Hybrid thermal and optical modeling of a solar air heater with a non-flat plate absorber

In this study, we developed a model based on a SAH. We can enhance air turbulence by creating a non-flat plate on a SAH absorber using a ratio of (e/H = 6), thereby increasing the solar collector’s convective heat transfer coefficient, Nusselt number, and thermal performance. A validation experiment...

Full description

Saved in:
Bibliographic Details
Published inEnergy reports Vol. 9; pp. 6102 - 6113
Main Authors Maarof, Hiwa Abdlla, Shamsi, Mohammad, Younas, Mohammad, Rezakazemi, Mashallah
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2352-4847
2352-4847
DOI10.1016/j.egyr.2023.05.227

Cover

Abstract In this study, we developed a model based on a SAH. We can enhance air turbulence by creating a non-flat plate on a SAH absorber using a ratio of (e/H = 6), thereby increasing the solar collector’s convective heat transfer coefficient, Nusselt number, and thermal performance. A validation experiment was conducted to determine the accuracy of the developed model. Ray tracing and FEM simulation techniques were used to analyze the optical and thermal properties of the system simultaneously. Various operational and structural conditions were applied to analyze the system’s thermal performance under inhomogeneous heat flux on the absorber’s surface. The data demonstrate that non-flat plate surfaces contribute to wall-induced turbulence, which affects air temperatures. Outcomes demonstrate that mass flow rate excessively affects thermal efficiency, useful energy, and outlet temperatures. Thus, when the inlet air flow rate increases from 0.02 to 0.06 kg/s, the average hot air temperature at the SAC outlet during the daytime reduces from 55.6 to 47.82 °C, applicable heat energy increase from 646.5 to 970 W, and the average thermal efficiency increased from 28.8 to 54.7 %. Instantaneous non-flat absorber plates increased average thermal efficiency and heat transfer coefficient (h) to 9.10 and 27.24 % compared with flat plate absorbers (e/H = 1) at the same mass flow rate (0.05 kg/s). The highest Nusselt number increase observed during the day is 141.5% for non-flat plate compared to flat plates.
AbstractList In this study, we developed a model based on a SAH. We can enhance air turbulence by creating a non-flat plate on a SAH absorber using a ratio of (e/H = 6), thereby increasing the solar collector’s convective heat transfer coefficient, Nusselt number, and thermal performance. A validation experiment was conducted to determine the accuracy of the developed model. Ray tracing and FEM simulation techniques were used to analyze the optical and thermal properties of the system simultaneously. Various operational and structural conditions were applied to analyze the system’s thermal performance under inhomogeneous heat flux on the absorber’s surface. The data demonstrate that non-flat plate surfaces contribute to wall-induced turbulence, which affects air temperatures. Outcomes demonstrate that mass flow rate excessively affects thermal efficiency, useful energy, and outlet temperatures. Thus, when the inlet air flow rate increases from 0.02 to 0.06 kg/s, the average hot air temperature at the SAC outlet during the daytime reduces from 55.6 to 47.82 °C, applicable heat energy increase from 646.5 to 970 W, and the average thermal efficiency increased from 28.8 to 54.7 %. Instantaneous non-flat absorber plates increased average thermal efficiency and heat transfer coefficient (h) to 9.10 and 27.24 % compared with flat plate absorbers (e/H = 1) at the same mass flow rate (0.05 kg/s). The highest Nusselt number increase observed during the day is 141.5% for non-flat plate compared to flat plates.
Author Shamsi, Mohammad
Rezakazemi, Mashallah
Maarof, Hiwa Abdlla
Younas, Mohammad
Author_xml – sequence: 1
  givenname: Hiwa Abdlla
  surname: Maarof
  fullname: Maarof, Hiwa Abdlla
  organization: Department of Physics, College of Science, University of Halabja, Halabja, Kurdistan Region, Iraq
– sequence: 2
  givenname: Mohammad
  surname: Shamsi
  fullname: Shamsi, Mohammad
  organization: Process Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
– sequence: 3
  givenname: Mohammad
  surname: Younas
  fullname: Younas, Mohammad
  organization: Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan
– sequence: 4
  givenname: Mashallah
  orcidid: 0000-0002-9980-6682
  surname: Rezakazemi
  fullname: Rezakazemi, Mashallah
  email: mashalah.rezakazemi@gmail.com
  organization: Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
BookMark eNp9kMtqHDEQRYWxIY7tH8hKP9Cdklr9Am-CcWKDIRsvshPVUmlGQ09rqBYx8_fRZEIIWVgLqbhwLqrzUVwuaSEhPimoFaju866mzZFrDbqpoa217i_EtW5aXZnB9Jf_zB_E3bruAECNGkzXXIsfT8eJo5d5S7zHWeLiZTrk6Mq8T57muGxkChLlmmZkiZHlljATy7eYtyUvn6nCjFkeykUSpzXxRHwrrgLOK939eW_E69fH14en6uX7t-eHLy-VMwpypbxz4IG0DxBaNF0IjW9Bj50jmMpB1zcweARDypWshdG1ozGKtNKuuRHP51qfcGcPHPfIR5sw2t9B4o1FLuvMZEPfkxmBSBtvTDfggN04jJPvNCnUunTpc5fjtK5M4W-fAnsybXf2ZNqeTFtobTFdoOE_yMWMOaYlM8b5ffT-jFLx8zMS29VFWhz5yORy2SC-h_8CfLKcUA
CitedBy_id crossref_primary_10_1007_s10973_024_12900_7
crossref_primary_10_1016_j_cep_2024_110080
crossref_primary_10_1016_j_ijft_2024_100561
crossref_primary_10_1016_j_heliyon_2024_e37888
crossref_primary_10_1016_j_est_2025_116245
crossref_primary_10_1016_j_est_2024_111522
crossref_primary_10_1063_5_0226491
Cites_doi 10.1080/01430750.2019.1653970
10.1016/j.applthermaleng.2017.11.129
10.1016/j.energy.2019.116437
10.1016/j.renene.2021.01.109
10.1016/j.est.2021.102627
10.1016/j.renene.2020.03.095
10.1016/j.psep.2020.11.020
10.1016/j.ijthermalsci.2021.107013
10.1016/j.solener.2020.01.091
10.1016/j.renene.2020.05.148
10.1016/j.renene.2020.10.114
10.1016/j.renene.2020.11.137
10.1016/j.eswa.2009.02.073
10.1016/j.csite.2020.100672
10.56286/ntujre.v3i1.347
10.1016/j.jclepro.2019.119672
10.1016/j.renene.2019.06.137
10.1016/j.solener.2017.12.036
10.1016/j.renene.2020.04.017
10.1016/j.ijmecsci.2021.106607
10.53898/josse2022243
10.1016/j.ijthermalsci.2021.107068
10.1016/j.renene.2021.02.113
10.1016/j.renene.2021.05.072
10.1080/08916152.2020.1838670
10.1080/01430750.2019.1636862
10.1016/j.renene.2019.11.112
10.1016/j.aej.2021.06.031
10.1016/j.renene.2021.01.086
10.1016/j.renene.2021.03.042
10.1016/j.energy.2020.119047
10.1016/j.renene.2021.03.068
10.1016/j.egyr.2020.11.177
10.1080/15567036.2020.1833110
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2023.05.227
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 6113
ExternalDocumentID oai_doaj_org_article_f77e490ee24d4468a8a6989bd62e1a22
10_1016_j_egyr_2023_05_227
S2352484723009708
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c410t-1dcc0d0e2df0f5a46ff3d50296ce0bbbbac7308da04e1cce0509c59441e212c3
IEDL.DBID DOA
ISSN 2352-4847
IngestDate Wed Aug 27 01:22:19 EDT 2025
Sun Jul 06 05:09:31 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Sat Jun 14 16:53:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Coupled optical and thermal modeling
Non-flat plate absorber
Thermal efficiency
3D CFD modeling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-1dcc0d0e2df0f5a46ff3d50296ce0bbbbac7308da04e1cce0509c59441e212c3
ORCID 0000-0002-9980-6682
OpenAccessLink https://doaj.org/article/f77e490ee24d4468a8a6989bd62e1a22
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_f77e490ee24d4468a8a6989bd62e1a22
crossref_primary_10_1016_j_egyr_2023_05_227
crossref_citationtrail_10_1016_j_egyr_2023_05_227
elsevier_sciencedirect_doi_10_1016_j_egyr_2023_05_227
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Matheswaran, Arjunan, Somasundaram (b28) 2018; 161
Singh, Vardhan (b36) 2021; 163
Hassan, Abo-Elfadl, El-Dosoky (b17) 2020; 151
Kumar, Layek (b24) 2022; 35
Avargani, Maarof, Zendehboudi (b6) 2023
Avargani, Norton, Rahimi (b7) 2021; 176
Singh, Agarwal, Saxena (b34) 2021; 39
Mohammed, Eleiwi, Kamil (b29) 2021; 43
Zhu, Zhang (b38) 2021; 215
Singh, Chaurasiya, Negi, Chander, Nemś, Negi (b35) 2020; 154
Kumar, Goel (b22) 2021; 172
Avargani, Zendehboudi, Rahimi, Soltani (b8) 2022; 203
Benhamza, Boubekri, Atia, El Ferouali, Hadibi, Arıcı, Abdenouri (b10) 2021; 169
Parsa, Saffar-Avval, Hajmohammadi (b30) 2021; 205
Abo-Elfadl, Hassan, El-Dosoky (b1) 2020; 198
Singh (b33) 2020; 145
Jouybari, Lundström (b18) 2020; 190
Kuhe, Ibrahim, Tuleun, Akanji (b21) 2022; 43
Abuşka (b3) 2018; 131
Afshari, Sözen, Khanlari, Tuncer, Şirin (b4) 2020; 158
Yıldız, Çalış, Gürel, Ceylan (b37) 2020; 14
Khanlari, Sözen, Şirin, Tuncer, Gungor (b19) 2020; 251
Kumar, Kumar, Thapa, Sethi, Fekete, Singh (b23) 2022; 61
Dong, Liu, Xiao, Liu, Liu (b12) 2021; 172
Azad, Bhuvad, Lanjewar (b9) 2021; 167
Esen, Ozgen, Esen, Sengur (b14) 2009; 36
Ameri, Sardari, Farzan (b5) 2021; 171
Bensaci, Moummi, de la Flor, Jara, Rincon-Casado, Ruiz-Pardo (b11) 2020; 155
Mahmood, Maarof, Abu-Bakr, Soud (b27) 2022; 2
Saravanan, Murugan, Reddy, Ranjit, Elumalai, Kumar, Sree (b32) 2021; 168
Maarof (b26) 2022; 3
Patel, Shukla, Raval, Mudgal (b31) 2022; 43
Farhan, Ali, Ahmed (b15) 2021; 169
Luan, Phu (b25) 2020; 21
ElGamal, Kishk, Al-Rejaie, ElMasry (b13) 2021; 167
Khatri, Goswami, Anas, Sharma, Agarwal, Aggarwal (b20) 2020; 6
Abo-Elfadl, Yousef, Hassan (b2) 2021; 149
Gürel, Yıldız, Ergün, Ceylan (b16) 2022; 6
Saravanan (10.1016/j.egyr.2023.05.227_b32) 2021; 168
Kuhe (10.1016/j.egyr.2023.05.227_b21) 2022; 43
Kumar (10.1016/j.egyr.2023.05.227_b23) 2022; 61
Mohammed (10.1016/j.egyr.2023.05.227_b29) 2021; 43
Singh (10.1016/j.egyr.2023.05.227_b35) 2020; 154
Abuşka (10.1016/j.egyr.2023.05.227_b3) 2018; 131
Bensaci (10.1016/j.egyr.2023.05.227_b11) 2020; 155
Singh (10.1016/j.egyr.2023.05.227_b33) 2020; 145
Hassan (10.1016/j.egyr.2023.05.227_b17) 2020; 151
Maarof (10.1016/j.egyr.2023.05.227_b26) 2022; 3
Kumar (10.1016/j.egyr.2023.05.227_b24) 2022; 35
Patel (10.1016/j.egyr.2023.05.227_b31) 2022; 43
Benhamza (10.1016/j.egyr.2023.05.227_b10) 2021; 169
Matheswaran (10.1016/j.egyr.2023.05.227_b28) 2018; 161
Khanlari (10.1016/j.egyr.2023.05.227_b19) 2020; 251
Esen (10.1016/j.egyr.2023.05.227_b14) 2009; 36
Mahmood (10.1016/j.egyr.2023.05.227_b27) 2022; 2
Singh (10.1016/j.egyr.2023.05.227_b36) 2021; 163
Singh (10.1016/j.egyr.2023.05.227_b34) 2021; 39
Yıldız (10.1016/j.egyr.2023.05.227_b37) 2020; 14
Abo-Elfadl (10.1016/j.egyr.2023.05.227_b2) 2021; 149
Afshari (10.1016/j.egyr.2023.05.227_b4) 2020; 158
Abo-Elfadl (10.1016/j.egyr.2023.05.227_b1) 2020; 198
Azad (10.1016/j.egyr.2023.05.227_b9) 2021; 167
Khatri (10.1016/j.egyr.2023.05.227_b20) 2020; 6
Ameri (10.1016/j.egyr.2023.05.227_b5) 2021; 171
Dong (10.1016/j.egyr.2023.05.227_b12) 2021; 172
Kumar (10.1016/j.egyr.2023.05.227_b22) 2021; 172
Avargani (10.1016/j.egyr.2023.05.227_b8) 2022; 203
Zhu (10.1016/j.egyr.2023.05.227_b38) 2021; 215
ElGamal (10.1016/j.egyr.2023.05.227_b13) 2021; 167
Avargani (10.1016/j.egyr.2023.05.227_b6) 2023
Farhan (10.1016/j.egyr.2023.05.227_b15) 2021; 169
Jouybari (10.1016/j.egyr.2023.05.227_b18) 2020; 190
Parsa (10.1016/j.egyr.2023.05.227_b30) 2021; 205
Avargani (10.1016/j.egyr.2023.05.227_b7) 2021; 176
Luan (10.1016/j.egyr.2023.05.227_b25) 2020; 21
Gürel (10.1016/j.egyr.2023.05.227_b16) 2022; 6
References_xml – volume: 6
  start-page: 627
  year: 2020
  end-page: 633
  ident: b20
  article-title: Performance evaluation of an arched plate solar air heater with porous aluminum wire mesh cylindrical fins
  publication-title: Energy Rep.
– volume: 14
  year: 2020
  ident: b37
  article-title: Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels
  publication-title: Environ. Nanotechnol. Monit. Manag.
– volume: 39
  year: 2021
  ident: b34
  article-title: Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater
  publication-title: J. Energy Storage
– volume: 3
  start-page: 33
  year: 2022
  end-page: 43
  ident: b26
  article-title: Influence of micro-controller-based single axis solar tracker system on solar panel’s performance: Case study
  publication-title: NTU J. Renew. Energy
– volume: 149
  start-page: 451
  year: 2021
  end-page: 464
  ident: b2
  article-title: Energy, exergy, and enviroeconomic assessment of double and single pass solar air heaters having a new design absorber
  publication-title: Process Safety Environ. Protect.
– volume: 215
  year: 2021
  ident: b38
  article-title: A numerical study on performance optimization of a micro-heat pipe arrays-based solar air heater
  publication-title: Energy
– volume: 43
  start-page: 531
  year: 2022
  end-page: 538
  ident: b21
  article-title: Effect of air mass flow rate on the performance of a mixed-mode active solar crop dryer with a transpired air heater
  publication-title: Int. J. Ambient Energy
– volume: 161
  start-page: 25
  year: 2018
  end-page: 37
  ident: b28
  article-title: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis
  publication-title: Sol. Energy
– volume: 2
  start-page: 25
  year: 2022
  end-page: 36
  ident: b27
  article-title: Energy-performance concrete roof slabs in hot climates using air ventilation and false ceiling with baffles shape: A numerical and modeling study
  publication-title: J. Stud. Sci. Eng.
– volume: 163
  start-page: 1963
  year: 2021
  end-page: 1972
  ident: b36
  article-title: Experimental investigation of an evacuated tube collector solar air heater with helical inserts
  publication-title: Renew. Energy
– year: 2023
  ident: b6
  article-title: Multiphysics cfd modeling to assess performance of a perforated multi-plate indirect solar dryer with a V-corrugated absorber surface
  publication-title: Appl. Therm. Eng.
– volume: 251
  year: 2020
  ident: b19
  article-title: Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater
  publication-title: J. Clean. Prod.
– volume: 145
  start-page: 1361
  year: 2020
  end-page: 1387
  ident: b33
  article-title: Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater
  publication-title: Renew. Energy
– volume: 169
  start-page: 1190
  year: 2021
  end-page: 1209
  ident: b10
  article-title: Multi-objective design optimization of solar air heater for food drying based on energy exergy and improvement potential
  publication-title: Renew. Energy
– volume: 131
  start-page: 115
  year: 2018
  end-page: 124
  ident: b3
  article-title: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface
  publication-title: Appl. Therm. Eng.
– volume: 171
  start-page: 391
  year: 2021
  end-page: 400
  ident: b5
  article-title: Thermal performance of a V-Corrugated serpentine solar air heater with integrated PCM: A comparative experimental study
  publication-title: Renew. Energy
– volume: 6
  year: 2022
  ident: b16
  article-title: Exergetic, economic and environmental analysis of temperature controlled solar air heater system
  publication-title: Clean. Eng. Technol.
– volume: 176
  start-page: 11
  year: 2021
  end-page: 24
  ident: b7
  article-title: An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications
  publication-title: Renew. Energy
– volume: 203
  year: 2022
  ident: b8
  article-title: Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles
  publication-title: Appl. Therm. Eng.
– volume: 155
  start-page: 1231
  year: 2020
  end-page: 1244
  ident: b11
  article-title: Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions
  publication-title: Renew. Energy
– volume: 43
  start-page: 2319
  year: 2021
  end-page: 2338
  ident: b29
  article-title: Experimental investigation of thermal performance of improvement a solar air heater with metallic fiber
  publication-title: Energy Sour. A Recov. Util. Environ. Effects
– volume: 43
  start-page: 197
  year: 2022
  end-page: 205
  ident: b31
  article-title: Experimental evaluation of the performance of latent heat storage unit integrated with solar air heater
  publication-title: Int. J. Ambient Energy
– volume: 36
  start-page: 11240
  year: 2009
  end-page: 11248
  ident: b14
  article-title: Artificial neural network and wavelet neural network approaches for modelling of a solar air heater
  publication-title: Expert Syst. Appl.
– volume: 168
  year: 2021
  ident: b32
  article-title: Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate
  publication-title: Int. J. Therm. Sci.
– volume: 151
  start-page: 1055
  year: 2020
  end-page: 1066
  ident: b17
  article-title: An experimental investigation of the performance of new design of solar air heater (tubular)
  publication-title: Renew. Energy
– volume: 158
  start-page: 297
  year: 2020
  end-page: 310
  ident: b4
  article-title: Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater
  publication-title: Renew. Energy
– volume: 35
  start-page: 239
  year: 2022
  end-page: 257
  ident: b24
  article-title: Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs
  publication-title: Exp. Heat Transfer
– volume: 169
  start-page: 1373
  year: 2021
  end-page: 1385
  ident: b15
  article-title: Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts
  publication-title: Renew. Energy
– volume: 21
  year: 2020
  ident: b25
  article-title: Thermohydraulic correlations and exergy analysis of a solar air heater duct with inclined baffles
  publication-title: Case Stud. Therm. Eng.
– volume: 167
  start-page: 676
  year: 2021
  end-page: 684
  ident: b13
  article-title: Incorporation of a solar tracking system for enhancing the performance of solar air heaters in drying apple slices
  publication-title: Renew. Energy
– volume: 205
  year: 2021
  ident: b30
  article-title: 3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles
  publication-title: Int. J. Mech. Sci.
– volume: 172
  start-page: 1267
  year: 2021
  end-page: 1278
  ident: b22
  article-title: Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses
  publication-title: Renew. Energy
– volume: 172
  start-page: 477
  year: 2021
  end-page: 487
  ident: b12
  article-title: A study on heat transfer enhancement for solar air heaters with ripple surface
  publication-title: Renew. Energy
– volume: 61
  start-page: 481
  year: 2022
  end-page: 491
  ident: b23
  article-title: Impact of artificial roughness variation on heat transfer and friction characteristics of solar air heating system
  publication-title: Alex. Eng. J.
– volume: 167
  year: 2021
  ident: b9
  article-title: Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach
  publication-title: Int. J. Therm. Sci.
– volume: 190
  year: 2020
  ident: b18
  article-title: Performance improvement of a solar air heater by covering the absorber plate with a thin porous material
  publication-title: Energy
– volume: 198
  start-page: 479
  year: 2020
  end-page: 489
  ident: b1
  article-title: Study of the performance of double pass solar air heater of a new designed absorber: An experimental work
  publication-title: Sol. Energy
– volume: 154
  start-page: 1327
  year: 2020
  end-page: 1345
  ident: b35
  article-title: Utilizing circular jet impingement to enhance thermal performance of solar air heater
  publication-title: Renew. Energy
– volume: 43
  start-page: 531
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b21
  article-title: Effect of air mass flow rate on the performance of a mixed-mode active solar crop dryer with a transpired air heater
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2019.1653970
– volume: 131
  start-page: 115
  year: 2018
  ident: 10.1016/j.egyr.2023.05.227_b3
  article-title: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.11.129
– volume: 190
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b18
  article-title: Performance improvement of a solar air heater by covering the absorber plate with a thin porous material
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116437
– volume: 169
  start-page: 1373
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b15
  article-title: Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.109
– volume: 39
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b34
  article-title: Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102627
– volume: 154
  start-page: 1327
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b35
  article-title: Utilizing circular jet impingement to enhance thermal performance of solar air heater
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.095
– volume: 14
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b37
  article-title: Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels
  publication-title: Environ. Nanotechnol. Monit. Manag.
– volume: 149
  start-page: 451
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b2
  article-title: Energy, exergy, and enviroeconomic assessment of double and single pass solar air heaters having a new design absorber
  publication-title: Process Safety Environ. Protect.
  doi: 10.1016/j.psep.2020.11.020
– volume: 167
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b9
  article-title: Study of solar air heater with discrete arc ribs geometry: Experimental and numerical approach
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107013
– volume: 198
  start-page: 479
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b1
  article-title: Study of the performance of double pass solar air heater of a new designed absorber: An experimental work
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.01.091
– volume: 158
  start-page: 297
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b4
  article-title: Effect of turbulator modifications on the thermal performance of cost-effective alternative solar air heater
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.148
– volume: 6
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b16
  article-title: Exergetic, economic and environmental analysis of temperature controlled solar air heater system
  publication-title: Clean. Eng. Technol.
– volume: 163
  start-page: 1963
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b36
  article-title: Experimental investigation of an evacuated tube collector solar air heater with helical inserts
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.10.114
– volume: 167
  start-page: 676
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b13
  article-title: Incorporation of a solar tracking system for enhancing the performance of solar air heaters in drying apple slices
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.137
– volume: 36
  start-page: 11240
  year: 2009
  ident: 10.1016/j.egyr.2023.05.227_b14
  article-title: Artificial neural network and wavelet neural network approaches for modelling of a solar air heater
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.073
– volume: 21
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b25
  article-title: Thermohydraulic correlations and exergy analysis of a solar air heater duct with inclined baffles
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2020.100672
– volume: 3
  start-page: 33
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b26
  article-title: Influence of micro-controller-based single axis solar tracker system on solar panel’s performance: Case study
  publication-title: NTU J. Renew. Energy
  doi: 10.56286/ntujre.v3i1.347
– year: 2023
  ident: 10.1016/j.egyr.2023.05.227_b6
  article-title: Multiphysics cfd modeling to assess performance of a perforated multi-plate indirect solar dryer with a V-corrugated absorber surface
  publication-title: Appl. Therm. Eng.
– volume: 251
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b19
  article-title: Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119672
– volume: 145
  start-page: 1361
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b33
  article-title: Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.137
– volume: 161
  start-page: 25
  year: 2018
  ident: 10.1016/j.egyr.2023.05.227_b28
  article-title: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.12.036
– volume: 155
  start-page: 1231
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b11
  article-title: Numerical and experimental study of the heat transfer and hydraulic performance of solar air heaters with different baffle positions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.04.017
– volume: 205
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b30
  article-title: 3D simulation and parametric optimization of a solar air heater with a novel staggered cuboid baffles
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106607
– volume: 2
  start-page: 25
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b27
  article-title: Energy-performance concrete roof slabs in hot climates using air ventilation and false ceiling with baffles shape: A numerical and modeling study
  publication-title: J. Stud. Sci. Eng.
  doi: 10.53898/josse2022243
– volume: 168
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b32
  article-title: Thermo-hydraulic performance of a solar air heater with staggered C-shape finned absorber plate
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107068
– volume: 171
  start-page: 391
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b5
  article-title: Thermal performance of a V-Corrugated serpentine solar air heater with integrated PCM: A comparative experimental study
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.113
– volume: 176
  start-page: 11
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b7
  article-title: An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.05.072
– volume: 35
  start-page: 239
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b24
  article-title: Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs
  publication-title: Exp. Heat Transfer
  doi: 10.1080/08916152.2020.1838670
– volume: 43
  start-page: 197
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b31
  article-title: Experimental evaluation of the performance of latent heat storage unit integrated with solar air heater
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2019.1636862
– volume: 151
  start-page: 1055
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b17
  article-title: An experimental investigation of the performance of new design of solar air heater (tubular)
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.11.112
– volume: 61
  start-page: 481
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b23
  article-title: Impact of artificial roughness variation on heat transfer and friction characteristics of solar air heating system
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.06.031
– volume: 169
  start-page: 1190
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b10
  article-title: Multi-objective design optimization of solar air heater for food drying based on energy exergy and improvement potential
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.086
– volume: 203
  year: 2022
  ident: 10.1016/j.egyr.2023.05.227_b8
  article-title: Comprehensive energy, exergy, enviro-exergy, and thermo-hydraulic performance assessment of a flat plate solar air heater with different obstacles
  publication-title: Appl. Therm. Eng.
– volume: 172
  start-page: 477
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b12
  article-title: A study on heat transfer enhancement for solar air heaters with ripple surface
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.03.042
– volume: 215
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b38
  article-title: A numerical study on performance optimization of a micro-heat pipe arrays-based solar air heater
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119047
– volume: 172
  start-page: 1267
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b22
  article-title: Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.03.068
– volume: 6
  start-page: 627
  year: 2020
  ident: 10.1016/j.egyr.2023.05.227_b20
  article-title: Performance evaluation of an arched plate solar air heater with porous aluminum wire mesh cylindrical fins
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.177
– volume: 43
  start-page: 2319
  year: 2021
  ident: 10.1016/j.egyr.2023.05.227_b29
  article-title: Experimental investigation of thermal performance of improvement a solar air heater with metallic fiber
  publication-title: Energy Sour. A Recov. Util. Environ. Effects
  doi: 10.1080/15567036.2020.1833110
SSID ssj0001920463
Score 2.3225632
Snippet In this study, we developed a model based on a SAH. We can enhance air turbulence by creating a non-flat plate on a SAH absorber using a ratio of (e/H = 6),...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 6102
SubjectTerms 3D CFD modeling
Coupled optical and thermal modeling
Non-flat plate absorber
Thermal efficiency
Title Hybrid thermal and optical modeling of a solar air heater with a non-flat plate absorber
URI https://dx.doi.org/10.1016/j.egyr.2023.05.227
https://doaj.org/article/f77e490ee24d4468a8a6989bd62e1a22
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbsnBcJ01GQFQVA1ORull-nFGr0lZpGPrvuUvSKlNZyBBFjnOOLhffd9b5O8YeCGJbRMpC6eCFTqITeeKjCAq9TZ4j4oA62-IjG3_q92k67ZT6opywhh64UdxTxN66kAAoDEMXFGyp5qELmYLEqnr2lYXsBFPzBrcQFVZdWS5VQuMc3O6YaZK74GtLZKBqQLSdikrKdLxSTd7fcU4dhzM6ZSctUuTPzRuesSNYnrPpeEtbrDjBtm-8a5eBr9b1ejSvi9qgJ-KryC3fUMzK7azkNN1CyWnFFdsx3BdxYSu-xhNw6zar0kF5wSajt8nrWLTFEYTXiaxEEryXQYIKUcbU6izGQUilKjIP0uFhPf68ebBSQ-KxDZGBTwtEP4Deyg8uWQ8HhCvGo5Qhcy7LlZN6AOBQKF47OYxJ7vywz5KdboxvicOpfsXC7DLE5ob0aUifRqYG9dlnj_tn1g1txsHeL6TyfU-ivK4b0BBMawjmL0Pos3T3wUyLHhpUgKJmBwa__o_Bb9gxiWzyXG5Zryp_4A7RSuXua8P8BZ5W5Yo
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+thermal+and+optical+modeling+of+a+solar+air+heater+with+a+non-flat+plate+absorber&rft.jtitle=Energy+reports&rft.au=Hiwa+Abdlla+Maarof&rft.au=Mohammad+Shamsi&rft.au=Mohammad+Younas&rft.au=Mashallah+Rezakazemi&rft.date=2023-12-01&rft.pub=Elsevier&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=9&rft.spage=6102&rft.epage=6113&rft_id=info:doi/10.1016%2Fj.egyr.2023.05.227&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f77e490ee24d4468a8a6989bd62e1a22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon