Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model–based Iterative Reconstruction Algorithm
Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospe...
Saved in:
| Published in | Radiology Vol. 284; no. 3; pp. 777 - 787 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.09.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0033-8419 1527-1315 1527-1315 |
| DOI | 10.1148/radiol.2017161736 |
Cover
| Abstract | Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies.
RSNA, 2017 Online supplemental material is available for this article. |
|---|---|
| AbstractList | Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies.
RSNA, 2017 Online supplemental material is available for this article. Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article.Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article. |
| Author | Solomon, Justin Roy Choudhury, Kingshuk Samei, Ehsan Patel, Bhavik Marin, Daniele |
| Author_xml | – sequence: 1 givenname: Justin surname: Solomon fullname: Solomon, Justin organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705 – sequence: 2 givenname: Daniele surname: Marin fullname: Marin, Daniele organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705 – sequence: 3 givenname: Kingshuk surname: Roy Choudhury fullname: Roy Choudhury, Kingshuk organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705 – sequence: 4 givenname: Bhavik surname: Patel fullname: Patel, Bhavik organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705 – sequence: 5 givenname: Ehsan surname: Samei fullname: Samei, Ehsan organization: From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28170300$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFksFu1DAURQMqotPChh0b5CWLSfGLM07CrkxbOtIUUCnryLFfBhcnHmynaHb8A3_Il-CZDCAhASvrWffcd63ro-Sgtz0myVOgJwB5-cIJpa05ySgUwKFg_H4ygVlWpMBgdpBMKGUsLXOoDpMj728phXxWFg-Tw6yEgjJKJ_eenLctykBsS66jmwja9uTMeiTXqAa5G0Wv4iRt74PbX52alXU6fOxIHBadWCF5Y7XHKZnbPjjhwzQi3pphK5_uLM4wxE2i0UaHzXbh-6EJBsnlZm1FCNgPcXu_Ikt9h44s0UfSExHI1WCCVjvaOjK_eUkutAnoUJFXQn4i75y9xTFXJP0QoRij69BJLQy5sgrN96_fGuEjsYhg3HOHf33So-RBK4zHx_vzOPlwcX4zv0yXb18v5qfLVOZAQ5qBahusFEjMOMMi55LRnPJ2NlOskryBijHOJXDBKpXlWYsoGqBNJagqyoIdJ9noO_RrsfkijKnXTnfCbWqg9bbgeiy4_l1whJ6P0NrZzwP6UHfaSzRG9GgHX0PJeVYVkFdR-mwvHZoO1S_zn-VHQTEKpLPeO2xrqcPuB8QGtflnCviD_H_yH8p23Ig |
| CitedBy_id | crossref_primary_10_1148_radiol_211838 crossref_primary_10_3390_jcm12144718 crossref_primary_10_1177_02841851211070119 crossref_primary_10_2214_AJR_17_19102 crossref_primary_10_1117_1_JMI_9_5_055501 crossref_primary_10_1148_radiol_2019191422 crossref_primary_10_2214_AJR_19_22332 crossref_primary_10_1016_j_crad_2017_09_006 crossref_primary_10_1097_RCT_0000000000000789 crossref_primary_10_3390_ijms25052569 crossref_primary_10_1002_mp_13763 crossref_primary_10_1007_s10278_024_01303_7 crossref_primary_10_1148_rg_2018180041 crossref_primary_10_1007_s00330_021_08380_0 crossref_primary_10_1016_j_ejrad_2023_110981 crossref_primary_10_3389_fonc_2021_757973 crossref_primary_10_1259_bjr_20180546 crossref_primary_10_1016_j_ejmp_2021_05_025 crossref_primary_10_1007_s00330_017_5159_3 crossref_primary_10_1117_1_JMI_4_3_031213 crossref_primary_10_1016_j_acra_2022_11_008 crossref_primary_10_2214_AJR_22_28407 crossref_primary_10_1007_s00330_021_07952_4 crossref_primary_10_1007_s00330_017_5113_4 crossref_primary_10_1088_1361_6560_ac65d4 crossref_primary_10_1007_s00247_018_4217_6 crossref_primary_10_1002_mp_13353 crossref_primary_10_1259_bjr_20210601 crossref_primary_10_1007_s00261_019_02150_9 crossref_primary_10_1259_bjr_20170632 crossref_primary_10_1007_s40134_022_00399_5 crossref_primary_10_1371_journal_pone_0232688 crossref_primary_10_1002_mp_14319 crossref_primary_10_3233_XST_230333 crossref_primary_10_1088_1361_6560_ab1a45 crossref_primary_10_1088_1361_6560_abe760 crossref_primary_10_1016_j_ejrad_2021_109808 crossref_primary_10_1259_bjr_20220915 crossref_primary_10_1088_1361_6498_ace729 crossref_primary_10_1186_s41747_024_00486_6 crossref_primary_10_1002_mp_17064 crossref_primary_10_1016_j_crad_2020_10_011 crossref_primary_10_2214_AJR_22_27806 crossref_primary_10_1177_0284185118809544 crossref_primary_10_52668_kjar_2022_00136 crossref_primary_10_32628_IJSRST24116181 crossref_primary_10_1007_s00330_022_09206_3 crossref_primary_10_1097_RCT_0000000000000960 crossref_primary_10_1002_mp_17422 crossref_primary_10_1186_s13244_024_01888_1 crossref_primary_10_1016_j_radphyschem_2022_110739 crossref_primary_10_1016_j_ejrad_2020_109487 crossref_primary_10_1007_s10278_024_01080_3 crossref_primary_10_1016_j_acra_2025_03_001 crossref_primary_10_1007_s10278_021_00531_5 crossref_primary_10_1051_radiopro_2023013 crossref_primary_10_1148_radiol_211931 crossref_primary_10_1371_journal_pone_0180302 crossref_primary_10_1007_s00330_018_5654_1 crossref_primary_10_1148_radiol_2018181657 crossref_primary_10_1148_radiol_230803 crossref_primary_10_1016_j_flowmeasinst_2021_101917 crossref_primary_10_1016_j_clinimag_2022_10_016 crossref_primary_10_1148_radiol_2018180125 crossref_primary_10_1016_j_jvcir_2019_102607 crossref_primary_10_1007_s10140_021_02012_2 crossref_primary_10_1038_s41598_018_36045_4 crossref_primary_10_1016_j_ejmp_2020_04_020 crossref_primary_10_1093_rpd_ncy153 crossref_primary_10_3390_s23042233 crossref_primary_10_1097_HP_0000000000000997 crossref_primary_10_1002_mp_14657 crossref_primary_10_1007_s00330_021_08185_1 crossref_primary_10_1016_j_ejmp_2020_06_004 crossref_primary_10_1016_j_ejrad_2023_111267 crossref_primary_10_3348_kjr_2021_0683 crossref_primary_10_1055_s_0044_1781470 crossref_primary_10_1002_acm2_14069 crossref_primary_10_3348_kjr_2018_0715 crossref_primary_10_1007_s00261_023_03846_9 crossref_primary_10_3390_diagnostics10121072 crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1360 crossref_primary_10_1016_j_ejmp_2024_103365 crossref_primary_10_1259_bjr_20180137 |
| Cites_doi | 10.1148/radiol.2015150849 10.1088/0031-9155/59/21/6637 10.1148/radiol.14131928 10.1097/RLI.0b013e3182899104 10.1016/j.jcct.2012.04.008 10.1007/s00330-011-2227-y 10.1120/jacmp.v14i4.4347 10.1007/s00330-011-2169-4 10.1186/s12880-015-0075-y 10.1016/j.ejrad.2012.10.021 10.1118/1.4893497 10.1097/RCT.0000000000000313 10.2214/AJR.14.14185 10.1117/1.JMI.3.3.033501 10.1148/radiol.2016151281 10.1148/radiol.13122349 10.1118/1.4935530 10.1118/1.4794498 10.6009/jjrt.2015_JSRT_71.12.1201 10.1118/1.3560428 10.1177/0284185115617347 10.2214/AJR.11.7421 10.1097/RLI.0000000000000243 10.1148/radiol.14132381 10.1148/radiol.15142047 10.1088/0031-9155/49/11/007 10.1016/j.ejmp.2012.01.003 10.1148/radiol.15142005 10.1118/1.4923172 10.1118/1.4901670 10.1117/12.2008378 10.1007/s00261-015-0384-1 10.1148/radiol.14140676 10.1118/1.1358303 10.1148/radiol.2015141991 10.1007/s00330-011-2271-7 10.1371/journal.pone.0056875 10.1097/RCT.0b013e31825586c0 10.1088/0031-9155/60/7/2881 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1148/radiol.2017161736 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-1315 |
| EndPage | 787 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5702911 28170300 10_1148_radiol_2017161736 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB001838 |
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP ACRZS AFOSN CGR CUY CVF ECM EIF NPM ZKG 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c410t-21dfbe9d1ce263e746c30406f55d39c6b193366c16a39d242feeab10b9a0d7873 |
| IEDL.DBID | UNPAY |
| ISSN | 0033-8419 1527-1315 |
| IngestDate | Wed Oct 29 11:21:34 EDT 2025 Wed Oct 01 14:58:26 EDT 2025 Thu Apr 03 06:57:01 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Wed Oct 01 04:01:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-21dfbe9d1ce263e746c30406f55d39c6b193366c16a39d242feeab10b9a0d7873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5702911 |
| PMID | 28170300 |
| PQID | 1866297149 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1148_radiol_2017161736 proquest_miscellaneous_1866297149 pubmed_primary_28170300 crossref_citationtrail_10_1148_radiol_2017161736 crossref_primary_10_1148_radiol_2017161736 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-00 2017-Sep 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Radiology |
| PublicationTitleAlternate | Radiology |
| PublicationYear | 2017 |
| References | r2 r3 r4 r5 r6 r7 Ellmann S (r17) 2016; 51 r8 r9 r10 r32 r31 r12 r34 r11 r33 r14 r36 r13 r35 r16 Solomon J (r30) 2016; 9783 r38 r15 r37 r18 r39 r19 r41 r21 r43 r20 r42 r23 r22 r44 r25 Hernandez-Giron I (r28) 2011; 38 Robins M (r40) 2016; 9783 r24 r27 r26 r29 r1 21626910 - Med Phys. 2011 Apr;38(4):1754-68 26286596 - BMC Med Imaging. 2015 Aug 19;15:32 22733888 - AJR Am J Roentgenol. 2012 Jul;199(1):8-18 26663036 - Acta Radiol. 2016 Sep;57(9):1079-88 26020436 - Radiology. 2015 Aug;276(2):465-78 23556902 - Med Phys. 2013 Apr;40(4):041908 22682262 - J Cardiovasc Comput Tomogr. 2012 May-Jun;6(3):200-4 27429998 - J Med Imaging (Bellingham). 2016 Jul;3(3):033501 26466107 - J Comput Assist Tomogr. 2016 Jan-Feb;40(1):96-101 26685831 - Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015 Dec;71(12 ):1201-8 25776521 - Phys Med Biol. 2015 Apr 7;60(7):2881-901 25751228 - Radiology. 2015 Jun;275(3):735-45 26496550 - AJR Am J Roentgenol. 2015 Nov;205(5):1026-37 24814177 - Radiology. 2014 Sep;272(3):749-56 23177187 - Eur J Radiol. 2013 Feb;82(2):275-80 23511193 - Invest Radiol. 2013 Aug;48(8):598-606 23835395 - J Appl Clin Med Phys. 2013 Jul 08;14(4):4347 26632058 - Med Phys. 2015 Dec;42(12 ):7034-42 26583761 - Radiology. 2016 Apr;279(1):297-305 25811326 - Radiology. 2015 Aug;276(2):499-506 23788715 - Radiology. 2013 Nov;269(2):511-8 25471973 - Med Phys. 2014 Dec;41(12):121913 24620913 - Radiology. 2014 Jul;272(1):154-63 11339744 - Med Phys. 2001 Apr;28(4):475-90 21978115 - Med Phys. 2011 Jul;38 Suppl 1:S25 21822785 - Eur Radiol. 2011 Dec;21(12 ):2521-6 21656331 - Eur Radiol. 2012 Jan;22(1):1-8 15248573 - Phys Med Biol. 2004 Jun 7;49(11):2209-18 27077382 - Radiology. 2016 Aug;280(2):436-45 23468886 - PLoS One. 2013;8(2):e56875 26741892 - Invest Radiol. 2016 May;51(5):331-9 21927791 - Eur Radiol. 2012 Feb;22(2):295-301 25725794 - Abdom Imaging. 2015 Jun;40(5):1050-9 22592621 - J Comput Assist Tomogr. 2012 May-Jun;36(3):339-46 25325156 - Phys Med Biol. 2014 Nov 7;59(21):6637-57 26233220 - Med Phys. 2015 Aug;42(8):4941-53 22316498 - Phys Med. 2012 Apr;28(2):94-108 25170546 - Radiology. 2014 Dec;273(3):793-800 25186395 - Med Phys. 2014 Sep;41(9):091908 |
| References_xml | – ident: r22 doi: 10.1148/radiol.2015150849 – ident: r36 doi: 10.1088/0031-9155/59/21/6637 – ident: r38 doi: 10.1148/radiol.14131928 – ident: r3 doi: 10.1097/RLI.0b013e3182899104 – ident: r7 doi: 10.1016/j.jcct.2012.04.008 – ident: r25 doi: 10.1007/s00330-011-2227-y – ident: r6 doi: 10.1120/jacmp.v14i4.4347 – ident: r8 doi: 10.1007/s00330-011-2169-4 – ident: r43 doi: 10.1186/s12880-015-0075-y – ident: r24 doi: 10.1016/j.ejrad.2012.10.021 – ident: r32 doi: 10.1118/1.4893497 – ident: r18 doi: 10.1097/RCT.0000000000000313 – ident: r33 – ident: r26 doi: 10.2214/AJR.14.14185 – ident: r29 doi: 10.1117/1.JMI.3.3.033501 – ident: r21 doi: 10.1148/radiol.2016151281 – volume: 38 issue: 1 year: 2011 ident: r28 publication-title: Med Phys – ident: r39 doi: 10.1148/radiol.13122349 – ident: r41 doi: 10.1118/1.4935530 – ident: r12 doi: 10.1118/1.4794498 – ident: r13 doi: 10.6009/jjrt.2015_JSRT_71.12.1201 – volume: 9783 start-page: 97835X volume-title: Proceedings of SPIE: medical imaging 2016—physics of medical imaging year: 2016 ident: r40 – ident: r42 doi: 10.1118/1.3560428 – ident: r15 doi: 10.1177/0284185115617347 – ident: r1 doi: 10.2214/AJR.11.7421 – volume: 51 start-page: 331 issue: 5 year: 2016 ident: r17 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000243 – ident: r23 doi: 10.1148/radiol.14132381 – ident: r44 doi: 10.1148/radiol.15142047 – ident: r35 doi: 10.1088/0031-9155/49/11/007 – ident: r2 doi: 10.1016/j.ejmp.2012.01.003 – ident: r10 doi: 10.1148/radiol.15142005 – ident: r11 doi: 10.1118/1.4923172 – ident: r4 doi: 10.1118/1.4901670 – ident: r31 doi: 10.1117/12.2008378 – ident: r19 doi: 10.1007/s00261-015-0384-1 – ident: r37 doi: 10.1148/radiol.14140676 – ident: r27 – volume: 9783 start-page: 978328 volume-title: Proceedings of SPIE: medical imaging 2016—physics of medical imaging year: 2016 ident: r30 – ident: r34 doi: 10.1118/1.1358303 – ident: r20 doi: 10.1148/radiol.2015141991 – ident: r5 doi: 10.1007/s00330-011-2271-7 – ident: r14 doi: 10.1371/journal.pone.0056875 – ident: r9 doi: 10.1097/RCT.0b013e31825586c0 – ident: r16 doi: 10.1088/0031-9155/60/7/2881 – reference: 23511193 - Invest Radiol. 2013 Aug;48(8):598-606 – reference: 22733888 - AJR Am J Roentgenol. 2012 Jul;199(1):8-18 – reference: 26233220 - Med Phys. 2015 Aug;42(8):4941-53 – reference: 27077382 - Radiology. 2016 Aug;280(2):436-45 – reference: 15248573 - Phys Med Biol. 2004 Jun 7;49(11):2209-18 – reference: 24814177 - Radiology. 2014 Sep;272(3):749-56 – reference: 21978115 - Med Phys. 2011 Jul;38 Suppl 1:S25 – reference: 21927791 - Eur Radiol. 2012 Feb;22(2):295-301 – reference: 25325156 - Phys Med Biol. 2014 Nov 7;59(21):6637-57 – reference: 22682262 - J Cardiovasc Comput Tomogr. 2012 May-Jun;6(3):200-4 – reference: 25751228 - Radiology. 2015 Jun;275(3):735-45 – reference: 26685831 - Nihon Hoshasen Gijutsu Gakkai Zasshi. 2015 Dec;71(12 ):1201-8 – reference: 25471973 - Med Phys. 2014 Dec;41(12):121913 – reference: 23835395 - J Appl Clin Med Phys. 2013 Jul 08;14(4):4347 – reference: 26286596 - BMC Med Imaging. 2015 Aug 19;15:32 – reference: 26741892 - Invest Radiol. 2016 May;51(5):331-9 – reference: 26466107 - J Comput Assist Tomogr. 2016 Jan-Feb;40(1):96-101 – reference: 21656331 - Eur Radiol. 2012 Jan;22(1):1-8 – reference: 23468886 - PLoS One. 2013;8(2):e56875 – reference: 21626910 - Med Phys. 2011 Apr;38(4):1754-68 – reference: 25725794 - Abdom Imaging. 2015 Jun;40(5):1050-9 – reference: 26632058 - Med Phys. 2015 Dec;42(12 ):7034-42 – reference: 11339744 - Med Phys. 2001 Apr;28(4):475-90 – reference: 23177187 - Eur J Radiol. 2013 Feb;82(2):275-80 – reference: 25186395 - Med Phys. 2014 Sep;41(9):091908 – reference: 26496550 - AJR Am J Roentgenol. 2015 Nov;205(5):1026-37 – reference: 23788715 - Radiology. 2013 Nov;269(2):511-8 – reference: 22592621 - J Comput Assist Tomogr. 2012 May-Jun;36(3):339-46 – reference: 25170546 - Radiology. 2014 Dec;273(3):793-800 – reference: 25776521 - Phys Med Biol. 2015 Apr 7;60(7):2881-901 – reference: 26663036 - Acta Radiol. 2016 Sep;57(9):1079-88 – reference: 23556902 - Med Phys. 2013 Apr;40(4):041908 – reference: 27429998 - J Med Imaging (Bellingham). 2016 Jul;3(3):033501 – reference: 26020436 - Radiology. 2015 Aug;276(2):465-78 – reference: 22316498 - Phys Med. 2012 Apr;28(2):94-108 – reference: 24620913 - Radiology. 2014 Jul;272(1):154-63 – reference: 26583761 - Radiology. 2016 Apr;279(1):297-305 – reference: 21822785 - Eur Radiol. 2011 Dec;21(12 ):2521-6 – reference: 25811326 - Radiology. 2015 Aug;276(2):499-506 |
| SSID | ssj0014587 |
| Score | 2.5459385 |
| Snippet | Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle... |
| SourceID | unpaywall proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 777 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Colorectal Neoplasms - pathology Female Humans Liver - diagnostic imaging Liver Neoplasms - diagnostic imaging Liver Neoplasms - secondary Male Middle Aged Multidetector Computed Tomography - methods Phantoms, Imaging Prospective Studies Radiation Dosage Radiographic Image Interpretation, Computer-Assisted - methods |
| Title | Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model–based Iterative Reconstruction Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28170300 https://www.proquest.com/docview/1866297149 https://www.ncbi.nlm.nih.gov/pmc/articles/5702911 |
| UnpaywallVersion | submittedVersion |
| Volume | 284 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1527-1315 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0014587 issn: 0033-8419 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwEDdTJ4F4AAYMimA6JJ6g6ZI6cRLeykbVwVZN1SqNp8ixnS1amlRtKlSe-A58Qz4Jd0naTSBAe7QS_5N_9p19d79j7A3KPBQScWChMmpbbmJ6VsyFtngiuAmUMj2H4p1PRmI4cT-de-dbzFnHwlRO-ypOu3k27ebpZeVbOZuq_bWfGN7g7V5I0bzbwkP1u8W2J6PT_peafpFbgVsl86BsrZbDHa-xZKLWvz-XOi3I3EAUMY5fsTLfkEV_KJj32b1lPpOrrzLLbgidwUM2Xg-39jW56i7LuKu-_cbkeKv5PGIPGhUU-vWnHbZl8sfs7kljZH9yZ6dmNIYigTExF9DSwWGxMDAmnteqKHMNdHO95p-FfnZRzNPycgpYOJriOQWjIl2YDhAD1lwuyg6QsaCGeqdq4tCQDaOmCl9Rh3iOIXhhuJoVRPyZExF5fgHH5D0Cx4ae9hYgS6jihnVVu5jDwdl7GKRk9zcaPkh1Baf1AxONi_xOllgJKBaG8kvh3CkDXPbz-w-S4RqOKmZp7OKvU3rKJoOPZwdDq0kdYSnXsUsLEZbEJtQOgg1B57tCcTyuROJ5modKxKi3ciGUIyQPNaopiTEyduw4lLbGM4zvslZe5OY5AxMG0g7JfmlrVyoVBJ7wuQwDN4l9n-s2s9cgilTDq07pPbKojvkOohp30TXu2uztpsqsJhX518-v18iMcOuTPUfmplguIuIq7IU-3nHb7FkN2U1zPSJe5LbdZu82GP5_Xy9u9fdL1sIFMa9QKyvjPbyPHH3ea3bjLzdGPpE |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwEDdTJ4F4GAwYKwJ0SDxB0yV1_vJWNqoObdVUrdJ4ihzb2aKlSdWmQuWJ78A35JNwF6fdBAK0RyvxP_ln39l39zvG3qLMQyGRhBYqo7blprpnJdxXFk99rkMpdc-heOfTkT-cuJ8vvIst5qxjYWqnfZlk3SKfdovsqvatnE3lwdpPDG_wdi-iaN5t30P1u8W2J6Oz_hdDv8it0K2TeVC2VsvhjtdYMlHrP5gLlZVkbiCKGCeoWZlvyaI_FMyH7MGymInVV5Hnt4TO4BEbr4drfE2uu8sq6cpvvzE53mk-j9lOo4JC33zaZVu6eMLunzZG9qf3dg2jMZQpjIm5gJYOjsqFhjHxvNZFUSigm-sN_yz088tynlVXU8DC8RTPKRiV2UJ3gBiw5mJRdYCMBQbqnbqJI002DEMVvqIO8RxD8MJwNSuJ-LMgIvLiEk7IewROND3tLUBUUMcNq7p2OYfD8w8wyMjurxV8FPIazswDE42L_E6WWAkoFobyS-HcKQNc_vP7D5LhCo5rZmns4q9TesYmg0_nh0OrSR1hSdexKwsRliY6Ug6CDUEXuL7keFz5qecpHkk_Qb2V-750fMEjhWpKqrVIHDuJhK3wDON7rFWUhd5noKNQ2BHZL23lCinD0PMDLqLQTZMg4KrN7DWIYtnwqlN6jzw2Md9hbHAX3-Cuzd5tqswMqci_fn6zRmaMW5_sOaLQ5XIRE1dhLwrwjttmzw1kN831iHiR23abvd9g-P99vbjT3y9ZCxdEv0KtrEpeN_vwF8WHPZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Radiation+Dose+Reduction+and+Reconstruction+Algorithm+on+Image+Noise%2C+Contrast%2C+Resolution%2C+and+Detectability+of+Subtle+Hypoattenuating+Liver+Lesions+at+Multidetector+CT%3A+Filtered+Back+Projection+versus+a+Commercial+Model%E2%80%93based+Iterative+Reconstruction+Algorithm&rft.jtitle=Radiology&rft.au=Solomon%2C+Justin&rft.au=Marin%2C+Daniele&rft.au=Roy+Choudhury%2C+Kingshuk&rft.au=Patel%2C+Bhavik&rft.date=2017-09-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=284&rft.issue=3&rft.spage=777&rft.epage=787&rft_id=info:doi/10.1148%2Fradiol.2017161736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2017161736 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |