Carboranealkynyl‐Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties
Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=t...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 11; pp. 5959 - 5964 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.03.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202013027 |
Cover
Abstract | Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐closo‐1,2‐C2B10H11 as the two‐in‐one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au23(C4B10H11)9(tht)6]2+ (Au23) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
A carboranealkynyl‐protected gold nanocluster Au28 possessing an open‐shell electronic structure with 13 valence electrons was isolated through a facile self‐reduction method in which it undergoes a complete transformation in methanol into a smaller‐sized cluster Au23 bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission. |
---|---|
AbstractList | Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au 28 (C 4 B 10 H 11 ) 12 (tht) 8 ] 3+ ( Au 28 , tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐ closo ‐1,2‐C 2 B 10 H 11 as the two‐in‐one reducing and protecting agent. Notably, Au 28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au 23 (C 4 B 10 H 11 ) 9 (tht) 6 ] 2+ ( Au 23 ) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au 28 and Au 23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐closo‐1,2‐C2B10H11 as the two‐in‐one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au23(C4B10H11)9(tht)6]2+ (Au23) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. A carboranealkynyl‐protected gold nanocluster Au28 possessing an open‐shell electronic structure with 13 valence electrons was isolated through a facile self‐reduction method in which it undergoes a complete transformation in methanol into a smaller‐sized cluster Au23 bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission. Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐closo‐1,2‐C2B10H11 as the two‐in‐one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au23(C4B10H11)9(tht)6]2+ (Au23) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au (C B H ) (tht) ] (Au , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C B H as the two-in-one reducing and protecting agent. Notably, Au undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au (C B H ) (tht) ] (Au ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au and Au both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. |
Author | Li, Shi‐Jun Zang, Shuang‐Quan Mak, Thomas C. W. Wang, Zhao‐Yang Wang, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Wang fullname: Wang, Jie organization: Zhengzhou University – sequence: 2 givenname: Zhao‐Yang surname: Wang fullname: Wang, Zhao‐Yang email: wangzy@zzu.edu.cn organization: Zhengzhou University – sequence: 3 givenname: Shi‐Jun surname: Li fullname: Li, Shi‐Jun organization: Zhengzhou University – sequence: 4 givenname: Shuang‐Quan orcidid: 0000-0002-6728-0559 surname: Zang fullname: Zang, Shuang‐Quan email: zangsqzg@zzu.edu.cn organization: Zhengzhou University – sequence: 5 givenname: Thomas C. W. surname: Mak fullname: Mak, Thomas C. W. organization: The Chinese University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33314503$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctqGzEYhUVJaa7bLstAN92Mo9uMZroLJk0NwSnNZSs00m9QKkuupElxV3mEQN4wT1KlTloIlG504zuHX-fsoi0fPCD0luAJwZgeKm9hQjHFhGEqXqEd0lBSMyHYVjlzxmrRNWQb7aZ0Xfiuw-0btM0YI7zBbAfpqYpDiMqDct_Wfu0ebu--xJBBZzDVSXCmmisftBtThpg-Vuf2J1TT4G_KzQZfKW-qy6vDK5sebu_ns6_V2SpbrVxVXFYQs4W0j14vlEtw8LTvoctPxxfTz_Xp2clsenRaa06wqGkPqhGMtqYsfacVgBGDaBldQHkbWs2aBmNDFaPM0EVLuoHrHrjiojdty_bQh43vKobvI6QslzZpcK78LoxJUi5KBLxloqDvX6DXYYy-TFeonpPi9tvw3RM1DkswchXtUsW1fI6vAHwD6BhSirCQ2maVSy45KuskwfKxJfnYkvzTUpFNXsienf8p6DeCH9bB-j-0PJrPjv9qfwFUuKWU |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_2c03331 crossref_primary_10_1021_acs_chemmater_3c01247 crossref_primary_10_1039_D1AY00995H crossref_primary_10_1002_EXP_20220005 crossref_primary_10_1002_ppsc_202300084 crossref_primary_10_1021_acsanm_3c05710 crossref_primary_10_1039_D3SC07005K crossref_primary_10_1002_ange_202207492 crossref_primary_10_1016_j_apcata_2023_119283 crossref_primary_10_1039_D2QI01082H crossref_primary_10_1002_cnma_202200514 crossref_primary_10_1021_jacs_3c13965 crossref_primary_10_1038_s44160_023_00467_4 crossref_primary_10_1039_D3DT02838K crossref_primary_10_1007_s12274_022_5308_0 crossref_primary_10_1002_asia_202300463 crossref_primary_10_1016_j_cclet_2024_110090 crossref_primary_10_1016_j_ccr_2021_214184 crossref_primary_10_1016_j_isci_2023_107850 crossref_primary_10_1021_jacs_3c01961 crossref_primary_10_1016_j_jcis_2024_05_233 crossref_primary_10_1021_jacs_3c02458 crossref_primary_10_1021_jacs_3c02215 crossref_primary_10_1021_acsami_1c21109 crossref_primary_10_1039_D3NR02196C crossref_primary_10_1021_acsnano_4c16160 crossref_primary_10_1039_D4QO01428F crossref_primary_10_1007_s12274_021_3940_8 crossref_primary_10_1039_D1QI00684C crossref_primary_10_1016_j_cjsc_2024_100405 crossref_primary_10_1088_1361_6463_ad6fac crossref_primary_10_1039_D3QI01035J crossref_primary_10_1007_s12598_023_02438_2 crossref_primary_10_1039_D2MA00572G crossref_primary_10_1016_j_molliq_2023_121516 crossref_primary_10_1016_j_ccr_2021_214315 crossref_primary_10_1021_jacs_3c02768 crossref_primary_10_1126_sciadv_adg3587 crossref_primary_10_1021_jacs_3c01119 crossref_primary_10_1039_D2CS00876A crossref_primary_10_1021_acs_iecr_3c00411 crossref_primary_10_1002_ange_202305604 crossref_primary_10_1039_D3GC02281A crossref_primary_10_1016_j_ijhydene_2023_12_015 crossref_primary_10_1021_acsnano_2c07521 crossref_primary_10_1039_D2QM01061E crossref_primary_10_1021_acs_chemrev_3c00896 crossref_primary_10_3390_molecules29184427 crossref_primary_10_1016_j_matre_2022_100172 crossref_primary_10_1039_D4SC00942H crossref_primary_10_1007_s12274_021_3928_4 crossref_primary_10_1002_chem_202102926 crossref_primary_10_1002_anie_202207492 crossref_primary_10_1016_j_cjsc_2023_100123 crossref_primary_10_1002_adma_202103918 crossref_primary_10_1021_acsnano_3c01068 crossref_primary_10_1002_anie_202305604 crossref_primary_10_1039_D2TB00533F |
Cites_doi | 10.1002/anie.201706021 10.1021/acs.chemmater.6b03879 10.1021/ja0457718 10.1021/acs.accounts.7b00224 10.1021/acs.jpclett.6b03061 10.1021/ar300213z 10.1021/acs.langmuir.9b01527 10.1039/C8CC06665E 10.1021/ja401798z 10.1002/ange.200900298 10.1002/anie.201500590 10.1002/ange.202011780 10.1021/jacs.9b03257 10.1021/ja5103025 10.1039/C8NR07714B 10.1126/sciadv.1700956 10.1021/acs.chemrev.6b00769 10.1002/anie.201912984 10.1002/ange.201706021 10.1016/j.ccr.2017.12.005 10.1021/acs.jpclett.9b02920 10.1039/C8CS00800K 10.1039/C9CC08872E 10.1021/jacs.8b11096 10.1002/ange.201814156 10.1002/ange.201500590 10.1002/ange.201503893 10.1021/jacs.5b04547 10.1021/acs.jpclett.5b00780 10.1021/nn401971g 10.1002/anie.201811859 10.1021/ja809157f 10.1002/anie.201207098 10.1021/ar9602664 10.1021/jacs.9b11836 10.1021/acs.accounts.8b00065 10.1002/ange.201912984 10.1039/C6CC02698B 10.1021/acs.jpclett.5b01150 10.1021/ja209236n 10.1002/anie.201814156 10.1002/adma.201802751 10.1038/s41467-019-12889-w 10.1002/anie.201503893 10.1021/ja0452471 10.1021/acs.jpcc.7b03860 10.1021/jacs.7b05243 10.1063/1.4773061 10.1039/C3CC47089J 10.1021/ja505599v 10.1002/ange.201811859 10.1002/ange.201207098 10.1021/acs.chemrev.5b00703 10.1021/jacs.6b08100 10.1002/tcr.201700002 10.1021/jacs.5b01232 10.1021/acsnano.8b02780 10.1021/jacs.0c05866 10.1002/adma.201901015 10.1002/ange.201804481 10.1002/anie.201804481 10.1002/anie.202011780 10.1021/ja404058q 10.1039/c2cc18153c 10.1002/anie.200900298 10.1021/jacs.0c07397 10.1038/s41467-018-03136-9 10.1021/ja407887d 10.1021/ja508860b 10.1021/ic00220a025 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202013027 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 5964 |
ExternalDocumentID | 33314503 10_1002_anie_202013027 ANIE202013027 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92061201; 21825106; 21801228 – fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province funderid: 164100510005 – fundername: National Natural Science Foundation of China grantid: 92061201 – fundername: National Natural Science Foundation of China grantid: 21801228 – fundername: National Natural Science Foundation of China grantid: 21825106 – fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province grantid: 164100510005 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4107-29ea57326d73298caeed7b7632fe6d7b6c35500d2a323d2f618b4c9e4a479d663 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:25:59 EDT 2025 Sun Jul 13 04:38:37 EDT 2025 Thu Apr 03 07:08:20 EDT 2025 Tue Jul 01 01:17:53 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Jan 22 16:30:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | NIR emission structure evolution self-reduction syntheses carboranes gold nanoclusters |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4107-29ea57326d73298caeed7b7632fe6d7b6c35500d2a323d2f618b4c9e4a479d663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6728-0559 |
PMID | 33314503 |
PQID | 2494166366 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2470024637 proquest_journals_2494166366 pubmed_primary_33314503 crossref_citationtrail_10_1002_anie_202013027 crossref_primary_10_1002_anie_202013027 wiley_primary_10_1002_anie_202013027_ANIE202013027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 8, 2021 |
PublicationDateYYYYMMDD | 2021-03-08 |
PublicationDate_xml | – month: 03 year: 2021 text: March 8, 2021 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2015; 6 2017; 3 2019; 31 2009 2009; 48 121 2013; 46 2020; 142 2019; 55 2019; 10 2019; 35 2020 2020; 59 132 2016; 52 2009; 131 2017 2017; 56 129 2013; 7 2019; 141 2014; 136 2019 2019; 58 131 2011; 133 2017; 117 2017; 139 1985; 24 2017; 50 2018; 9 2015; 137 2017; 17 2018 2018; 57 130 2013; 138 2012 2012; 51 124 2000; 33 2019; 48 2005; 127 2021 2021; 60 133 2015 2015; 54 127 2019; 378 2013; 135 2018; 30 2016; 116 2018; 51 2016; 138 2017; 121 2012; 48 2018; 12 2016; 28 2018; 54 2018; 10 2014; 50 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_30_1 e_1_2_6_70_3 e_1_2_6_72_1 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_60_2 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_28_2 e_1_2_6_66_1 e_1_2_6_45_1 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_68_2 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_31_1 e_1_2_6_71_2 e_1_2_6_39_3 e_1_2_6_12_2 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_18_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_61_2 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_65_2 e_1_2_6_65_3 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_25_2 |
References_xml | – volume: 138 year: 2013 publication-title: J. Chem. Phys. – volume: 378 start-page: 595 year: 2019 end-page: 617 publication-title: Coord. Chem. Rev. – volume: 10 start-page: 21013 year: 2018 end-page: 21018 publication-title: Nanoscale – volume: 8 start-page: 866 year: 2017 end-page: 870 publication-title: J. Phys. Chem. Lett. – volume: 136 start-page: 15865 year: 2014 end-page: 15868 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 12350 year: 2019 end-page: 12355 publication-title: Langmuir – volume: 33 start-page: 27 year: 2000 end-page: 36 publication-title: Acc. Chem. Res. – volume: 142 start-page: 18086 year: 2020 end-page: 18092 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 55 year: 2014 end-page: 57 publication-title: Chem. Commun. – volume: 48 121 start-page: 5921 6035 year: 2009 2009 end-page: 5926 6040 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 4545 year: 1985 end-page: 4558 publication-title: Inorg. Chem. – volume: 141 start-page: 8422 year: 2019 end-page: 8425 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 812 year: 2005 end-page: 813 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2422 year: 2019 end-page: 2457 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 8639 8775 year: 2018 2018 end-page: 8643 8779 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 11970 year: 2015 end-page: 11975 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 6892 year: 2019 end-page: 6896 publication-title: J. Phys. Chem. Lett. – volume: 54 127 start-page: 5977 6075 year: 2015 2015 end-page: 5980 6078 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 744 year: 2018 publication-title: Nat. Commun. – volume: 50 start-page: 1988 year: 2017 end-page: 1996 publication-title: Acc. Chem. Res. – volume: 7 start-page: 6138 year: 2013 end-page: 6145 publication-title: ACS Nano – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 51 124 start-page: 13114 13291 year: 2012 2012 end-page: 13118 13295 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 1338 year: 2018 end-page: 1348 publication-title: Acc. Chem. Res. – volume: 135 start-page: 10011 year: 2013 end-page: 10013 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 11494 11652 year: 2017 2017 end-page: 11497 11655 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 2134 year: 2015 end-page: 2139 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 7057 year: 2018 end-page: 7066 publication-title: ACS Nano – volume: 52 start-page: 9873 year: 2016 end-page: 9876 publication-title: Chem. Commun. – volume: 137 start-page: 4324 year: 2015 end-page: 4327 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 10367 year: 2018 end-page: 10370 publication-title: Chem. Commun. – volume: 54 127 start-page: 9683 9819 year: 2015 2015 end-page: 9686 9822 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 10346 year: 2016 end-page: 10413 publication-title: Chem. Rev. – volume: 28 start-page: 8385 year: 2016 end-page: 8390 publication-title: Chem. Mater. – volume: 139 start-page: 12346 year: 2017 end-page: 12349 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 8208 year: 2017 end-page: 8271 publication-title: Chem. Rev. – volume: 6 start-page: 2976 year: 2015 end-page: 2986 publication-title: J. Phys. Chem. Lett. – volume: 136 start-page: 10801 year: 2014 end-page: 10806 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 14914 year: 2019 end-page: 14917 publication-title: Chem. Commun. – volume: 142 start-page: 2995 year: 2020 end-page: 3001 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 2490 year: 2009 end-page: 2492 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 2172 year: 2005 end-page: 2183 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 4848 year: 2019 publication-title: Nat. Commun. – volume: 48 start-page: 6085 year: 2012 end-page: 6087 publication-title: Chem. Commun. – volume: 121 start-page: 14914 year: 2017 end-page: 14919 publication-title: J. Phys. Chem. C – volume: 142 start-page: 13627 year: 2020 end-page: 13644 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 20123 year: 2011 end-page: 20125 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 15585 year: 2013 end-page: 15594 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 1749 year: 2013 end-page: 1758 publication-title: Acc. Chem. Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 141 start-page: 2384 year: 2019 end-page: 2390 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 17016 year: 2014 end-page: 17023 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 473 year: 2017 end-page: 484 publication-title: Chem. Rec. – volume: 138 start-page: 12751 year: 2016 end-page: 12754 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 8291 8377 year: 2019 2019 end-page: 8302 8388 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 970 983 year: 2021 2021 end-page: 975 988 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 2309 2329 year: 2020 2020 end-page: 2312 2332 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 1083 1095 year: 2019 2019 end-page: 1087 1099 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 9450 year: 2013 end-page: 9457 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_58_1 doi: 10.1002/anie.201706021 – ident: e_1_2_6_17_2 doi: 10.1021/acs.chemmater.6b03879 – ident: e_1_2_6_21_2 doi: 10.1021/ja0457718 – ident: e_1_2_6_14_2 doi: 10.1021/acs.accounts.7b00224 – ident: e_1_2_6_31_1 – ident: e_1_2_6_55_2 doi: 10.1021/acs.jpclett.6b03061 – ident: e_1_2_6_2_2 doi: 10.1021/ar300213z – ident: e_1_2_6_15_2 doi: 10.1021/acs.langmuir.9b01527 – ident: e_1_2_6_35_1 doi: 10.1039/C8CC06665E – ident: e_1_2_6_34_2 doi: 10.1021/ja401798z – ident: e_1_2_6_68_2 doi: 10.1002/ange.200900298 – ident: e_1_2_6_66_1 doi: 10.1002/anie.201500590 – ident: e_1_2_6_59_1 – ident: e_1_2_6_22_1 – ident: e_1_2_6_63_1 – ident: e_1_2_6_65_3 doi: 10.1002/ange.202011780 – ident: e_1_2_6_62_1 doi: 10.1021/jacs.9b03257 – ident: e_1_2_6_23_2 doi: 10.1021/ja5103025 – ident: e_1_2_6_50_2 doi: 10.1039/C8NR07714B – ident: e_1_2_6_64_2 doi: 10.1126/sciadv.1700956 – ident: e_1_2_6_4_2 doi: 10.1021/acs.chemrev.6b00769 – ident: e_1_2_6_39_2 doi: 10.1002/anie.201912984 – ident: e_1_2_6_58_2 doi: 10.1002/ange.201706021 – ident: e_1_2_6_69_1 – ident: e_1_2_6_9_2 doi: 10.1016/j.ccr.2017.12.005 – ident: e_1_2_6_40_2 doi: 10.1021/acs.jpclett.9b02920 – ident: e_1_2_6_8_2 doi: 10.1039/C8CS00800K – ident: e_1_2_6_19_2 doi: 10.1039/C9CC08872E – ident: e_1_2_6_43_1 doi: 10.1021/jacs.8b11096 – ident: e_1_2_6_7_3 doi: 10.1002/ange.201814156 – ident: e_1_2_6_66_2 doi: 10.1002/ange.201500590 – ident: e_1_2_6_70_3 doi: 10.1002/ange.201503893 – ident: e_1_2_6_67_1 doi: 10.1021/jacs.5b04547 – ident: e_1_2_6_24_2 doi: 10.1021/acs.jpclett.5b00780 – ident: e_1_2_6_25_2 doi: 10.1021/nn401971g – ident: e_1_2_6_37_1 doi: 10.1002/anie.201811859 – ident: e_1_2_6_47_2 doi: 10.1021/ja809157f – ident: e_1_2_6_57_1 doi: 10.1002/anie.201207098 – ident: e_1_2_6_28_2 doi: 10.1021/ar9602664 – ident: e_1_2_6_36_1 doi: 10.1021/jacs.9b11836 – ident: e_1_2_6_1_1 – ident: e_1_2_6_5_2 doi: 10.1021/acs.accounts.8b00065 – ident: e_1_2_6_39_3 doi: 10.1002/ange.201912984 – ident: e_1_2_6_52_2 doi: 10.1039/C6CC02698B – ident: e_1_2_6_12_2 doi: 10.1021/acs.jpclett.5b01150 – ident: e_1_2_6_18_1 – ident: e_1_2_6_32_2 doi: 10.1021/ja209236n – ident: e_1_2_6_7_2 doi: 10.1002/anie.201814156 – ident: e_1_2_6_6_2 doi: 10.1002/adma.201802751 – ident: e_1_2_6_11_1 – ident: e_1_2_6_53_1 doi: 10.1038/s41467-019-12889-w – ident: e_1_2_6_70_2 doi: 10.1002/anie.201503893 – ident: e_1_2_6_71_2 doi: 10.1021/ja0452471 – ident: e_1_2_6_26_2 doi: 10.1021/acs.jpcc.7b03860 – ident: e_1_2_6_45_1 doi: 10.1021/jacs.7b05243 – ident: e_1_2_6_48_2 doi: 10.1063/1.4773061 – ident: e_1_2_6_56_2 doi: 10.1039/C3CC47089J – ident: e_1_2_6_30_1 doi: 10.1021/ja505599v – ident: e_1_2_6_37_2 doi: 10.1002/ange.201811859 – ident: e_1_2_6_57_2 doi: 10.1002/ange.201207098 – ident: e_1_2_6_3_2 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_6_60_2 doi: 10.1021/jacs.6b08100 – ident: e_1_2_6_29_2 doi: 10.1002/tcr.201700002 – ident: e_1_2_6_44_1 doi: 10.1021/jacs.5b01232 – ident: e_1_2_6_13_2 doi: 10.1021/acsnano.8b02780 – ident: e_1_2_6_10_2 doi: 10.1021/jacs.0c05866 – ident: e_1_2_6_27_1 – ident: e_1_2_6_72_1 doi: 10.1002/adma.201901015 – ident: e_1_2_6_42_2 doi: 10.1002/ange.201804481 – ident: e_1_2_6_42_1 doi: 10.1002/anie.201804481 – ident: e_1_2_6_65_2 doi: 10.1002/anie.202011780 – ident: e_1_2_6_20_2 doi: 10.1021/ja404058q – ident: e_1_2_6_33_2 doi: 10.1039/c2cc18153c – ident: e_1_2_6_38_1 – ident: e_1_2_6_46_1 – ident: e_1_2_6_68_1 doi: 10.1002/anie.200900298 – ident: e_1_2_6_41_1 doi: 10.1021/jacs.0c07397 – ident: e_1_2_6_51_2 doi: 10.1038/s41467-018-03136-9 – ident: e_1_2_6_49_2 doi: 10.1021/ja407887d – ident: e_1_2_6_54_1 – ident: e_1_2_6_16_2 doi: 10.1021/ja508860b – ident: e_1_2_6_61_2 doi: 10.1021/ic00220a025 |
SSID | ssj0028806 |
Score | 2.5692189 |
Snippet | Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal... Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5959 |
SubjectTerms | Absorption Absorption spectra carboranes Electronic structure Evolution Free electrons Gold gold nanoclusters Metal clusters Nanoclusters NIR emission Optical properties self-reduction syntheses structure evolution |
Title | Carboranealkynyl‐Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013027 https://www.ncbi.nlm.nih.gov/pubmed/33314503 https://www.proquest.com/docview/2494166366 https://www.proquest.com/docview/2470024637 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754v0ynRBB8quuSLu18G9M5BaeoE99KkqYgjk52eXBP-wmC_9Bf4jnNWp0igr4U2ia9nHNyzpfk5Ash-z6gcqmVAQ0I43hx7DpKB64jAwPRSQeSGVw7fNESzbZ3fl-5_7SK3_JD5ANu2DJSf40NXKp-6YM0FFdgQ_-O2ak3cMJlLpA8__g6549iYJx2eRHnDu5Cn7E2uqw0XX06Kn2DmtPINQ09jUUis4-2GSePh8OBOtSjL3yO__mrJbIwwaW0Zg1pmcyYZIXM1bPt4FaJrsse2ksCyPLxOXnuvI1frizJg4noabcTUfDUXd0ZIvVC_4jePIwMrWNSezoiR2US0fZd6e6h_zZ-bZ1d08undBydXuF8QA-JXddIu3FyW286kx0aHO1Bv9FhVSMrPiDACA7VQEuIuL4Cl8ViA9eU0ABnXDdikjMesViUA-XpqvGk51cjADvrZDbpJmaTUCZkZLQoA2KseFrGgWuMBGeklYBqnBWIk2ko1BP6ctxFoxNa4mUWoujCXHQFcpCXf7LEHT-WLGYKDycNuB9CrxSgquBCFMhefhtEjvMpIOruEMv4CHEEh0dsWEPJX8U5L3sVlxcIS9X9yzeEtdbZSX629ZdK22SeYb4N5scFRTI76A3NDgCmgdpNG8U76GcN0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xONAL0JbHUmiNVKmnsFk762S5oRWw28IWURZxi2zHkVassmgfBzjxEyrxD_klzMSboC1CSOUSKYmdh2fs-Tye-QzwPURUroy2KAFpvSBNfU-byPdUZNE6mUhxS7nDpx3Z6gY_r-pFNCHlwjh-iNLhRj0jH6-pg5NDuvrMGkop2DjB427tbR4W80U6wkXnJYMUR_V0CUZCeLQPfcHb6PPqbP1Zu_QCbM5i19z4HK2ALj7bxZxc703Ges_c_cPo-K7_WoXlKTRlB06XPsKczT7BUrPYEe4zmKYakspkCC6vb7Pb_uP93zPH82ATdjzoJwwH64HpT4h9YbTP_vTuLGtSXHvulGMqS1j3snrZGz3eP3Ta5-z3Te5KZ2e0JDAkbtc16B4dXjRb3nSTBs8EOHX0eMOqeoggMMFDIzIKjW6ocdTiqcVrWhpENL6fcCW4SHgqa5EOTMMGKggbCeKddVjIBpndBMalSqyRNQSN9cCoNPKtVTgeGS2xmuAV8AoRxWbKYE4bafRjx73MY2q6uGy6Cvwoy9847o5XS24XEo-nfXgU48QU0aoUUlZgt7yNTU5LKtjUgwmVCQnlSIGP2HCaUr5KCFEL6r6oAM_l_cY3xAed9mF5tvU_lb7BUuvi9CQ-aXd-fYEPnMJvKFwu2oaF8XBidxA_jfXXvIc8AcisEe8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BkGAvsAEbHRszEhJPWVPbdVLeprJuHVCqQae9RY7tSNOqtOqfh-1pH2ES33CfhLu4CSsIIY2XSEns_Lnz3f1sn38GeBchKtcmdagB5QKZZWGQmjgMdOwwOplYc0drh7_01NFAHp81z-6s4vf8ENWAG1lG4a_JwMc2q_8iDaUV2Ni_437q7SE8kgpjJcGik4pAimPr9OuLhAhoG_qStjHk9eX6y2HpD6y5DF2L2NN5Brr8ap9ycrE3n6V75uo3Qsf_-a01eLoApmzft6R1eODy5_CkXe4H9wJMW0-oweQILS8u88vh7fVN37M8OMsOR0PL0FWPzHBO3AvTD-zb-ZVjbcpqL4bkmM4tG5zWT8-nt9c_et0T9nVcDKSzPk0ITIjZ9SUMOgff20fBYouGwEjsOAa85XQzQgho8dCKjcaQG6Xos3jm8FqqDOKZMLRcCy4sz1QjTqVpOall1LKIdjZgJR_l7hUwrrR1RjUQMjal0VkcOqfRG5lUYTXBaxCUGkrMgr-cttEYJp55mSckuqQSXQ3eV-XHnrnjryW3S4UnCwueJtgtRayqhFI1eFvdRpHThAqKejSnMhFhHCXwEZu-oVSvEkI0ZDMUNeCFuv_xDcl-r3tQnW3dp9IuPO5_7CSfu71Pr2GVU-4N5crF27Aym8zdDoKnWfqmsI-fgOsQng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carboranealkynyl-Protected+Gold+Nanoclusters%3A+Size+Conversion+and+UV%2FVis-NIR+Optical+Properties&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Jie&rft.au=Wang%2C+Zhao-Yang&rft.au=Li%2C+Shi-Jun&rft.au=Zang%2C+Shuang-Quan&rft.date=2021-03-08&rft.eissn=1521-3773&rft.volume=60&rft.issue=11&rft.spage=5959&rft_id=info:doi/10.1002%2Fanie.202013027&rft_id=info%3Apmid%2F33314503&rft.externalDocID=33314503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |