Carboranealkynyl‐Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties

Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=t...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 11; pp. 5959 - 5964
Main Authors Wang, Jie, Wang, Zhao‐Yang, Li, Shi‐Jun, Zang, Shuang‐Quan, Mak, Thomas C. W.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.03.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202013027

Cover

Abstract Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐closo‐1,2‐C2B10H11 as the two‐in‐one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au23(C4B10H11)9(tht)6]2+ (Au23) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. A carboranealkynyl‐protected gold nanocluster Au28 possessing an open‐shell electronic structure with 13 valence electrons was isolated through a facile self‐reduction method in which it undergoes a complete transformation in methanol into a smaller‐sized cluster Au23 bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission.
AbstractList Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au28 (C4 B10 H11 )12 (tht)8 ]3+ (Au28 , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C2 B10 H11 as the two-in-one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au23 (C4 B10 H11 )9 (tht)6 ]2+ (Au23 ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au 28 (C 4 B 10 H 11 ) 12 (tht) 8 ] 3+ ( Au 28 , tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐ closo ‐1,2‐C 2 B 10 H 11 as the two‐in‐one reducing and protecting agent. Notably, Au 28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au 23 (C 4 B 10 H 11 ) 9 (tht) 6 ] 2+ ( Au 23 ) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au 28 and Au 23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐closo‐1,2‐C2B10H11 as the two‐in‐one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au23(C4B10H11)9(tht)6]2+ (Au23) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields. A carboranealkynyl‐protected gold nanocluster Au28 possessing an open‐shell electronic structure with 13 valence electrons was isolated through a facile self‐reduction method in which it undergoes a complete transformation in methanol into a smaller‐sized cluster Au23 bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission.
Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl‐protected gold nanocluster [Au28(C4B10H11)12(tht)8]3+ (Au28, tht=tetrahydrothiophene) possessing an open‐shell electronic structure with 13 free electrons, which was isolated by a facile self‐reduction method with 9‐HC≡C‐closo‐1,2‐C2B10H11 as the two‐in‐one reducing and protecting agent. Notably, Au28 undergoes a complete transformation in methanol into a stable and smaller‐sized nanocluster [Au23(C4B10H11)9(tht)6]2+ (Au23) bearing 12 valence electrons and crystal‐field‐like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI‐MS and UV/Vis absorption spectra. Au28 and Au23 both display optical absorption covering the UV/Vis–NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal clusters still remains rarely explored. Herein, we present a carboranealkynyl-protected gold nanocluster [Au (C B H ) (tht) ] (Au , tht=tetrahydrothiophene) possessing an open-shell electronic structure with 13 free electrons, which was isolated by a facile self-reduction method with 9-HC≡C-closo-1,2-C B H as the two-in-one reducing and protecting agent. Notably, Au undergoes a complete transformation in methanol into a stable and smaller-sized nanocluster [Au (C B H ) (tht) ] (Au ) bearing 12 valence electrons and crystal-field-like split superatomic 1D orbitals. The transformation process was systematically monitored with ESI-MS and UV/Vis absorption spectra. Au and Au both display optical absorption covering the UV/Vis-NIR range and NIR emission, which facilitates their potential application in the biomedical and photocatalytic fields.
Author Li, Shi‐Jun
Zang, Shuang‐Quan
Mak, Thomas C. W.
Wang, Zhao‐Yang
Wang, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: Zhengzhou University
– sequence: 2
  givenname: Zhao‐Yang
  surname: Wang
  fullname: Wang, Zhao‐Yang
  email: wangzy@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 3
  givenname: Shi‐Jun
  surname: Li
  fullname: Li, Shi‐Jun
  organization: Zhengzhou University
– sequence: 4
  givenname: Shuang‐Quan
  orcidid: 0000-0002-6728-0559
  surname: Zang
  fullname: Zang, Shuang‐Quan
  email: zangsqzg@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 5
  givenname: Thomas C. W.
  surname: Mak
  fullname: Mak, Thomas C. W.
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33314503$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEYhUVJaa7bLstAN92Mo9uMZroLJk0NwSnNZSs00m9QKkuupElxV3mEQN4wT1KlTloIlG504zuHX-fsoi0fPCD0luAJwZgeKm9hQjHFhGEqXqEd0lBSMyHYVjlzxmrRNWQb7aZ0Xfiuw-0btM0YI7zBbAfpqYpDiMqDct_Wfu0ebu--xJBBZzDVSXCmmisftBtThpg-Vuf2J1TT4G_KzQZfKW-qy6vDK5sebu_ns6_V2SpbrVxVXFYQs4W0j14vlEtw8LTvoctPxxfTz_Xp2clsenRaa06wqGkPqhGMtqYsfacVgBGDaBldQHkbWs2aBmNDFaPM0EVLuoHrHrjiojdty_bQh43vKobvI6QslzZpcK78LoxJUi5KBLxloqDvX6DXYYy-TFeonpPi9tvw3RM1DkswchXtUsW1fI6vAHwD6BhSirCQ2maVSy45KuskwfKxJfnYkvzTUpFNXsienf8p6DeCH9bB-j-0PJrPjv9qfwFUuKWU
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c03331
crossref_primary_10_1021_acs_chemmater_3c01247
crossref_primary_10_1039_D1AY00995H
crossref_primary_10_1002_EXP_20220005
crossref_primary_10_1002_ppsc_202300084
crossref_primary_10_1021_acsanm_3c05710
crossref_primary_10_1039_D3SC07005K
crossref_primary_10_1002_ange_202207492
crossref_primary_10_1016_j_apcata_2023_119283
crossref_primary_10_1039_D2QI01082H
crossref_primary_10_1002_cnma_202200514
crossref_primary_10_1021_jacs_3c13965
crossref_primary_10_1038_s44160_023_00467_4
crossref_primary_10_1039_D3DT02838K
crossref_primary_10_1007_s12274_022_5308_0
crossref_primary_10_1002_asia_202300463
crossref_primary_10_1016_j_cclet_2024_110090
crossref_primary_10_1016_j_ccr_2021_214184
crossref_primary_10_1016_j_isci_2023_107850
crossref_primary_10_1021_jacs_3c01961
crossref_primary_10_1016_j_jcis_2024_05_233
crossref_primary_10_1021_jacs_3c02458
crossref_primary_10_1021_jacs_3c02215
crossref_primary_10_1021_acsami_1c21109
crossref_primary_10_1039_D3NR02196C
crossref_primary_10_1021_acsnano_4c16160
crossref_primary_10_1039_D4QO01428F
crossref_primary_10_1007_s12274_021_3940_8
crossref_primary_10_1039_D1QI00684C
crossref_primary_10_1016_j_cjsc_2024_100405
crossref_primary_10_1088_1361_6463_ad6fac
crossref_primary_10_1039_D3QI01035J
crossref_primary_10_1007_s12598_023_02438_2
crossref_primary_10_1039_D2MA00572G
crossref_primary_10_1016_j_molliq_2023_121516
crossref_primary_10_1016_j_ccr_2021_214315
crossref_primary_10_1021_jacs_3c02768
crossref_primary_10_1126_sciadv_adg3587
crossref_primary_10_1021_jacs_3c01119
crossref_primary_10_1039_D2CS00876A
crossref_primary_10_1021_acs_iecr_3c00411
crossref_primary_10_1002_ange_202305604
crossref_primary_10_1039_D3GC02281A
crossref_primary_10_1016_j_ijhydene_2023_12_015
crossref_primary_10_1021_acsnano_2c07521
crossref_primary_10_1039_D2QM01061E
crossref_primary_10_1021_acs_chemrev_3c00896
crossref_primary_10_3390_molecules29184427
crossref_primary_10_1016_j_matre_2022_100172
crossref_primary_10_1039_D4SC00942H
crossref_primary_10_1007_s12274_021_3928_4
crossref_primary_10_1002_chem_202102926
crossref_primary_10_1002_anie_202207492
crossref_primary_10_1016_j_cjsc_2023_100123
crossref_primary_10_1002_adma_202103918
crossref_primary_10_1021_acsnano_3c01068
crossref_primary_10_1002_anie_202305604
crossref_primary_10_1039_D2TB00533F
Cites_doi 10.1002/anie.201706021
10.1021/acs.chemmater.6b03879
10.1021/ja0457718
10.1021/acs.accounts.7b00224
10.1021/acs.jpclett.6b03061
10.1021/ar300213z
10.1021/acs.langmuir.9b01527
10.1039/C8CC06665E
10.1021/ja401798z
10.1002/ange.200900298
10.1002/anie.201500590
10.1002/ange.202011780
10.1021/jacs.9b03257
10.1021/ja5103025
10.1039/C8NR07714B
10.1126/sciadv.1700956
10.1021/acs.chemrev.6b00769
10.1002/anie.201912984
10.1002/ange.201706021
10.1016/j.ccr.2017.12.005
10.1021/acs.jpclett.9b02920
10.1039/C8CS00800K
10.1039/C9CC08872E
10.1021/jacs.8b11096
10.1002/ange.201814156
10.1002/ange.201500590
10.1002/ange.201503893
10.1021/jacs.5b04547
10.1021/acs.jpclett.5b00780
10.1021/nn401971g
10.1002/anie.201811859
10.1021/ja809157f
10.1002/anie.201207098
10.1021/ar9602664
10.1021/jacs.9b11836
10.1021/acs.accounts.8b00065
10.1002/ange.201912984
10.1039/C6CC02698B
10.1021/acs.jpclett.5b01150
10.1021/ja209236n
10.1002/anie.201814156
10.1002/adma.201802751
10.1038/s41467-019-12889-w
10.1002/anie.201503893
10.1021/ja0452471
10.1021/acs.jpcc.7b03860
10.1021/jacs.7b05243
10.1063/1.4773061
10.1039/C3CC47089J
10.1021/ja505599v
10.1002/ange.201811859
10.1002/ange.201207098
10.1021/acs.chemrev.5b00703
10.1021/jacs.6b08100
10.1002/tcr.201700002
10.1021/jacs.5b01232
10.1021/acsnano.8b02780
10.1021/jacs.0c05866
10.1002/adma.201901015
10.1002/ange.201804481
10.1002/anie.201804481
10.1002/anie.202011780
10.1021/ja404058q
10.1039/c2cc18153c
10.1002/anie.200900298
10.1021/jacs.0c07397
10.1038/s41467-018-03136-9
10.1021/ja407887d
10.1021/ja508860b
10.1021/ic00220a025
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202013027
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5964
ExternalDocumentID 33314503
10_1002_anie_202013027
ANIE202013027
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92061201; 21825106; 21801228
– fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province
  funderid: 164100510005
– fundername: National Natural Science Foundation of China
  grantid: 92061201
– fundername: National Natural Science Foundation of China
  grantid: 21801228
– fundername: National Natural Science Foundation of China
  grantid: 21825106
– fundername: the Program for Science & Technology Innovation Talents in Universities of Henan Province
  grantid: 164100510005
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4107-29ea57326d73298caeed7b7632fe6d7b6c35500d2a323d2f618b4c9e4a479d663
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:25:59 EDT 2025
Sun Jul 13 04:38:37 EDT 2025
Thu Apr 03 07:08:20 EDT 2025
Tue Jul 01 01:17:53 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Jan 22 16:30:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords NIR emission
structure evolution
self-reduction syntheses
carboranes
gold nanoclusters
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4107-29ea57326d73298caeed7b7632fe6d7b6c35500d2a323d2f618b4c9e4a479d663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6728-0559
PMID 33314503
PQID 2494166366
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2470024637
proquest_journals_2494166366
pubmed_primary_33314503
crossref_citationtrail_10_1002_anie_202013027
crossref_primary_10_1002_anie_202013027
wiley_primary_10_1002_anie_202013027_ANIE202013027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 8, 2021
PublicationDateYYYYMMDD 2021-03-08
PublicationDate_xml – month: 03
  year: 2021
  text: March 8, 2021
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2015; 6
2017; 3
2019; 31
2009 2009; 48 121
2013; 46
2020; 142
2019; 55
2019; 10
2019; 35
2020 2020; 59 132
2016; 52
2009; 131
2017 2017; 56 129
2013; 7
2019; 141
2014; 136
2019 2019; 58 131
2011; 133
2017; 117
2017; 139
1985; 24
2017; 50
2018; 9
2015; 137
2017; 17
2018 2018; 57 130
2013; 138
2012 2012; 51 124
2000; 33
2019; 48
2005; 127
2021 2021; 60 133
2015 2015; 54 127
2019; 378
2013; 135
2018; 30
2016; 116
2018; 51
2016; 138
2017; 121
2012; 48
2018; 12
2016; 28
2018; 54
2018; 10
2014; 50
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_30_1
e_1_2_6_70_3
e_1_2_6_72_1
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_60_2
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_66_1
e_1_2_6_45_1
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_68_2
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_31_1
e_1_2_6_71_2
e_1_2_6_39_3
e_1_2_6_12_2
e_1_2_6_58_2
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_18_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_61_2
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_65_2
e_1_2_6_65_3
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_25_2
References_xml – volume: 138
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 378
  start-page: 595
  year: 2019
  end-page: 617
  publication-title: Coord. Chem. Rev.
– volume: 10
  start-page: 21013
  year: 2018
  end-page: 21018
  publication-title: Nanoscale
– volume: 8
  start-page: 866
  year: 2017
  end-page: 870
  publication-title: J. Phys. Chem. Lett.
– volume: 136
  start-page: 15865
  year: 2014
  end-page: 15868
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 12350
  year: 2019
  end-page: 12355
  publication-title: Langmuir
– volume: 33
  start-page: 27
  year: 2000
  end-page: 36
  publication-title: Acc. Chem. Res.
– volume: 142
  start-page: 18086
  year: 2020
  end-page: 18092
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 55
  year: 2014
  end-page: 57
  publication-title: Chem. Commun.
– volume: 48 121
  start-page: 5921 6035
  year: 2009 2009
  end-page: 5926 6040
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 4545
  year: 1985
  end-page: 4558
  publication-title: Inorg. Chem.
– volume: 141
  start-page: 8422
  year: 2019
  end-page: 8425
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 812
  year: 2005
  end-page: 813
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2422
  year: 2019
  end-page: 2457
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 8639 8775
  year: 2018 2018
  end-page: 8643 8779
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 11970
  year: 2015
  end-page: 11975
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 6892
  year: 2019
  end-page: 6896
  publication-title: J. Phys. Chem. Lett.
– volume: 54 127
  start-page: 5977 6075
  year: 2015 2015
  end-page: 5980 6078
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 744
  year: 2018
  publication-title: Nat. Commun.
– volume: 50
  start-page: 1988
  year: 2017
  end-page: 1996
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 6138
  year: 2013
  end-page: 6145
  publication-title: ACS Nano
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 51 124
  start-page: 13114 13291
  year: 2012 2012
  end-page: 13118 13295
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51
  start-page: 1338
  year: 2018
  end-page: 1348
  publication-title: Acc. Chem. Res.
– volume: 135
  start-page: 10011
  year: 2013
  end-page: 10013
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 11494 11652
  year: 2017 2017
  end-page: 11497 11655
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 2134
  year: 2015
  end-page: 2139
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 7057
  year: 2018
  end-page: 7066
  publication-title: ACS Nano
– volume: 52
  start-page: 9873
  year: 2016
  end-page: 9876
  publication-title: Chem. Commun.
– volume: 137
  start-page: 4324
  year: 2015
  end-page: 4327
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 10367
  year: 2018
  end-page: 10370
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 9683 9819
  year: 2015 2015
  end-page: 9686 9822
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 10346
  year: 2016
  end-page: 10413
  publication-title: Chem. Rev.
– volume: 28
  start-page: 8385
  year: 2016
  end-page: 8390
  publication-title: Chem. Mater.
– volume: 139
  start-page: 12346
  year: 2017
  end-page: 12349
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 8208
  year: 2017
  end-page: 8271
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2976
  year: 2015
  end-page: 2986
  publication-title: J. Phys. Chem. Lett.
– volume: 136
  start-page: 10801
  year: 2014
  end-page: 10806
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 14914
  year: 2019
  end-page: 14917
  publication-title: Chem. Commun.
– volume: 142
  start-page: 2995
  year: 2020
  end-page: 3001
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 2490
  year: 2009
  end-page: 2492
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 2172
  year: 2005
  end-page: 2183
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4848
  year: 2019
  publication-title: Nat. Commun.
– volume: 48
  start-page: 6085
  year: 2012
  end-page: 6087
  publication-title: Chem. Commun.
– volume: 121
  start-page: 14914
  year: 2017
  end-page: 14919
  publication-title: J. Phys. Chem. C
– volume: 142
  start-page: 13627
  year: 2020
  end-page: 13644
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 20123
  year: 2011
  end-page: 20125
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 15585
  year: 2013
  end-page: 15594
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 1749
  year: 2013
  end-page: 1758
  publication-title: Acc. Chem. Res.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 141
  start-page: 2384
  year: 2019
  end-page: 2390
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 17016
  year: 2014
  end-page: 17023
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 473
  year: 2017
  end-page: 484
  publication-title: Chem. Rec.
– volume: 138
  start-page: 12751
  year: 2016
  end-page: 12754
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 8291 8377
  year: 2019 2019
  end-page: 8302 8388
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 970 983
  year: 2021 2021
  end-page: 975 988
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 2309 2329
  year: 2020 2020
  end-page: 2312 2332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 1083 1095
  year: 2019 2019
  end-page: 1087 1099
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 9450
  year: 2013
  end-page: 9457
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_58_1
  doi: 10.1002/anie.201706021
– ident: e_1_2_6_17_2
  doi: 10.1021/acs.chemmater.6b03879
– ident: e_1_2_6_21_2
  doi: 10.1021/ja0457718
– ident: e_1_2_6_14_2
  doi: 10.1021/acs.accounts.7b00224
– ident: e_1_2_6_31_1
– ident: e_1_2_6_55_2
  doi: 10.1021/acs.jpclett.6b03061
– ident: e_1_2_6_2_2
  doi: 10.1021/ar300213z
– ident: e_1_2_6_15_2
  doi: 10.1021/acs.langmuir.9b01527
– ident: e_1_2_6_35_1
  doi: 10.1039/C8CC06665E
– ident: e_1_2_6_34_2
  doi: 10.1021/ja401798z
– ident: e_1_2_6_68_2
  doi: 10.1002/ange.200900298
– ident: e_1_2_6_66_1
  doi: 10.1002/anie.201500590
– ident: e_1_2_6_59_1
– ident: e_1_2_6_22_1
– ident: e_1_2_6_63_1
– ident: e_1_2_6_65_3
  doi: 10.1002/ange.202011780
– ident: e_1_2_6_62_1
  doi: 10.1021/jacs.9b03257
– ident: e_1_2_6_23_2
  doi: 10.1021/ja5103025
– ident: e_1_2_6_50_2
  doi: 10.1039/C8NR07714B
– ident: e_1_2_6_64_2
  doi: 10.1126/sciadv.1700956
– ident: e_1_2_6_4_2
  doi: 10.1021/acs.chemrev.6b00769
– ident: e_1_2_6_39_2
  doi: 10.1002/anie.201912984
– ident: e_1_2_6_58_2
  doi: 10.1002/ange.201706021
– ident: e_1_2_6_69_1
– ident: e_1_2_6_9_2
  doi: 10.1016/j.ccr.2017.12.005
– ident: e_1_2_6_40_2
  doi: 10.1021/acs.jpclett.9b02920
– ident: e_1_2_6_8_2
  doi: 10.1039/C8CS00800K
– ident: e_1_2_6_19_2
  doi: 10.1039/C9CC08872E
– ident: e_1_2_6_43_1
  doi: 10.1021/jacs.8b11096
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.201814156
– ident: e_1_2_6_66_2
  doi: 10.1002/ange.201500590
– ident: e_1_2_6_70_3
  doi: 10.1002/ange.201503893
– ident: e_1_2_6_67_1
  doi: 10.1021/jacs.5b04547
– ident: e_1_2_6_24_2
  doi: 10.1021/acs.jpclett.5b00780
– ident: e_1_2_6_25_2
  doi: 10.1021/nn401971g
– ident: e_1_2_6_37_1
  doi: 10.1002/anie.201811859
– ident: e_1_2_6_47_2
  doi: 10.1021/ja809157f
– ident: e_1_2_6_57_1
  doi: 10.1002/anie.201207098
– ident: e_1_2_6_28_2
  doi: 10.1021/ar9602664
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.9b11836
– ident: e_1_2_6_1_1
– ident: e_1_2_6_5_2
  doi: 10.1021/acs.accounts.8b00065
– ident: e_1_2_6_39_3
  doi: 10.1002/ange.201912984
– ident: e_1_2_6_52_2
  doi: 10.1039/C6CC02698B
– ident: e_1_2_6_12_2
  doi: 10.1021/acs.jpclett.5b01150
– ident: e_1_2_6_18_1
– ident: e_1_2_6_32_2
  doi: 10.1021/ja209236n
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.201814156
– ident: e_1_2_6_6_2
  doi: 10.1002/adma.201802751
– ident: e_1_2_6_11_1
– ident: e_1_2_6_53_1
  doi: 10.1038/s41467-019-12889-w
– ident: e_1_2_6_70_2
  doi: 10.1002/anie.201503893
– ident: e_1_2_6_71_2
  doi: 10.1021/ja0452471
– ident: e_1_2_6_26_2
  doi: 10.1021/acs.jpcc.7b03860
– ident: e_1_2_6_45_1
  doi: 10.1021/jacs.7b05243
– ident: e_1_2_6_48_2
  doi: 10.1063/1.4773061
– ident: e_1_2_6_56_2
  doi: 10.1039/C3CC47089J
– ident: e_1_2_6_30_1
  doi: 10.1021/ja505599v
– ident: e_1_2_6_37_2
  doi: 10.1002/ange.201811859
– ident: e_1_2_6_57_2
  doi: 10.1002/ange.201207098
– ident: e_1_2_6_3_2
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_6_60_2
  doi: 10.1021/jacs.6b08100
– ident: e_1_2_6_29_2
  doi: 10.1002/tcr.201700002
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.5b01232
– ident: e_1_2_6_13_2
  doi: 10.1021/acsnano.8b02780
– ident: e_1_2_6_10_2
  doi: 10.1021/jacs.0c05866
– ident: e_1_2_6_27_1
– ident: e_1_2_6_72_1
  doi: 10.1002/adma.201901015
– ident: e_1_2_6_42_2
  doi: 10.1002/ange.201804481
– ident: e_1_2_6_42_1
  doi: 10.1002/anie.201804481
– ident: e_1_2_6_65_2
  doi: 10.1002/anie.202011780
– ident: e_1_2_6_20_2
  doi: 10.1021/ja404058q
– ident: e_1_2_6_33_2
  doi: 10.1039/c2cc18153c
– ident: e_1_2_6_38_1
– ident: e_1_2_6_46_1
– ident: e_1_2_6_68_1
  doi: 10.1002/anie.200900298
– ident: e_1_2_6_41_1
  doi: 10.1021/jacs.0c07397
– ident: e_1_2_6_51_2
  doi: 10.1038/s41467-018-03136-9
– ident: e_1_2_6_49_2
  doi: 10.1021/ja407887d
– ident: e_1_2_6_54_1
– ident: e_1_2_6_16_2
  doi: 10.1021/ja508860b
– ident: e_1_2_6_61_2
  doi: 10.1021/ic00220a025
SSID ssj0028806
Score 2.5692189
Snippet Structure evolution has become an effective way to assemble novel monolayer‐protected metal nanomolecules. However, evolution with alkynyl‐stabilized metal...
Structure evolution has become an effective way to assemble novel monolayer-protected metal nanomolecules. However, evolution with alkynyl-stabilized metal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5959
SubjectTerms Absorption
Absorption spectra
carboranes
Electronic structure
Evolution
Free electrons
Gold
gold nanoclusters
Metal clusters
Nanoclusters
NIR emission
Optical properties
self-reduction syntheses
structure evolution
Title Carboranealkynyl‐Protected Gold Nanoclusters: Size Conversion and UV/Vis–NIR Optical Properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013027
https://www.ncbi.nlm.nih.gov/pubmed/33314503
https://www.proquest.com/docview/2494166366
https://www.proquest.com/docview/2470024637
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754v0ynRBB8quuSLu18G9M5BaeoE99KkqYgjk52eXBP-wmC_9Bf4jnNWp0igr4U2ia9nHNyzpfk5Ash-z6gcqmVAQ0I43hx7DpKB64jAwPRSQeSGVw7fNESzbZ3fl-5_7SK3_JD5ANu2DJSf40NXKp-6YM0FFdgQ_-O2ak3cMJlLpA8__g6549iYJx2eRHnDu5Cn7E2uqw0XX06Kn2DmtPINQ09jUUis4-2GSePh8OBOtSjL3yO__mrJbIwwaW0Zg1pmcyYZIXM1bPt4FaJrsse2ksCyPLxOXnuvI1frizJg4noabcTUfDUXd0ZIvVC_4jePIwMrWNSezoiR2US0fZd6e6h_zZ-bZ1d08undBydXuF8QA-JXddIu3FyW286kx0aHO1Bv9FhVSMrPiDACA7VQEuIuL4Cl8ViA9eU0ABnXDdikjMesViUA-XpqvGk51cjADvrZDbpJmaTUCZkZLQoA2KseFrGgWuMBGeklYBqnBWIk2ko1BP6ctxFoxNa4mUWoujCXHQFcpCXf7LEHT-WLGYKDycNuB9CrxSgquBCFMhefhtEjvMpIOruEMv4CHEEh0dsWEPJX8U5L3sVlxcIS9X9yzeEtdbZSX629ZdK22SeYb4N5scFRTI76A3NDgCmgdpNG8U76GcN0Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xONAL0JbHUmiNVKmnsFk762S5oRWw28IWURZxi2zHkVassmgfBzjxEyrxD_klzMSboC1CSOUSKYmdh2fs-Tye-QzwPURUroy2KAFpvSBNfU-byPdUZNE6mUhxS7nDpx3Z6gY_r-pFNCHlwjh-iNLhRj0jH6-pg5NDuvrMGkop2DjB427tbR4W80U6wkXnJYMUR_V0CUZCeLQPfcHb6PPqbP1Zu_QCbM5i19z4HK2ALj7bxZxc703Ges_c_cPo-K7_WoXlKTRlB06XPsKczT7BUrPYEe4zmKYakspkCC6vb7Pb_uP93zPH82ATdjzoJwwH64HpT4h9YbTP_vTuLGtSXHvulGMqS1j3snrZGz3eP3Ta5-z3Te5KZ2e0JDAkbtc16B4dXjRb3nSTBs8EOHX0eMOqeoggMMFDIzIKjW6ocdTiqcVrWhpENL6fcCW4SHgqa5EOTMMGKggbCeKddVjIBpndBMalSqyRNQSN9cCoNPKtVTgeGS2xmuAV8AoRxWbKYE4bafRjx73MY2q6uGy6Cvwoy9847o5XS24XEo-nfXgU48QU0aoUUlZgt7yNTU5LKtjUgwmVCQnlSIGP2HCaUr5KCFEL6r6oAM_l_cY3xAed9mF5tvU_lb7BUuvi9CQ-aXd-fYEPnMJvKFwu2oaF8XBidxA_jfXXvIc8AcisEe8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BkGAvsAEbHRszEhJPWVPbdVLeprJuHVCqQae9RY7tSNOqtOqfh-1pH2ES33CfhLu4CSsIIY2XSEns_Lnz3f1sn38GeBchKtcmdagB5QKZZWGQmjgMdOwwOplYc0drh7_01NFAHp81z-6s4vf8ENWAG1lG4a_JwMc2q_8iDaUV2Ni_437q7SE8kgpjJcGik4pAimPr9OuLhAhoG_qStjHk9eX6y2HpD6y5DF2L2NN5Brr8ap9ycrE3n6V75uo3Qsf_-a01eLoApmzft6R1eODy5_CkXe4H9wJMW0-oweQILS8u88vh7fVN37M8OMsOR0PL0FWPzHBO3AvTD-zb-ZVjbcpqL4bkmM4tG5zWT8-nt9c_et0T9nVcDKSzPk0ITIjZ9SUMOgff20fBYouGwEjsOAa85XQzQgho8dCKjcaQG6Xos3jm8FqqDOKZMLRcCy4sz1QjTqVpOall1LKIdjZgJR_l7hUwrrR1RjUQMjal0VkcOqfRG5lUYTXBaxCUGkrMgr-cttEYJp55mSckuqQSXQ3eV-XHnrnjryW3S4UnCwueJtgtRayqhFI1eFvdRpHThAqKejSnMhFhHCXwEZu-oVSvEkI0ZDMUNeCFuv_xDcl-r3tQnW3dp9IuPO5_7CSfu71Pr2GVU-4N5crF27Aym8zdDoKnWfqmsI-fgOsQng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carboranealkynyl-Protected+Gold+Nanoclusters%3A+Size+Conversion+and+UV%2FVis-NIR+Optical+Properties&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Jie&rft.au=Wang%2C+Zhao-Yang&rft.au=Li%2C+Shi-Jun&rft.au=Zang%2C+Shuang-Quan&rft.date=2021-03-08&rft.eissn=1521-3773&rft.volume=60&rft.issue=11&rft.spage=5959&rft_id=info:doi/10.1002%2Fanie.202013027&rft_id=info%3Apmid%2F33314503&rft.externalDocID=33314503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon