Material elemental decomposition in dual and multi‐energy CT via a sparsity‐dictionary approach for proton stopping power ratio calculation

Purpose Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual‐energy CT (DECT) offers advan...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 45; no. 4; pp. 1491 - 1503
Main Authors Shen, Chenyang, Li, Bin, Chen, Liyuan, Yang, Ming, Lou, Yifei, Jia, Xun
Format Journal Article
LanguageEnglish
Published United States 01.04.2018
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.12796

Cover

Abstract Purpose Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual‐energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi‐energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary‐based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. Method A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non‐negative combination of only a few tissues in the dictionary. We formulated this as a non‐convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Results Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. Conclusion The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy.
AbstractList Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation.PURPOSEAccurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation.A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies.METHODA dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies.Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method.RESULTSAverage errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method.The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy.CONCLUSIONThe proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy.
Purpose Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual‐energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi‐energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary‐based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. Method A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non‐negative combination of only a few tissues in the dictionary. We formulated this as a non‐convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Results Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. Conclusion The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy.
Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy.
Author Shen, Chenyang
Lou, Yifei
Li, Bin
Chen, Liyuan
Yang, Ming
Jia, Xun
AuthorAffiliation 2 Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
1 Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75287, USA
3 Department of Mathematical Science, University of Texas at Dallas, Dallas, TX 75080, USA
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
– name: 1 Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75287, USA
– name: 3 Department of Mathematical Science, University of Texas at Dallas, Dallas, TX 75080, USA
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Shen
  fullname: Shen, Chenyang
  organization: University of Texas Southwestern Medical Center
– sequence: 2
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Southern Medical University
– sequence: 3
  givenname: Liyuan
  surname: Chen
  fullname: Chen, Liyuan
  organization: University of Texas Southwestern Medical Center
– sequence: 4
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  organization: University of Texas Southwestern Medical Center
– sequence: 5
  givenname: Yifei
  surname: Lou
  fullname: Lou, Yifei
  organization: University of Texas at Dallas
– sequence: 6
  givenname: Xun
  surname: Jia
  fullname: Jia, Xun
  email: xun.jia@utsouthwestern.edu
  organization: University of Texas Southwestern Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29405340$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAQxy1URLcFiSdAPsIhi53ESXxBQqvyIbUqh3K2Zh17a-TYxk66yo03gGfkSfB2-wEVcPJo5jf_mfn7CB047xRCzylZUkLK10NY0rLlzSO0KOu2KuqS8AO0IITXRVkTdoiOUvpCCGkqRp6gw5LnZFWTBfp-BqOKBixWVg3KjTnqlfRD8MmMxjtsHO6nnAXX42Gyo_n57YdyKm5mvLrAVwYw4BQgZnzOpd7IXRvEGUMI0YO8xNpHnMMxq6XRh2DcBge_VRFHyDCWYOVkd6F7ih5rsEk9u3mP0ed3JxerD8Xp-fuPq7enhawpaYp2DetOk75jTdv2mpZ6nY_TVb5eV5oBI1q3Da9qDoypru24ZITqtpIlB8pldYxe7XUnF2DegrUiRDPktQUlYmeqGIK4NjWzb_ZsmNaD6mV2KcI978GIPyvOXIqNvxKMk5rUNAu8vBGI_uuk0igGk6SyFpzyUxKUc0ZZHtZl9MXvs-6G3P7YvZaMPqWo9P_2Xj5ApRmvXc5bGvu3hmLfsDVWzf8UFmef9vwvKfPJPQ
CitedBy_id crossref_primary_10_1007_s00520_022_07076_5
crossref_primary_10_1109_TMI_2021_3051416
crossref_primary_10_1002_mp_13173
crossref_primary_10_1088_1361_6560_acabfa
crossref_primary_10_1088_1361_6560_ac37fc
crossref_primary_10_1016_j_jtcvs_2023_02_004
crossref_primary_10_1016_j_net_2022_12_018
crossref_primary_10_1002_mp_13169
crossref_primary_10_1088_1361_6560_ad70ef
crossref_primary_10_1088_1361_6560_aaf973
crossref_primary_10_1002_mp_16877
crossref_primary_10_1109_TMI_2019_2946177
crossref_primary_10_1259_bjr_20190590
crossref_primary_10_14338_IJPT_D_21_00004
crossref_primary_10_1088_1361_6560_aad05f
crossref_primary_10_3389_fonc_2022_827136
Cites_doi 10.1118/1.4875976
10.1137/110837486
10.1088/0031-9155/57/13/4095
10.1118/1.4824057
10.1007/BF00327254
10.1088/0031-9155/55/5/006
10.1118/1.2905030
10.1137/100807697
10.1118/1.2987668
10.1137/110836936
10.1088/0031-9155/59/8/2059
10.1137/1.9781611970838
10.1002/mp.12174
10.1002/mp.12215
10.1088/0031-9155/41/1/009
10.1088/0031-9155/38/10/001
10.1118/1.2349688
10.1109/TGRS.2013.2274875
10.1088/0031-9155/60/2/755
10.1109/TGRS.2011.2129595
10.1118/1.3675399
10.1002/mp.12489
10.1118/1.3058485
10.1137/090774823
10.1088/0031-9155/57/11/R99
10.1118/1.4957948
10.1016/0898-1221(76)90003-1
10.1088/0031-9155/53/9/015
10.1007/s00330-006-0517-6
10.1088/1361-6560/aa7dc9
10.1118/1.4939082
10.1118/1.3157235
10.1561/2200000016
10.1088/0031-9155/58/19/6851
10.1088/0031-9155/56/14/017
10.1118/1.3097632
10.1016/j.ijrobp.2017.06.227
10.1088/0031-9155/58/15/5029
10.1148/47.5.487
10.1088/0031-9155/61/22/8044
10.1088/0031-9155/59/4/R151
10.1088/0031-9155/53/4/014
10.1088/0031-9155/59/1/83
10.1088/0031-9155/45/2/314
ContentType Journal Article
Copyright 2018 American Association of Physicists in Medicine
2018 American Association of Physicists in Medicine.
Copyright_xml – notice: 2018 American Association of Physicists in Medicine
– notice: 2018 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.12796
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 1503
ExternalDocumentID oai:pubmedcentral.nih.gov:5904041
PMC5904041
29405340
10_1002_mp_12796
MP12796
Genre article
Journal Article
GrantInformation_xml – fundername: Cancer Prevention and Research Institute of Texas
  funderid: RP160661
– fundername: National Institute of Health
  funderid: P20CA183639
– fundername: NCI NIH HHS
  grantid: P20 CA183639
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c4106-7bab8f0d85677df12fb006f3247f3f5a50ff769349a55e8789c501f73c29a19c3
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Wed Oct 29 12:20:52 EDT 2025
Tue Sep 30 16:45:38 EDT 2025
Fri Sep 05 09:13:41 EDT 2025
Mon Jul 21 05:59:15 EDT 2025
Wed Oct 01 04:32:58 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Wed Jan 22 16:23:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords elemental decomposition
stopping power ratio
proton therapy
sparsity
dictionary
dual- and multi-energy CT
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4106-7bab8f0d85677df12fb006f3247f3f5a50ff769349a55e8789c501f73c29a19c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5904041
PMID 29405340
PQID 1995151278
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mp_12796
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5904041
proquest_miscellaneous_1995151278
pubmed_primary_29405340
crossref_primary_10_1002_mp_12796
crossref_citationtrail_10_1002_mp_12796
wiley_primary_10_1002_mp_12796_MP12796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2018
References 2007; 17
2017; 62
2010; 55
2010; 32
2000; 45
2006; 33
2017; 44
2013; 40
1976; 2
2011; 33
2008; 35
1972
2011; 56
2012; 39
2008; 53
2014; 41
2012; 57
2011; 3
1946; 47
2012; 50
2009; 36
2013; 58
1993; 38
1976; 11
2015; 60
2017; 99
2016; 43
2014; 59
1996; 41
2016; 61
2014; 52
2011; 49
2012; 5
1989
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
Bischel H (e_1_2_6_40_1) 1972
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
References_xml – volume: 36
  start-page: 556
  year: 2009
  end-page: 568
  article-title: Vision 20∕20: proton therapy
  publication-title: Med Phys
– volume: 36
  start-page: 1602
  year: 2009
  end-page: 1609
  article-title: Quantitative imaging of element composition and mass fraction using dual‐energy CT: three‐material decomposition
  publication-title: Med Phys
– volume: 59
  start-page: 83
  year: 2014
  article-title: Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates
  publication-title: Phys Med Biol
– volume: 58
  start-page: 5029
  year: 2013
  article-title: Deriving concentrations of oxygen and carbon in human tissues using single‐and dual‐energy CT for ion therapy applications
  publication-title: Phys Med Biol
– volume: 41
  start-page: 061714
  year: 2014
  article-title: Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy
  publication-title: Med Phys
– volume: 53
  start-page: 1027
  year: 2008
  article-title: Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties
  publication-title: Phys Med Biol
– volume: 56
  start-page: 4499
  year: 2011
  end-page: 4515
  article-title: Does kV‐MV dual‐energy computed tomography have an advantage in determining proton stopping power ratios in patients?
  publication-title: Phys Med Biol
– volume: 32
  start-page: 2710
  year: 2010
  end-page: 2736
  article-title: Solving constrained total‐variation image restoration and reconstruction problems via alternating direction methods
  publication-title: Siam J Sci Comput
– volume: 49
  start-page: 3973
  year: 2011
  end-page: 3985
  article-title: Hyperspectral image classification using dictionary‐based sparse representation
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 11
  start-page: 23
  year: 1976
  end-page: 28
  article-title: X‐ray energies for effective atomic number determination
  publication-title: Neuroradiology
– year: 1989
– volume: 44
  start-page: 2332
  year: 2017
  end-page: 2344
  article-title: The potential of dual‐energy CT to reduce proton beam range uncertainties
  publication-title: Med Phys
– volume: 36
  start-page: 3818
  year: 2009
  end-page: 3829
  article-title: Image‐based dual energy CT using optimized precorrection functions: a practical new approach of material decomposition in image domain
  publication-title: Med Phys
– volume: 52
  start-page: 3707
  year: 2014
  end-page: 3719
  article-title: Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 33
  start-page: 4115
  year: 2006
  end-page: 4129
  article-title: On two‐parameter models of photon cross sections: application to dual‐energy CT imaging
  publication-title: Med Phys
– volume: 53
  start-page: 2439
  year: 2008
  end-page: 2456
  article-title: Dual‐energy CT‐based material extraction for tissue segmentation in Monte Carlo dose calculations
  publication-title: Phys Med Biol
– volume: 43
  start-page: 3834
  year: 2016
  end-page: 3834
  article-title: WE‐FG‐207B‐03: multi‐energy CT reconstruction with spatial spectral nonlocal means regularization
  publication-title: Med Phys
– volume: 99
  start-page: S94
  year: 2017
  article-title: Element‐resolved multi‐energy cone beam CT realized on a conventional cone beam CT platform
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 59
  start-page: 2059
  year: 2014
  end-page: 2088
  article-title: A stoichiometric calibration method for dual energy computed tomography
  publication-title: Phys Med Biol
– volume: 35
  start-page: 5030
  year: 2008
  end-page: 5042
  article-title: Implementation of dual‐ and triple‐energy cone‐beam micro‐CT for postreconstruction material decomposition
  publication-title: Med Phys
– volume: 47
  start-page: 487
  year: 1946
  end-page: 491
  article-title: Radiological use of fast protons
  publication-title: Radiology
– volume: 45
  start-page: 459
  year: 2000
  end-page: 478
  article-title: Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions
  publication-title: Phys Med Biol
– volume: 58
  start-page: 6851
  year: 2013
  article-title: Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients
  publication-title: Phys Med Biol
– volume: 57
  start-page: 4095
  year: 2012
  article-title: Comprehensive analysis of proton range uncertainties related to patient stopping‐power‐ratio estimation using the stoichiometric calibration
  publication-title: Phys Med Biol
– volume: 57
  start-page: R99
  year: 2012
  end-page: R117
  article-title: Range uncertainties in proton therapy and the role of Monte Carlo simulations
  publication-title: Phys Med Biol
– volume: 17
  start-page: 1510
  year: 2007
  end-page: 1517
  article-title: Material differentiation by dual energy CT: initial experience
  publication-title: Eur Radiol
– volume: 62
  start-page: 7056
  year: 2017
  end-page: 7074
  article-title: Comprehensive analysis of proton range uncertainties related to stopping‐power‐ratio estimation using dual‐energy CT imaging
  publication-title: Phys Med Biol
– volume: 55
  start-page: 1343
  year: 2010
  end-page: 1362
  article-title: Theoretical variance analysis of single‐ and dual‐energy computed tomography methods for calculating proton stopping power ratios of biological tissues
  publication-title: Phys Med Biol
– volume: 44
  start-page: 1610
  year: 2017
  end-page: 1623
  article-title: An effective noise reduction method for multi‐energy CT images that exploit spatio‐spectral features
  publication-title: Med Phys
– volume: 61
  start-page: 8044
  year: 2016
  article-title: A general method to derive tissue parameters for Monte Carlo dose calculation with multi‐energy CT
  publication-title: Phys Med Biol
– volume: 35
  start-page: 1932
  year: 2008
  end-page: 1941
  article-title: Improving accuracy of electron density measurement in the presence of metallic implants using orthovoltage computed tomography
  publication-title: Med Phys
– volume: 40
  start-page: 111909
  year: 2013
  article-title: Dimensionality and noise in energy selective x‐ray imaging
  publication-title: Med Phys
– start-page: 8
  year: 1972
  end-page: 142
– volume: 41
  start-page: 111
  year: 1996
  end-page: 124
  article-title: The calibration of CT Hounsfield units for radiotherapy treatment planning
  publication-title: Phys Med Biol
– volume: 43
  start-page: 600
  year: 2016
  end-page: 612
  article-title: A linear, separable two‐parameter model for dual energy CT imaging of proton stopping power computation
  publication-title: Med Phys
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundat Trends Mach Learn
– volume: 39
  start-page: 654
  year: 2012
  end-page: 657
  article-title: XCOM intrinsic dimensionality for low‐Z elements at diagnostic energies
  publication-title: Med Phys
– volume: 50
  start-page: 700
  year: 2012
  end-page: 709
  article-title: On the O(1/n) convergence rate of the Douglas‐Rachford alternating direction method
  publication-title: Siam J Numer Anal
– volume: 5
  start-page: 33
  year: 2012
  end-page: 56
  article-title: Dictionary learning for noisy and incomplete hyperspectral images
  publication-title: SIAM J Imaging Sci
– volume: 60
  start-page: 755
  year: 2015
  article-title: Compensating for the impact of non‐stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields
  publication-title: Phys Med Biol
– volume: 38
  start-page: 1371
  year: 1993
  end-page: 1392
  article-title: Current developments in proton therapy: a review
  publication-title: Phys Med Biol
– volume: 2
  start-page: 17
  year: 1976
  end-page: 40
  article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation
  publication-title: Comput Math Appl
– volume: 44
  start-page: 5293
  year: 2017
  end-page: 5302
  article-title: A Bayesian approach to solve proton stopping powers from noisy multi‐energy CT data
  publication-title: Med Phys
– volume: 33
  start-page: 1643
  year: 2011
  end-page: 1668
  article-title: Inexact alternating direction methods for image recovery
  publication-title: Siam J Sci Comput
– volume: 59
  start-page: R151
  year: 2014
  article-title: GPU‐based high‐performance computing for radiation therapy
  publication-title: Phys Med Biol
– ident: e_1_2_6_25_1
  doi: 10.1118/1.4875976
– ident: e_1_2_6_28_1
  doi: 10.1137/110837486
– ident: e_1_2_6_13_1
  doi: 10.1088/0031-9155/57/13/4095
– ident: e_1_2_6_42_1
  doi: 10.1118/1.4824057
– ident: e_1_2_6_32_1
  doi: 10.1007/BF00327254
– ident: e_1_2_6_11_1
  doi: 10.1088/0031-9155/55/5/006
– ident: e_1_2_6_8_1
  doi: 10.1118/1.2905030
– ident: e_1_2_6_35_1
  doi: 10.1137/100807697
– start-page: 8
  volume-title: Passage of Charged Particles Through Matter
  year: 1972
  ident: e_1_2_6_40_1
– ident: e_1_2_6_16_1
  doi: 10.1118/1.2987668
– ident: e_1_2_6_36_1
  doi: 10.1137/110836936
– ident: e_1_2_6_19_1
  doi: 10.1088/0031-9155/59/8/2059
– ident: e_1_2_6_38_1
  doi: 10.1137/1.9781611970838
– ident: e_1_2_6_45_1
  doi: 10.1002/mp.12174
– ident: e_1_2_6_22_1
  doi: 10.1002/mp.12215
– ident: e_1_2_6_7_1
  doi: 10.1088/0031-9155/41/1/009
– ident: e_1_2_6_2_1
  doi: 10.1088/0031-9155/38/10/001
– ident: e_1_2_6_9_1
  doi: 10.1118/1.2349688
– ident: e_1_2_6_29_1
  doi: 10.1109/TGRS.2013.2274875
– ident: e_1_2_6_31_1
  doi: 10.1088/0031-9155/60/2/755
– ident: e_1_2_6_30_1
  doi: 10.1109/TGRS.2011.2129595
– ident: e_1_2_6_41_1
  doi: 10.1118/1.3675399
– ident: e_1_2_6_33_1
  doi: 10.1002/mp.12489
– ident: e_1_2_6_4_1
  doi: 10.1118/1.3058485
– ident: e_1_2_6_37_1
  doi: 10.1137/090774823
– ident: e_1_2_6_5_1
  doi: 10.1088/0031-9155/57/11/R99
– ident: e_1_2_6_44_1
  doi: 10.1118/1.4957948
– ident: e_1_2_6_34_1
  doi: 10.1016/0898-1221(76)90003-1
– ident: e_1_2_6_14_1
  doi: 10.1088/0031-9155/53/9/015
– ident: e_1_2_6_17_1
  doi: 10.1007/s00330-006-0517-6
– ident: e_1_2_6_23_1
  doi: 10.1088/1361-6560/aa7dc9
– ident: e_1_2_6_21_1
  doi: 10.1118/1.4939082
– ident: e_1_2_6_15_1
  doi: 10.1118/1.3157235
– ident: e_1_2_6_39_1
  doi: 10.1561/2200000016
– ident: e_1_2_6_10_1
  doi: 10.1088/0031-9155/58/19/6851
– ident: e_1_2_6_12_1
  doi: 10.1088/0031-9155/56/14/017
– ident: e_1_2_6_18_1
  doi: 10.1118/1.3097632
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ijrobp.2017.06.227
– ident: e_1_2_6_24_1
  doi: 10.1088/0031-9155/58/15/5029
– ident: e_1_2_6_3_1
  doi: 10.1148/47.5.487
– ident: e_1_2_6_27_1
  doi: 10.1088/0031-9155/61/22/8044
– ident: e_1_2_6_43_1
  doi: 10.1088/0031-9155/59/4/R151
– ident: e_1_2_6_6_1
  doi: 10.1088/0031-9155/53/4/014
– ident: e_1_2_6_20_1
  doi: 10.1088/0031-9155/59/1/83
– ident: e_1_2_6_26_1
  doi: 10.1088/0031-9155/45/2/314
SSID ssj0006350
Score 2.3535006
Snippet Purpose Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects...
Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1491
SubjectTerms Calibration
dictionary
dual‐ and multi‐energy CT
elemental decomposition
Models, Theoretical
proton therapy
Protons
sparsity
stopping power ratio
Tomography, X-Ray Computed
Title Material elemental decomposition in dual and multi‐energy CT via a sparsity‐dictionary approach for proton stopping power ratio calculation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12796
https://www.ncbi.nlm.nih.gov/pubmed/29405340
https://www.proquest.com/docview/1995151278
https://pubmed.ncbi.nlm.nih.gov/PMC5904041
https://www.ncbi.nlm.nih.gov/pmc/articles/5904041
UnpaywallVersion submittedVersion
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2qZsRjw6O8wqMyCMEqmcSxx85yVKgqRKoKOlJZRbZji4hMGrUzoLLiD-Ab-RJsJxkxFBCssrhXVqIc28fyuecCPLXAlURNdWiUIiHJuAglTpk9qsiMc6Mk870O84Pp_py8OqbHW5AMtTBetK9kFTX1Imqq915b2S7UZNCJTWhmcedK1cdTaun3CMbzg8PZu85tkrjbAuo9Uu0hi1PfuRITloYEx9lgPhvjyaKNEsycVf_P29EFjnlRKnll1bTi_JOo60066_ejvevwZviSTobyIVotZaQ-_2Ly-F-fegOu9ewUzbrQTdjSzTZczvv792245AWj6uwWfM3F0oMX6V6AXqNSO4F6rwJDVYNcnRcSTYm8bPH7l2_aVxqi3SP0sRJIILuceVGIDZWVr7AQp-do8DlHllAjZyRhR3MGCK60C7WurRvyuEUWX6pvP3Yb5nsvj3b3w765Q6iIPYaGTArJTVxyOmWsNAk2bgEwlt8xkxoqaGyM69NIMkGp5oxnisaJYanCmUgyld6BUXPS6HuAZFwazmyojFNS6lRibJjOEimxIIbKAJ4P_7hQvfO5a8BRF51nMy4WbeHREMDjdWbbuX38LmeASWGnortfEY0-WZ0VrtrdESjGA7jbwWY9Cs4sLlMSB8A2ALVOcDbfmxELCW_33aMggCdr6P3l5Z55TP4xocgP_fP-v4z2AK5afsg7odJDGC1PV_qR5WBLuQPj2Yv89dudfvb9AH8WNVg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL2qpuKx4VFoCS8ZhGCVTOLYY3tZVVQV0lQV6khlFdmOLSIyadTOgMqKP4Bv7JfUdpIRQwHBKot7ZSXKsX0sn3suwCsHXEX0xMRWaxITwWWscM7cUUUJzq1WLPQ6nB5ODmbk3Qk92YBsqIUJon2tqqSp50lTfQzaynaux4NObEyFw50vVd-cUEe_R7A5Ozza_dC5TRJ_W0CDR6o7ZHEaOldiwvKY4FQM5rMpHs_bJMPMW_X_vB1d45jXpZK3lk0rL77Iul6ns2E_2r8L74cv6WQon5LlQiX66y8mj__1qffgTs9O0W4Xug8bptmCm9P-_n0LbgTBqD5_AN-nchHAi0wvQK9RabxAvVeBoapBvs4LyaZEQbZ4-e2HCZWGaO8Yfa4kksgtZ0EU4kJlFSos5NkFGnzOkSPUyBtJuNG8AYIv7UKtb-uGAm6Rw5fu2489hNn-2-O9g7hv7hBr4o6hMVNScZuWnE4YK22GrV8ArON3zOaWSppa6_s0EiEpNZxxoWmaWZZrLGQmdL4No-a0MY8AqbS0nLlQmeakNLnC2DIjMqWwJJaqCN4M_7jQvfO5b8BRF51nMy7mbRHQEMGLVWbbuX38LmeASeGmor9fkY05XZ4XvtrdEyjGI9jpYLMaBQuHy5ykEbA1QK0SvM33esRBIth99yiI4OUKen95udcBk39MKKZH4fn4X0Z7ArcdP-SdUOkpjBZnS_PMcbCFet7PuivcgzPE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Material+elemental+decomposition+in+dual+and+multi-energy+CT+via+a+sparsity-dictionary+approach+for+proton+stopping+power+ratio+calculation&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Shen%2C+Chenyang&rft.au=Li%2C+Bin&rft.au=Chen%2C+Liyuan&rft.au=Yang%2C+Ming&rft.date=2018-04-01&rft.eissn=2473-4209&rft.volume=45&rft.issue=4&rft.spage=1491&rft_id=info:doi/10.1002%2Fmp.12796&rft_id=info%3Apmid%2F29405340&rft.externalDocID=29405340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon