Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production
Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201606635 |
Cover
Abstract | Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Covalent organic frameworks (COFs) hold potential for various applications. To rationally design COF‐based electrocatalysts, activity descriptors are identified with the first‐principle calculations. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze direct production of H2O2, a green oxidizer. The design principles provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. |
---|---|
AbstractList | Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H
O
, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2 O2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2 O2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs) hold potential for various applications. To rationally design COF‐based electrocatalysts, activity descriptors are identified with the first‐principle calculations. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze direct production of H2O2, a green oxidizer. The design principles provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. |
Author | Zhang, Lipeng Xia, Zhenhai Zhao, Zhenghang Lin, Chun‐Yu |
Author_xml | – sequence: 1 givenname: Chun‐Yu surname: Lin fullname: Lin, Chun‐Yu organization: University of North Texas – sequence: 2 givenname: Lipeng surname: Zhang fullname: Zhang, Lipeng organization: University of North Texas – sequence: 3 givenname: Zhenghang surname: Zhao fullname: Zhao, Zhenghang organization: University of North Texas – sequence: 4 givenname: Zhenhai surname: Xia fullname: Xia, Zhenhai email: Zhenhai.xia@unt.edu organization: Beijing University of Chemical Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28230916$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvq1aMh8eJlVmCGmeG42W5bk5r1oGfCwseGysAKM63rL_Bnl822mjQxnjh8z_PCx3uGTkIMgNBbSuaUEPZRmUHNGaEtaduav0AzyhmtGiL4CZoRUfNKtE1_is5yviWEiMK9QqesZzURtJ2h3xeQ3TbgL8kF7XYeMrYx4WW8Ux7CiNdpq4LT-DKpAe5j-p6xynhlrdPuMF950GOKWo3K7_OYsQt46UEFvAqQtvuSFO4gZRcDVsHgqwQQ8PqnM-4XpHJtNJMey_Q1emmVz_Dm8TxH3y5XX5fX1c366tNycVPphhJeWaJrUpuubKIMbWnDNFABgokaGHALQMEQ6DaqM52lSnOjNlY0xPS85gbqc_ThmLtL8ccEeZSDyxq8VwHilCXtO8o5YX1T0PfP0Ns4pVBeJ6lgpKFMdG2h3j1S02YAI3fJDSrt5dMfF6A5AjrFnBNYqd2oDjuPSTkvKZGHKuWhSvmnyqLNn2lPyf8UxFG4dx72_6Hl4uLz4q_7APIzsuc |
CitedBy_id | crossref_primary_10_1007_s11356_022_24688_w crossref_primary_10_1016_j_cattod_2023_114129 crossref_primary_10_1038_s41467_024_50377_y crossref_primary_10_1016_j_ceramint_2024_10_008 crossref_primary_10_1021_acsaem_1c01692 crossref_primary_10_1021_acscatal_2c03020 crossref_primary_10_1016_j_ensm_2024_103295 crossref_primary_10_1021_acs_jpclett_4c03469 crossref_primary_10_1039_D1CS00887K crossref_primary_10_1002_smll_202305759 crossref_primary_10_1016_j_apsusc_2021_149464 crossref_primary_10_1016_j_apcatb_2024_124287 crossref_primary_10_1039_C8EE00977E crossref_primary_10_1021_acsphyschemau_2c00003 crossref_primary_10_1002_anie_202218742 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1039_C8CP05410J crossref_primary_10_1021_acs_jpcc_8b10375 crossref_primary_10_1021_acscatal_9b02778 crossref_primary_10_1039_D1NJ06055D crossref_primary_10_1002_anie_202111026 crossref_primary_10_1021_acs_jpcc_1c07044 crossref_primary_10_1039_D3TA08094C crossref_primary_10_1039_C8TA05985C crossref_primary_10_1039_D1CS00983D crossref_primary_10_1016_j_ccr_2021_213806 crossref_primary_10_1016_S1872_5805_21_60001_X crossref_primary_10_1021_acsami_0c06267 crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1039_D2CY00088A crossref_primary_10_1002_marc_202200722 crossref_primary_10_1039_D3TA05711A crossref_primary_10_1021_acsami_7b06968 crossref_primary_10_1021_acscatal_2c01861 crossref_primary_10_1007_s11705_024_2388_2 crossref_primary_10_12677_aac_2025_151010 crossref_primary_10_1002_smll_202001070 crossref_primary_10_1007_s00604_019_3258_3 crossref_primary_10_1016_j_jallcom_2022_166442 crossref_primary_10_1039_D0CS01569E crossref_primary_10_1016_j_isci_2021_102728 crossref_primary_10_1039_D4TA05191B crossref_primary_10_1039_D0NR01148G crossref_primary_10_1016_j_ensm_2024_103709 crossref_primary_10_1016_j_trac_2021_116182 crossref_primary_10_1039_C9MH00856J crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1016_j_cej_2020_125154 crossref_primary_10_1016_j_apcatb_2023_122366 crossref_primary_10_1016_j_nanoen_2023_109155 crossref_primary_10_1021_acs_chemmater_8b00117 crossref_primary_10_1016_j_jcis_2023_06_039 crossref_primary_10_1016_j_ccr_2020_213410 crossref_primary_10_1002_advs_202207759 crossref_primary_10_1038_s41929_023_01106_z crossref_primary_10_1002_adma_201703646 crossref_primary_10_1016_j_apsusc_2020_145393 crossref_primary_10_1016_j_diamond_2024_111916 crossref_primary_10_1021_jacs_2c00584 crossref_primary_10_1016_j_flatc_2024_100764 crossref_primary_10_1021_acscatal_3c04801 crossref_primary_10_1021_acs_langmuir_4c04034 crossref_primary_10_1016_j_jcat_2017_06_032 crossref_primary_10_1039_D1TA02795F crossref_primary_10_1002_adfm_202103857 crossref_primary_10_1002_adfm_201803973 crossref_primary_10_1016_j_ccr_2023_215066 crossref_primary_10_3390_molecules26216501 crossref_primary_10_1002_ange_202312409 crossref_primary_10_1016_j_jcis_2024_07_132 crossref_primary_10_1002_adfm_202408255 crossref_primary_10_1016_j_cej_2020_126144 crossref_primary_10_1002_adma_202310938 crossref_primary_10_1039_D1MA01060C crossref_primary_10_1016_j_cej_2023_143033 crossref_primary_10_1021_acs_iecr_3c03572 crossref_primary_10_1016_j_jechem_2023_02_045 crossref_primary_10_1039_D0NR03041D crossref_primary_10_1007_s10450_024_00516_0 crossref_primary_10_1021_jacs_4c03851 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1039_D3TA03382A crossref_primary_10_1039_C8TA00099A crossref_primary_10_1002_advs_202501442 crossref_primary_10_1002_smtd_202100945 crossref_primary_10_1021_jacs_0c03459 crossref_primary_10_1039_D2SC03714A crossref_primary_10_1063_1_5082996 crossref_primary_10_1021_jacs_0c10636 crossref_primary_10_1039_D0TA11012D crossref_primary_10_1039_D2NR04880A crossref_primary_10_1016_j_apcatb_2023_123418 crossref_primary_10_1039_D2CS01068B crossref_primary_10_1039_D4CP04212C crossref_primary_10_1002_adfm_201901301 crossref_primary_10_1016_j_micromeso_2021_111101 crossref_primary_10_1021_acsmaterialslett_4c00418 crossref_primary_10_1038_s42004_022_00645_z crossref_primary_10_1002_adfm_202500501 crossref_primary_10_1016_j_jcat_2020_07_021 crossref_primary_10_1002_anie_202312409 crossref_primary_10_1016_j_mcat_2024_114489 crossref_primary_10_1021_acs_jpcc_0c04360 crossref_primary_10_1016_j_fuel_2021_122472 crossref_primary_10_1039_C7CP06187K crossref_primary_10_1021_acs_jpclett_9b02132 crossref_primary_10_1021_acsami_3c18548 crossref_primary_10_1002_ange_202111026 crossref_primary_10_1016_S1872_2067_18_63057_8 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1002_batt_201900001 crossref_primary_10_1016_j_isci_2019_10_001 crossref_primary_10_1016_j_cattod_2023_114409 crossref_primary_10_1002_aesr_202000090 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_1039_D0CC06453J crossref_primary_10_1016_j_jcis_2019_04_066 crossref_primary_10_1002_cssc_202100182 crossref_primary_10_1039_D4DT00152D crossref_primary_10_1039_C7CC06244C crossref_primary_10_1021_acsaem_9b02141 crossref_primary_10_1002_sus2_69 crossref_primary_10_3389_fmats_2019_00294 crossref_primary_10_1021_acs_chemrev_1c00636 crossref_primary_10_1016_j_ijhydene_2024_07_034 crossref_primary_10_1039_C9TA13404B crossref_primary_10_1002_cssc_201701420 crossref_primary_10_1039_D3TA00336A crossref_primary_10_1016_j_cej_2025_160709 crossref_primary_10_1016_j_apcatb_2020_119091 crossref_primary_10_1039_D1EE00306B crossref_primary_10_1039_D0TA08630D crossref_primary_10_1038_s41467_019_11846_x crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1002_ange_201808226 crossref_primary_10_1039_D4CC03535F crossref_primary_10_1016_j_jece_2024_114018 crossref_primary_10_1002_adma_201805252 crossref_primary_10_1039_D1SE01257F crossref_primary_10_1016_j_cej_2020_124581 crossref_primary_10_1039_D0QM00274G crossref_primary_10_1142_S1793604721510279 crossref_primary_10_1016_j_jcat_2018_09_012 crossref_primary_10_1039_D3TA03701K crossref_primary_10_1016_j_cej_2018_08_184 crossref_primary_10_26599_NR_2025_94907273 crossref_primary_10_1002_ange_202218742 crossref_primary_10_1039_D0TA10875H crossref_primary_10_1016_j_jcis_2021_08_059 crossref_primary_10_1016_j_jcis_2022_07_090 crossref_primary_10_1002_smll_202001847 crossref_primary_10_1039_D3CS00727H crossref_primary_10_1007_s10853_018_2386_1 crossref_primary_10_1016_j_mtsust_2024_100966 crossref_primary_10_3389_fmats_2019_00016 crossref_primary_10_1039_D4QM00499J crossref_primary_10_1002_anie_201808226 crossref_primary_10_1039_D0CS00009D crossref_primary_10_3389_fchem_2020_584204 crossref_primary_10_1007_s10853_017_1453_3 crossref_primary_10_1021_acsami_0c06062 crossref_primary_10_1016_j_ccr_2017_09_016 crossref_primary_10_1002_aenm_201902625 crossref_primary_10_1016_j_progpolymsci_2019_05_002 crossref_primary_10_3390_catal8090404 crossref_primary_10_1055_a_2222_7218 crossref_primary_10_1002_adma_202209129 crossref_primary_10_1021_jacs_9b02800 crossref_primary_10_1039_C7NH00172J crossref_primary_10_1039_D3TA02371K crossref_primary_10_1002_adtp_201900059 crossref_primary_10_1002_adma_202407102 crossref_primary_10_1021_acs_jpcc_0c08692 crossref_primary_10_1021_acssuschemeng_4c03529 crossref_primary_10_1039_D1TA00154J crossref_primary_10_1021_acs_jpcc_0c01143 crossref_primary_10_1002_advs_202206239 crossref_primary_10_1016_j_ijhydene_2023_07_062 crossref_primary_10_1088_1402_4896_aca56b crossref_primary_10_1002_adma_202209919 crossref_primary_10_1016_j_chempr_2021_04_012 crossref_primary_10_1016_j_apsusc_2022_152922 crossref_primary_10_1021_acsami_1c20373 crossref_primary_10_1002_bmc_5883 crossref_primary_10_1021_acscatal_2c01011 crossref_primary_10_1021_acs_iecr_1c01251 crossref_primary_10_1016_j_mtadv_2024_100473 crossref_primary_10_1039_C9CP04618F crossref_primary_10_1038_s41467_020_14565_w crossref_primary_10_1038_s41578_019_0152_x crossref_primary_10_1039_D1TA04187H crossref_primary_10_1016_j_chemosphere_2018_12_024 crossref_primary_10_1016_j_jallcom_2024_174985 crossref_primary_10_1038_s41929_023_01047_7 crossref_primary_10_1002_adfm_202107290 crossref_primary_10_1039_D3YA00162H |
Cites_doi | 10.1016/j.electacta.2006.09.009 10.1021/ja0470970 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1073/pnas.1221824110 10.1002/anie.201308896 10.1023/A:1017596408165 10.1016/j.carbon.2011.07.004 10.1021/ed042p315 10.1126/science.1120411 10.1021/ed046p799 10.1016/j.electacta.2006.12.056 10.1016/0927-0256(96)00008-0 10.1021/jp055150g 10.1016/j.electacta.2008.09.031 10.1016/j.jcat.2014.03.011 10.1557/adv.2016.32 10.1038/nmat3795 10.1002/cber.19110440303 10.1103/PhysRevB.54.11169 10.1016/S1369-7021(08)70254-2 10.1038/nnano.2015.48 10.1103/PhysRevB.59.1758 10.1021/acs.jchemed.5b00542 10.1038/nchem.1069 10.1103/PhysRevLett.106.175502 10.1021/jacs.5b10669 10.1016/j.elecom.2010.02.016 10.1002/adma.201503211 10.1002/cctc.201000397 10.1038/ncomms3076 10.1016/j.jpowsour.2006.11.072 10.1039/C2CS35072F 10.1098/rspa.1937.0142 10.1021/ja992866e 10.1103/PhysRevB.57.1505 10.1021/acscatal.5b02731 10.1038/376238a0 10.1021/jp047349j |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201606635 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 28230916 10_1002_adma_201606635 ADMA201606635 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1266319; 1363123; 1561886 – fundername: Air Forces MURI funderid: FA9550‐12‐1‐0037 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4105-f0c303d7096ad16142ce19e9293e2e5fee1ed0e7ba7d7f1ac5dabf940d8535de3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:43:08 EDT 2025 Fri Jul 25 04:40:22 EDT 2025 Mon Jul 21 05:41:57 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Sun Sep 21 06:18:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | catalysis covalent organic frameworks clean energy conversion oxygen reduction reaction green oxidizer |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4105-f0c303d7096ad16142ce19e9293e2e5fee1ed0e7ba7d7f1ac5dabf940d8535de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28230916 |
PQID | 1920412976 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1871550284 proquest_journals_1920412976 pubmed_primary_28230916 crossref_citationtrail_10_1002_adma_201606635 crossref_primary_10_1002_adma_201606635 wiley_primary_10_1002_adma_201606635_ADMA201606635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-May |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2014; 314 1911; 44 2004; 126 2013; 4 2005; 310 2007; 165 2004; 7 2013; 42 2015; 10 2006; 110 2008; 11 1995; 376 2007; 52 2011; 3 2004; 108 1996; 54 1996; 77 2016; 6 1965; 42 2015; 27 2016; 1 2009; 54 2011; 106 2013; 12 1999; 59 1969; 46 2016; 138 2013; 110 2000; 122 2016 1937; 93 16t1 2011; 49 1994; 50 2001; 31 1996; 6 2014; 53 1998; 57 e_1_2_4_20_2 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 Bogdanoff P. (e_1_2_4_6_1) 2004; 7 e_1_2_4_19_1 |
References_xml | – volume: 110 start-page: 4923 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 12 start-page: 628 year: 2010 publication-title: Electrochem. Commun. – volume: 4 start-page: 2076 year: 2013 publication-title: Nat. Commun. – volume: 46 start-page: 799 year: 1969 publication-title: J. Chem. Educ. – volume: 49 start-page: 4839 year: 2011 publication-title: Carbon – volume: 376 start-page: 238 year: 1995 publication-title: Nature – volume: 52 start-page: 2562 year: 2007 publication-title: Electrochim. Acta – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 165 start-page: 24 year: 2007 publication-title: J. Power Sources – volume: 53 start-page: 2433 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 945 year: 2001 publication-title: J. Appl. Electrochem. – volume: 27 start-page: 6834 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 1159 year: 2011 publication-title: ChemCatChem – volume: 126 start-page: 16951 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 42 start-page: 315 year: 1965 publication-title: J. Chem. Educ. – volume: 122 start-page: 2780 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 1984 year: 1911 publication-title: Ber. Dtsch. Chem. Ges. – volume: 42 start-page: 548 year: 2013 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 65 year: 2008 publication-title: Mater. Today – volume: 54 start-page: 1473 year: 2009 publication-title: Electrochim. Acta – volume: 110 start-page: 1787 year: 2006 publication-title: J. Phys. Chem. B – volume: 57 start-page: 1505 year: 1998 publication-title: Phys. Rev. B – volume: 93 16t1 start-page: 118 220 year: 2016 1937 publication-title: J. Chem. Educ. Proc. R. Soc. A: Math. Phys. Sci. – volume: 138 start-page: 574 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1137 year: 2013 publication-title: Nat. Mater. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 7 start-page: 85 year: 2004 publication-title: J. New Mater. Electrochem. Syst. – volume: 108 start-page: 17886 year: 2004 publication-title: J. Phys. Chem. B – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 52 start-page: 4532 year: 2007 publication-title: Electrochim. Acta – volume: 314 start-page: 66 year: 2014 publication-title: J. Catal. – volume: 1 start-page: 421 year: 2016 publication-title: MRS Adv. – volume: 50 start-page: 17953 year: 1994 publication-title: Phys. Rev. B – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 546 year: 2011 publication-title: Nat. Chem. – volume: 6 start-page: 1553 year: 2016 publication-title: ACS Catal. – volume: 106 start-page: 175502 year: 2011 publication-title: Phys. Rev. Lett. – ident: e_1_2_4_9_1 doi: 10.1016/j.electacta.2006.09.009 – ident: e_1_2_4_29_1 doi: 10.1021/ja0470970 – ident: e_1_2_4_35_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_4_36_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_4_2_1 doi: 10.1073/pnas.1221824110 – ident: e_1_2_4_5_1 doi: 10.1002/anie.201308896 – ident: e_1_2_4_11_1 doi: 10.1023/A:1017596408165 – ident: e_1_2_4_32_1 doi: 10.1016/j.carbon.2011.07.004 – ident: e_1_2_4_21_1 doi: 10.1021/ed042p315 – ident: e_1_2_4_3_1 doi: 10.1126/science.1120411 – volume: 7 start-page: 85 year: 2004 ident: e_1_2_4_6_1 publication-title: J. New Mater. Electrochem. Syst. – ident: e_1_2_4_22_1 doi: 10.1021/ed046p799 – ident: e_1_2_4_7_1 doi: 10.1016/j.electacta.2006.12.056 – ident: e_1_2_4_38_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_4_23_1 doi: 10.1021/jp055150g – ident: e_1_2_4_10_1 doi: 10.1016/j.electacta.2008.09.031 – ident: e_1_2_4_26_1 doi: 10.1016/j.jcat.2014.03.011 – ident: e_1_2_4_33_1 doi: 10.1557/adv.2016.32 – ident: e_1_2_4_24_1 doi: 10.1038/nmat3795 – ident: e_1_2_4_27_1 doi: 10.1002/cber.19110440303 – ident: e_1_2_4_37_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_4_1_1 doi: 10.1016/S1369-7021(08)70254-2 – ident: e_1_2_4_19_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_4_34_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_4_20_1 doi: 10.1021/acs.jchemed.5b00542 – ident: e_1_2_4_13_1 doi: 10.1038/nchem.1069 – ident: e_1_2_4_31_1 doi: 10.1103/PhysRevLett.106.175502 – ident: e_1_2_4_16_1 doi: 10.1021/jacs.5b10669 – ident: e_1_2_4_28_1 doi: 10.1016/j.elecom.2010.02.016 – ident: e_1_2_4_14_1 doi: 10.1002/adma.201503211 – ident: e_1_2_4_18_1 doi: 10.1002/cctc.201000397 – ident: e_1_2_4_30_1 doi: 10.1038/ncomms3076 – ident: e_1_2_4_8_1 doi: 10.1016/j.jpowsour.2006.11.072 – ident: e_1_2_4_4_1 doi: 10.1039/C2CS35072F – ident: e_1_2_4_20_2 doi: 10.1098/rspa.1937.0142 – ident: e_1_2_4_25_1 doi: 10.1021/ja992866e – ident: e_1_2_4_39_1 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_2_4_15_1 doi: 10.1021/acscatal.5b02731 – ident: e_1_2_4_12_1 doi: 10.1038/376238a0 – ident: e_1_2_4_17_1 doi: 10.1021/jp047349j |
SSID | ssj0009606 |
Score | 2.615466 |
Snippet | Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Catalysis Clean energy clean energy conversion Clean technology Covalence Covalent bonds covalent organic frameworks Electrocatalysts Fuel cells green oxidizer Materials science Mathematical analysis Metal air batteries oxygen reduction reaction Photovoltaic cells Reduction (metal working) Sensors Solar cells |
Title | Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606635 https://www.ncbi.nlm.nih.gov/pubmed/28230916 https://www.proquest.com/docview/1920412976 https://www.proquest.com/docview/1871550284 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5V9KU80AtoKEWuVImnQA7n2MfVHkJVKYhD4i2a2BNpxSpbkd2K8gv6szu2N4FthZDoY-Qz9ozn83j8GeCL1phVykQ1apn50mA4pJhlWaYxJXkoS0umc_w9PbqUX6-Sqwe3-B0_ROdwM5ph12uj4Fg2h_ekoagtb1CYWqPJi3AYp4Y8f3h2zx9l4Lkl24sTv5fKvGVtDKLD1eKrVukfqLmKXK3pGb8GbDvtIk6uDxbz8kDd_cXn-D9_9QY2lrhU9J0gvYUXVL-D9Qdshe_h99BGe4jT1j_fCEa8YjBjYWXTJdy1TiXGbbxXI7ARI8tRYdJH7sUd6zD61cwbManFYEpYi5G9gMg11T-d-05grYUNCRIntxM9uaMbbtZy03LqJlyORxeDI3_5kIOvTBSpXwWKLaXOeD5QM8SUkaKwR4zMYoooqYhC0gFlJWY6q0JUicay6slAM5hINMVbsFbPavoAIgqIqww0hqmWijCvcolpDxVmcZhUuQd-O5GFWrKcm8c2poXjZ44KM8JFN8Ie7Hf5fzh-j0dz7rZyUSz1vCkYHxvCMsZ0HnzukllDzbEL1jRbcB7ek_I-kHGAB9tOnrqmInPOyQjdg8hKxRN9KPrD4373tfOcQh_hVWSQiY3Z3IW1-c2CPjGumpd78JJzfjvfszr0BwfPHJ4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB4V-lB4KFeBcBQjIfEUyOEc-7hadrUtLFQVSH2LHHsirUBZRHZRyy_oz2ZsbwJbhCrBY-Qrx0zm8_jzZ4ADpURSSM1qVDxxucZwAkOyZR6HGKU-z42YzuA87l_x77-imk2o98JYfYgm4aY9w_yvtYPrhPTxk2qoUEY4yI9N1JyDj2aRTuOin08KUhqgG7m9MHJbMU9r3UYvOJ5tPxuXXoDNWexqgk9vCfL6ti3n5PpoMs6P5MM_io7veq5l-DyFpqxtbWkFPmC5CovPBAvX4O-JIXywH3WKvmIEellnRPZK0YvZnZ2S9WrKV8VExbpGpkKXd-2hOyZn9KcaV2xYss4NipJ1zR5E6qm8txk8JkrFDCuIXfwequED3tGwRp6WSr_AVa972em707McXKmJpG7hSQqWKqEPIhShTB5I9FtI4CzEAKMC0UflYZKLRCWFL2SkRF60uKcIT0QKw3WYL0clbgILPKQuPSX8WHGJIi1SLuKWkCIJ_ahIHXDrL5nJqdC5Pm_jJrMSzUGm33DWvGEHDpv6t1bi49WaO7VhZFNXrzKCyFqzjGCdA_tNMTmpXnkRJY4mVIempTQVJCjgwIY1qGaoQC91Ekh3IDBm8Z97yNong3ZztfWWRnvwqX85OMvOvp2fbsNCoIGKoXDuwPz4boK7BLPG-VfjSI_Tex8o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Zb9QwEMdHUCQED7QFWtKDGgmJp7Q5nGMfV3uo0IMKUalv0cSeSKtW2arZRdBPwMdmbG_SLhVCgsfIjp1jJvOzM_4b4L3WmFXKZDVqmfnSMBxSzLYs05iSPJSlFdM5OU0Pz-Wni-Ti3ip-pw_RTbgZz7Dfa-Pg17o6uBMNRW11g8LUBs3H8ESmHCsNFn25E5AyfG7V9uLE76Uyb2Ubg-hg-fzlsPSANZfR1cae8Spge9Uu5eRyfz4r99Xtb4KO_3Nba_BiAaai7yxpHR5R_RKe35MrfAU_hzbdQ5y1E_SNYOQVgylbK8cu4dZ1KjFuE74agY0YWZEKUz5yW-7YGaMfzawRk1oMrghrMbIrELml-pubvxNYa2FzgsTn7xM9uaUb7taK03Lpazgfj74ODv3FTg6-MmmkfhUoDpU64_eBmhlTRorCHjGaxRRRUhGFpAPKSsx0VoWoEo1l1ZOBZppINMUbsFJPa3oDIgqImww0hqmWijCvcolpDxVmcZhUuQd--yILtZA5N7ttXBVOoDkqzBMuuifswYeu_rUT-PhjzZ3WLoqFozcFA7JRLGOo8-BdV8wuav67YE3TOdfhQSkPBBkEPNh09tR1FZkfnYzoHkTWKv5yDUV_eNLvjrb-5aQ9eHo2HBfHH0-PtuFZZCjF5m_uwMrsZk67zFiz8q11o19ayR3X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Covalent+Organic+Frameworks+as+Efficient+Electrocatalysts+in+Clean+Energy+Conversion+and+Green+Oxidizer+Production&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lin%2C+Chun-Yu&rft.au=Zhang%2C+Lipeng&rft.au=Zhao%2C+Zhenghang&rft.au=Xia%2C+Zhenhai&rft.date=2017-05-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.201606635&rft_id=info%3Apmid%2F28230916&rft.externalDocID=28230916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |