N‐Doped Carbon Aerogel Derived from a Metal–Organic Framework Foam as an Efficient Electrocatalyst for Oxygen Reduction
Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transporta...
Saved in:
Published in | Chemistry, an Asian journal Vol. 14; no. 20; pp. 3642 - 3647 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-4728 1861-471X 1861-471X |
DOI | 10.1002/asia.201900727 |
Cover
Abstract | Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications.
MOF‐derived aerogels: N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications. Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF‐derived carbon aerogels for various applications. MOF‐derived aerogels: N‐doped carbon aerogels with hierarchical micro‐, meso‐, and macropores were fabricated through one‐step pyrolysis of zeolitic imidazolate framework‐8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as‐prepared N‐doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long‐term durability, and good methanol tolerance in alkaline medium. Metal-organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom-doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N-doped carbon aerogels with hierarchical micro-, meso-, and macropores were fabricated through one-step pyrolysis of zeolitic imidazolate framework-8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as-prepared N-doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long-term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF-derived carbon aerogels for various applications.Metal-organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom-doped carbon materials for energy storage and conversion. However, the direct pyrolysis of bulk MOFs usually gives microporous carbonaceous materials, which significantly hinder the mass transportation and the accessibility of active sites. Herein, N-doped carbon aerogels with hierarchical micro-, meso-, and macropores were fabricated through one-step pyrolysis of zeolitic imidazolate framework-8/carboxymethylcellulose composite gel. Owing to the hierarchical porosity, high specific surface area, favorable conductivity, excellent thermal and chemical stability, the as-prepared N-doped carbon aerogel exhibits excellent oxygen reduction reaction (ORR) activity, long-term durability, and good methanol tolerance in alkaline medium. This work thus provides a new way to fabricate new types of MOF-derived carbon aerogels for various applications. |
Author | Yi, Jun‐Dong Huang, Yuan‐Biao Cao, Rong Hou, Ying Zhang, Meng‐Di |
Author_xml | – sequence: 1 givenname: Jun‐Dong orcidid: 0000-0002-9723-326X surname: Yi fullname: Yi, Jun‐Dong organization: Chinese Academy of Sciences – sequence: 2 givenname: Meng‐Di surname: Zhang fullname: Zhang, Meng‐Di organization: Chinese Academy of Sciences – sequence: 3 givenname: Ying surname: Hou fullname: Hou, Ying organization: Chinese Academy of Sciences – sequence: 4 givenname: Yuan‐Biao orcidid: 0000-0003-4680-2976 surname: Huang fullname: Huang, Yuan‐Biao email: ybhuang@fjiirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Rong orcidid: 0000-0002-2398-399X surname: Cao fullname: Cao, Rong organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31267685$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2LFDEQhoOsuB969SgBL3uZMUl3upPjMDujC6sDfoC3kE4qQ9buZEy6XQcv-xME_-H-EnuYdYQF8VSheJ6qUO8pOgoxAELPKZlSQtgrnb2eMkIlITWrH6ETKio6KWv6-ejwZuIYneZ8TQhnRIon6LigrKorwU_Qj3d3tz8v4gYsnuvUxIBnkOIaWnwByX8b2y7FDmv8Fnrd3t3-WqW1Dt7gZdId3MT0BS-jHoGMdcAL57zxEHq8aMH0KRo9WtvcYxcTXn3friHg92AH0_sYnqLHTrcZnt3XM_Rpufg4fzO5Wr2-nM-uJqakpJ4wK6vS0RqIbKjlldWESOq4oII2VdUUtnCNYI2wpSy5ACuE4Jw0wkEhGYHiDJ3v525S_DpA7lXns4G21QHikBVjnFaSUcFG9OUD9DoOKYy_U6wgvGRc1GKkXtxTQ9OBVZvkO5226s9ZR2C6B0yKOSdwB4QStctN7XJTh9xGoXwgGN_r3ZH6pH37b03utRvfwvY_S9Tsw-Xsr_sbfZWtvg |
CitedBy_id | crossref_primary_10_1016_j_rser_2024_114520 crossref_primary_10_1021_acs_langmuir_0c00236 crossref_primary_10_1016_j_inoche_2020_107825 crossref_primary_10_1039_D0TA04798H crossref_primary_10_1016_j_ceja_2024_100690 crossref_primary_10_1016_j_nanoen_2021_106073 crossref_primary_10_1016_j_mcat_2024_113851 crossref_primary_10_1039_D0NR08569C crossref_primary_10_1016_j_gee_2022_10_006 crossref_primary_10_1016_j_esci_2022_03_007 crossref_primary_10_1039_D1NJ03909A crossref_primary_10_1016_S1872_5805_24_60873_5 crossref_primary_10_1016_j_micromeso_2021_111101 crossref_primary_10_1016_S1872_5813_22_60030_6 crossref_primary_10_2139_ssrn_4201563 crossref_primary_10_1002_smll_202004142 crossref_primary_10_1016_j_jhazmat_2019_121057 crossref_primary_10_3390_catal14040279 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1016_j_jhazmat_2022_128684 crossref_primary_10_1016_j_electacta_2021_138237 |
Cites_doi | 10.1002/ange.201504830 10.1021/cr3002824 10.1002/aenm.201600423 10.1038/ncomms7512 10.1039/C6SC04903F 10.1002/celc.201700627 10.1002/asia.201801134 10.1016/j.carbon.2018.10.040 10.1021/jacs.6b06959 10.1039/C5SC04425A 10.1039/C8TA08668K 10.1021/acs.chemmater.5b02877 10.1002/ange.201803262 10.1039/C5EE00762C 10.1039/C4CC09062D 10.1039/C5TA05018A 10.1038/srep06983 10.1007/s40843-018-9364-5 10.1021/jacs.5b11986 10.1039/C5NR07429K 10.1039/C3CS60472A 10.1002/adma.201502315 10.1021/ja5082553 10.1039/C5EE02903A 10.1039/C8MH00133B 10.1002/adma.201600979 10.1002/anie.201408990 10.1002/chem.201304404 10.1038/nature11475 10.1021/acs.chemmater.8b00836 10.1039/C6CC00413J 10.1246/cl.131174 10.1021/acsenergylett.8b00245 10.1002/celc.201800479 10.1021/ja5003907 10.1021/ja7106146 10.1002/adma.201702891 10.1016/j.ccr.2017.11.013 10.1039/C6CS00250A 10.1021/ja3030565 10.1039/C8TA09490J 10.1021/ja203184k 10.1002/asia.201900241 10.1002/adfm.201603607 10.1002/ange.201408990 10.1021/nl302618s 10.1021/acs.chemmater.5b02708 10.1021/acsami.5b10727 10.1002/asia.201800245 10.1002/anie.201504830 10.1002/adma.201204576 10.1039/C7TA02999C 10.1016/j.rser.2014.11.093 10.1039/C2CS35353A 10.1002/adma.201703711 10.1021/cr300014x 10.1039/C3CC47620K 10.1002/anie.201803262 10.1073/pnas.0602439103 10.1039/C4CS90059F 10.1039/C4NR00348A |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.201900727 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | 3647 |
ExternalDocumentID | 31267685 10_1002_asia_201900727 ASIA201900727 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB20000000 – fundername: National Key Research and Development Program of China funderid: 2018YFA0208600 – fundername: Youth Innovation Promotion Association, CAS funderid: 2014265 – fundername: NSFC funderid: 21671188, 21871263; 21520102001 – fundername: Key Research Program of Frontier Science, CAS funderid: QYZDJ-SSW-SLH045 – fundername: NSFC grantid: 21520102001 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB20000000 – fundername: Key Research Program of Frontier Science, CAS grantid: QYZDJ-SSW-SLH045 – fundername: Youth Innovation Promotion Association, CAS grantid: 2014265 – fundername: National Key Research and Development Program of China grantid: 2018YFA0208600 – fundername: NSFC grantid: 21671188, 21871263 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS EJD F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4107-2d964f17e09b1d56da0091f58181b66b3d3fb82b8d49458ed888550b8fe3920e3 |
ISSN | 1861-4728 1861-471X |
IngestDate | Thu Jul 10 17:52:33 EDT 2025 Mon Jun 30 10:05:26 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 02:15:30 EDT 2025 Wed Jan 22 16:39:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | carbon aerogels ZIF-8 oxygen reduction reaction metal-organic frameworks |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4107-2d964f17e09b1d56da0091f58181b66b3d3fb82b8d49458ed888550b8fe3920e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2398-399X 0000-0003-4680-2976 0000-0002-9723-326X |
PMID | 31267685 |
PQID | 2305425878 |
PQPubID | 986338 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2251692182 proquest_journals_2305425878 pubmed_primary_31267685 crossref_primary_10_1002_asia_201900727 crossref_citationtrail_10_1002_asia_201900727 wiley_primary_10_1002_asia_201900727_ASIA201900727 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 15, 2019 |
PublicationDateYYYYMMDD | 2019-10-15 |
PublicationDate_xml | – month: 10 year: 2019 text: October 15, 2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2014 2014; 53 126 2017; 8 2013; 25 2017; 4 2017; 46 2019; 14 2012; 488 2012; 12 2014; 136 2014; 20 2018; 6 2018; 3 2014; 4 2018; 5 2012; 134 2019; 62 2018 2018; 57 130 2015; 43 2013; 113 2018; 30 2014; 50 2014; 6 2019; 7 2015; 6 2015; 3 2015; 51 2013; 42 2016; 52 2015; 8 2015; 7 2011; 133 2014; 43 2019; 142 2016; 6 2016; 7 2015; 27 2016 2016; 55 128 2012; 112 2019 2019; 378 2016; 138 2016; 28 2016; 26 2008; 130 2016; 8 2016; 9 2006; 103 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 Qiao W. (e_1_2_7_58_1) 2019; 62 Zhong S. (e_1_2_7_16_1) 2019 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – year: 2019 publication-title: Chem. Asian J. – volume: 8 start-page: 2158 year: 2016 end-page: 2165 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 2126 year: 2018 end-page: 2134 publication-title: ChemElectroChem – volume: 30 start-page: 1703711 year: 2018 publication-title: Adv. Mater. – volume: 46 start-page: 126 year: 2017 end-page: 157 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 2554 year: 2013 end-page: 2560 publication-title: Adv. Mater. – volume: 51 start-page: 2710 year: 2015 end-page: 2713 publication-title: Chem. Commun. – volume: 134 start-page: 9082 year: 2012 end-page: 9085 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 2650 2698 year: 2016 2016 end-page: 2676 2726 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 30 start-page: 3379 year: 2018 end-page: 3386 publication-title: Chem. Mater. – volume: 6 start-page: 6590 year: 2014 end-page: 6602 publication-title: Nanoscale – volume: 53 126 start-page: 14235 14459 year: 2014 2014 end-page: 14239 14463 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 4988 year: 2012 end-page: 4991 publication-title: Nano Lett. – volume: 62 start-page: 671 year: 2019 end-page: 680 publication-title: Sci. China Mater. – volume: 57 130 start-page: 8525 8661 year: 2018 2018 end-page: 8529 8665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 103 start-page: 10186 year: 2006 end-page: 10191 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 394 year: 2018 end-page: 407 publication-title: Mater. Horiz. – volume: 27 start-page: 5010 year: 2015 end-page: 5016 publication-title: Adv. Mater. – volume: 6 start-page: 24071 year: 2018 end-page: 24077 publication-title: J. Mater. Chem. A – volume: 26 start-page: 8334 year: 2016 end-page: 8344 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 21471 year: 2015 end-page: 21477 publication-title: J. Mater. Chem. A – volume: 52 start-page: 4764 year: 2016 end-page: 4767 publication-title: Chem. Commun. – volume: 50 start-page: 3363 year: 2014 end-page: 3366 publication-title: Chem. Commun. – volume: 27 start-page: 7610 year: 2015 end-page: 7618 publication-title: Chem. Mater. – volume: 136 start-page: 13925 year: 2014 end-page: 13931 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 12322 year: 2017 end-page: 12329 publication-title: J. Mater. Chem. A – volume: 9 start-page: 107 year: 2016 end-page: 111 publication-title: Energy Environ. Sci. – volume: 136 start-page: 6790 year: 2014 end-page: 6793 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 1359 year: 2016 end-page: 1365 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 673 year: 2012 end-page: 674 publication-title: Chem. Rev. – volume: 113 start-page: 734 year: 2013 end-page: 777 publication-title: Chem. Rev. – volume: 14 start-page: 2008 year: 2019 end-page: 2017 publication-title: Chem. Asian J. – volume: 43 start-page: 1151 year: 2015 end-page: 1158 publication-title: Renewable Sustainable Energy Rev. – volume: 13 start-page: 1318 year: 2018 end-page: 1326 publication-title: Chem. Asian J. – volume: 130 start-page: 5390 year: 2008 end-page: 5391 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7636 year: 2015 end-page: 7642 publication-title: Chem. Mater. – volume: 43 start-page: 5468 year: 2014 end-page: 5512 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 717 year: 2014 end-page: 719 publication-title: Chem. Lett. – volume: 28 start-page: 6391 year: 2016 end-page: 6398 publication-title: Adv. Mater. – volume: 13 start-page: 3057 year: 2018 end-page: 3062 publication-title: Chem. Asian J. – volume: 8 start-page: 1837 year: 2015 end-page: 1866 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1702891 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 3538 year: 2017 end-page: 3546 publication-title: Chem. Sci. – volume: 142 start-page: 115 year: 2019 end-page: 122 publication-title: Carbon – volume: 6 start-page: 1600423 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1252 year: 2019 end-page: 1259 publication-title: J. Mater. Chem. A – volume: 4 start-page: 6983 year: 2014 publication-title: Sci. Rep. – volume: 378 start-page: 32 year: 2019 end-page: 65 publication-title: Coord. Chem. Rev. – volume: 20 start-page: 4217 year: 2014 end-page: 4221 publication-title: Chem. Eur. J. – volume: 7 start-page: 20674 year: 2015 end-page: 20684 publication-title: Nanoscale – volume: 42 start-page: 794 year: 2013 end-page: 830 publication-title: Chem. Soc. Rev. – volume: 488 start-page: 294 year: 2012 end-page: 303 publication-title: Nature – volume: 6 start-page: 6512 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 1690 year: 2016 end-page: 1695 publication-title: Chem. Sci. – volume: 4 start-page: 2442 year: 2017 end-page: 2447 publication-title: ChemElectroChem – volume: 138 start-page: 10810 year: 2016 end-page: 10813 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5415 year: 2014 end-page: 5418 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 11854 year: 2011 end-page: 11857 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 883 year: 2018 end-page: 889 publication-title: ACS Energy Lett. – ident: e_1_2_7_40_2 doi: 10.1002/ange.201504830 – ident: e_1_2_7_4_1 doi: 10.1021/cr3002824 – ident: e_1_2_7_8_1 doi: 10.1002/aenm.201600423 – ident: e_1_2_7_26_1 doi: 10.1038/ncomms7512 – ident: e_1_2_7_32_1 doi: 10.1039/C6SC04903F – ident: e_1_2_7_36_1 doi: 10.1002/celc.201700627 – ident: e_1_2_7_50_1 doi: 10.1002/asia.201801134 – ident: e_1_2_7_45_1 doi: 10.1016/j.carbon.2018.10.040 – ident: e_1_2_7_59_1 doi: 10.1021/jacs.6b06959 – ident: e_1_2_7_20_1 doi: 10.1039/C5SC04425A – ident: e_1_2_7_47_1 doi: 10.1039/C8TA08668K – ident: e_1_2_7_28_1 doi: 10.1021/acs.chemmater.5b02877 – ident: e_1_2_7_44_2 doi: 10.1002/ange.201803262 – ident: e_1_2_7_7_1 doi: 10.1039/C5EE00762C – ident: e_1_2_7_42_1 doi: 10.1039/C4CC09062D – ident: e_1_2_7_27_1 doi: 10.1039/C5TA05018A – ident: e_1_2_7_22_1 doi: 10.1038/srep06983 – volume: 62 start-page: 671 year: 2019 ident: e_1_2_7_58_1 publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9364-5 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.5b11986 – ident: e_1_2_7_25_1 doi: 10.1039/C5NR07429K – ident: e_1_2_7_3_1 doi: 10.1039/C3CS60472A – ident: e_1_2_7_43_1 doi: 10.1002/adma.201502315 – ident: e_1_2_7_18_1 doi: 10.1021/ja5082553 – ident: e_1_2_7_24_1 doi: 10.1039/C5EE02903A – ident: e_1_2_7_10_1 doi: 10.1039/C8MH00133B – ident: e_1_2_7_23_1 doi: 10.1002/adma.201600979 – ident: e_1_2_7_56_1 doi: 10.1002/anie.201408990 – ident: e_1_2_7_19_1 doi: 10.1002/chem.201304404 – ident: e_1_2_7_38_1 doi: 10.1038/nature11475 – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemmater.8b00836 – ident: e_1_2_7_52_1 doi: 10.1039/C6CC00413J – ident: e_1_2_7_13_1 doi: 10.1246/cl.131174 – ident: e_1_2_7_41_1 doi: 10.1021/acsenergylett.8b00245 – ident: e_1_2_7_37_1 doi: 10.1002/celc.201800479 – ident: e_1_2_7_55_1 doi: 10.1021/ja5003907 – ident: e_1_2_7_11_1 doi: 10.1021/ja7106146 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201702891 – ident: e_1_2_7_6_1 doi: 10.1016/j.ccr.2017.11.013 – ident: e_1_2_7_5_1 doi: 10.1039/C6CS00250A – ident: e_1_2_7_34_1 doi: 10.1021/ja3030565 – ident: e_1_2_7_48_1 doi: 10.1039/C8TA09490J – ident: e_1_2_7_54_1 doi: 10.1021/ja203184k – ident: e_1_2_7_49_1 doi: 10.1002/asia.201900241 – ident: e_1_2_7_57_1 doi: 10.1002/adfm.201603607 – ident: e_1_2_7_56_2 doi: 10.1002/ange.201408990 – ident: e_1_2_7_17_1 doi: 10.1021/nl302618s – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemmater.5b02708 – ident: e_1_2_7_29_1 doi: 10.1021/acsami.5b10727 – ident: e_1_2_7_15_1 doi: 10.1002/asia.201800245 – ident: e_1_2_7_40_1 doi: 10.1002/anie.201504830 – year: 2019 ident: e_1_2_7_16_1 publication-title: Chem. Asian J. – ident: e_1_2_7_33_1 doi: 10.1002/adma.201204576 – ident: e_1_2_7_31_1 doi: 10.1039/C7TA02999C – ident: e_1_2_7_39_1 doi: 10.1016/j.rser.2014.11.093 – ident: e_1_2_7_35_1 doi: 10.1039/C2CS35353A – ident: e_1_2_7_46_1 doi: 10.1002/adma.201703711 – ident: e_1_2_7_1_1 doi: 10.1021/cr300014x – ident: e_1_2_7_14_1 doi: 10.1039/C3CC47620K – ident: e_1_2_7_44_1 doi: 10.1002/anie.201803262 – ident: e_1_2_7_51_1 doi: 10.1073/pnas.0602439103 – ident: e_1_2_7_2_1 doi: 10.1039/C4CS90059F – ident: e_1_2_7_53_1 doi: 10.1039/C4NR00348A |
SSID | ssj0052098 |
Score | 2.3661678 |
Snippet | Metal–organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom‐doped carbon materials for energy storage and... Metal-organic frameworks (MOFs) are promising alternative precursors for the fabrication of heteroatom-doped carbon materials for energy storage and... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3642 |
SubjectTerms | Aerogels Carbon carbon aerogels Carbonaceous materials Chemistry Energy storage Metal-organic frameworks Organic chemistry oxygen reduction reaction Oxygen reduction reactions Porosity Pyrolysis Sol-gel processes Zeolites ZIF-8 |
Title | N‐Doped Carbon Aerogel Derived from a Metal–Organic Framework Foam as an Efficient Electrocatalyst for Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.201900727 https://www.ncbi.nlm.nih.gov/pubmed/31267685 https://www.proquest.com/docview/2305425878 https://www.proquest.com/docview/2251692182 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdAEbxLuBggYJiUVksMf22F4mbaKA2nRBIqUry2OPK0tgV0mMKGz6CUh8GP_QL-HOwxMHChQ2VjJ-TXKO72N8Hwi9SEAnedTNrCxzmOXlAbMiO_OtENRBCv4BKEXhKB5N6WTuvV34i07neytqqV6zV-nnK_NK_gdVGANcRZbsPyBrLgoD8BnwhS0gDNtrYTw1oQoH1ZlYqk2WDNAc8GV1ykGcwRw-wrBMIUn6RxwM7eYMVyVhpsJyVdFZ_XGVfBBtZ-CJH8nCEiJMYKTa5MhVnvPVWkYlHn86hykBMpkqPds2cPebBnIqLBTgL_RSf_NrRLhOXbZmXp72TwoDPAfhY_YVfbmgbbhX1VJlFJuhkzrZXGtYJFV_Ujdn6MUMJxJaQKVzXlNktkR1SMH7DXRqOW-PySY8G_nutXhM7Ja0dqmq7KU1vyilf6VWUVVqRVariAWMRLX1YKM_m5iB6XE8nh8exrPRYnYD7ZAgcPwu2hkMD4bjxjgQQUcyO7OZfFNH1Cavt6-_bSf94vxs-1LSGJrdQbe1F4MHipJ3UYeX99BNg_199GV6efFVkhIrUmJNSqxJiQUpcYIlKS8vvmk6YkNHLOiIkxVOSmzoiH-iIwY6YkVHbOj4AM3Ho9n-xNJ9PqzUc-zAIllEvdwJuB0xJ_NploDh7-Q-2JIOo5S5mZuzkLAw8yLPD3kWhqIMHwtzDta9zd2HqFtWJd9FmEeBG3CwsIhHPe4RRnLqcJA-aQ6Ki9Iespp_NU51EXzRi-V9rMp3k1igEBsUeuilOf5MlX_57ZF7DUixfqhWMfj3PijFMAh76LnZDVCIt3JJyasajiHiVbVopNBDjxS45lauQ2hAQ7-HiET7L3OIB-_eDMy3x3-e0RN0a_ME7qHuelnzp2Bgr9kzTdofjGnLCQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N%E2%80%90Doped+Carbon+Aerogel+Derived+from+a+Metal%E2%80%93Organic+Framework+Foam+as+an+Efficient+Electrocatalyst+for+Oxygen+Reduction&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Jun%E2%80%90Dong+Yi&rft.au=Meng%E2%80%90Di+Zhang&rft.au=Hou%2C+Ying&rft.au=Yuan%E2%80%90Biao+Huang&rft.date=2019-10-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=14&rft.issue=20&rft.spage=3642&rft.epage=3647&rft_id=info:doi/10.1002%2Fasia.201900727&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |