205(5):1026-37
24814177 - Radiology. 2014 Sep;272(3):749-56
23177187 - Eur J Radiol. 2013 Feb;82(2):275-80
23511193 - Invest Radiol. 2013 Aug;48(8):598-606
23835395 - J Appl Clin Med Phys. 2013 Jul 08;14(4):4347
26632058 - Med Phys. 2015 Dec;42(12 ):7034-42
26583761 - Radiology. 2016 Apr;279(1):297-305
25811326 - Radiology. 2015 Aug;276(2):499-506
23788715 - Radiology. 2013 Nov;269(2):511-8
25471973 - Med Phys. 2014 Dec;41(12):121913
24620913 - Radiology. 2014 Jul;272(1):154-63
11339744 - Med Phys. 2001 Apr;28(4):475-90
21978115 - Med Phys. 2011 Jul;38 Suppl 1:S25
21822785 - Eur Radiol. 2011 Dec;21(12 ):2521-6
21656331 - Eur Radiol. 2012 Jan;22(1):1-8
15248573 - Phys Med Biol. 2004 Jun 7;49(11):2209-18
27077382 - Radiology. 2016 Aug;280(2):436-45
23468886 - PLoS One. 2013;8(2):e56875
26741892 - Invest Radiol. 2016 May;51(5):331-9
21927791 - Eur Radiol. 2012 Feb;22(2):295-301
25725794 - Abdom Imaging. 2015 Jun;40(5):1050-9
22592621 - J Comput Assist Tomogr. 2012 May-Jun;36(3):339-46
25325156 - Phys Med Biol. 2014 Nov 7;59(21):6637-57
26233220 - Med Phys. 2015 Aug;42(8):4941-53
22316498 - Phys Med. 2012 Apr;28(2):94-108
25170546 - Radiology. 2014 Dec;273(3):793-800
25186395 - Med Phys. 2014 Sep;41(9):091908
References_xml – ident: r22
  doi: 10.1148/radiol.2015150849
– ident: r36
  doi: 10.1088/0031-9155/59/21/6637
– ident: r38
  doi: 10.1148/radiol.14131928
– ident: r3
  doi: 10.1097/RLI.0b013e3182899104
– ident: r7
  doi: 10.1016/j.jcct.2012.04.008
– ident: r25
  doi: 10.1007/s00330-011-2227-y
– ident: r6
  doi: 10.1120/jacmp.v14i4.4347
– ident: r8
  doi: 10.1007/s00330-011-2169-4
– ident: r43
  doi: 10.1186/s12880-015-0075-y
– ident: r24
  doi: 10.1016/j.ejrad.2012.10.021
– ident: r32
  doi: 10.1118/1.4893497
– ident: r18
  doi: 10.1097/RCT.0000000000000313
– ident: r33
– ident: r26
  doi: 10.2214/AJR.14.14185
– ident: r29
  doi: 10.1117/1.JMI.3.3.033501
– ident: r21
  doi: 10.1148/radiol.2016151281
– volume: 38
  issue: 1
  year: 2011
  ident: r28
  publication-title: Med Phys
– ident: r39
  doi: 10.1148/radiol.13122349
– ident: r41
  doi: 10.1118/1.4935530
– ident: r12
  doi: 10.1118/1.4794498
– ident: r13
  doi: 10.6009/jjrt.2015_JSRT_71.12.1201
– volume: 9783
  start-page: 97835X
  volume-title: Proceedings of SPIE: medical imaging 2016—physics of medical imaging
  year: 2016
  ident: r40
– ident: r42
  doi: 10.1118/1.3560428
– ident: r15
  doi: 10.1177/0284185115617347
– ident: r1
  doi: 10.2214/AJR.11.7421
– volume: 51
  start-page: 331
  issue: 5
  year: 2016
  ident: r17
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000243
– ident: r23
  doi: 10.1148/radiol.14132381
– ident: r44
  doi: 10.1148/radiol.15142047
– ident: r35
  doi: 10.1088/0031-9155/49/11/007
– ident: r2
  doi: 10.1016/j.ejmp.2012.01.003
– ident: r10
  doi: 10.1148/radiol.15142005
– ident: r11
  doi: 10.1118/1.4923172
– ident: r4
  doi: 10.1118/1.4901670
– ident: r31
  doi: 10.1117/12.2008378
– ident: r19
  doi: 10.1007/s00261-015-0384-1
– ident: r37
  doi: 10.1148/radiol.14140676
– ident: r27
– volume: 9783
  start-page: 978328
  volume-title: Proceedings of SPIE: medical imaging 2016—physics of medical imaging
  year: 2016
  ident: r30
– ident: r34
  doi: 10.1118/1.1358303
– ident: r20
  doi: 10.1148/radiol.2015141991
– ident: r5
  doi: 10.1007/s00330-011-2271-7
– ident: r14
  doi: 10.1371/journal.pone.0056875
– ident: r9
  doi: 10.1097/RCT.0b013e31825586c0
– ident: r16
  doi: 10.1088/0031-9155/60/7/2881
– reference: 23511193 - Invest Radiol. 2013 Aug;48(8):598-606
– reference: 22733888 - AJR Am J Roentgenol. 2012 Jul;199(1):8-18
– reference: 26233220 - Med Phys. 2015 Aug;42(8):4941-53
– reference: 27077382 - Radiology. 2016 Aug;280(2):436-45
– reference: 15248573 - Phys Med Biol. 2004 Jun 7;49(11):2209-18
– reference: 24814177 - Radiology. 2014 Sep;272(3):749-56
– reference: 21978115 - Med Phys. 2011 Jul;38 Suppl 1:S25
– reference: 21927791 - Eur Radiol. 2012 Feb;22(2):295-301
– reference: 25325156 - Phys Med Biol. 2014 Nov 7;59(21):6637-57
– reference: 22682262 - J Cardiovasc Comput Tomogr. 2012 May-Jun;6(3):200-4
– reference: 25751228 - Radiology. 2015 Jun;275(3):735-45
– reference: 26685831 - Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015 Dec;71(12 ):1201-8
– reference: 25471973 - Med Phys. 2014 Dec;41(12):121913
– reference: 23835395 - J Appl Clin Med Phys. 2013 Jul 08;14(4):4347
– reference: 26286596 - BMC Med Imaging. 2015 Aug 19;15:32
– reference: 26741892 - Invest Radiol. 2016 May;51(5):331-9
– reference: 26466107 - J Comput Assist Tomogr. 2016 Jan-Feb;40(1):96-101
– reference: 21656331 - Eur Radiol. 2012 Jan;22(1):1-8
– reference: 23468886 - PLoS One. 2013;8(2):e56875
– reference: 21626910 - Med Phys. 2011 Apr;38(4):1754-68
– reference: 25725794 - Abdom Imaging. 2015 Jun;40(5):1050-9
– reference: 26632058 - Med Phys. 2015 Dec;42(12 ):7034-42
– reference: 11339744 - Med Phys. 2001 Apr;28(4):475-90
– reference: 23177187 - Eur J Radiol. 2013 Feb;82(2):275-80
– reference: 25186395 - Med Phys. 2014 Sep;41(9):091908
– reference: 26496550 - AJR Am J Roentgenol. 2015 Nov;205(5):1026-37
– reference: 23788715 - Radiology. 2013 Nov;269(2):511-8
– reference: 22592621 - J Comput Assist Tomogr. 2012 May-Jun;36(3):339-46
– reference: 25170546 - Radiology. 2014 Dec;273(3):793-800
– reference: 25776521 - Phys Med Biol. 2015 Apr 7;60(7):2881-901
– reference: 26663036 - Acta Radiol. 2016 Sep;57(9):1079-88
– reference: 23556902 - Med Phys. 2013 Apr;40(4):041908
– reference: 27429998 - J Med Imaging (Bellingham). 2016 Jul;3(3):033501
– reference: 26020436 - Radiology. 2015 Aug;276(2):465-78
– reference: 22316498 - Phys Med. 2012 Apr;28(2):94-108
– reference: 24620913 - Radiology. 2014 Jul;272(1):154-63
– reference: 26583761 - Radiology. 2016 Apr;279(1):297-305
– reference: 21822785 - Eur Radiol. 2011 Dec;21(12 ):2521-6
– reference: 25811326 - Radiology. 2015 Aug;276(2):499-506
SSID ssj0014587
Score 2.5459385
Snippet Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 777
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Colorectal Neoplasms - pathology
Female
Humans
Liver - diagnostic imaging
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - secondary
Male
Middle Aged
Multidetector Computed Tomography - methods
Phantoms, Imaging
Prospective Studies
Radiation Dosage
Radiographic Image Interpretation, Computer-Assisted - methods
Title Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model–based Iterative Reconstruction Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/28170300
https://www.proquest.com/docview/1866297149
https://www.ncbi.nlm.nih.gov/pmc/articles/5702911
UnpaywallVersion submittedVersion
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwEDdTJ4F4AAYMimA6JJ6g6ZI6cRLeykbVwVZN1SqNp8ixnS1amlRtKlSe-A58Qz4Jd0naTSBAe7QS_5N_9p19d79j7A3KPBQScWChMmpbbmJ6VsyFtngiuAmUMj2H4p1PRmI4cT-de-dbzFnHwlRO-ypOu3k27ebpZeVbOZuq_bWfGN7g7V5I0bzbwkP1u8W2J6PT_peafpFbgVsl86BsrZbDHa-xZKLWvz-XOi3I3EAUMY5fsTLfkEV_KJj32b1lPpOrrzLLbgidwUM2Xg-39jW56i7LuKu-_cbkeKv5PGIPGhUU-vWnHbZl8sfs7kljZH9yZ6dmNIYigTExF9DSwWGxMDAmnteqKHMNdHO95p-FfnZRzNPycgpYOJriOQWjIl2YDhAD1lwuyg6QsaCGeqdq4tCQDaOmCl9Rh3iOIXhhuJoVRPyZExF5fgHH5D0Cx4ae9hYgS6jihnVVu5jDwdl7GKRk9zcaPkh1Baf1AxONi_xOllgJKBaG8kvh3CkDXPbz-w-S4RqOKmZp7OKvU3rKJoOPZwdDq0kdYSnXsUsLEZbEJtQOgg1B57tCcTyuROJ5modKxKi3ciGUIyQPNaopiTEyduw4lLbGM4zvslZe5OY5AxMG0g7JfmlrVyoVBJ7wuQwDN4l9n-s2s9cgilTDq07pPbKojvkOohp30TXu2uztpsqsJhX518-v18iMcOuTPUfmplguIuIq7IU-3nHb7FkN2U1zPSJe5LbdZu82GP5_Xy9u9fdL1sIFMa9QKyvjPbyPHH3ea3bjLzdGPpE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwEDdTJ4F4GAwYKwJ0SDxB0yV1_vJWNqoObdVUrdJ4ihzb2aKlSdWmQuWJ78A35JNwF6fdBAK0RyvxP_ln39l39zvG3qLMQyGRhBYqo7blprpnJdxXFk99rkMpdc-heOfTkT-cuJ8vvIst5qxjYWqnfZlk3SKfdovsqvatnE3lwdpPDG_wdi-iaN5t30P1u8W2J6Oz_hdDv8it0K2TeVC2VsvhjtdYMlHrP5gLlZVkbiCKGCeoWZlvyaI_FMyH7MGymInVV5Hnt4TO4BEbr4drfE2uu8sq6cpvvzE53mk-j9lOo4JC33zaZVu6eMLunzZG9qf3dg2jMZQpjIm5gJYOjsqFhjHxvNZFUSigm-sN_yz088tynlVXU8DC8RTPKRiV2UJ3gBiw5mJRdYCMBQbqnbqJI002DEMVvqIO8RxD8MJwNSuJ-LMgIvLiEk7IewROND3tLUBUUMcNq7p2OYfD8w8wyMjurxV8FPIazswDE42L_E6WWAkoFobyS-HcKQNc_vP7D5LhCo5rZmns4q9TesYmg0_nh0OrSR1hSdexKwsRliY6Ug6CDUEXuL7keFz5qecpHkk_Qb2V-750fMEjhWpKqrVIHDuJhK3wDON7rFWUhd5noKNQ2BHZL23lCinD0PMDLqLQTZMg4KrN7DWIYtnwqlN6jzw2Md9hbHAX3-Cuzd5tqswMqci_fn6zRmaMW5_sOaLQ5XIRE1dhLwrwjttmzw1kN831iHiR23abvd9g-P99vbjT3y9ZCxdEv0KtrEpeN_vwF8WHPZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Radiation+Dose+Reduction+and+Reconstruction+Algorithm+on+Image+Noise%2C+Contrast%2C+Resolution%2C+and+Detectability+of+Subtle+Hypoattenuating+Liver+Lesions+at+Multidetector+CT%3A+Filtered+Back+Projection+versus+a+Commercial+Model%E2%80%93based+Iterative+Reconstruction+Algorithm&rft.jtitle=Radiology&rft.au=Solomon%2C+Justin&rft.au=Marin%2C+Daniele&rft.au=Roy+Choudhury%2C+Kingshuk&rft.au=Patel%2C+Bhavik&rft.date=2017-09-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=284&rft.issue=3&rft.spage=777&rft.epage=787&rft_id=info:doi/10.1148%2Fradiol.2017161736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2017161736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon