N‐Doped Carbon Aerogel Derived from a Metal–Organic Framework Foam as an Efficient Electrocatalyst for Oxygen Reduction

Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transporta...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 14; no. 20; pp. 3642 - 3647
Main Authors Yi, Jun‐Dong, Zhang, Meng‐Di, Hou, Ying, Huang, Yuan‐Biao, Cao, Rong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.10.2019
Subjects
Online AccessGet full text
ISSN1861-4728
1861-471X
1861-471X
DOI10.1002/asia.201900727

Cover

Abstract Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications. MOF‐derived aerogels: N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium.
AbstractList Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications.
Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications. MOF‐derived aerogels: N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium.
Metal-organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom-doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N-doped carbon aerogels with hierarchical micro-, meso-, and macropores were fabricated through one-step pyrolysis of zeolitic imidazolate framework-8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as-prepared N-doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long-term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF-derived carbon aerogels for various applications.Metal-organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom-doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N-doped carbon aerogels with hierarchical micro-, meso-, and macropores were fabricated through one-step pyrolysis of zeolitic imidazolate framework-8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as-prepared N-doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long-term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF-derived carbon aerogels for various applications.
Author Yi, Jun‐Dong
Huang, Yuan‐Biao
Cao, Rong
Hou, Ying
Zhang, Meng‐Di
Author_xml – sequence: 1
  givenname: Jun‐Dong
  orcidid: 0000-0002-9723-326X
  surname: Yi
  fullname: Yi, Jun‐Dong
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Meng‐Di
  surname: Zhang
  fullname: Zhang, Meng‐Di
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Ying
  surname: Hou
  fullname: Hou, Ying
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Yuan‐Biao
  orcidid: 0000-0003-4680-2976
  surname: Huang
  fullname: Huang, Yuan‐Biao
  email: ybhuang@fjiirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Rong
  orcidid: 0000-0002-2398-399X
  surname: Cao
  fullname: Cao, Rong
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31267685$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2LFDEQhoOsuB969SgBL3uZMUl3upPjMDujC6sDfoC3kE4qQ9buZEy6XQcv-xME_-H-EnuYdYQF8VSheJ6qUO8pOgoxAELPKZlSQtgrnb2eMkIlITWrH6ETKio6KWv6-ejwZuIYneZ8TQhnRIon6LigrKorwU_Qj3d3tz8v4gYsnuvUxIBnkOIaWnwByX8b2y7FDmv8Fnrd3t3-WqW1Dt7gZdId3MT0BS-jHoGMdcAL57zxEHq8aMH0KRo9WtvcYxcTXn3friHg92AH0_sYnqLHTrcZnt3XM_Rpufg4fzO5Wr2-nM-uJqakpJ4wK6vS0RqIbKjlldWESOq4oII2VdUUtnCNYI2wpSy5ACuE4Jw0wkEhGYHiDJ3v525S_DpA7lXns4G21QHikBVjnFaSUcFG9OUD9DoOKYy_U6wgvGRc1GKkXtxTQ9OBVZvkO5226s9ZR2C6B0yKOSdwB4QStctN7XJTh9xGoXwgGN_r3ZH6pH37b03utRvfwvY_S9Tsw-Xsr_sbfZWtvg
CitedBy_id crossref_primary_10_1016_j_rser_2024_114520
crossref_primary_10_1021_acs_langmuir_0c00236
crossref_primary_10_1016_j_inoche_2020_107825
crossref_primary_10_1039_D0TA04798H
crossref_primary_10_1016_j_ceja_2024_100690
crossref_primary_10_1016_j_nanoen_2021_106073
crossref_primary_10_1016_j_mcat_2024_113851
crossref_primary_10_1039_D0NR08569C
crossref_primary_10_1016_j_gee_2022_10_006
crossref_primary_10_1016_j_esci_2022_03_007
crossref_primary_10_1039_D1NJ03909A
crossref_primary_10_1016_S1872_5805_24_60873_5
crossref_primary_10_1016_j_micromeso_2021_111101
crossref_primary_10_1016_S1872_5813_22_60030_6
crossref_primary_10_2139_ssrn_4201563
crossref_primary_10_1002_smll_202004142
crossref_primary_10_1016_j_jhazmat_2019_121057
crossref_primary_10_3390_catal14040279
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1016_j_jhazmat_2022_128684
crossref_primary_10_1016_j_electacta_2021_138237
Cites_doi 10.1002/ange.201504830
10.1021/cr3002824
10.1002/aenm.201600423
10.1038/ncomms7512
10.1039/C6SC04903F
10.1002/celc.201700627
10.1002/asia.201801134
10.1016/j.carbon.2018.10.040
10.1021/jacs.6b06959
10.1039/C5SC04425A
10.1039/C8TA08668K
10.1021/acs.chemmater.5b02877
10.1002/ange.201803262
10.1039/C5EE00762C
10.1039/C4CC09062D
10.1039/C5TA05018A
10.1038/srep06983
10.1007/s40843-018-9364-5
10.1021/jacs.5b11986
10.1039/C5NR07429K
10.1039/C3CS60472A
10.1002/adma.201502315
10.1021/ja5082553
10.1039/C5EE02903A
10.1039/C8MH00133B
10.1002/adma.201600979
10.1002/anie.201408990
10.1002/chem.201304404
10.1038/nature11475
10.1021/acs.chemmater.8b00836
10.1039/C6CC00413J
10.1246/cl.131174
10.1021/acsenergylett.8b00245
10.1002/celc.201800479
10.1021/ja5003907
10.1021/ja7106146
10.1002/adma.201702891
10.1016/j.ccr.2017.11.013
10.1039/C6CS00250A
10.1021/ja3030565
10.1039/C8TA09490J
10.1021/ja203184k
10.1002/asia.201900241
10.1002/adfm.201603607
10.1002/ange.201408990
10.1021/nl302618s
10.1021/acs.chemmater.5b02708
10.1021/acsami.5b10727
10.1002/asia.201800245
10.1002/anie.201504830
10.1002/adma.201204576
10.1039/C7TA02999C
10.1016/j.rser.2014.11.093
10.1039/C2CS35353A
10.1002/adma.201703711
10.1021/cr300014x
10.1039/C3CC47620K
10.1002/anie.201803262
10.1073/pnas.0602439103
10.1039/C4CS90059F
10.1039/C4NR00348A
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/asia.201900727
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage 3647
ExternalDocumentID 31267685
10_1002_asia_201900727
ASIA201900727
Genre article
Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB20000000
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0208600
– fundername: Youth Innovation Promotion Association, CAS
  funderid: 2014265
– fundername: NSFC
  funderid: 21671188, 21871263; 21520102001
– fundername: Key Research Program of Frontier Science, CAS
  funderid: QYZDJ-SSW-SLH045
– fundername: NSFC
  grantid: 21520102001
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB20000000
– fundername: Key Research Program of Frontier Science, CAS
  grantid: QYZDJ-SSW-SLH045
– fundername: Youth Innovation Promotion Association, CAS
  grantid: 2014265
– fundername: National Key Research and Development Program of China
  grantid: 2018YFA0208600
– fundername: NSFC
  grantid: 21671188, 21871263
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
EJD
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c4107-2d964f17e09b1d56da0091f58181b66b3d3fb82b8d49458ed888550b8fe3920e3
ISSN 1861-4728
1861-471X
IngestDate Thu Jul 10 17:52:33 EDT 2025
Mon Jun 30 10:05:26 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 02:15:30 EDT 2025
Wed Jan 22 16:39:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords carbon aerogels
ZIF-8
oxygen reduction reaction
metal-organic frameworks
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4107-2d964f17e09b1d56da0091f58181b66b3d3fb82b8d49458ed888550b8fe3920e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2398-399X
0000-0003-4680-2976
0000-0002-9723-326X
PMID 31267685
PQID 2305425878
PQPubID 986338
PageCount 6
ParticipantIDs proquest_miscellaneous_2251692182
proquest_journals_2305425878
pubmed_primary_31267685
crossref_primary_10_1002_asia_201900727
crossref_citationtrail_10_1002_asia_201900727
wiley_primary_10_1002_asia_201900727_ASIA201900727
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 15, 2019
PublicationDateYYYYMMDD 2019-10-15
PublicationDate_xml – month: 10
  year: 2019
  text: October 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014 2014; 53 126
2017; 8
2013; 25
2017; 4
2017; 46
2019; 14
2012; 488
2012; 12
2014; 136
2014; 20
2018; 6
2018; 3
2014; 4
2018; 5
2012; 134
2019; 62
2018 2018; 57 130
2015; 43
2013; 113
2018; 30
2014; 50
2014; 6
2019; 7
2015; 6
2015; 3
2015; 51
2013; 42
2016; 52
2015; 8
2015; 7
2011; 133
2014; 43
2019; 142
2016; 6
2016; 7
2015; 27
2016 2016; 55 128
2012; 112
2019
2019; 378
2016; 138
2016; 28
2016; 26
2008; 130
2016; 8
2016; 9
2006; 103
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
Qiao W. (e_1_2_7_58_1) 2019; 62
Zhong S. (e_1_2_7_16_1) 2019
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – year: 2019
  publication-title: Chem. Asian J.
– volume: 8
  start-page: 2158
  year: 2016
  end-page: 2165
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 2126
  year: 2018
  end-page: 2134
  publication-title: ChemElectroChem
– volume: 30
  start-page: 1703711
  year: 2018
  publication-title: Adv. Mater.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 157
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 2554
  year: 2013
  end-page: 2560
  publication-title: Adv. Mater.
– volume: 51
  start-page: 2710
  year: 2015
  end-page: 2713
  publication-title: Chem. Commun.
– volume: 134
  start-page: 9082
  year: 2012
  end-page: 9085
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 2650 2698
  year: 2016 2016
  end-page: 2676 2726
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  start-page: 3379
  year: 2018
  end-page: 3386
  publication-title: Chem. Mater.
– volume: 6
  start-page: 6590
  year: 2014
  end-page: 6602
  publication-title: Nanoscale
– volume: 53 126
  start-page: 14235 14459
  year: 2014 2014
  end-page: 14239 14463
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 4988
  year: 2012
  end-page: 4991
  publication-title: Nano Lett.
– volume: 62
  start-page: 671
  year: 2019
  end-page: 680
  publication-title: Sci. China Mater.
– volume: 57 130
  start-page: 8525 8661
  year: 2018 2018
  end-page: 8529 8665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 394
  year: 2018
  end-page: 407
  publication-title: Mater. Horiz.
– volume: 27
  start-page: 5010
  year: 2015
  end-page: 5016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 24071
  year: 2018
  end-page: 24077
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 8334
  year: 2016
  end-page: 8344
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 21471
  year: 2015
  end-page: 21477
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 4764
  year: 2016
  end-page: 4767
  publication-title: Chem. Commun.
– volume: 50
  start-page: 3363
  year: 2014
  end-page: 3366
  publication-title: Chem. Commun.
– volume: 27
  start-page: 7610
  year: 2015
  end-page: 7618
  publication-title: Chem. Mater.
– volume: 136
  start-page: 13925
  year: 2014
  end-page: 13931
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 12322
  year: 2017
  end-page: 12329
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 107
  year: 2016
  end-page: 111
  publication-title: Energy Environ. Sci.
– volume: 136
  start-page: 6790
  year: 2014
  end-page: 6793
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 1359
  year: 2016
  end-page: 1365
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  publication-title: Chem. Rev.
– volume: 113
  start-page: 734
  year: 2013
  end-page: 777
  publication-title: Chem. Rev.
– volume: 14
  start-page: 2008
  year: 2019
  end-page: 2017
  publication-title: Chem. Asian J.
– volume: 43
  start-page: 1151
  year: 2015
  end-page: 1158
  publication-title: Renewable Sustainable Energy Rev.
– volume: 13
  start-page: 1318
  year: 2018
  end-page: 1326
  publication-title: Chem. Asian J.
– volume: 130
  start-page: 5390
  year: 2008
  end-page: 5391
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7636
  year: 2015
  end-page: 7642
  publication-title: Chem. Mater.
– volume: 43
  start-page: 5468
  year: 2014
  end-page: 5512
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 717
  year: 2014
  end-page: 719
  publication-title: Chem. Lett.
– volume: 28
  start-page: 6391
  year: 2016
  end-page: 6398
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3057
  year: 2018
  end-page: 3062
  publication-title: Chem. Asian J.
– volume: 8
  start-page: 1837
  year: 2015
  end-page: 1866
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1702891
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3538
  year: 2017
  end-page: 3546
  publication-title: Chem. Sci.
– volume: 142
  start-page: 115
  year: 2019
  end-page: 122
  publication-title: Carbon
– volume: 6
  start-page: 1600423
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1252
  year: 2019
  end-page: 1259
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 6983
  year: 2014
  publication-title: Sci. Rep.
– volume: 378
  start-page: 32
  year: 2019
  end-page: 65
  publication-title: Coord. Chem. Rev.
– volume: 20
  start-page: 4217
  year: 2014
  end-page: 4221
  publication-title: Chem. Eur. J.
– volume: 7
  start-page: 20674
  year: 2015
  end-page: 20684
  publication-title: Nanoscale
– volume: 42
  start-page: 794
  year: 2013
  end-page: 830
  publication-title: Chem. Soc. Rev.
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  publication-title: Nature
– volume: 6
  start-page: 6512
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1690
  year: 2016
  end-page: 1695
  publication-title: Chem. Sci.
– volume: 4
  start-page: 2442
  year: 2017
  end-page: 2447
  publication-title: ChemElectroChem
– volume: 138
  start-page: 10810
  year: 2016
  end-page: 10813
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5415
  year: 2014
  end-page: 5418
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 11854
  year: 2011
  end-page: 11857
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 883
  year: 2018
  end-page: 889
  publication-title: ACS Energy Lett.
– ident: e_1_2_7_40_2
  doi: 10.1002/ange.201504830
– ident: e_1_2_7_4_1
  doi: 10.1021/cr3002824
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.201600423
– ident: e_1_2_7_26_1
  doi: 10.1038/ncomms7512
– ident: e_1_2_7_32_1
  doi: 10.1039/C6SC04903F
– ident: e_1_2_7_36_1
  doi: 10.1002/celc.201700627
– ident: e_1_2_7_50_1
  doi: 10.1002/asia.201801134
– ident: e_1_2_7_45_1
  doi: 10.1016/j.carbon.2018.10.040
– ident: e_1_2_7_59_1
  doi: 10.1021/jacs.6b06959
– ident: e_1_2_7_20_1
  doi: 10.1039/C5SC04425A
– ident: e_1_2_7_47_1
  doi: 10.1039/C8TA08668K
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.chemmater.5b02877
– ident: e_1_2_7_44_2
  doi: 10.1002/ange.201803262
– ident: e_1_2_7_7_1
  doi: 10.1039/C5EE00762C
– ident: e_1_2_7_42_1
  doi: 10.1039/C4CC09062D
– ident: e_1_2_7_27_1
  doi: 10.1039/C5TA05018A
– ident: e_1_2_7_22_1
  doi: 10.1038/srep06983
– volume: 62
  start-page: 671
  year: 2019
  ident: e_1_2_7_58_1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-018-9364-5
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.5b11986
– ident: e_1_2_7_25_1
  doi: 10.1039/C5NR07429K
– ident: e_1_2_7_3_1
  doi: 10.1039/C3CS60472A
– ident: e_1_2_7_43_1
  doi: 10.1002/adma.201502315
– ident: e_1_2_7_18_1
  doi: 10.1021/ja5082553
– ident: e_1_2_7_24_1
  doi: 10.1039/C5EE02903A
– ident: e_1_2_7_10_1
  doi: 10.1039/C8MH00133B
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201600979
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.201408990
– ident: e_1_2_7_19_1
  doi: 10.1002/chem.201304404
– ident: e_1_2_7_38_1
  doi: 10.1038/nature11475
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemmater.8b00836
– ident: e_1_2_7_52_1
  doi: 10.1039/C6CC00413J
– ident: e_1_2_7_13_1
  doi: 10.1246/cl.131174
– ident: e_1_2_7_41_1
  doi: 10.1021/acsenergylett.8b00245
– ident: e_1_2_7_37_1
  doi: 10.1002/celc.201800479
– ident: e_1_2_7_55_1
  doi: 10.1021/ja5003907
– ident: e_1_2_7_11_1
  doi: 10.1021/ja7106146
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201702891
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ccr.2017.11.013
– ident: e_1_2_7_5_1
  doi: 10.1039/C6CS00250A
– ident: e_1_2_7_34_1
  doi: 10.1021/ja3030565
– ident: e_1_2_7_48_1
  doi: 10.1039/C8TA09490J
– ident: e_1_2_7_54_1
  doi: 10.1021/ja203184k
– ident: e_1_2_7_49_1
  doi: 10.1002/asia.201900241
– ident: e_1_2_7_57_1
  doi: 10.1002/adfm.201603607
– ident: e_1_2_7_56_2
  doi: 10.1002/ange.201408990
– ident: e_1_2_7_17_1
  doi: 10.1021/nl302618s
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemmater.5b02708
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.5b10727
– ident: e_1_2_7_15_1
  doi: 10.1002/asia.201800245
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201504830
– year: 2019
  ident: e_1_2_7_16_1
  publication-title: Chem. Asian J.
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201204576
– ident: e_1_2_7_31_1
  doi: 10.1039/C7TA02999C
– ident: e_1_2_7_39_1
  doi: 10.1016/j.rser.2014.11.093
– ident: e_1_2_7_35_1
  doi: 10.1039/C2CS35353A
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201703711
– ident: e_1_2_7_1_1
  doi: 10.1021/cr300014x
– ident: e_1_2_7_14_1
  doi: 10.1039/C3CC47620K
– ident: e_1_2_7_44_1
  doi: 10.1002/anie.201803262
– ident: e_1_2_7_51_1
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_7_2_1
  doi: 10.1039/C4CS90059F
– ident: e_1_2_7_53_1
  doi: 10.1039/C4NR00348A
SSID ssj0052098
Score 2.3661678
Snippet Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and...
Metal-organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom-doped carbon materials for energy storage and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3642
SubjectTerms Aerogels
Carbon
carbon aerogels
Carbonaceous materials
Chemistry
Energy storage
Metal-organic frameworks
Organic chemistry
oxygen reduction reaction
Oxygen reduction reactions
Porosity
Pyrolysis
Sol-gel processes
Zeolites
ZIF-8
Title N‐Doped Carbon Aerogel Derived from a Metal–Organic Framework Foam as an Efficient Electrocatalyst for Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.201900727
https://www.ncbi.nlm.nih.gov/pubmed/31267685
https://www.proquest.com/docview/2305425878
https://www.proquest.com/docview/2251692182
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdAEbxLuBggYJiUVksMf22F4mbaKA2nRBIqUry2OPK0tgV0mMKGz6CUh8GP_QL-HOwxMHChQ2VjJ-TXKO72N8Hwi9SEAnedTNrCxzmOXlAbMiO_OtENRBCv4BKEXhKB5N6WTuvV34i07neytqqV6zV-nnK_NK_gdVGANcRZbsPyBrLgoD8BnwhS0gDNtrYTw1oQoH1ZlYqk2WDNAc8GV1ykGcwRw-wrBMIUn6RxwM7eYMVyVhpsJyVdFZ_XGVfBBtZ-CJH8nCEiJMYKTa5MhVnvPVWkYlHn86hykBMpkqPds2cPebBnIqLBTgL_RSf_NrRLhOXbZmXp72TwoDPAfhY_YVfbmgbbhX1VJlFJuhkzrZXGtYJFV_Ujdn6MUMJxJaQKVzXlNktkR1SMH7DXRqOW-PySY8G_nutXhM7Ja0dqmq7KU1vyilf6VWUVVqRVariAWMRLX1YKM_m5iB6XE8nh8exrPRYnYD7ZAgcPwu2hkMD4bjxjgQQUcyO7OZfFNH1Cavt6-_bSf94vxs-1LSGJrdQbe1F4MHipJ3UYeX99BNg_199GV6efFVkhIrUmJNSqxJiQUpcYIlKS8vvmk6YkNHLOiIkxVOSmzoiH-iIwY6YkVHbOj4AM3Ho9n-xNJ9PqzUc-zAIllEvdwJuB0xJ_NploDh7-Q-2JIOo5S5mZuzkLAw8yLPD3kWhqIMHwtzDta9zd2HqFtWJd9FmEeBG3CwsIhHPe4RRnLqcJA-aQ6Ki9Iespp_NU51EXzRi-V9rMp3k1igEBsUeuilOf5MlX_57ZF7DUixfqhWMfj3PijFMAh76LnZDVCIt3JJyasajiHiVbVopNBDjxS45lauQ2hAQ7-HiET7L3OIB-_eDMy3x3-e0RN0a_ME7qHuelnzp2Bgr9kzTdofjGnLCQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N%E2%80%90Doped+Carbon+Aerogel+Derived+from+a+Metal%E2%80%93Organic+Framework+Foam+as+an+Efficient+Electrocatalyst+for+Oxygen+Reduction&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Jun%E2%80%90Dong+Yi&rft.au=Meng%E2%80%90Di+Zhang&rft.au=Hou%2C+Ying&rft.au=Yuan%E2%80%90Biao+Huang&rft.date=2019-10-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=14&rft.issue=20&rft.spage=3642&rft.epage=3647&rft_id=info:doi/10.1002%2Fasia.201900727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon