Learning white matter subject‐specific segmentation from structural MRI
Purpose Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from diffusion‐weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time‐consuming dMRI acquisitions that may not...
Saved in:
Published in | Medical physics (Lancaster) Vol. 49; no. 4; pp. 2502 - 2513 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 2473-4209 |
DOI | 10.1002/mp.15495 |
Cover
Abstract | Purpose
Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from diffusion‐weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time‐consuming dMRI acquisitions that may not always be available, especially for legacy or time‐constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning.
Methods
Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U‐Net models to learn these techniques from 3870 T1‐weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.
Results
The proposed framework identifies fiber bundles with high agreement against tractography‐based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject‐specific accuracy when compared to population atlas‐based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets.
Conclusions
We show that patch‐wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available. |
---|---|
AbstractList | Purpose
Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from diffusion‐weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time‐consuming dMRI acquisitions that may not always be available, especially for legacy or time‐constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning.
Methods
Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U‐Net models to learn these techniques from 3870 T1‐weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.
Results
The proposed framework identifies fiber bundles with high agreement against tractography‐based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject‐specific accuracy when compared to population atlas‐based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets.
Conclusions
We show that patch‐wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available. Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning. Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University. The proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets. We show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available. Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning.PURPOSEMapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning.Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.METHODSFollowing recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.The proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets.RESULTSThe proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets.We show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.CONCLUSIONSWe show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available. |
Author | Hansen, Colin B. Descoteaux, Maxime Anderson, Adam W. Landman, Bennett A. Rheault, Francois Garyfallidis, Eleftherios Cai, Leon Y. Resnick, Susan M. Chandio, Bramsh Qamar Schilling, Kurt G. Lee, Ho Hin Yang, Qi Williams, Owen Bao, Shunxing |
AuthorAffiliation | 3 Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA 6 Program of Neuroscience, Indiana University, Bloomington, Indiana, USA 5 Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA 9 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, Tennessee, USA 4 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA 8 Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada 1 Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA 2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA 7 Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Centre, Nashville, Tennessee, USA |
AuthorAffiliation_xml | – name: 6 Program of Neuroscience, Indiana University, Bloomington, Indiana, USA – name: 9 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, Tennessee, USA – name: 7 Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Centre, Nashville, Tennessee, USA – name: 2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA – name: 8 Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada – name: 4 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA – name: 1 Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA – name: 3 Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA – name: 5 Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA |
Author_xml | – sequence: 1 givenname: Qi surname: Yang fullname: Yang, Qi email: qi.yang@vanderbilt.edu organization: Vanderbilt University – sequence: 2 givenname: Colin B. surname: Hansen fullname: Hansen, Colin B. organization: Vanderbilt University – sequence: 3 givenname: Leon Y. surname: Cai fullname: Cai, Leon Y. organization: Vanderbilt University – sequence: 4 givenname: Francois surname: Rheault fullname: Rheault, Francois organization: Vanderbilt University – sequence: 5 givenname: Ho Hin surname: Lee fullname: Lee, Ho Hin organization: Vanderbilt University – sequence: 6 givenname: Shunxing surname: Bao fullname: Bao, Shunxing organization: Vanderbilt University – sequence: 7 givenname: Bramsh Qamar surname: Chandio fullname: Chandio, Bramsh Qamar organization: Indiana University – sequence: 8 givenname: Owen surname: Williams fullname: Williams, Owen organization: National Institute on Aging – sequence: 9 givenname: Susan M. surname: Resnick fullname: Resnick, Susan M. organization: National Institute on Aging – sequence: 10 givenname: Eleftherios surname: Garyfallidis fullname: Garyfallidis, Eleftherios organization: Indiana University – sequence: 11 givenname: Adam W. surname: Anderson fullname: Anderson, Adam W. organization: Vanderbilt University Medical Centre – sequence: 12 givenname: Maxime surname: Descoteaux fullname: Descoteaux, Maxime organization: Université de Sherbrooke – sequence: 13 givenname: Kurt G. surname: Schilling fullname: Schilling, Kurt G. organization: Vanderbilt University Medical Centre – sequence: 14 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Vanderbilt University Medical Centre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35090192$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9O3DAQhy1EBbvbSjxBlWMv2Y4dO4kvSAhBWWlRqwrOluNMFqP8w3ZAe-MReMY-CWlDtxS1F8_B33zz08yc7Lddi4QcUVhSAPa56ZdUcCn2yIzxLIk5A7lPZgCSx4yDOCRz728BIE0EHJDD8ZVAJZuR1Rq1a227iR5ubMCo0SGgi_xQ3KIJPx6ffI_GVtZEHjcNtkEH27VR5bom8sENJgxO19Hl99V78q7StccPL3VBrs_Prk4v4vXXL6vTk3VsOAURlwa0yApa5MgyJiqkgFkleckrVmmqaZJKKSCRRcaRU6EzVko0UguJicAyWZDjydsPRYOlGTONCVTvbKPdVnXaqr9_WnujNt29kiCSPJWj4NOLwHV3A_qgGusN1rVusRu8YilL8jzLWD6iH1_P2g35vb8_LuM67x1WO4SC-nka1fTq12lGdPkGNXba5pjS1v9qiKeGB1vj9r9idflt4p8BvS-gcA |
CitedBy_id | crossref_primary_10_3389_fneur_2022_934650 crossref_primary_10_3390_diagnostics13050911 |
Cites_doi | 10.1016/j.neuroimage.2012.02.018 10.1002/mrm.22924 10.1007/s12021-020-09497-1 10.1371/journal.pone.0177459 10.1006/jmrb.1994.1037 10.1007/978-3-030-32248-9_52 10.1109/TMI.2009.2013851 10.1080/21681163.2016.1182072 10.1016/j.neuroimage.2012.02.071 10.1016/j.neuroimage.2017.07.015 10.1016/j.media.2020.101894 10.1016/j.neuroimage.2010.07.033 10.1109/CVPRW.2015.7301312 10.1371/journal.pone.0049790 10.1371/journal.pone.0120773 10.1093/gerona/63.12.1416 10.1109/TMI.2007.906785 10.1007/978-3-319-46723-8_49 10.1016/j.neuroimage.2018.05.027 10.1002/nbm.1579 10.1016/j.neuroimage.2020.116923 10.1109/TPAMI.2012.143 10.1016/j.neuroimage.2019.03.041 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2007.12.035 10.1006/nimg.2002.1136 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2018.07.070 10.1145/37402.37422 10.1016/j.media.2007.06.004 10.1002/nbm.3785 10.1016/j.neuroimage.2008.07.009 10.1016/j.neuroimage.2018.10.029 10.3389/fninf.2011.00023 10.1152/jn.00221.2016 10.1007/s00429-018-1798-7 10.1002/mrm.28678 10.1007/978-1-4612-4380-9_16 10.1016/j.neuroimage.2017.02.035 |
ContentType | Journal Article |
Copyright | 2022 American Association of Physicists in Medicine 2022 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2022 American Association of Physicists in Medicine – notice: 2022 American Association of Physicists in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/mp.15495 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 2513 |
ExternalDocumentID | PMC9053869 35090192 10_1002_mp_15495 MP15495 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health under award numbers funderid: R01EB017230; R01NS058639; R01EB027585; T32EB001628 – fundername: National Institutes of Health funderid: R01EB017230; R01NS058639; R01EB027585; T32EB001628 – fundername: NIH HHS grantid: R01NS058639 – fundername: National Institutes of Health under award numbers grantid: T32EB001628 – fundername: National Institutes of Health under award numbers grantid: R01NS058639 – fundername: NIBIB NIH HHS grantid: T32 EB001628 – fundername: NIBIB NIH HHS grantid: R01 EB027585 – fundername: NIBIB NIH HHS grantid: R01 EB017230 – fundername: National Institutes of Health under award numbers grantid: R01EB017230 – fundername: NICHD NIH HHS grantid: P50 HD103537 – fundername: NIH HHS grantid: T32EB001628 – fundername: NIH HHS grantid: R01EB017230 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4105-dc0a57b1b8e2725fe10e7f94d4f2fa1a136995039b74e415a72d9ec9a59e35ed3 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Tue Sep 30 16:01:37 EDT 2025 Wed Oct 01 14:46:15 EDT 2025 Mon Jul 21 06:01:17 EDT 2025 Wed Oct 01 04:33:09 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Jan 22 16:26:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | white matter tractography algorithms learning methods and patch-wise deep neural network T1 weight MRI |
Language | English |
License | 2022 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4105-dc0a57b1b8e2725fe10e7f94d4f2fa1a136995039b74e415a72d9ec9a59e35ed3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15495 |
PMID | 35090192 |
PQID | 2623887728 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9053869 proquest_miscellaneous_2623887728 pubmed_primary_35090192 crossref_primary_10_1002_mp_15495 crossref_citationtrail_10_1002_mp_15495 wiley_primary_10_1002_mp_15495_MP15495 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2022 |
References | 2012; 61 2021; 69 2002; 17 2021; 86 2018; 183 2019; 32 2004; 23 2015; 10 2008; 12 2019; 224 2011; 54 1992 2012; 35 2019; 185 2011; 5 2009; 28 2010; 23 2018; 6 2018; 170 1987; 21 1994; 103 2018; 178 2021; 19 2017; 12 2019 2005; 1064 2020; 217 2011; 65 2008; 43 2016 2016; 116 2015 2008; 63 2008; 40 2012; 7 2009; 2 2019; 194 2007; 26 2012; 62 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Avants BB (e_1_2_9_35_1) 2009; 2 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Avants BB (e_1_2_9_40_1) 2009; 2 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 Alexander DC (e_1_2_9_6_1) 2005; 1064 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – start-page: 20 year: 2015 end-page: 28 article-title: Deep neural networks for anatomical brain segmentation – volume: 26 start-page: 1562 issue: 11 year: 2007 end-page: 1575 article-title: Automatic tractography segmentation using a high‐dimensional white matter atlas publication-title: IEEE Trans Med Imaging – volume: 103 start-page: 247 issue: 3 year: 1994 end-page: 254 article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo publication-title: J Magn Reson Ser B – volume: 62 start-page: 774 issue: 2 year: 2012 end-page: 781 article-title: FreeSurfer publication-title: Neuroimage – volume: 5 start-page: 23 year: 2011 article-title: Automated probabilistic reconstruction of white‐matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front Neuroinform – volume: 217 year: 2020 article-title: XTRACT ‐ standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 43 start-page: 447 issue: 3 year: 2008 end-page: 457 article-title: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter publication-title: Neuroimage – volume: 86 start-page: 456 issue: 1 year: 2021 end-page: 470 article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magn Reson Med – volume: 23 start-page: 821 issue: 7 year: 2010 end-page: 835 article-title: Mapping brain anatomical connectivity using white matter tractography publication-title: NMR Biomed – volume: 19 start-page: 447 issue: 3 year: 2021 end-page: 460 article-title: Pandora: 4‐D white matter bundle population‐based atlases derived from diffusion MRI fiber tractography publication-title: Neuroinformatics – volume: 63 start-page: 1416 issue: 12 year: 2008 end-page: 1419 article-title: The Baltimore Longitudinal Study of Aging (BLSA): a 50‐year‐long journey and plans for the future publication-title: J Gerontol Ser A Biol Sci Med Sci – volume: 62 start-page: 2222 issue: 4 year: 2012 end-page: 2231 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – volume: 17 start-page: 77 issue: 1 year: 2002 end-page: 94 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: Neuroimage – volume: 54 start-page: 313 issue: 1 year: 2011 end-page: 327 article-title: Unbiased average age‐appropriate atlases for pediatric studies publication-title: Neuroimage – volume: 32 issue: 4 year: 2019 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed – volume: 116 start-page: 2093 issue: 5 year: 2016 end-page: 2104 article-title: White matter and cognition: making the connection publication-title: J Neurophysiol – volume: 2 start-page: 1 issue: 365 year: 2009 end-page: 35 article-title: Advanced normalization tools (ANTS) publication-title: Insight J – volume: 170 start-page: 283 year: 2018 end-page: 295 article-title: Recognition of white matter bundles using local and global streamline‐based registration and clustering publication-title: Neuroimage – start-page: 196 year: 1992 end-page: 202 – volume: 10 issue: 3 year: 2015 article-title: How does B‐value affect HARDI reconstruction using clinical diffusion MRI data? publication-title: PLoS One – start-page: 466 year: 2019 end-page: 474 article-title: AssemblyNet: a novel deep decision‐making process for whole brain MRI segmentation – volume: 170 start-page: 434 year: 2018 end-page: 445 article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy publication-title: Neuroimage – volume: 21 start-page: 163 issue: 4 year: 1987 end-page: 169 article-title: Marching cubes: a high resolution 3D surface construction algorithm publication-title: ACM Siggraph Comput Graph – volume: 40 start-page: 570 issue: 2 year: 2008 end-page: 582 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: Neuroimage – start-page: 424 year: 2016 end-page: 432 article-title: 3D U‐Net: learning dense volumetric segmentation from sparse annotation – volume: 61 start-page: 1083 issue: 4 year: 2012 end-page: 1099 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi‐subject bundle atlas publication-title: Neuroimage – volume: 224 start-page: 599 issue: 2 year: 2019 end-page: 612 article-title: A population‐based atlas of the human pyramidal tract in 410 healthy participants publication-title: Brain Struct Funct – volume: 185 start-page: 1 year: 2019 end-page: 11 article-title: Limits to anatomical accuracy of diffusion tractography using modern approaches publication-title: Neuroimage – volume: 194 start-page: 105 year: 2019 end-page: 119 article-title: 3D whole brain segmentation using spatially localized atlas network tiles publication-title: Neuroimage – volume: 65 start-page: 1532 issue: 6 year: 2011 article-title: Diffusion tensor imaging and beyond publication-title: Magn Reson Med – volume: 23 start-page: S208 year: 2004 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – article-title: Fiber‐tractography via diffusion tensor MRI (DT‐MRI) – volume: 12 start-page: 26 issue: 1 year: 2008 end-page: 41 article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med Image Anal – volume: 178 start-page: 57 year: 2018 end-page: 68 article-title: Population‐averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage – volume: 6 start-page: 113 issue: 1 year: 2018 end-page: 117 article-title: Multi‐scale structured CNN with label consistency for brain MR image segmentation publication-title: Comput Methods Biomech Biomed Eng Imaging Vis – volume: 183 start-page: 239 year: 2018 end-page: 253 article-title: TractSeg ‐ fast and accurate white matter tract segmentation publication-title: Neuroimage – volume: 69 year: 2021 article-title: High‐resolution 3D abdominal segmentation with random patch network fusion publication-title: Med Image Anal – volume: 35 start-page: 611 issue: 3 year: 2012 end-page: 623 article-title: Multi‐atlas segmentation with joint label fusion publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 12 issue: 5 year: 2017 article-title: Singularity: scientific containers for mobility of compute publication-title: PLoS One – volume: 7 issue: 11 year: 2012 article-title: Tract profiles of white matter properties: automating fiber‐tract quantification publication-title: PLoS One – volume: 1064 start-page: 113 year: 2005 end-page: 133 article-title: Multiple‐fiber reconstruction algorithms for diffusion MRI publication-title: White Matter Cogn Neurosci Adv Diffus Tensor Imaging Its Appl – volume: 28 start-page: 1251 issue: 8 year: 2009 end-page: 1265 article-title: Comparison and evaluation of methods for liver segmentation from CT datasets publication-title: IEEE Trans Med Imaging – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroimage.2012.02.018 – ident: e_1_2_9_7_1 doi: 10.1002/mrm.22924 – ident: e_1_2_9_17_1 doi: 10.1007/s12021-020-09497-1 – ident: e_1_2_9_45_1 doi: 10.1371/journal.pone.0177459 – ident: e_1_2_9_5_1 doi: 10.1006/jmrb.1994.1037 – ident: e_1_2_9_36_1 doi: 10.1007/978-3-030-32248-9_52 – ident: e_1_2_9_41_1 doi: 10.1109/TMI.2009.2013851 – ident: e_1_2_9_23_1 doi: 10.1080/21681163.2016.1182072 – ident: e_1_2_9_13_1 doi: 10.1016/j.neuroimage.2012.02.071 – ident: e_1_2_9_28_1 doi: 10.1016/j.neuroimage.2017.07.015 – ident: e_1_2_9_20_1 doi: 10.1016/j.media.2020.101894 – ident: e_1_2_9_32_1 doi: 10.1016/j.neuroimage.2010.07.033 – volume: 1064 start-page: 113 year: 2005 ident: e_1_2_9_6_1 article-title: Multiple‐fiber reconstruction algorithms for diffusion MRI publication-title: White Matter Cogn Neurosci Adv Diffus Tensor Imaging Its Appl – ident: e_1_2_9_21_1 doi: 10.1109/CVPRW.2015.7301312 – ident: e_1_2_9_31_1 doi: 10.1371/journal.pone.0049790 – ident: e_1_2_9_10_1 doi: 10.1371/journal.pone.0120773 – ident: e_1_2_9_24_1 doi: 10.1093/gerona/63.12.1416 – ident: e_1_2_9_14_1 doi: 10.1109/TMI.2007.906785 – ident: e_1_2_9_18_1 doi: 10.1007/978-3-319-46723-8_49 – ident: e_1_2_9_11_1 doi: 10.1016/j.neuroimage.2018.05.027 – ident: e_1_2_9_2_1 doi: 10.1002/nbm.1579 – volume: 2 start-page: 1 issue: 365 year: 2009 ident: e_1_2_9_35_1 article-title: Advanced normalization tools (ANTS) publication-title: Insight J – ident: e_1_2_9_29_1 doi: 10.1016/j.neuroimage.2020.116923 – ident: e_1_2_9_39_1 doi: 10.1109/TPAMI.2012.143 – ident: e_1_2_9_19_1 doi: 10.1016/j.neuroimage.2019.03.041 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroimage.2007.12.035 – ident: e_1_2_9_9_1 doi: 10.1006/nimg.2002.1136 – ident: e_1_2_9_8_1 – ident: e_1_2_9_34_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_9_27_1 doi: 10.1016/j.neuroimage.2018.07.070 – ident: e_1_2_9_44_1 doi: 10.1145/37402.37422 – ident: e_1_2_9_38_1 doi: 10.1016/j.media.2007.06.004 – ident: e_1_2_9_4_1 doi: 10.1002/nbm.3785 – ident: e_1_2_9_15_1 doi: 10.1016/j.neuroimage.2008.07.009 – ident: e_1_2_9_42_1 doi: 10.1016/j.neuroimage.2018.10.029 – ident: e_1_2_9_37_1 – ident: e_1_2_9_30_1 doi: 10.3389/fninf.2011.00023 – ident: e_1_2_9_3_1 doi: 10.1152/jn.00221.2016 – ident: e_1_2_9_12_1 doi: 10.1007/s00429-018-1798-7 – ident: e_1_2_9_26_1 doi: 10.1002/mrm.28678 – ident: e_1_2_9_43_1 doi: 10.1007/978-1-4612-4380-9_16 – volume: 2 start-page: 1 issue: 365 year: 2009 ident: e_1_2_9_40_1 article-title: Advanced normalization tools (ANTS) publication-title: Insight J – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2017.02.035 |
SSID | ssj0006350 |
Score | 2.4221032 |
Snippet | Purpose
Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from... Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2502 |
SubjectTerms | Brain - diagnostic imaging Diffusion Tensor Imaging - methods Humans Image Processing, Computer-Assisted - methods learning methods and patch‐wise deep neural network Longitudinal Studies Magnetic Resonance Imaging T1 weight MRI tractography algorithms white matter White Matter - diagnostic imaging |
Title | Learning white matter subject‐specific segmentation from structural MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15495 https://www.ncbi.nlm.nih.gov/pubmed/35090192 https://www.proquest.com/docview/2623887728 https://pubmed.ncbi.nlm.nih.gov/PMC9053869 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4gXxMZXgE1BQuOhCkudxK4fp25joGSM0UrlKXIch1Va005thcRfz_kjSUOLNHhJKsdKLP-u9t357ncIvfPhQVBQ7gWC5B4IRehx0GI92GwF5QEBk0RlIycX5HwUfh5H4yZdUWeXLLMP4tfWvJL_QRXaAFeVJfsPyNYvhQb4DfjCFRCG650wjiu_xk91GNCdaq7M7mKVKeeKp5IoVSBQdyF_TG2KUWnySQxrrGbcSK4-rSuo1cGN8Xhol6xKk-amgEftNfhu3cxfJ80SVlpnzkDVAWqqOQ9MwetYwsdrvfkK9oDVzbJSncVs0vI_gOnahK3oZQqHNACQfTMCuaXNrrOGmtTKU7i-aEY66XpzNTfssNO5cn-ZUpxtwuyLL-nZKI7T4el4eDi_9VQtMXXmbgur3Ec7mBKCO2jn-CSJv9U7NChZyvdWj7IiJfbxUfWxtpqyYXtshtCumzZaNxk-QY-tUeEeGwnZRfdkuYceJjZsYg89uDRoPkUfK5Fxtci4RmTcP0XGXRcZV4mM24iMCyLzDI3OToeDc8_W0vCECuT1cuHziGa9rC8xxVEhe76kBQvzsMAF7_FeQBiL_IBlNJSg1HGKcyYF4xGTQSTz4DnqlLNSvkSuCInIKeU5BtOB-BlYvKFQgQGZECzgxEHvq6lLhSWaV_VOblJDkY3T6TzVk-ygt3XPuSFX2danmv0UVj51nMVLOVstUgyaO2yRFPcd9MKgUb8FAGbKeHEQbeFUd1Cs6u0n5eRas6sz2Jb6hDnoUCP614GlyaW-v7rDAF-jR81f5w3qAGJyH5TZZXZgZfM31RqiAw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+white+matter+subject-specific+segmentation+from+structural+MRI&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Yang%2C+Qi&rft.au=Hansen%2C+Colin+B&rft.au=Cai%2C+Leon+Y&rft.au=Rheault%2C+Francois&rft.date=2022-04-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=49&rft.issue=4&rft.spage=2502&rft_id=info:doi/10.1002%2Fmp.15495&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |