Prediction of stability constants of metal–ligand complexes by machine learning for the design of ligands with optimal metal ion selectivity
The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding s...
Saved in:
| Published in | The Journal of chemical physics Vol. 160; no. 4 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Institute of Physics
28.01.2024
American Institute of Physics (AIP) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 1520-9032 1089-7690 |
| DOI | 10.1063/5.0176000 |
Cover
| Abstract | The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution. |
|---|---|
| AbstractList | The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution. The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution. The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal–ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. Here we showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution. The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution. |
| Author | Gordon, Mark S. Pérez García, Marilú Windus, Theresa L. Zahariev, Federico Stender, Erin Karunaratne, Erandika Ash, Tamalika |
| Author_xml | – sequence: 1 givenname: Federico surname: Zahariev fullname: Zahariev, Federico organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA – sequence: 2 givenname: Tamalika surname: Ash fullname: Ash, Tamalika organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA – sequence: 3 givenname: Erandika surname: Karunaratne fullname: Karunaratne, Erandika organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA – sequence: 4 givenname: Erin surname: Stender fullname: Stender, Erin organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA – sequence: 5 givenname: Mark S. surname: Gordon fullname: Gordon, Mark S. organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA – sequence: 6 givenname: Theresa L. surname: Windus fullname: Windus, Theresa L. organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA – sequence: 7 givenname: Marilú surname: Pérez García fullname: Pérez García, Marilú organization: Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38284991$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/2305609$$D View this record in Osti.gov |
| BookMark | eNp9kc9uFSEUxompsbfVhS9giG7U5LbA_GFmaRr_JU10oWvCwOFeGgZGYKx35xO48Q19ErmdWxeN6YoAv_Od73znBB354AGhp5ScUdJW580ZobwlhDxAK0q6fs3bnhyhFSGMrvuWtMfoJKWrAlDO6kfouOpYV_c9XaFfnyNoq7INHgeDU5aDdTbvsAq-XHxO--cRsnR_fv52diO9Ln_j5OAHJDzs8CjV1nrADmT01m-wCRHnLWANyW5uVJeyhK9t3uIwZTtKt2jifd8EDoqD76XtY_TQSJfgyeE8RV_fvf1y8WF9-en9x4s3l2tVU5LXtNHQENDMcAbaMGCEMzUYqIdeEtOaVsNQ8ZpVMAyFo1wDMYPmlekUq2h1il4vurOf5O5aOiemWGzFnaBE7EMVjTiEWuDnCxxStiIpm0FtSz6-uBasIk1L-gK9XKAphm8zpCxGmxQ4Jz2EOQnW057XDeN1QV_cQa_CHH2Z94ZqSNc2XaGeHah5GEH_83e7uwKcL4CKIaUIRhRncr_JHKV1_x3k1Z2K-4Y-JJRuVe-B_wI_fMfr |
| CODEN | JCPSA6 |
| CitedBy_id | crossref_primary_10_1002_ejic_202400064 crossref_primary_10_1021_acs_jmedchem_4c02084 |
| Cites_doi | 10.1021/ja00067a094 10.1038/s41598-020-71255-9 10.1016/j.cherd.2016.10.014 10.1016/j.gca.2007.06.005 10.2116/analsci.20SAR11 10.1038/nrd3139 10.1016/j.gca.2011.02.027 10.1021/acs.inorgchem.5b00264 10.1126/science.aau7628 10.1039/C9CP06569E 10.1021/ci00057a005 10.1126/sciadv.aay8647 10.1038/s41467-020-17801-5 10.1021/ba-1971-0100.ch003 10.1039/dt9780000577 10.1080/07366299.2022.2160646 10.1021/ic0202920 10.1021/ci00067a005 10.1021/jacsau.2c00671 10.1021/ja00298a041 10.1021/ci00007a012 10.1107/S0567739476001551 10.1039/dt9760001096 10.1021/ic50181a009 10.1039/FT9918702995 10.1039/C2CC37776D 10.1016/j.hydromet.2012.02.007 10.1039/dt9780001438 10.3389/fmars.2019.00504 10.1093/nar/gkac956 10.1021/ci00062a008 10.1107/S2052520616003954 10.1016/j.clay.2020.105920 10.1021/acs.jcim.9b00237 10.1002/chem.201806443 10.1038/s41598-022-15300-9 10.18637/jss.v036.i11 10.3390/pr9071202 10.1016/j.seppur.2022.120882 10.1016/j.comptc.2013.12.003 |
| ContentType | Journal Article |
| Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) Ames Laboratory (AMES), Ames, IA (United States) |
| CorporateAuthor_xml | – name: Ames Laboratory (AMES), Ames, IA (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
| DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1063/5.0176000 |
| DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | oai:osti.gov:2305609 2305609 38284991 10_1063_5_0176000 jcp |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Energy Research Scientific Computing Center grantid: ERCAP0017177; ERCAP0020144; and ERCAP0023063 funderid: https://doi.org/10.13039/100017223 – fundername: Critical Materials Innovation Hub, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technology Office at the Ames National Laboratory grantid: Agreement Number DE-AC02-07CH11358 |
| GroupedDBID | --- -DZ -ET -~X 123 2-P 29K 4.4 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 8FD H8D L7M 7X8 OIOZB OTOTI .GJ 0ZJ 186 2WC 3O- 41~ 6TJ 9M8 AAYJJ ABDPE ABRJW ABUFD ACBNA ADTOC ADXHL AETEA AFFNX AI. EJD H~9 MVM NEUPN NHB OHT P0- QZG RDFOP ROL T9H UBC UNPAY UQL VH1 VOH X7L XJT XOL ZCG ZGI ZXP |
| ID | FETCH-LOGICAL-c410t-15de50ed2f72edf2e2072cbfe4b9a0f6f6deb37423ebb0ed17de0fbd73f8c2313 |
| IEDL.DBID | UNPAY |
| ISSN | 0021-9606 1089-7690 1520-9032 |
| IngestDate | Sun Oct 26 04:07:12 EDT 2025 Mon Feb 03 04:56:52 EST 2025 Fri Jul 11 00:08:23 EDT 2025 Sun Jun 29 12:51:01 EDT 2025 Wed Feb 19 02:09:48 EST 2025 Thu Apr 24 23:00:44 EDT 2025 Tue Jul 01 01:12:39 EDT 2025 Fri Jun 21 00:13:06 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Published under an exclusive license by AIP Publishing. 2024 Author(s). Published under an exclusive license by AIP Publishing. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c410t-15de50ed2f72edf2e2072cbfe4b9a0f6f6deb37423ebb0ed17de0fbd73f8c2313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-07CH11358; AC02-05CH11231; ERCAP0017177; ERCAP0020144; ERCAP0023063 USDOE Office of Science (SC) IS-J-11,261 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Materials & Manufacturing Technologies Office (AMMTO) |
| ORCID | 0000-0003-2371-1318 0000-0002-7736-7770 0000-0001-6065-3167 0000-0002-3223-3576 0009-0009-3288-1176 0000-0003-2338-1814 0000-0001-9987-117X 0000000277367770 000000019987117X 0000000323711318 0000000160653167 0000000232233576 0009000932881176 0000000323381814 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/2305609 |
| PMID | 38284991 |
| PQID | 2919508658 |
| PQPubID | 2050685 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1063_5_0176000 osti_scitechconnect_2305609 crossref_citationtrail_10_1063_5_0176000 proquest_miscellaneous_2919745274 crossref_primary_10_1063_5_0176000 pubmed_primary_38284991 scitation_primary_10_1063_5_0176000 proquest_journals_2919508658 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-28 |
| PublicationDateYYYYMMDD | 2024-01-28 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Melville |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2024 |
| Publisher | American Institute of Physics American Institute of Physics (AIP) |
| Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics (AIP) |
| References | Anichini, Fabbrizzi, Paoletti, Clay (c37); 1978 Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu, Zaslavsky, Zhang, Bolton (c55) 2023; 51 Okamura, Hirayama (c26) 2021; 37 Stack, Hou, Raymond (c38) 1993; 115 Groom, Bruno, Lightfoot, Ward (c50) 2016; 72 Johnson, Driscoll, Damron, Ivanov, Jansone-Popova (c58) 2023; 3 Cheisson, Schelter (c15) 2019; 363 Dewulf, Riaño, Binnemans (c28) 2022; 290 Austin, Sahinidis, Trahan (c33) 2016; 116 Young, Hay (c42) 2013; 49 El Maangar, Theisen, Penisson, Zemb, Gabriel (c25) 2020; 22 García Alejo, De Silva, Liu, Windus, Pérez García (c16) 2023; 41 Hay, Firman (c39) 2002; 41 Healy, Ivanov, Karslyan, Bryantsev, Moyer, Jansone-Popova (c59) 2019; 25 McDougall, Hancock, Boeyens (c36); 1978 Moldoveanu, Papangelakis (c18) 2012; 117–118 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (c56) 2011; 12 Hancock, Marsicano (c5) 1978; 17 Hancock, Marsicano (c4); 1976 Dalby, Nourse, Hounshell, Gushurst, Grier, Leland, Laufer (c41) 1992; 32 Cram, Lein (c34) 1985; 107 Weininger (c52) 1988; 28 Borst, Smith, Finch, Estrade, Villanova-de-Benavent, Nason, Marquis, Horsburgh, Goodenough, Xu, Kynický, Geraki (c17) 2020; 11 Yang, Swanson, Jin, Coley, Eiden, Gao, Guzman-Perez, Hopper, Kelley, Mathea, Palmer, Settels, Jaakkola, Jensen, Barzilay (c46) 2019; 59 Feng, Onel, Council-Troche, Noble, Yoon, Morris (c20) 2021; 201 Schneider (c32) 2010; 9 Hay, Jia, Nadas (c40) 2014; 1028 Kursa, Rudnicki (c57) 2010; 36 Carbonaro, Atalay, Di Toro (c7) 2011; 75 Kanahashi, Urushihara, Yamaguchi (c14) 2022; 12 Marcus (c48) 1991; 87 Shannon (c47) 1976; 32 Nassar, Brainard, Gulley, Manley, Matos, Lederer, Bird, Pineault, Alonso, Gambogi, Fortier (c22) 2020; 6 Weininger, Weininger, Weininger (c53) 1989; 29 Vukovic, Hay, Bryantsev (c8) 2015; 54 Abbott, Löhr, Trethewy (c19) 2019; 6 Arrachart, Couturier, Dourdain, Levard, Pellet-Rostaing (c27) 2021; 9 Chaube, Goverapet Srinivasan, Rai (c10) 2020; 10 Weininger (c51) 1990; 30 Carbonaro, Di Toro (c6) 2007; 71 (2024012914304329700_c16) 2023; 41 (2024012914304329700_c31) 2007 (2024012914304329700_c28) 2022; 290 (2024012914304329700_c19) 2019; 6 Precup (2024012914304329700_c43) 2017 (2024012914304329700_c2) 2016 (2024012914304329700_c14) 2022; 12 (2024012914304329700_c3) 2020 (2024012914304329700_c48) 1991; 87 (2024012914304329700_c51) 1990; 30 (2024012914304329700_c18) 2012; 117–118 (2024012914304329700_c20) 2021; 201 (2024012914304329700_c7) 2011; 75 (2024012914304329700_c49) 1962 (2024012914304329700_c12) 2022 (2024012914304329700_c36); 1978 (2024012914304329700_c37); 1978 (2024012914304329700_c32) 2010; 9 (2024012914304329700_c46) 2019; 59 (2024012914304329700_c15) 2019; 363 (2024012914304329700_c52) 1988; 28 (2024012914304329700_c34) 1985; 107 (2024012914304329700_c29) 2009 (2024012914304329700_c10) 2020; 10 (2024012914304329700_c40) 2014; 1028 2024012914304329700_c54 (2024012914304329700_c8) 2015; 54 (2024012914304329700_c1) 1974 (2024012914304329700_c13) 2021 (2024012914304329700_c56) 2011; 12 (2024012914304329700_c59) 2019; 25 (2024012914304329700_c41) 1992; 32 (2024012914304329700_c11) 2021 (2024012914304329700_c25) 2020; 22 2024012914304329700_c21 (2024012914304329700_c27) 2021; 9 2024012914304329700_c24 (2024012914304329700_c33) 2016; 116 (2024012914304329700_c53) 1989; 29 (2024012914304329700_c57) 2010; 36 (2024012914304329700_c23) 2011 (2024012914304329700_c42) 2013; 49 (2024012914304329700_c5) 1978; 17 (2024012914304329700_c39) 2002; 41 (2024012914304329700_c50) 2016; 72 (2024012914304329700_c17) 2020; 11 (2024012914304329700_c26) 2021; 37 Busch (2024012914304329700_c35) 1971 (2024012914304329700_c38) 1993; 115 (2024012914304329700_c4); 1976 Balcan (2024012914304329700_c44) 2016 (2024012914304329700_c9) 2021 (2024012914304329700_c45) 2004 (2024012914304329700_c58) 2023; 3 (2024012914304329700_c22) 2020; 6 (2024012914304329700_c30) 2000 (2024012914304329700_c47) 1976; 32 (2024012914304329700_c6) 2007; 71 (2024012914304329700_c55) 2023; 51 |
| References_xml | – volume: 6 start-page: 504 year: 2019 ident: c19 article-title: Are clay minerals the primary control on the oceanic rare earth element budget? publication-title: Front. Mar. Sci. – volume: 1978 start-page: 577 ident: c37 article-title: A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(II) and zinc(II) complexes with some tetra-aza macrocyclic ligands in aqueous solution publication-title: J. Chem. Soc., Dalton Trans. – volume: 115 start-page: 6466 year: 1993 ident: c38 article-title: Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: The role of entropy in enterobactin publication-title: J. Am. Chem. Soc. – volume: 1976 start-page: 1096 ident: c4 article-title: The chelate effect: A simple quantitative approach publication-title: J. Chem. Soc., Dalton Trans. – volume: 29 start-page: 97 year: 1989 ident: c53 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J. Chem. Inf. Comput. Sci. – volume: 117–118 start-page: 71 year: 2012 ident: c18 article-title: Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism publication-title: Hydrometallurgy – volume: 72 start-page: 171 year: 2016 ident: c50 article-title: The Cambridge structural database publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. – volume: 12 start-page: 2825 year: 2011 ident: c56 article-title: Scikit-Learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 116 start-page: 2 year: 2016 ident: c33 article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques publication-title: Chem. Eng. Res. Des. – volume: 36 start-page: 1 year: 2010 ident: c57 article-title: Feature selection with the Boruta package publication-title: J. Stat. Software – volume: 1028 start-page: 72 year: 2014 ident: c40 article-title: Computer-aided design of host molecules for recognition of organic guests publication-title: Comput. Theor. Chem. – volume: 59 start-page: 3370 year: 2019 ident: c46 article-title: Analyzing learned molecular representations for property prediction publication-title: J. Chem. Inf. Model. – volume: 41 start-page: 241 year: 2023 ident: c16 article-title: Solvent phase optimizations improve correlations with experimental stability constants for aqueous lanthanide complexes publication-title: Solvent Extr. Ion Exch. – volume: 37 start-page: 119 year: 2021 ident: c26 article-title: Recent progress in ionic liquid extraction for the separation of rare earth elements publication-title: Anal. Sci. – volume: 10 start-page: 14322 year: 2020 ident: c10 article-title: Applied machine learning for predicting the lanthanide-ligand binding affinities publication-title: Sci. Rep. – volume: 41 start-page: 5502 year: 2002 ident: c39 article-title: HostDesigner: A program for the de Novo structure-based design of molecular receptors with binding sites that complement metal ion guests publication-title: Inorg. Chem. – volume: 49 start-page: 1354 year: 2013 ident: c42 article-title: Structural design principles for self-assembled coordination polygons and polyhedra publication-title: Chem. Commun. – volume: 9 start-page: 273 year: 2010 ident: c32 article-title: Virtual screening: An endless staircase? publication-title: Nat. Rev. Drug Discovery – volume: 75 start-page: 2499 year: 2011 ident: c7 article-title: Linear free energy relationships for metal–ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms publication-title: Geochim. Cosmochim. Acta – volume: 3 start-page: 584 year: 2023 ident: c58 article-title: Size selective ligand tug of war strategy to separate rare earth elements publication-title: JACS Au – volume: 17 start-page: 560 year: 1978 ident: c5 article-title: Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms publication-title: Inorg. Chem. – volume: 22 start-page: 5449 year: 2020 ident: c25 article-title: A microfluidic study of synergic liquid–liquid extraction of rare earth elements publication-title: Phys. Chem. Chem. Phys. – volume: 201 start-page: 105920 year: 2021 ident: c20 article-title: A study of rare earth ion-adsorption clays: The speciation of rare earth elements on kaolinite at basic pH publication-title: Appl. Clay Sci. – volume: 12 start-page: 11159 year: 2022 ident: c14 article-title: Machine learning-based analysis of overall stability constants of metal–ligand complexes publication-title: Sci. Rep. – volume: 9 start-page: 1202 year: 2021 ident: c27 article-title: Recovery of rare earth elements (REEs) using ionic solvents publication-title: Processes – volume: 32 start-page: 751 year: 1976 ident: c47 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr., Sect. A – volume: 30 start-page: 237 year: 1990 ident: c51 article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures publication-title: J. Chem. Inf. Comput. Sci. – volume: 25 start-page: 6326 year: 2019 ident: c59 article-title: Efficient separation of light lanthanides(III) by using bis-lactam phenanthroline ligands publication-title: Chem. - Eur. J. – volume: 87 start-page: 2995 year: 1991 ident: c48 article-title: Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K publication-title: J. Chem. Soc., Faraday Trans. – volume: 1978 start-page: 1438 ident: c36 article-title: Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings publication-title: J. Chem. Soc., Dalton Trans. – volume: 54 start-page: 3995 year: 2015 ident: c8 article-title: Predicting stability constants for uranyl complexes using density functional theory publication-title: Inorg. Chem. – volume: 107 start-page: 3657 year: 1985 ident: c34 article-title: Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 244 year: 1992 ident: c41 article-title: Description of several chemical structure file formats used by computer programs developed at molecular design limited publication-title: J. Chem. Inf. Comput. Sci. – volume: 28 start-page: 31 year: 1988 ident: c52 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J. Chem. Inf. Comput. Sci. – volume: 363 start-page: 489 year: 2019 ident: c15 article-title: Rare earth elements: Mendeleev’s bane, modern Marvels publication-title: Science – volume: 11 start-page: 4386 year: 2020 ident: c17 article-title: Adsorption of rare earth elements in regolith-hosted clay deposits publication-title: Nat. Commun. – volume: 51 start-page: D1373 year: 2023 ident: c55 article-title: PubChem 2023 update publication-title: Nucleic Acids Res. – volume: 71 start-page: 3958 year: 2007 ident: c6 article-title: Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms publication-title: Geochim. Cosmochim. Acta – volume: 290 start-page: 120882 year: 2022 ident: c28 article-title: Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests publication-title: Sep. Purif. Technol. – volume: 6 start-page: eaay8647 year: 2020 ident: c22 article-title: Evaluating the mineral commodity supply risk of the U.S. Manufacturing sector publication-title: Sci. Adv. – volume: 115 start-page: 6466 year: 1993 ident: 2024012914304329700_c38 article-title: Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: The role of entropy in enterobactin publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00067a094 – volume: 10 start-page: 14322 year: 2020 ident: 2024012914304329700_c10 article-title: Applied machine learning for predicting the lanthanide-ligand binding affinities publication-title: Sci. Rep. doi: 10.1038/s41598-020-71255-9 – volume-title: HostDesigner year: 2021 ident: 2024012914304329700_c11 – volume: 116 start-page: 2 year: 2016 ident: 2024012914304329700_c33 article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.10.014 – volume: 71 start-page: 3958 year: 2007 ident: 2024012914304329700_c6 article-title: Linear free energy relationships for metal–ligand complexation: Monodentate binding to negatively-charged oxygen donor atoms publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2007.06.005 – volume: 37 start-page: 119 year: 2021 ident: 2024012914304329700_c26 article-title: Recent progress in ionic liquid extraction for the separation of rare earth elements publication-title: Anal. Sci. doi: 10.2116/analsci.20SAR11 – volume: 9 start-page: 273 year: 2010 ident: 2024012914304329700_c32 article-title: Virtual screening: An endless staircase? publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd3139 – volume: 75 start-page: 2499 year: 2011 ident: 2024012914304329700_c7 article-title: Linear free energy relationships for metal–ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.02.027 – volume: 54 start-page: 3995 year: 2015 ident: 2024012914304329700_c8 article-title: Predicting stability constants for uranyl complexes using density functional theory publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00264 – ident: 2024012914304329700_c24 – volume: 363 start-page: 489 year: 2019 ident: 2024012914304329700_c15 article-title: Rare earth elements: Mendeleev’s bane, modern Marvels publication-title: Science doi: 10.1126/science.aau7628 – volume: 22 start-page: 5449 year: 2020 ident: 2024012914304329700_c25 article-title: A microfluidic study of synergic liquid–liquid extraction of rare earth elements publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06569E – start-page: 22 volume-title: Computational Science in Lanthanide and Actinide Chemistry year: 2021 ident: 2024012914304329700_c9 article-title: Computational modeling of diphosphine oxide and diglycolamide ligand complexation to lanthanides and extraction from acidic media – year: 2011 ident: 2024012914304329700_c23 – volume: 28 start-page: 31 year: 1988 ident: 2024012914304329700_c52 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00057a005 – volume: 6 start-page: eaay8647 year: 2020 ident: 2024012914304329700_c22 article-title: Evaluating the mineral commodity supply risk of the U.S. Manufacturing sector publication-title: Sci. Adv. doi: 10.1126/sciadv.aay8647 – volume: 12 start-page: 2825 year: 2011 ident: 2024012914304329700_c56 article-title: Scikit-Learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 4386 year: 2020 ident: 2024012914304329700_c17 article-title: Adsorption of rare earth elements in regolith-hosted clay deposits publication-title: Nat. Commun. doi: 10.1038/s41467-020-17801-5 – start-page: 44 volume-title: Bioinorganic Chemistry year: 1971 ident: 2024012914304329700_c35 article-title: Chemical foundations for the understanding of natural macrocyclic complexes doi: 10.1021/ba-1971-0100.ch003 – volume-title: LOGKPREDICT year: 2021 ident: 2024012914304329700_c13 – volume: 1978 start-page: 577 ident: 2024012914304329700_c37 article-title: A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(II) and zinc(II) complexes with some tetra-aza macrocyclic ligands in aqueous solution publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9780000577 – volume: 41 start-page: 241 year: 2023 ident: 2024012914304329700_c16 article-title: Solvent phase optimizations improve correlations with experimental stability constants for aqueous lanthanide complexes publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366299.2022.2160646 – year: 2020 ident: 2024012914304329700_c3 – volume: 41 start-page: 5502 year: 2002 ident: 2024012914304329700_c39 article-title: HostDesigner: A program for the de Novo structure-based design of molecular receptors with binding sites that complement metal ion guests publication-title: Inorg. Chem. doi: 10.1021/ic0202920 – start-page: 70 year: 2004 ident: 2024012914304329700_c45 article-title: Extensions of marginalized graph kernels – start-page: 1263 year: 2017 ident: 2024012914304329700_c43 article-title: Neural message passing for quantum chemistry – volume: 30 start-page: 237 year: 1990 ident: 2024012914304329700_c51 article-title: SMILES. 3. DEPICT. Graphical depiction of chemical structures publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00067a005 – volume-title: Principles and Methods in Supramolecular Chemistry year: 2000 ident: 2024012914304329700_c30 – ident: 2024012914304329700_c54 – volume: 3 start-page: 584 year: 2023 ident: 2024012914304329700_c58 article-title: Size selective ligand tug of war strategy to separate rare earth elements publication-title: JACS Au doi: 10.1021/jacsau.2c00671 – volume: 107 start-page: 3657 year: 1985 ident: 2024012914304329700_c34 article-title: Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00298a041 – volume: 32 start-page: 244 year: 1992 ident: 2024012914304329700_c41 article-title: Description of several chemical structure file formats used by computer programs developed at molecular design limited publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00007a012 – start-page: 2702 year: 2016 ident: 2024012914304329700_c44 article-title: Discriminative embeddings of latent variable models for structured data – volume: 32 start-page: 751 year: 1976 ident: 2024012914304329700_c47 article-title: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides publication-title: Acta Crystallogr., Sect. A doi: 10.1107/S0567739476001551 – volume: 1976 start-page: 1096 ident: 2024012914304329700_c4 article-title: The chelate effect: A simple quantitative approach publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9760001096 – volume: 17 start-page: 560 year: 1978 ident: 2024012914304329700_c5 article-title: Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms publication-title: Inorg. Chem. doi: 10.1021/ic50181a009 – volume: 87 start-page: 2995 year: 1991 ident: 2024012914304329700_c48 article-title: Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/FT9918702995 – volume-title: Critical Stability Constants year: 1974 ident: 2024012914304329700_c1 – volume-title: Chemprop year: 2022 ident: 2024012914304329700_c12 – volume: 49 start-page: 1354 year: 2013 ident: 2024012914304329700_c42 article-title: Structural design principles for self-assembled coordination polygons and polyhedra publication-title: Chem. Commun. doi: 10.1039/C2CC37776D – volume: 117–118 start-page: 71 year: 2012 ident: 2024012914304329700_c18 article-title: Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.02.007 – volume-title: Supramolecular Chemistry year: 2009 ident: 2024012914304329700_c29 – volume: 1978 start-page: 1438 ident: 2024012914304329700_c36 article-title: Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9780001438 – volume: 6 start-page: 504 year: 2019 ident: 2024012914304329700_c19 article-title: Are clay minerals the primary control on the oceanic rare earth element budget? publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00504 – volume: 51 start-page: D1373 year: 2023 ident: 2024012914304329700_c55 article-title: PubChem 2023 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac956 – volume: 29 start-page: 97 year: 1989 ident: 2024012914304329700_c53 article-title: SMILES. 2. Algorithm for generation of unique SMILES notation publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00062a008 – volume-title: IUPAC Stability Constant Database year: 2016 ident: 2024012914304329700_c2 – ident: 2024012914304329700_c21 – volume: 72 start-page: 171 year: 2016 ident: 2024012914304329700_c50 article-title: The Cambridge structural database publication-title: Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. doi: 10.1107/S2052520616003954 – volume: 201 start-page: 105920 year: 2021 ident: 2024012914304329700_c20 article-title: A study of rare earth ion-adsorption clays: The speciation of rare earth elements on kaolinite at basic pH publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2020.105920 – volume: 59 start-page: 3370 year: 2019 ident: 2024012914304329700_c46 article-title: Analyzing learned molecular representations for property prediction publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00237 – volume-title: Ion Association year: 1962 ident: 2024012914304329700_c49 – volume: 25 start-page: 6326 year: 2019 ident: 2024012914304329700_c59 article-title: Efficient separation of light lanthanides(III) by using bis-lactam phenanthroline ligands publication-title: Chem. - Eur. J. doi: 10.1002/chem.201806443 – volume: 12 start-page: 11159 year: 2022 ident: 2024012914304329700_c14 article-title: Machine learning-based analysis of overall stability constants of metal–ligand complexes publication-title: Sci. Rep. doi: 10.1038/s41598-022-15300-9 – volume: 36 start-page: 1 year: 2010 ident: 2024012914304329700_c57 article-title: Feature selection with the Boruta package publication-title: J. Stat. Software doi: 10.18637/jss.v036.i11 – volume-title: The Way of Synthesis: Evolution of Design and Methods for Natural Products year: 2007 ident: 2024012914304329700_c31 – volume: 9 start-page: 1202 year: 2021 ident: 2024012914304329700_c27 article-title: Recovery of rare earth elements (REEs) using ionic solvents publication-title: Processes doi: 10.3390/pr9071202 – volume: 290 start-page: 120882 year: 2022 ident: 2024012914304329700_c28 article-title: Separation of heavy rare-earth elements by non-aqueous solvent extraction: Flowsheet development and mixer-settler tests publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120882 – volume: 1028 start-page: 72 year: 2014 ident: 2024012914304329700_c40 article-title: Computer-aided design of host molecules for recognition of organic guests publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2013.12.003 |
| SSID | ssj0001724 |
| Score | 2.4722598 |
| Snippet | The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with... |
| SourceID | unpaywall osti proquest pubmed crossref scitation |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | ab-initio methods Algorithms Aqueous solutions artificial neural networks CAD computational models Computer aided design INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ions and properties Lanthanides Ligands Machine learning Message passing Neural networks Root-mean-square errors Software Stability constants thermodynamic cycles transition metal ion-chelating |
| Title | Prediction of stability constants of metal–ligand complexes by machine learning for the design of ligands with optimal metal ion selectivity |
| URI | http://dx.doi.org/10.1063/5.0176000 https://www.ncbi.nlm.nih.gov/pubmed/38284991 https://www.proquest.com/docview/2919508658 https://www.proquest.com/docview/2919745274 https://www.osti.gov/servlets/purl/2305609 https://www.osti.gov/biblio/2305609 |
| UnpaywallVersion | submittedVersion |
| Volume | 160 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0001724 issn: 1520-9032 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5ViVDhwKNQMC3VQjhwceusvV77GLVUFaJVJahUTpa9jxKR2FXtCMKJX8CFf8gvYWZtR4DK42bZY-9YM-v5dufzDMDz1AYIko3yqZybH2GI8nMjrW9lKvIk0UmqaKF4fBIfnUWvzsX5Goz6f2GIVlmhcztOZTEtZtNqjxPMpZ_0hrFAwD2A4dnJ6eRdS94Y-4TBWxp96svY7apgUAr8NAh5X0soDveoPCdloYJfItCABrsOXd6CdYxBbTocjxflZb78mM9mP0Wfwztw0Ovdkk4-7C6aYld9_q2k4z9e7C7c7tAnm7Tucg_WTLkB6_t907cNuOEYoaq-D19PryiHQ4qxyjIEkY5Gu2SqRZRNTafnBsH79y_fZtOLvNTMEdTNJ1OzYsnmjqdpWNeY4oIhPmaIN5l2rBG6vb2tZrQbzCr8es1RO_dMRuPWrkmPa2_xAM4OX77dP_K75g2-isZB44-FNiIwmlvJjbbc8EByVVgTFWke2NjGGtfxlCc2RYFyY6lNYAstQ5soBJ3hJgzKqjSPgAmOIFEleaGsjnJhUhnmQpgoVTJGQ2sPXvQGzXqTUYONWeYy7HGYiayzvQfPVqKXbTmP64S2yFIZ2d-o94oYR6rJOmt5sN07S9bN9zrjqWuni3DOg6ery2g7Sr_kpakWrYyMBJeRBw9bJ1vpEOLCF9eeYw9GK6_7m4KjlT_-Werxf0ltwU2OOI12lXiyDYPmamGeIM5qih0YTg6OX7_Z6ebbD7BUJVk |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLaqrVDhwKO8QgsaWA5c0mYnmUxyrApVhUTVAyuVU5R5lRW7SdVkBcuJX8CFf8gvwZ4kK0DlcYsSJ-PInvib8Rcb4HnuIgTJVodUzi1MMESFpZUudDIXZZaZLNe0UHxzkh5Pk9dn4mwDxsO_MESrrNG5PadSzdR8Vu9zgrn0k95mKhBwj2BzenJ68K4jb0xCwuAdjT4PZep3VTAoRWEexXyoJZTG-1Sek7JQ0S8RaESDXYUub8AWxqAuHY7Hy-qiXH0s5_Ofos_RLXg56N2RTj7sLVu1pz__VtLxHy92G2726JMddO5yBzZstQ1bh0PTt2245hmhurkLX08vKYdDirHaMQSRnka7YrpDlG1DpxcWwfv3L9_ms_OyMswT1O0n2zC1YgvP07Ssb0xxzhAfM8SbzHjWCN3e3dYw2g1mNX69FqidfyajcRvfpMe3t7gH06NXbw-Pw755Q6iTSdSGE2GsiKzhTnJrHLc8klwrZxOVl5FLXWpwHU95YqsUyk2ksZFTRsYu0wg64_swqurKPgQmOIJEnZVKO5OUwuYyLoWwSa5lioY2AbwYDFoMJqMGG_PCZ9jTuBBFb_sAnq1FL7pyHlcJ7ZClCrK_1e81MY50W_TWCmB3cJain-9NwXPfThfhXABP15fRdpR-KStbLzsZmQgukwAedE621iHGhS-uPScBjNde9zcFx2t__LPUo_-S2oHrHHEa7SrxbBdG7eXSPkac1aon_Tz7AY3II8U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+stability+constants+of+metal%E2%80%93ligand+complexes+by+machine+learning+for+the+design+of+ligands+with+optimal+metal+ion+selectivity&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Zahariev+Federico&rft.au=Ash+Tamalika&rft.au=Karunaratne+Erandika&rft.au=Stender%2C+Erin&rft.date=2024-01-28&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=160&rft.issue=4&rft_id=info:doi/10.1063%2F5.0176000&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |