Prediction of stability constants of metal–ligand complexes by machine learning for the design of ligands with optimal metal ion selectivity

The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding s...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 160; no. 4
Main Authors Zahariev, Federico, Ash, Tamalika, Karunaratne, Erandika, Stender, Erin, Gordon, Mark S., Windus, Theresa L., Pérez García, Marilú
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.01.2024
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1520-9032
1089-7690
DOI10.1063/5.0176000

Cover

Abstract The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.
AbstractList The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.
The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.
The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. Here we showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.
The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.
Author Gordon, Mark S.
Pérez García, Marilú
Windus, Theresa L.
Zahariev, Federico
Stender, Erin
Karunaratne, Erandika
Ash, Tamalika
Author_xml – sequence: 1
  givenname: Federico
  surname: Zahariev
  fullname: Zahariev, Federico
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
– sequence: 2
  givenname: Tamalika
  surname: Ash
  fullname: Ash, Tamalika
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
– sequence: 3
  givenname: Erandika
  surname: Karunaratne
  fullname: Karunaratne, Erandika
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
– sequence: 4
  givenname: Erin
  surname: Stender
  fullname: Stender, Erin
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
– sequence: 5
  givenname: Mark S.
  surname: Gordon
  fullname: Gordon, Mark S.
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
– sequence: 6
  givenname: Theresa L.
  surname: Windus
  fullname: Windus, Theresa L.
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
– sequence: 7
  givenname: Marilú
  surname: Pérez García
  fullname: Pérez García, Marilú
  organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38284991$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2305609$$D View this record in Osti.gov
BookMark eNp9kc9uFSEUxompsbfVhS9giG7U5LbA_GFmaRr_JU10oWvCwOFeGgZGYKx35xO48Q19ErmdWxeN6YoAv_Od73znBB354AGhp5ScUdJW580ZobwlhDxAK0q6fs3bnhyhFSGMrvuWtMfoJKWrAlDO6kfouOpYV_c9XaFfnyNoq7INHgeDU5aDdTbvsAq-XHxO--cRsnR_fv52diO9Ln_j5OAHJDzs8CjV1nrADmT01m-wCRHnLWANyW5uVJeyhK9t3uIwZTtKt2jifd8EDoqD76XtY_TQSJfgyeE8RV_fvf1y8WF9-en9x4s3l2tVU5LXtNHQENDMcAbaMGCEMzUYqIdeEtOaVsNQ8ZpVMAyFo1wDMYPmlekUq2h1il4vurOf5O5aOiemWGzFnaBE7EMVjTiEWuDnCxxStiIpm0FtSz6-uBasIk1L-gK9XKAphm8zpCxGmxQ4Jz2EOQnW057XDeN1QV_cQa_CHH2Z94ZqSNc2XaGeHah5GEH_83e7uwKcL4CKIaUIRhRncr_JHKV1_x3k1Z2K-4Y-JJRuVe-B_wI_fMfr
CODEN JCPSA6
CitedBy_id crossref_primary_10_1002_ejic_202400064
crossref_primary_10_1021_acs_jmedchem_4c02084
Cites_doi 10.1021/ja00067a094
10.1038/s41598-020-71255-9
10.1016/j.cherd.2016.10.014
10.1016/j.gca.2007.06.005
10.2116/analsci.20SAR11
10.1038/nrd3139
10.1016/j.gca.2011.02.027
10.1021/acs.inorgchem.5b00264
10.1126/science.aau7628
10.1039/C9CP06569E
10.1021/ci00057a005
10.1126/sciadv.aay8647
10.1038/s41467-020-17801-5
10.1021/ba-1971-0100.ch003
10.1039/dt9780000577
10.1080/07366299.2022.2160646
10.1021/ic0202920
10.1021/ci00067a005
10.1021/jacsau.2c00671
10.1021/ja00298a041
10.1021/ci00007a012
10.1107/S0567739476001551
10.1039/dt9760001096
10.1021/ic50181a009
10.1039/FT9918702995
10.1039/C2CC37776D
10.1016/j.hydromet.2012.02.007
10.1039/dt9780001438
10.3389/fmars.2019.00504
10.1093/nar/gkac956
10.1021/ci00062a008
10.1107/S2052520616003954
10.1016/j.clay.2020.105920
10.1021/acs.jcim.9b00237
10.1002/chem.201806443
10.1038/s41598-022-15300-9
10.18637/jss.v036.i11
10.3390/pr9071202
10.1016/j.seppur.2022.120882
10.1016/j.comptc.2013.12.003
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Ames Laboratory (AMES), Ames, IA (United States)
CorporateAuthor_xml – name: Ames Laboratory (AMES), Ames, IA (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1063/5.0176000
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database


MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID oai:osti.gov:2305609
2305609
38284991
10_1063_5_0176000
jcp
Genre Journal Article
GrantInformation_xml – fundername: National Energy Research Scientific Computing Center
  grantid: ERCAP0017177; ERCAP0020144; and ERCAP0023063
  funderid: https://doi.org/10.13039/100017223
– fundername: Critical Materials Innovation Hub, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technology Office at the Ames National Laboratory
  grantid: Agreement Number DE-AC02-07CH11358
GroupedDBID ---
-DZ
-ET
-~X
123
2-P
29K
4.4
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
.GJ
0ZJ
186
2WC
3O-
41~
6TJ
9M8
AAYJJ
ABDPE
ABRJW
ABUFD
ACBNA
ADTOC
ADXHL
AETEA
AFFNX
AI.
EJD
H~9
MVM
NEUPN
NHB
OHT
P0-
QZG
RDFOP
ROL
T9H
UBC
UNPAY
UQL
VH1
VOH
X7L
XJT
XOL
ZCG
ZGI
ZXP
ID FETCH-LOGICAL-c410t-15de50ed2f72edf2e2072cbfe4b9a0f6f6deb37423ebb0ed17de0fbd73f8c2313
IEDL.DBID UNPAY
ISSN 0021-9606
1089-7690
1520-9032
IngestDate Sun Oct 26 04:07:12 EDT 2025
Mon Feb 03 04:56:52 EST 2025
Fri Jul 11 00:08:23 EDT 2025
Sun Jun 29 12:51:01 EDT 2025
Wed Feb 19 02:09:48 EST 2025
Thu Apr 24 23:00:44 EDT 2025
Tue Jul 01 01:12:39 EDT 2025
Fri Jun 21 00:13:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Published under an exclusive license by AIP Publishing.
2024 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c410t-15de50ed2f72edf2e2072cbfe4b9a0f6f6deb37423ebb0ed17de0fbd73f8c2313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-07CH11358; AC02-05CH11231; ERCAP0017177; ERCAP0020144; ERCAP0023063
USDOE Office of Science (SC)
IS-J-11,261
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Materials & Manufacturing Technologies Office (AMMTO)
ORCID 0000-0003-2371-1318
0000-0002-7736-7770
0000-0001-6065-3167
0000-0002-3223-3576
0009-0009-3288-1176
0000-0003-2338-1814
0000-0001-9987-117X
0000000277367770
000000019987117X
0000000323711318
0000000160653167
0000000232233576
0009000932881176
0000000323381814
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/2305609
PMID 38284991
PQID 2919508658
PQPubID 2050685
PageCount 13
ParticipantIDs unpaywall_primary_10_1063_5_0176000
osti_scitechconnect_2305609
crossref_citationtrail_10_1063_5_0176000
proquest_miscellaneous_2919745274
crossref_primary_10_1063_5_0176000
pubmed_primary_38284991
scitation_primary_10_1063_5_0176000
proquest_journals_2919508658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-28
PublicationDateYYYYMMDD 2024-01-28
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2024
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
References Anichini, Fabbrizzi, Paoletti, Clay (c37); 1978
Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu, Zaslavsky, Zhang, Bolton (c55) 2023; 51
Okamura, Hirayama (c26) 2021; 37
Stack, Hou, Raymond (c38) 1993; 115
Groom, Bruno, Lightfoot, Ward (c50) 2016; 72
Johnson, Driscoll, Damron, Ivanov, Jansone-Popova (c58) 2023; 3
Cheisson, Schelter (c15) 2019; 363
Dewulf, Riaño, Binnemans (c28) 2022; 290
Austin, Sahinidis, Trahan (c33) 2016; 116
Young, Hay (c42) 2013; 49
El Maangar, Theisen, Penisson, Zemb, Gabriel (c25) 2020; 22
García Alejo, De Silva, Liu, Windus, Pérez García (c16) 2023; 41
Hay, Firman (c39) 2002; 41
Healy, Ivanov, Karslyan, Bryantsev, Moyer, Jansone-Popova (c59) 2019; 25
McDougall, Hancock, Boeyens (c36); 1978
Moldoveanu, Papangelakis (c18) 2012; 117–118
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (c56) 2011; 12
Hancock, Marsicano (c5) 1978; 17
Hancock, Marsicano (c4); 1976
Dalby, Nourse, Hounshell, Gushurst, Grier, Leland, Laufer (c41) 1992; 32
Cram, Lein (c34) 1985; 107
Weininger (c52) 1988; 28
Borst, Smith, Finch, Estrade, Villanova-de-Benavent, Nason, Marquis, Horsburgh, Goodenough, Xu, Kynický, Geraki (c17) 2020; 11
Yang, Swanson, Jin, Coley, Eiden, Gao, Guzman-Perez, Hopper, Kelley, Mathea, Palmer, Settels, Jaakkola, Jensen, Barzilay (c46) 2019; 59
Feng, Onel, Council-Troche, Noble, Yoon, Morris (c20) 2021; 201
Schneider (c32) 2010; 9
Hay, Jia, Nadas (c40) 2014; 1028
Kursa, Rudnicki (c57) 2010; 36
Carbonaro, Atalay, Di Toro (c7) 2011; 75
Kanahashi, Urushihara, Yamaguchi (c14) 2022; 12
Marcus (c48) 1991; 87
Shannon (c47) 1976; 32
Nassar, Brainard, Gulley, Manley, Matos, Lederer, Bird, Pineault, Alonso, Gambogi, Fortier (c22) 2020; 6
Weininger, Weininger, Weininger (c53) 1989; 29
Vukovic, Hay, Bryantsev (c8) 2015; 54
Abbott, Löhr, Trethewy (c19) 2019; 6
Arrachart, Couturier, Dourdain, Levard, Pellet-Rostaing (c27) 2021; 9
Chaube, Goverapet Srinivasan, Rai (c10) 2020; 10
Weininger (c51) 1990; 30
Carbonaro, Di Toro (c6) 2007; 71
(2024012914304329700_c16) 2023; 41
(2024012914304329700_c31) 2007
(2024012914304329700_c28) 2022; 290
(2024012914304329700_c19) 2019; 6
Precup (2024012914304329700_c43) 2017
(2024012914304329700_c2) 2016
(2024012914304329700_c14) 2022; 12
(2024012914304329700_c3) 2020
(2024012914304329700_c48) 1991; 87
(2024012914304329700_c51) 1990; 30
(2024012914304329700_c18) 2012; 117–118
(2024012914304329700_c20) 2021; 201
(2024012914304329700_c7) 2011; 75
(2024012914304329700_c49) 1962
(2024012914304329700_c12) 2022
(2024012914304329700_c36); 1978
(2024012914304329700_c37); 1978
(2024012914304329700_c32) 2010; 9
(2024012914304329700_c46) 2019; 59
(2024012914304329700_c15) 2019; 363
(2024012914304329700_c52) 1988; 28
(2024012914304329700_c34) 1985; 107
(2024012914304329700_c29) 2009
(2024012914304329700_c10) 2020; 10
(2024012914304329700_c40) 2014; 1028
2024012914304329700_c54
(2024012914304329700_c8) 2015; 54
(2024012914304329700_c1) 1974
(2024012914304329700_c13) 2021
(2024012914304329700_c56) 2011; 12
(2024012914304329700_c59) 2019; 25
(2024012914304329700_c41) 1992; 32
(2024012914304329700_c11) 2021
(2024012914304329700_c25) 2020; 22
2024012914304329700_c21
(2024012914304329700_c27) 2021; 9
2024012914304329700_c24
(2024012914304329700_c33) 2016; 116
(2024012914304329700_c53) 1989; 29
(2024012914304329700_c57) 2010; 36
(2024012914304329700_c23) 2011
(2024012914304329700_c42) 2013; 49
(2024012914304329700_c5) 1978; 17
(2024012914304329700_c39) 2002; 41
(2024012914304329700_c50) 2016; 72
(2024012914304329700_c17) 2020; 11
(2024012914304329700_c26) 2021; 37
Busch (2024012914304329700_c35) 1971
(2024012914304329700_c38) 1993; 115
(2024012914304329700_c4); 1976
Balcan (2024012914304329700_c44) 2016
(2024012914304329700_c9) 2021
(2024012914304329700_c45) 2004
(2024012914304329700_c58) 2023; 3
(2024012914304329700_c22) 2020; 6
(2024012914304329700_c30) 2000
(2024012914304329700_c47) 1976; 32
(2024012914304329700_c6) 2007; 71
(2024012914304329700_c55) 2023; 51
References_xml – volume: 6
  start-page: 504
  year: 2019
  ident: c19
  article-title: Are clay minerals the primary control on the oceanic rare earth element budget?
  publication-title: Front. Mar. Sci.
– volume: 1978
  start-page: 577
  ident: c37
  article-title: A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(II) and zinc(II) complexes with some tetra-aza macrocyclic ligands in aqueous solution
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 115
  start-page: 6466
  year: 1993
  ident: c38
  article-title: Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: The role of entropy in enterobactin
  publication-title: J. Am. Chem. Soc.
– volume: 1976
  start-page: 1096
  ident: c4
  article-title: The chelate effect: A simple quantitative approach
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 29
  start-page: 97
  year: 1989
  ident: c53
  article-title: SMILES. 2. Algorithm for generation of unique SMILES notation
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 117–118
  start-page: 71
  year: 2012
  ident: c18
  article-title: Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism
  publication-title: Hydrometallurgy
– volume: 72
  start-page: 171
  year: 2016
  ident: c50
  article-title: The Cambridge structural database
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
– volume: 12
  start-page: 2825
  year: 2011
  ident: c56
  article-title: Scikit-Learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 116
  start-page: 2
  year: 2016
  ident: c33
  article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques
  publication-title: Chem. Eng. Res. Des.
– volume: 36
  start-page: 1
  year: 2010
  ident: c57
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Software
– volume: 1028
  start-page: 72
  year: 2014
  ident: c40
  article-title: Computer-aided design of host molecules for recognition of organic guests
  publication-title: Comput. Theor. Chem.
– volume: 59
  start-page: 3370
  year: 2019
  ident: c46
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J. Chem. Inf. Model.
– volume: 41
  start-page: 241
  year: 2023
  ident: c16
  article-title: Solvent phase optimizations improve correlations with experimental stability constants for aqueous lanthanide complexes
  publication-title: Solvent Extr. Ion Exch.
– volume: 37
  start-page: 119
  year: 2021
  ident: c26
  article-title: Recent progress in ionic liquid extraction for the separation of rare earth elements
  publication-title: Anal. Sci.
– volume: 10
  start-page: 14322
  year: 2020
  ident: c10
  article-title: Applied machine learning for predicting the lanthanide-ligand binding affinities
  publication-title: Sci. Rep.
– volume: 41
  start-page: 5502
  year: 2002
  ident: c39
  article-title: HostDesigner: A program for the de Novo structure-based design of molecular receptors with binding sites that complement metal ion guests
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 1354
  year: 2013
  ident: c42
  article-title: Structural design principles for self-assembled coordination polygons and polyhedra
  publication-title: Chem. Commun.
– volume: 9
  start-page: 273
  year: 2010
  ident: c32
  article-title: Virtual screening: An endless staircase?
  publication-title: Nat. Rev. Drug Discovery
– volume: 75
  start-page: 2499
  year: 2011
  ident: c7
  article-title: Linear free energy relationships for metal–ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms
  publication-title: Geochim. Cosmochim. Acta
– volume: 3
  start-page: 584
  year: 2023
  ident: c58
  article-title: Size selective ligand tug of war strategy to separate rare earth elements
  publication-title: JACS Au
– volume: 17
  start-page: 560
  year: 1978
  ident: c5
  article-title: Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms
  publication-title: Inorg. Chem.
– volume: 22
  start-page: 5449
  year: 2020
  ident: c25
  article-title: A microfluidic study of synergic liquid–liquid extraction of rare earth elements
  publication-title: Phys. Chem. Chem. Phys.
– volume: 201
  start-page: 105920
  year: 2021
  ident: c20
  article-title: A study of rare earth ion-adsorption clays: The speciation of rare earth elements on kaolinite at basic pH
  publication-title: Appl. Clay Sci.
– volume: 12
  start-page: 11159
  year: 2022
  ident: c14
  article-title: Machine learning-based analysis of overall stability constants of metal–ligand complexes
  publication-title: Sci. Rep.
– volume: 9
  start-page: 1202
  year: 2021
  ident: c27
  article-title: Recovery of rare earth elements (REEs) using ionic solvents
  publication-title: Processes
– volume: 32
  start-page: 751
  year: 1976
  ident: c47
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr., Sect. A
– volume: 30
  start-page: 237
  year: 1990
  ident: c51
  article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 25
  start-page: 6326
  year: 2019
  ident: c59
  article-title: Efficient separation of light lanthanides(III) by using bis-lactam phenanthroline ligands
  publication-title: Chem. - Eur. J.
– volume: 87
  start-page: 2995
  year: 1991
  ident: c48
  article-title: Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 1978
  start-page: 1438
  ident: c36
  article-title: Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings
  publication-title: J. Chem. Soc., Dalton Trans.
– volume: 54
  start-page: 3995
  year: 2015
  ident: c8
  article-title: Predicting stability constants for uranyl complexes using density functional theory
  publication-title: Inorg. Chem.
– volume: 107
  start-page: 3657
  year: 1985
  ident: c34
  article-title: Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 244
  year: 1992
  ident: c41
  article-title: Description of several chemical structure file formats used by computer programs developed at molecular design limited
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 28
  start-page: 31
  year: 1988
  ident: c52
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 363
  start-page: 489
  year: 2019
  ident: c15
  article-title: Rare earth elements: Mendeleev’s bane, modern Marvels
  publication-title: Science
– volume: 11
  start-page: 4386
  year: 2020
  ident: c17
  article-title: Adsorption of rare earth elements in regolith-hosted clay deposits
  publication-title: Nat. Commun.
– volume: 51
  start-page: D1373
  year: 2023
  ident: c55
  article-title: PubChem 2023 update
  publication-title: Nucleic Acids Res.
– volume: 71
  start-page: 3958
  year: 2007
  ident: c6
  article-title: Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms
  publication-title: Geochim. Cosmochim. Acta
– volume: 290
  start-page: 120882
  year: 2022
  ident: c28
  article-title: Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: eaay8647
  year: 2020
  ident: c22
  article-title: Evaluating the mineral commodity supply risk of the U.S. Manufacturing sector
  publication-title: Sci. Adv.
– volume: 115
  start-page: 6466
  year: 1993
  ident: 2024012914304329700_c38
  article-title: Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: The role of entropy in enterobactin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00067a094
– volume: 10
  start-page: 14322
  year: 2020
  ident: 2024012914304329700_c10
  article-title: Applied machine learning for predicting the lanthanide-ligand binding affinities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71255-9
– volume-title: HostDesigner
  year: 2021
  ident: 2024012914304329700_c11
– volume: 116
  start-page: 2
  year: 2016
  ident: 2024012914304329700_c33
  article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.10.014
– volume: 71
  start-page: 3958
  year: 2007
  ident: 2024012914304329700_c6
  article-title: Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2007.06.005
– volume: 37
  start-page: 119
  year: 2021
  ident: 2024012914304329700_c26
  article-title: Recent progress in ionic liquid extraction for the separation of rare earth elements
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.20SAR11
– volume: 9
  start-page: 273
  year: 2010
  ident: 2024012914304329700_c32
  article-title: Virtual screening: An endless staircase?
  publication-title: Nat. Rev. Drug Discovery
  doi: 10.1038/nrd3139
– volume: 75
  start-page: 2499
  year: 2011
  ident: 2024012914304329700_c7
  article-title: Linear free energy relationships for metal–ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.02.027
– volume: 54
  start-page: 3995
  year: 2015
  ident: 2024012914304329700_c8
  article-title: Predicting stability constants for uranyl complexes using density functional theory
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00264
– ident: 2024012914304329700_c24
– volume: 363
  start-page: 489
  year: 2019
  ident: 2024012914304329700_c15
  article-title: Rare earth elements: Mendeleev’s bane, modern Marvels
  publication-title: Science
  doi: 10.1126/science.aau7628
– volume: 22
  start-page: 5449
  year: 2020
  ident: 2024012914304329700_c25
  article-title: A microfluidic study of synergic liquid–liquid extraction of rare earth elements
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06569E
– start-page: 22
  volume-title: Computational Science in Lanthanide and Actinide Chemistry
  year: 2021
  ident: 2024012914304329700_c9
  article-title: Computational modeling of diphosphine oxide and diglycolamide ligand complexation to lanthanides and extraction from acidic media
– year: 2011
  ident: 2024012914304329700_c23
– volume: 28
  start-page: 31
  year: 1988
  ident: 2024012914304329700_c52
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00057a005
– volume: 6
  start-page: eaay8647
  year: 2020
  ident: 2024012914304329700_c22
  article-title: Evaluating the mineral commodity supply risk of the U.S. Manufacturing sector
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay8647
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2024012914304329700_c56
  article-title: Scikit-Learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 4386
  year: 2020
  ident: 2024012914304329700_c17
  article-title: Adsorption of rare earth elements in regolith-hosted clay deposits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17801-5
– start-page: 44
  volume-title: Bioinorganic Chemistry
  year: 1971
  ident: 2024012914304329700_c35
  article-title: Chemical foundations for the understanding of natural macrocyclic complexes
  doi: 10.1021/ba-1971-0100.ch003
– volume-title: LOGKPREDICT
  year: 2021
  ident: 2024012914304329700_c13
– volume: 1978
  start-page: 577
  ident: 2024012914304329700_c37
  article-title: A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(II) and zinc(II) complexes with some tetra-aza macrocyclic ligands in aqueous solution
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9780000577
– volume: 41
  start-page: 241
  year: 2023
  ident: 2024012914304329700_c16
  article-title: Solvent phase optimizations improve correlations with experimental stability constants for aqueous lanthanide complexes
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299.2022.2160646
– year: 2020
  ident: 2024012914304329700_c3
– volume: 41
  start-page: 5502
  year: 2002
  ident: 2024012914304329700_c39
  article-title: HostDesigner: A program for the de Novo structure-based design of molecular receptors with binding sites that complement metal ion guests
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0202920
– start-page: 70
  year: 2004
  ident: 2024012914304329700_c45
  article-title: Extensions of marginalized graph kernels
– start-page: 1263
  year: 2017
  ident: 2024012914304329700_c43
  article-title: Neural message passing for quantum chemistry
– volume: 30
  start-page: 237
  year: 1990
  ident: 2024012914304329700_c51
  article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00067a005
– volume-title: Principles and Methods in Supramolecular Chemistry
  year: 2000
  ident: 2024012914304329700_c30
– ident: 2024012914304329700_c54
– volume: 3
  start-page: 584
  year: 2023
  ident: 2024012914304329700_c58
  article-title: Size selective ligand tug of war strategy to separate rare earth elements
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00671
– volume: 107
  start-page: 3657
  year: 1985
  ident: 2024012914304329700_c34
  article-title: Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00298a041
– volume: 32
  start-page: 244
  year: 1992
  ident: 2024012914304329700_c41
  article-title: Description of several chemical structure file formats used by computer programs developed at molecular design limited
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00007a012
– start-page: 2702
  year: 2016
  ident: 2024012914304329700_c44
  article-title: Discriminative embeddings of latent variable models for structured data
– volume: 32
  start-page: 751
  year: 1976
  ident: 2024012914304329700_c47
  article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
  publication-title: Acta Crystallogr., Sect. A
  doi: 10.1107/S0567739476001551
– volume: 1976
  start-page: 1096
  ident: 2024012914304329700_c4
  article-title: The chelate effect: A simple quantitative approach
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9760001096
– volume: 17
  start-page: 560
  year: 1978
  ident: 2024012914304329700_c5
  article-title: Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50181a009
– volume: 87
  start-page: 2995
  year: 1991
  ident: 2024012914304329700_c48
  article-title: Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/FT9918702995
– volume-title: Critical Stability Constants
  year: 1974
  ident: 2024012914304329700_c1
– volume-title: Chemprop
  year: 2022
  ident: 2024012914304329700_c12
– volume: 49
  start-page: 1354
  year: 2013
  ident: 2024012914304329700_c42
  article-title: Structural design principles for self-assembled coordination polygons and polyhedra
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC37776D
– volume: 117–118
  start-page: 71
  year: 2012
  ident: 2024012914304329700_c18
  article-title: Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.02.007
– volume-title: Supramolecular Chemistry
  year: 2009
  ident: 2024012914304329700_c29
– volume: 1978
  start-page: 1438
  ident: 2024012914304329700_c36
  article-title: Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9780001438
– volume: 6
  start-page: 504
  year: 2019
  ident: 2024012914304329700_c19
  article-title: Are clay minerals the primary control on the oceanic rare earth element budget?
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00504
– volume: 51
  start-page: D1373
  year: 2023
  ident: 2024012914304329700_c55
  article-title: PubChem 2023 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac956
– volume: 29
  start-page: 97
  year: 1989
  ident: 2024012914304329700_c53
  article-title: SMILES. 2. Algorithm for generation of unique SMILES notation
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00062a008
– volume-title: IUPAC Stability Constant Database
  year: 2016
  ident: 2024012914304329700_c2
– ident: 2024012914304329700_c21
– volume: 72
  start-page: 171
  year: 2016
  ident: 2024012914304329700_c50
  article-title: The Cambridge structural database
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
  doi: 10.1107/S2052520616003954
– volume: 201
  start-page: 105920
  year: 2021
  ident: 2024012914304329700_c20
  article-title: A study of rare earth ion-adsorption clays: The speciation of rare earth elements on kaolinite at basic pH
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2020.105920
– volume: 59
  start-page: 3370
  year: 2019
  ident: 2024012914304329700_c46
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00237
– volume-title: Ion Association
  year: 1962
  ident: 2024012914304329700_c49
– volume: 25
  start-page: 6326
  year: 2019
  ident: 2024012914304329700_c59
  article-title: Efficient separation of light lanthanides(III) by using bis-lactam phenanthroline ligands
  publication-title: Chem. - Eur. J.
  doi: 10.1002/chem.201806443
– volume: 12
  start-page: 11159
  year: 2022
  ident: 2024012914304329700_c14
  article-title: Machine learning-based analysis of overall stability constants of metal–ligand complexes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15300-9
– volume: 36
  start-page: 1
  year: 2010
  ident: 2024012914304329700_c57
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v036.i11
– volume-title: The Way of Synthesis: Evolution of Design and Methods for Natural Products
  year: 2007
  ident: 2024012914304329700_c31
– volume: 9
  start-page: 1202
  year: 2021
  ident: 2024012914304329700_c27
  article-title: Recovery of rare earth elements (REEs) using ionic solvents
  publication-title: Processes
  doi: 10.3390/pr9071202
– volume: 290
  start-page: 120882
  year: 2022
  ident: 2024012914304329700_c28
  article-title: Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120882
– volume: 1028
  start-page: 72
  year: 2014
  ident: 2024012914304329700_c40
  article-title: Computer-aided design of host molecules for recognition of organic guests
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2013.12.003
SSID ssj0001724
Score 2.4722598
Snippet The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with...
SourceID unpaywall
osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms ab-initio methods
Algorithms
Aqueous solutions
artificial neural networks
CAD
computational models
Computer aided design
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ions and properties
Lanthanides
Ligands
Machine learning
Message passing
Neural networks
Root-mean-square errors
Software
Stability constants
thermodynamic cycles
transition metal ion-chelating
Title Prediction of stability constants of metal–ligand complexes by machine learning for the design of ligands with optimal metal ion selectivity
URI http://dx.doi.org/10.1063/5.0176000
https://www.ncbi.nlm.nih.gov/pubmed/38284991
https://www.proquest.com/docview/2919508658
https://www.proquest.com/docview/2919745274
https://www.osti.gov/servlets/purl/2305609
https://www.osti.gov/biblio/2305609
UnpaywallVersion submittedVersion
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 1520-9032
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5ViVDhwKNQMC3VQjhwceusvV77GLVUFaJVJahUTpa9jxKR2FXtCMKJX8CFf8gvYWZtR4DK42bZY-9YM-v5dufzDMDz1AYIko3yqZybH2GI8nMjrW9lKvIk0UmqaKF4fBIfnUWvzsX5Goz6f2GIVlmhcztOZTEtZtNqjxPMpZ_0hrFAwD2A4dnJ6eRdS94Y-4TBWxp96svY7apgUAr8NAh5X0soDveoPCdloYJfItCABrsOXd6CdYxBbTocjxflZb78mM9mP0Wfwztw0Ovdkk4-7C6aYld9_q2k4z9e7C7c7tAnm7Tucg_WTLkB6_t907cNuOEYoaq-D19PryiHQ4qxyjIEkY5Gu2SqRZRNTafnBsH79y_fZtOLvNTMEdTNJ1OzYsnmjqdpWNeY4oIhPmaIN5l2rBG6vb2tZrQbzCr8es1RO_dMRuPWrkmPa2_xAM4OX77dP_K75g2-isZB44-FNiIwmlvJjbbc8EByVVgTFWke2NjGGtfxlCc2RYFyY6lNYAstQ5soBJ3hJgzKqjSPgAmOIFEleaGsjnJhUhnmQpgoVTJGQ2sPXvQGzXqTUYONWeYy7HGYiayzvQfPVqKXbTmP64S2yFIZ2d-o94oYR6rJOmt5sN07S9bN9zrjqWuni3DOg6ery2g7Sr_kpakWrYyMBJeRBw9bJ1vpEOLCF9eeYw9GK6_7m4KjlT_-Werxf0ltwU2OOI12lXiyDYPmamGeIM5qih0YTg6OX7_Z6ebbD7BUJVk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLaqrVDhwKO8QgsaWA5c0mYnmUxyrApVhUTVAyuVU5R5lRW7SdVkBcuJX8CFf8gvwZ4kK0DlcYsSJ-PInvib8Rcb4HnuIgTJVodUzi1MMESFpZUudDIXZZaZLNe0UHxzkh5Pk9dn4mwDxsO_MESrrNG5PadSzdR8Vu9zgrn0k95mKhBwj2BzenJ68K4jb0xCwuAdjT4PZep3VTAoRWEexXyoJZTG-1Sek7JQ0S8RaESDXYUub8AWxqAuHY7Hy-qiXH0s5_Ofos_RLXg56N2RTj7sLVu1pz__VtLxHy92G2726JMddO5yBzZstQ1bh0PTt2245hmhurkLX08vKYdDirHaMQSRnka7YrpDlG1DpxcWwfv3L9_ms_OyMswT1O0n2zC1YgvP07Ssb0xxzhAfM8SbzHjWCN3e3dYw2g1mNX69FqidfyajcRvfpMe3t7gH06NXbw-Pw755Q6iTSdSGE2GsiKzhTnJrHLc8klwrZxOVl5FLXWpwHU95YqsUyk2ksZFTRsYu0wg64_swqurKPgQmOIJEnZVKO5OUwuYyLoWwSa5lioY2AbwYDFoMJqMGG_PCZ9jTuBBFb_sAnq1FL7pyHlcJ7ZClCrK_1e81MY50W_TWCmB3cJain-9NwXPfThfhXABP15fRdpR-KStbLzsZmQgukwAedE621iHGhS-uPScBjNde9zcFx2t__LPUo_-S2oHrHHEa7SrxbBdG7eXSPkac1aon_Tz7AY3II8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+stability+constants+of+metal%E2%80%93ligand+complexes+by+machine+learning+for+the+design+of+ligands+with+optimal+metal+ion+selectivity&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zahariev+Federico&rft.au=Ash+Tamalika&rft.au=Karunaratne+Erandika&rft.au=Stender%2C+Erin&rft.date=2024-01-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=160&rft.issue=4&rft_id=info:doi/10.1063%2F5.0176000&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon