Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production

Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 17
Main Authors Lin, Chun‐Yu, Zhang, Lipeng, Zhao, Zhenghang, Xia, Zhenhai
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201606635

Cover

Abstract Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs) hold potential for various applications. To rationally design COF‐based electrocatalysts, activity descriptors are identified with the first‐principle calculations. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze direct production of H2O2, a green oxidizer. The design principles provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
AbstractList Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H O , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2 O2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2 O2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H2O2, a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. Covalent organic frameworks (COFs) hold potential for various applications. To rationally design COF‐based electrocatalysts, activity descriptors are identified with the first‐principle calculations. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze direct production of H2O2, a green oxidizer. The design principles provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF‐based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal‐air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first‐principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline‐earth metal‐porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production.
Author Zhang, Lipeng
Xia, Zhenhai
Zhao, Zhenghang
Lin, Chun‐Yu
Author_xml – sequence: 1
  givenname: Chun‐Yu
  surname: Lin
  fullname: Lin, Chun‐Yu
  organization: University of North Texas
– sequence: 2
  givenname: Lipeng
  surname: Zhang
  fullname: Zhang, Lipeng
  organization: University of North Texas
– sequence: 3
  givenname: Zhenghang
  surname: Zhao
  fullname: Zhao, Zhenghang
  organization: University of North Texas
– sequence: 4
  givenname: Zhenhai
  surname: Xia
  fullname: Xia, Zhenhai
  email: Zhenhai.xia@unt.edu
  organization: Beijing University of Chemical Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28230916$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvq1aMh8eJlVmCGmeG42W5bk5r1oGfCwseGysAKM63rL_Bnl822mjQxnjh8z_PCx3uGTkIMgNBbSuaUEPZRmUHNGaEtaduav0AzyhmtGiL4CZoRUfNKtE1_is5yviWEiMK9QqesZzURtJ2h3xeQ3TbgL8kF7XYeMrYx4WW8Ux7CiNdpq4LT-DKpAe5j-p6xynhlrdPuMF950GOKWo3K7_OYsQt46UEFvAqQtvuSFO4gZRcDVsHgqwQQ8PqnM-4XpHJtNJMey_Q1emmVz_Dm8TxH3y5XX5fX1c366tNycVPphhJeWaJrUpuubKIMbWnDNFABgokaGHALQMEQ6DaqM52lSnOjNlY0xPS85gbqc_ThmLtL8ccEeZSDyxq8VwHilCXtO8o5YX1T0PfP0Ns4pVBeJ6lgpKFMdG2h3j1S02YAI3fJDSrt5dMfF6A5AjrFnBNYqd2oDjuPSTkvKZGHKuWhSvmnyqLNn2lPyf8UxFG4dx72_6Hl4uLz4q_7APIzsuc
CitedBy_id crossref_primary_10_1007_s11356_022_24688_w
crossref_primary_10_1016_j_cattod_2023_114129
crossref_primary_10_1038_s41467_024_50377_y
crossref_primary_10_1016_j_ceramint_2024_10_008
crossref_primary_10_1021_acsaem_1c01692
crossref_primary_10_1021_acscatal_2c03020
crossref_primary_10_1016_j_ensm_2024_103295
crossref_primary_10_1021_acs_jpclett_4c03469
crossref_primary_10_1039_D1CS00887K
crossref_primary_10_1002_smll_202305759
crossref_primary_10_1016_j_apsusc_2021_149464
crossref_primary_10_1016_j_apcatb_2024_124287
crossref_primary_10_1039_C8EE00977E
crossref_primary_10_1021_acsphyschemau_2c00003
crossref_primary_10_1002_anie_202218742
crossref_primary_10_1002_adfm_202310195
crossref_primary_10_1039_C8CP05410J
crossref_primary_10_1021_acs_jpcc_8b10375
crossref_primary_10_1021_acscatal_9b02778
crossref_primary_10_1039_D1NJ06055D
crossref_primary_10_1002_anie_202111026
crossref_primary_10_1021_acs_jpcc_1c07044
crossref_primary_10_1039_D3TA08094C
crossref_primary_10_1039_C8TA05985C
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1016_j_ccr_2021_213806
crossref_primary_10_1016_S1872_5805_21_60001_X
crossref_primary_10_1021_acsami_0c06267
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1039_D2CY00088A
crossref_primary_10_1002_marc_202200722
crossref_primary_10_1039_D3TA05711A
crossref_primary_10_1021_acsami_7b06968
crossref_primary_10_1021_acscatal_2c01861
crossref_primary_10_1007_s11705_024_2388_2
crossref_primary_10_12677_aac_2025_151010
crossref_primary_10_1002_smll_202001070
crossref_primary_10_1007_s00604_019_3258_3
crossref_primary_10_1016_j_jallcom_2022_166442
crossref_primary_10_1039_D0CS01569E
crossref_primary_10_1016_j_isci_2021_102728
crossref_primary_10_1039_D4TA05191B
crossref_primary_10_1039_D0NR01148G
crossref_primary_10_1016_j_ensm_2024_103709
crossref_primary_10_1016_j_trac_2021_116182
crossref_primary_10_1039_C9MH00856J
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1016_j_cej_2020_125154
crossref_primary_10_1016_j_apcatb_2023_122366
crossref_primary_10_1016_j_nanoen_2023_109155
crossref_primary_10_1021_acs_chemmater_8b00117
crossref_primary_10_1016_j_jcis_2023_06_039
crossref_primary_10_1016_j_ccr_2020_213410
crossref_primary_10_1002_advs_202207759
crossref_primary_10_1038_s41929_023_01106_z
crossref_primary_10_1002_adma_201703646
crossref_primary_10_1016_j_apsusc_2020_145393
crossref_primary_10_1016_j_diamond_2024_111916
crossref_primary_10_1021_jacs_2c00584
crossref_primary_10_1016_j_flatc_2024_100764
crossref_primary_10_1021_acscatal_3c04801
crossref_primary_10_1021_acs_langmuir_4c04034
crossref_primary_10_1016_j_jcat_2017_06_032
crossref_primary_10_1039_D1TA02795F
crossref_primary_10_1002_adfm_202103857
crossref_primary_10_1002_adfm_201803973
crossref_primary_10_1016_j_ccr_2023_215066
crossref_primary_10_3390_molecules26216501
crossref_primary_10_1002_ange_202312409
crossref_primary_10_1016_j_jcis_2024_07_132
crossref_primary_10_1002_adfm_202408255
crossref_primary_10_1016_j_cej_2020_126144
crossref_primary_10_1002_adma_202310938
crossref_primary_10_1039_D1MA01060C
crossref_primary_10_1016_j_cej_2023_143033
crossref_primary_10_1021_acs_iecr_3c03572
crossref_primary_10_1016_j_jechem_2023_02_045
crossref_primary_10_1039_D0NR03041D
crossref_primary_10_1007_s10450_024_00516_0
crossref_primary_10_1021_jacs_4c03851
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1039_D3TA03382A
crossref_primary_10_1039_C8TA00099A
crossref_primary_10_1002_advs_202501442
crossref_primary_10_1002_smtd_202100945
crossref_primary_10_1021_jacs_0c03459
crossref_primary_10_1039_D2SC03714A
crossref_primary_10_1063_1_5082996
crossref_primary_10_1021_jacs_0c10636
crossref_primary_10_1039_D0TA11012D
crossref_primary_10_1039_D2NR04880A
crossref_primary_10_1016_j_apcatb_2023_123418
crossref_primary_10_1039_D2CS01068B
crossref_primary_10_1039_D4CP04212C
crossref_primary_10_1002_adfm_201901301
crossref_primary_10_1016_j_micromeso_2021_111101
crossref_primary_10_1021_acsmaterialslett_4c00418
crossref_primary_10_1038_s42004_022_00645_z
crossref_primary_10_1002_adfm_202500501
crossref_primary_10_1016_j_jcat_2020_07_021
crossref_primary_10_1002_anie_202312409
crossref_primary_10_1016_j_mcat_2024_114489
crossref_primary_10_1021_acs_jpcc_0c04360
crossref_primary_10_1016_j_fuel_2021_122472
crossref_primary_10_1039_C7CP06187K
crossref_primary_10_1021_acs_jpclett_9b02132
crossref_primary_10_1021_acsami_3c18548
crossref_primary_10_1002_ange_202111026
crossref_primary_10_1016_S1872_2067_18_63057_8
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1002_batt_201900001
crossref_primary_10_1016_j_isci_2019_10_001
crossref_primary_10_1016_j_cattod_2023_114409
crossref_primary_10_1002_aesr_202000090
crossref_primary_10_1021_acsanm_4c00397
crossref_primary_10_1039_D0CC06453J
crossref_primary_10_1016_j_jcis_2019_04_066
crossref_primary_10_1002_cssc_202100182
crossref_primary_10_1039_D4DT00152D
crossref_primary_10_1039_C7CC06244C
crossref_primary_10_1021_acsaem_9b02141
crossref_primary_10_1002_sus2_69
crossref_primary_10_3389_fmats_2019_00294
crossref_primary_10_1021_acs_chemrev_1c00636
crossref_primary_10_1016_j_ijhydene_2024_07_034
crossref_primary_10_1039_C9TA13404B
crossref_primary_10_1002_cssc_201701420
crossref_primary_10_1039_D3TA00336A
crossref_primary_10_1016_j_cej_2025_160709
crossref_primary_10_1016_j_apcatb_2020_119091
crossref_primary_10_1039_D1EE00306B
crossref_primary_10_1039_D0TA08630D
crossref_primary_10_1038_s41467_019_11846_x
crossref_primary_10_1021_acs_chemrev_7b00689
crossref_primary_10_1002_ange_201808226
crossref_primary_10_1039_D4CC03535F
crossref_primary_10_1016_j_jece_2024_114018
crossref_primary_10_1002_adma_201805252
crossref_primary_10_1039_D1SE01257F
crossref_primary_10_1016_j_cej_2020_124581
crossref_primary_10_1039_D0QM00274G
crossref_primary_10_1142_S1793604721510279
crossref_primary_10_1016_j_jcat_2018_09_012
crossref_primary_10_1039_D3TA03701K
crossref_primary_10_1016_j_cej_2018_08_184
crossref_primary_10_26599_NR_2025_94907273
crossref_primary_10_1002_ange_202218742
crossref_primary_10_1039_D0TA10875H
crossref_primary_10_1016_j_jcis_2021_08_059
crossref_primary_10_1016_j_jcis_2022_07_090
crossref_primary_10_1002_smll_202001847
crossref_primary_10_1039_D3CS00727H
crossref_primary_10_1007_s10853_018_2386_1
crossref_primary_10_1016_j_mtsust_2024_100966
crossref_primary_10_3389_fmats_2019_00016
crossref_primary_10_1039_D4QM00499J
crossref_primary_10_1002_anie_201808226
crossref_primary_10_1039_D0CS00009D
crossref_primary_10_3389_fchem_2020_584204
crossref_primary_10_1007_s10853_017_1453_3
crossref_primary_10_1021_acsami_0c06062
crossref_primary_10_1016_j_ccr_2017_09_016
crossref_primary_10_1002_aenm_201902625
crossref_primary_10_1016_j_progpolymsci_2019_05_002
crossref_primary_10_3390_catal8090404
crossref_primary_10_1055_a_2222_7218
crossref_primary_10_1002_adma_202209129
crossref_primary_10_1021_jacs_9b02800
crossref_primary_10_1039_C7NH00172J
crossref_primary_10_1039_D3TA02371K
crossref_primary_10_1002_adtp_201900059
crossref_primary_10_1002_adma_202407102
crossref_primary_10_1021_acs_jpcc_0c08692
crossref_primary_10_1021_acssuschemeng_4c03529
crossref_primary_10_1039_D1TA00154J
crossref_primary_10_1021_acs_jpcc_0c01143
crossref_primary_10_1002_advs_202206239
crossref_primary_10_1016_j_ijhydene_2023_07_062
crossref_primary_10_1088_1402_4896_aca56b
crossref_primary_10_1002_adma_202209919
crossref_primary_10_1016_j_chempr_2021_04_012
crossref_primary_10_1016_j_apsusc_2022_152922
crossref_primary_10_1021_acsami_1c20373
crossref_primary_10_1002_bmc_5883
crossref_primary_10_1021_acscatal_2c01011
crossref_primary_10_1021_acs_iecr_1c01251
crossref_primary_10_1016_j_mtadv_2024_100473
crossref_primary_10_1039_C9CP04618F
crossref_primary_10_1038_s41467_020_14565_w
crossref_primary_10_1038_s41578_019_0152_x
crossref_primary_10_1039_D1TA04187H
crossref_primary_10_1016_j_chemosphere_2018_12_024
crossref_primary_10_1016_j_jallcom_2024_174985
crossref_primary_10_1038_s41929_023_01047_7
crossref_primary_10_1002_adfm_202107290
crossref_primary_10_1039_D3YA00162H
Cites_doi 10.1016/j.electacta.2006.09.009
10.1021/ja0470970
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1073/pnas.1221824110
10.1002/anie.201308896
10.1023/A:1017596408165
10.1016/j.carbon.2011.07.004
10.1021/ed042p315
10.1126/science.1120411
10.1021/ed046p799
10.1016/j.electacta.2006.12.056
10.1016/0927-0256(96)00008-0
10.1021/jp055150g
10.1016/j.electacta.2008.09.031
10.1016/j.jcat.2014.03.011
10.1557/adv.2016.32
10.1038/nmat3795
10.1002/cber.19110440303
10.1103/PhysRevB.54.11169
10.1016/S1369-7021(08)70254-2
10.1038/nnano.2015.48
10.1103/PhysRevB.59.1758
10.1021/acs.jchemed.5b00542
10.1038/nchem.1069
10.1103/PhysRevLett.106.175502
10.1021/jacs.5b10669
10.1016/j.elecom.2010.02.016
10.1002/adma.201503211
10.1002/cctc.201000397
10.1038/ncomms3076
10.1016/j.jpowsour.2006.11.072
10.1039/C2CS35072F
10.1098/rspa.1937.0142
10.1021/ja992866e
10.1103/PhysRevB.57.1505
10.1021/acscatal.5b02731
10.1038/376238a0
10.1021/jp047349j
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201606635
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28230916
10_1002_adma_201606635
ADMA201606635
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1266319; 1363123; 1561886
– fundername: Air Forces MURI
  funderid: FA9550‐12‐1‐0037
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4105-f0c303d7096ad16142ce19e9293e2e5fee1ed0e7ba7d7f1ac5dabf940d8535de3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:43:08 EDT 2025
Fri Jul 25 04:40:22 EDT 2025
Mon Jul 21 05:41:57 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Tue Jul 01 00:44:32 EDT 2025
Sun Sep 21 06:18:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords catalysis
covalent organic frameworks
clean energy conversion
oxygen reduction reaction
green oxidizer
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-f0c303d7096ad16142ce19e9293e2e5fee1ed0e7ba7d7f1ac5dabf940d8535de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28230916
PQID 1920412976
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_1871550284
proquest_journals_1920412976
pubmed_primary_28230916
crossref_citationtrail_10_1002_adma_201606635
crossref_primary_10_1002_adma_201606635
wiley_primary_10_1002_adma_201606635_ADMA201606635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2014; 314
1911; 44
2004; 126
2013; 4
2005; 310
2007; 165
2004; 7
2013; 42
2015; 10
2006; 110
2008; 11
1995; 376
2007; 52
2011; 3
2004; 108
1996; 54
1996; 77
2016; 6
1965; 42
2015; 27
2016; 1
2009; 54
2011; 106
2013; 12
1999; 59
1969; 46
2016; 138
2013; 110
2000; 122
2016 1937; 93 16t1
2011; 49
1994; 50
2001; 31
1996; 6
2014; 53
1998; 57
e_1_2_4_20_2
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
Bogdanoff P. (e_1_2_4_6_1) 2004; 7
e_1_2_4_19_1
References_xml – volume: 110
  start-page: 4923
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 12
  start-page: 628
  year: 2010
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 2076
  year: 2013
  publication-title: Nat. Commun.
– volume: 46
  start-page: 799
  year: 1969
  publication-title: J. Chem. Educ.
– volume: 49
  start-page: 4839
  year: 2011
  publication-title: Carbon
– volume: 376
  start-page: 238
  year: 1995
  publication-title: Nature
– volume: 52
  start-page: 2562
  year: 2007
  publication-title: Electrochim. Acta
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 165
  start-page: 24
  year: 2007
  publication-title: J. Power Sources
– volume: 53
  start-page: 2433
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 945
  year: 2001
  publication-title: J. Appl. Electrochem.
– volume: 27
  start-page: 6834
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1159
  year: 2011
  publication-title: ChemCatChem
– volume: 126
  start-page: 16951
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 315
  year: 1965
  publication-title: J. Chem. Educ.
– volume: 122
  start-page: 2780
  year: 2000
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 1984
  year: 1911
  publication-title: Ber. Dtsch. Chem. Ges.
– volume: 42
  start-page: 548
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 65
  year: 2008
  publication-title: Mater. Today
– volume: 54
  start-page: 1473
  year: 2009
  publication-title: Electrochim. Acta
– volume: 110
  start-page: 1787
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 57
  start-page: 1505
  year: 1998
  publication-title: Phys. Rev. B
– volume: 93 16t1
  start-page: 118 220
  year: 2016 1937
  publication-title: J. Chem. Educ. Proc. R. Soc. A: Math. Phys. Sci.
– volume: 138
  start-page: 574
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1137
  year: 2013
  publication-title: Nat. Mater.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 7
  start-page: 85
  year: 2004
  publication-title: J. New Mater. Electrochem. Syst.
– volume: 108
  start-page: 17886
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 4532
  year: 2007
  publication-title: Electrochim. Acta
– volume: 314
  start-page: 66
  year: 2014
  publication-title: J. Catal.
– volume: 1
  start-page: 421
  year: 2016
  publication-title: MRS Adv.
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 546
  year: 2011
  publication-title: Nat. Chem.
– volume: 6
  start-page: 1553
  year: 2016
  publication-title: ACS Catal.
– volume: 106
  start-page: 175502
  year: 2011
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_4_9_1
  doi: 10.1016/j.electacta.2006.09.009
– ident: e_1_2_4_29_1
  doi: 10.1021/ja0470970
– ident: e_1_2_4_35_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_4_36_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_4_2_1
  doi: 10.1073/pnas.1221824110
– ident: e_1_2_4_5_1
  doi: 10.1002/anie.201308896
– ident: e_1_2_4_11_1
  doi: 10.1023/A:1017596408165
– ident: e_1_2_4_32_1
  doi: 10.1016/j.carbon.2011.07.004
– ident: e_1_2_4_21_1
  doi: 10.1021/ed042p315
– ident: e_1_2_4_3_1
  doi: 10.1126/science.1120411
– volume: 7
  start-page: 85
  year: 2004
  ident: e_1_2_4_6_1
  publication-title: J. New Mater. Electrochem. Syst.
– ident: e_1_2_4_22_1
  doi: 10.1021/ed046p799
– ident: e_1_2_4_7_1
  doi: 10.1016/j.electacta.2006.12.056
– ident: e_1_2_4_38_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_4_23_1
  doi: 10.1021/jp055150g
– ident: e_1_2_4_10_1
  doi: 10.1016/j.electacta.2008.09.031
– ident: e_1_2_4_26_1
  doi: 10.1016/j.jcat.2014.03.011
– ident: e_1_2_4_33_1
  doi: 10.1557/adv.2016.32
– ident: e_1_2_4_24_1
  doi: 10.1038/nmat3795
– ident: e_1_2_4_27_1
  doi: 10.1002/cber.19110440303
– ident: e_1_2_4_37_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_4_1_1
  doi: 10.1016/S1369-7021(08)70254-2
– ident: e_1_2_4_19_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_4_34_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_4_20_1
  doi: 10.1021/acs.jchemed.5b00542
– ident: e_1_2_4_13_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_4_31_1
  doi: 10.1103/PhysRevLett.106.175502
– ident: e_1_2_4_16_1
  doi: 10.1021/jacs.5b10669
– ident: e_1_2_4_28_1
  doi: 10.1016/j.elecom.2010.02.016
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201503211
– ident: e_1_2_4_18_1
  doi: 10.1002/cctc.201000397
– ident: e_1_2_4_30_1
  doi: 10.1038/ncomms3076
– ident: e_1_2_4_8_1
  doi: 10.1016/j.jpowsour.2006.11.072
– ident: e_1_2_4_4_1
  doi: 10.1039/C2CS35072F
– ident: e_1_2_4_20_2
  doi: 10.1098/rspa.1937.0142
– ident: e_1_2_4_25_1
  doi: 10.1021/ja992866e
– ident: e_1_2_4_39_1
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_2_4_15_1
  doi: 10.1021/acscatal.5b02731
– ident: e_1_2_4_12_1
  doi: 10.1038/376238a0
– ident: e_1_2_4_17_1
  doi: 10.1021/jp047349j
SSID ssj0009606
Score 2.615466
Snippet Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Catalysis
Clean energy
clean energy conversion
Clean technology
Covalence
Covalent bonds
covalent organic frameworks
Electrocatalysts
Fuel cells
green oxidizer
Materials science
Mathematical analysis
Metal air batteries
oxygen reduction reaction
Photovoltaic cells
Reduction (metal working)
Sensors
Solar cells
Title Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606635
https://www.ncbi.nlm.nih.gov/pubmed/28230916
https://www.proquest.com/docview/1920412976
https://www.proquest.com/docview/1871550284
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5V9KU80AtoKEWuVImnQA7n2MfVHkJVKYhD4i2a2BNpxSpbkd2K8gv6szu2N4FthZDoY-Qz9ozn83j8GeCL1phVykQ1apn50mA4pJhlWaYxJXkoS0umc_w9PbqUX6-Sqwe3-B0_ROdwM5ph12uj4Fg2h_ekoagtb1CYWqPJi3AYp4Y8f3h2zx9l4Lkl24sTv5fKvGVtDKLD1eKrVukfqLmKXK3pGb8GbDvtIk6uDxbz8kDd_cXn-D9_9QY2lrhU9J0gvYUXVL-D9Qdshe_h99BGe4jT1j_fCEa8YjBjYWXTJdy1TiXGbbxXI7ARI8tRYdJH7sUd6zD61cwbManFYEpYi5G9gMg11T-d-05grYUNCRIntxM9uaMbbtZy03LqJlyORxeDI3_5kIOvTBSpXwWKLaXOeD5QM8SUkaKwR4zMYoooqYhC0gFlJWY6q0JUicay6slAM5hINMVbsFbPavoAIgqIqww0hqmWijCvcolpDxVmcZhUuQd-O5GFWrKcm8c2poXjZ44KM8JFN8Ie7Hf5fzh-j0dz7rZyUSz1vCkYHxvCMsZ0HnzukllDzbEL1jRbcB7ek_I-kHGAB9tOnrqmInPOyQjdg8hKxRN9KPrD4373tfOcQh_hVWSQiY3Z3IW1-c2CPjGumpd78JJzfjvfszr0BwfPHJ4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB4V-lB4KFeBcBQjIfEUyOEc-7hadrUtLFQVSH2LHHsirUBZRHZRyy_oz2ZsbwJbhCrBY-Qrx0zm8_jzZ4ADpURSSM1qVDxxucZwAkOyZR6HGKU-z42YzuA87l_x77-imk2o98JYfYgm4aY9w_yvtYPrhPTxk2qoUEY4yI9N1JyDj2aRTuOin08KUhqgG7m9MHJbMU9r3UYvOJ5tPxuXXoDNWexqgk9vCfL6ti3n5PpoMs6P5MM_io7veq5l-DyFpqxtbWkFPmC5CovPBAvX4O-JIXywH3WKvmIEellnRPZK0YvZnZ2S9WrKV8VExbpGpkKXd-2hOyZn9KcaV2xYss4NipJ1zR5E6qm8txk8JkrFDCuIXfwequED3tGwRp6WSr_AVa972em707McXKmJpG7hSQqWKqEPIhShTB5I9FtI4CzEAKMC0UflYZKLRCWFL2SkRF60uKcIT0QKw3WYL0clbgILPKQuPSX8WHGJIi1SLuKWkCIJ_ahIHXDrL5nJqdC5Pm_jJrMSzUGm33DWvGEHDpv6t1bi49WaO7VhZFNXrzKCyFqzjGCdA_tNMTmpXnkRJY4mVIempTQVJCjgwIY1qGaoQC91Ekh3IDBm8Z97yNong3ZztfWWRnvwqX85OMvOvp2fbsNCoIGKoXDuwPz4boK7BLPG-VfjSI_Tex8o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Zb9QwEMdHUCQED7QFWtKDGgmJp7Q5nGMfV3uo0IMKUalv0cSeSKtW2arZRdBPwMdmbG_SLhVCgsfIjp1jJvOzM_4b4L3WmFXKZDVqmfnSMBxSzLYs05iSPJSlFdM5OU0Pz-Wni-Ti3ip-pw_RTbgZz7Dfa-Pg17o6uBMNRW11g8LUBs3H8ESmHCsNFn25E5AyfG7V9uLE76Uyb2Ubg-hg-fzlsPSANZfR1cae8Spge9Uu5eRyfz4r99Xtb4KO_3Nba_BiAaai7yxpHR5R_RKe35MrfAU_hzbdQ5y1E_SNYOQVgylbK8cu4dZ1KjFuE74agY0YWZEKUz5yW-7YGaMfzawRk1oMrghrMbIrELml-pubvxNYa2FzgsTn7xM9uaUb7taK03Lpazgfj74ODv3FTg6-MmmkfhUoDpU64_eBmhlTRorCHjGaxRRRUhGFpAPKSsx0VoWoEo1l1ZOBZppINMUbsFJPa3oDIgqImww0hqmWijCvcolpDxVmcZhUuQd--yILtZA5N7ttXBVOoDkqzBMuuifswYeu_rUT-PhjzZ3WLoqFozcFA7JRLGOo8-BdV8wuav67YE3TOdfhQSkPBBkEPNh09tR1FZkfnYzoHkTWKv5yDUV_eNLvjrb-5aQ9eHo2HBfHH0-PtuFZZCjF5m_uwMrsZk67zFiz8q11o19ayR3X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Principles+for+Covalent+Organic+Frameworks+as+Efficient+Electrocatalysts+in+Clean+Energy+Conversion+and+Green+Oxidizer+Production&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lin%2C+Chun-Yu&rft.au=Zhang%2C+Lipeng&rft.au=Zhao%2C+Zhenghang&rft.au=Xia%2C+Zhenhai&rft.date=2017-05-01&rft.eissn=1521-4095&rft.volume=29&rft.issue=17&rft_id=info:doi/10.1002%2Fadma.201606635&rft_id=info%3Apmid%2F28230916&rft.externalDocID=28230916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon