Learning white matter subject‐specific segmentation from structural MRI

Purpose Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from diffusion‐weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time‐consuming dMRI acquisitions that may not...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 49; no. 4; pp. 2502 - 2513
Main Authors Yang, Qi, Hansen, Colin B., Cai, Leon Y., Rheault, Francois, Lee, Ho Hin, Bao, Shunxing, Chandio, Bramsh Qamar, Williams, Owen, Resnick, Susan M., Garyfallidis, Eleftherios, Anderson, Adam W., Descoteaux, Maxime, Schilling, Kurt G., Landman, Bennett A.
Format Journal Article
LanguageEnglish
Published United States 01.04.2022
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.15495

Cover

Abstract Purpose Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from diffusion‐weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time‐consuming dMRI acquisitions that may not always be available, especially for legacy or time‐constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning. Methods Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U‐Net models to learn these techniques from 3870 T1‐weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University. Results The proposed framework identifies fiber bundles with high agreement against tractography‐based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject‐specific accuracy when compared to population atlas‐based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets. Conclusions We show that patch‐wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.
AbstractList Purpose Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from diffusion‐weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time‐consuming dMRI acquisitions that may not always be available, especially for legacy or time‐constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning. Methods Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U‐Net models to learn these techniques from 3870 T1‐weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University. Results The proposed framework identifies fiber bundles with high agreement against tractography‐based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject‐specific accuracy when compared to population atlas‐based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets. Conclusions We show that patch‐wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.
Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning. Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University. The proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets. We show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.
Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning.PURPOSEMapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from diffusion-weighted MRI (dMRI) are the principal tools for investigating WM. These procedures rely on time-consuming dMRI acquisitions that may not always be available, especially for legacy or time-constrained studies. To address this problem, we aim to generate WM tracts from structural magnetic resonance imaging (MRI) image by deep learning.Following recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.METHODSFollowing recently proposed innovations in structural anatomical segmentation, we evaluate the feasibility of training multiply spatial localized convolution neural networks to learn context from fixed spatial patches from structural MRI on standard template. We focus on six widely used dMRI tractography algorithms (TractSeg, RecoBundles, XTRACT, Tracula, automated fiber quantification (AFQ), and AFQclipped) and train 125 U-Net models to learn these techniques from 3870 T1-weighted images from the Baltimore Longitudinal Study of Aging, the Human Connectome Project S1200 release, and scans acquired at Vanderbilt University.The proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets.RESULTSThe proposed framework identifies fiber bundles with high agreement against tractography-based pathways with a median Dice coefficient from 0.62 to 0.87 on a test cohort, achieving improved subject-specific accuracy when compared to population atlas-based methods. We demonstrate the generalizability of the proposed framework on three externally available datasets.We show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.CONCLUSIONSWe show that patch-wise convolutional neural network can achieve robust bundle segmentation from T1w. We envision the use of this framework for visualizing the expected course of WM pathways when dMRI is not available.
Author Hansen, Colin B.
Descoteaux, Maxime
Anderson, Adam W.
Landman, Bennett A.
Rheault, Francois
Garyfallidis, Eleftherios
Cai, Leon Y.
Resnick, Susan M.
Chandio, Bramsh Qamar
Schilling, Kurt G.
Lee, Ho Hin
Yang, Qi
Williams, Owen
Bao, Shunxing
AuthorAffiliation 3 Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
6 Program of Neuroscience, Indiana University, Bloomington, Indiana, USA
5 Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA
9 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
4 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
8 Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
1 Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
7 Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
AuthorAffiliation_xml – name: 6 Program of Neuroscience, Indiana University, Bloomington, Indiana, USA
– name: 9 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
– name: 7 Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
– name: 2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
– name: 8 Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
– name: 4 Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
– name: 1 Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
– name: 3 Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
– name: 5 Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA
Author_xml – sequence: 1
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  email: qi.yang@vanderbilt.edu
  organization: Vanderbilt University
– sequence: 2
  givenname: Colin B.
  surname: Hansen
  fullname: Hansen, Colin B.
  organization: Vanderbilt University
– sequence: 3
  givenname: Leon Y.
  surname: Cai
  fullname: Cai, Leon Y.
  organization: Vanderbilt University
– sequence: 4
  givenname: Francois
  surname: Rheault
  fullname: Rheault, Francois
  organization: Vanderbilt University
– sequence: 5
  givenname: Ho Hin
  surname: Lee
  fullname: Lee, Ho Hin
  organization: Vanderbilt University
– sequence: 6
  givenname: Shunxing
  surname: Bao
  fullname: Bao, Shunxing
  organization: Vanderbilt University
– sequence: 7
  givenname: Bramsh Qamar
  surname: Chandio
  fullname: Chandio, Bramsh Qamar
  organization: Indiana University
– sequence: 8
  givenname: Owen
  surname: Williams
  fullname: Williams, Owen
  organization: National Institute on Aging
– sequence: 9
  givenname: Susan M.
  surname: Resnick
  fullname: Resnick, Susan M.
  organization: National Institute on Aging
– sequence: 10
  givenname: Eleftherios
  surname: Garyfallidis
  fullname: Garyfallidis, Eleftherios
  organization: Indiana University
– sequence: 11
  givenname: Adam W.
  surname: Anderson
  fullname: Anderson, Adam W.
  organization: Vanderbilt University Medical Centre
– sequence: 12
  givenname: Maxime
  surname: Descoteaux
  fullname: Descoteaux, Maxime
  organization: Université de Sherbrooke
– sequence: 13
  givenname: Kurt G.
  surname: Schilling
  fullname: Schilling, Kurt G.
  organization: Vanderbilt University Medical Centre
– sequence: 14
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Vanderbilt University Medical Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35090192$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9O3DAQhy1EBbvbSjxBlWMv2Y4dO4kvSAhBWWlRqwrOluNMFqP8w3ZAe-MReMY-CWlDtxS1F8_B33zz08yc7Lddi4QcUVhSAPa56ZdUcCn2yIzxLIk5A7lPZgCSx4yDOCRz728BIE0EHJDD8ZVAJZuR1Rq1a227iR5ubMCo0SGgi_xQ3KIJPx6ffI_GVtZEHjcNtkEH27VR5bom8sENJgxO19Hl99V78q7StccPL3VBrs_Prk4v4vXXL6vTk3VsOAURlwa0yApa5MgyJiqkgFkleckrVmmqaZJKKSCRRcaRU6EzVko0UguJicAyWZDjydsPRYOlGTONCVTvbKPdVnXaqr9_WnujNt29kiCSPJWj4NOLwHV3A_qgGusN1rVusRu8YilL8jzLWD6iH1_P2g35vb8_LuM67x1WO4SC-nka1fTq12lGdPkGNXba5pjS1v9qiKeGB1vj9r9idflt4p8BvS-gcA
CitedBy_id crossref_primary_10_3389_fneur_2022_934650
crossref_primary_10_3390_diagnostics13050911
Cites_doi 10.1016/j.neuroimage.2012.02.018
10.1002/mrm.22924
10.1007/s12021-020-09497-1
10.1371/journal.pone.0177459
10.1006/jmrb.1994.1037
10.1007/978-3-030-32248-9_52
10.1109/TMI.2009.2013851
10.1080/21681163.2016.1182072
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2017.07.015
10.1016/j.media.2020.101894
10.1016/j.neuroimage.2010.07.033
10.1109/CVPRW.2015.7301312
10.1371/journal.pone.0049790
10.1371/journal.pone.0120773
10.1093/gerona/63.12.1416
10.1109/TMI.2007.906785
10.1007/978-3-319-46723-8_49
10.1016/j.neuroimage.2018.05.027
10.1002/nbm.1579
10.1016/j.neuroimage.2020.116923
10.1109/TPAMI.2012.143
10.1016/j.neuroimage.2019.03.041
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2007.12.035
10.1006/nimg.2002.1136
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2018.07.070
10.1145/37402.37422
10.1016/j.media.2007.06.004
10.1002/nbm.3785
10.1016/j.neuroimage.2008.07.009
10.1016/j.neuroimage.2018.10.029
10.3389/fninf.2011.00023
10.1152/jn.00221.2016
10.1007/s00429-018-1798-7
10.1002/mrm.28678
10.1007/978-1-4612-4380-9_16
10.1016/j.neuroimage.2017.02.035
ContentType Journal Article
Copyright 2022 American Association of Physicists in Medicine
2022 American Association of Physicists in Medicine.
Copyright_xml – notice: 2022 American Association of Physicists in Medicine
– notice: 2022 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mp.15495
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 2513
ExternalDocumentID PMC9053869
35090192
10_1002_mp_15495
MP15495
Genre article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health under award numbers
  funderid: R01EB017230; R01NS058639; R01EB027585; T32EB001628
– fundername: National Institutes of Health
  funderid: R01EB017230; R01NS058639; R01EB027585; T32EB001628
– fundername: NIH HHS
  grantid: R01NS058639
– fundername: National Institutes of Health under award numbers
  grantid: T32EB001628
– fundername: National Institutes of Health under award numbers
  grantid: R01NS058639
– fundername: NIBIB NIH HHS
  grantid: T32 EB001628
– fundername: NIBIB NIH HHS
  grantid: R01 EB027585
– fundername: NIBIB NIH HHS
  grantid: R01 EB017230
– fundername: National Institutes of Health under award numbers
  grantid: R01EB017230
– fundername: NICHD NIH HHS
  grantid: P50 HD103537
– fundername: NIH HHS
  grantid: T32EB001628
– fundername: NIH HHS
  grantid: R01EB017230
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4105-dc0a57b1b8e2725fe10e7f94d4f2fa1a136995039b74e415a72d9ec9a59e35ed3
ISSN 0094-2405
2473-4209
IngestDate Tue Sep 30 16:01:37 EDT 2025
Wed Oct 01 14:46:15 EDT 2025
Mon Jul 21 06:01:17 EDT 2025
Wed Oct 01 04:33:09 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Jan 22 16:26:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords white matter
tractography algorithms
learning methods and patch-wise deep neural network
T1 weight MRI
Language English
License 2022 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4105-dc0a57b1b8e2725fe10e7f94d4f2fa1a136995039b74e415a72d9ec9a59e35ed3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15495
PMID 35090192
PQID 2623887728
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9053869
proquest_miscellaneous_2623887728
pubmed_primary_35090192
crossref_primary_10_1002_mp_15495
crossref_citationtrail_10_1002_mp_15495
wiley_primary_10_1002_mp_15495_MP15495
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2022
References 2012; 61
2021; 69
2002; 17
2021; 86
2018; 183
2019; 32
2004; 23
2015; 10
2008; 12
2019; 224
2011; 54
1992
2012; 35
2019; 185
2011; 5
2009; 28
2010; 23
2018; 6
2018; 170
1987; 21
1994; 103
2018; 178
2021; 19
2017; 12
2019
2005; 1064
2020; 217
2011; 65
2008; 43
2016
2016; 116
2015
2008; 63
2008; 40
2012; 7
2009; 2
2019; 194
2007; 26
2012; 62
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Avants BB (e_1_2_9_35_1) 2009; 2
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Avants BB (e_1_2_9_40_1) 2009; 2
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
Alexander DC (e_1_2_9_6_1) 2005; 1064
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 20
  year: 2015
  end-page: 28
  article-title: Deep neural networks for anatomical brain segmentation
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  end-page: 1575
  article-title: Automatic tractography segmentation using a high‐dimensional white matter atlas
  publication-title: IEEE Trans Med Imaging
– volume: 103
  start-page: 247
  issue: 3
  year: 1994
  end-page: 254
  article-title: Estimation of the effective self‐diffusion tensor from the NMR spin echo
  publication-title: J Magn Reson Ser B
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 5
  start-page: 23
  year: 2011
  article-title: Automated probabilistic reconstruction of white‐matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front Neuroinform
– volume: 217
  year: 2020
  article-title: XTRACT ‐ standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 43
  start-page: 447
  issue: 3
  year: 2008
  end-page: 457
  article-title: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter
  publication-title: Neuroimage
– volume: 86
  start-page: 456
  issue: 1
  year: 2021
  end-page: 470
  article-title: PreQual: an automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
  publication-title: Magn Reson Med
– volume: 23
  start-page: 821
  issue: 7
  year: 2010
  end-page: 835
  article-title: Mapping brain anatomical connectivity using white matter tractography
  publication-title: NMR Biomed
– volume: 19
  start-page: 447
  issue: 3
  year: 2021
  end-page: 460
  article-title: Pandora: 4‐D white matter bundle population‐based atlases derived from diffusion MRI fiber tractography
  publication-title: Neuroinformatics
– volume: 63
  start-page: 1416
  issue: 12
  year: 2008
  end-page: 1419
  article-title: The Baltimore Longitudinal Study of Aging (BLSA): a 50‐year‐long journey and plans for the future
  publication-title: J Gerontol Ser A Biol Sci Med Sci
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  end-page: 2231
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 17
  start-page: 77
  issue: 1
  year: 2002
  end-page: 94
  article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain
  publication-title: Neuroimage
– volume: 54
  start-page: 313
  issue: 1
  year: 2011
  end-page: 327
  article-title: Unbiased average age‐appropriate atlases for pediatric studies
  publication-title: Neuroimage
– volume: 32
  issue: 4
  year: 2019
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed
– volume: 116
  start-page: 2093
  issue: 5
  year: 2016
  end-page: 2104
  article-title: White matter and cognition: making the connection
  publication-title: J Neurophysiol
– volume: 2
  start-page: 1
  issue: 365
  year: 2009
  end-page: 35
  article-title: Advanced normalization tools (ANTS)
  publication-title: Insight J
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  article-title: Recognition of white matter bundles using local and global streamline‐based registration and clustering
  publication-title: Neuroimage
– start-page: 196
  year: 1992
  end-page: 202
– volume: 10
  issue: 3
  year: 2015
  article-title: How does B‐value affect HARDI reconstruction using clinical diffusion MRI data?
  publication-title: PLoS One
– start-page: 466
  year: 2019
  end-page: 474
  article-title: AssemblyNet: a novel deep decision‐making process for whole brain MRI segmentation
– volume: 170
  start-page: 434
  year: 2018
  end-page: 445
  article-title: DeepNAT: deep convolutional neural network for segmenting neuroanatomy
  publication-title: Neuroimage
– volume: 21
  start-page: 163
  issue: 4
  year: 1987
  end-page: 169
  article-title: Marching cubes: a high resolution 3D surface construction algorithm
  publication-title: ACM Siggraph Comput Graph
– volume: 40
  start-page: 570
  issue: 2
  year: 2008
  end-page: 582
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: Neuroimage
– start-page: 424
  year: 2016
  end-page: 432
  article-title: 3D U‐Net: learning dense volumetric segmentation from sparse annotation
– volume: 61
  start-page: 1083
  issue: 4
  year: 2012
  end-page: 1099
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi‐subject bundle atlas
  publication-title: Neuroimage
– volume: 224
  start-page: 599
  issue: 2
  year: 2019
  end-page: 612
  article-title: A population‐based atlas of the human pyramidal tract in 410 healthy participants
  publication-title: Brain Struct Funct
– volume: 185
  start-page: 1
  year: 2019
  end-page: 11
  article-title: Limits to anatomical accuracy of diffusion tractography using modern approaches
  publication-title: Neuroimage
– volume: 194
  start-page: 105
  year: 2019
  end-page: 119
  article-title: 3D whole brain segmentation using spatially localized atlas network tiles
  publication-title: Neuroimage
– volume: 65
  start-page: 1532
  issue: 6
  year: 2011
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn Reson Med
– volume: 23
  start-page: S208
  year: 2004
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– article-title: Fiber‐tractography via diffusion tensor MRI (DT‐MRI)
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med Image Anal
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  article-title: Population‐averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
– volume: 6
  start-page: 113
  issue: 1
  year: 2018
  end-page: 117
  article-title: Multi‐scale structured CNN with label consistency for brain MR image segmentation
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  article-title: TractSeg ‐ fast and accurate white matter tract segmentation
  publication-title: Neuroimage
– volume: 69
  year: 2021
  article-title: High‐resolution 3D abdominal segmentation with random patch network fusion
  publication-title: Med Image Anal
– volume: 35
  start-page: 611
  issue: 3
  year: 2012
  end-page: 623
  article-title: Multi‐atlas segmentation with joint label fusion
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 12
  issue: 5
  year: 2017
  article-title: Singularity: scientific containers for mobility of compute
  publication-title: PLoS One
– volume: 7
  issue: 11
  year: 2012
  article-title: Tract profiles of white matter properties: automating fiber‐tract quantification
  publication-title: PLoS One
– volume: 1064
  start-page: 113
  year: 2005
  end-page: 133
  article-title: Multiple‐fiber reconstruction algorithms for diffusion MRI
  publication-title: White Matter Cogn Neurosci Adv Diffus Tensor Imaging Its Appl
– volume: 28
  start-page: 1251
  issue: 8
  year: 2009
  end-page: 1265
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: e_1_2_9_7_1
  doi: 10.1002/mrm.22924
– ident: e_1_2_9_17_1
  doi: 10.1007/s12021-020-09497-1
– ident: e_1_2_9_45_1
  doi: 10.1371/journal.pone.0177459
– ident: e_1_2_9_5_1
  doi: 10.1006/jmrb.1994.1037
– ident: e_1_2_9_36_1
  doi: 10.1007/978-3-030-32248-9_52
– ident: e_1_2_9_41_1
  doi: 10.1109/TMI.2009.2013851
– ident: e_1_2_9_23_1
  doi: 10.1080/21681163.2016.1182072
– ident: e_1_2_9_13_1
  doi: 10.1016/j.neuroimage.2012.02.071
– ident: e_1_2_9_28_1
  doi: 10.1016/j.neuroimage.2017.07.015
– ident: e_1_2_9_20_1
  doi: 10.1016/j.media.2020.101894
– ident: e_1_2_9_32_1
  doi: 10.1016/j.neuroimage.2010.07.033
– volume: 1064
  start-page: 113
  year: 2005
  ident: e_1_2_9_6_1
  article-title: Multiple‐fiber reconstruction algorithms for diffusion MRI
  publication-title: White Matter Cogn Neurosci Adv Diffus Tensor Imaging Its Appl
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPRW.2015.7301312
– ident: e_1_2_9_31_1
  doi: 10.1371/journal.pone.0049790
– ident: e_1_2_9_10_1
  doi: 10.1371/journal.pone.0120773
– ident: e_1_2_9_24_1
  doi: 10.1093/gerona/63.12.1416
– ident: e_1_2_9_14_1
  doi: 10.1109/TMI.2007.906785
– ident: e_1_2_9_18_1
  doi: 10.1007/978-3-319-46723-8_49
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2018.05.027
– ident: e_1_2_9_2_1
  doi: 10.1002/nbm.1579
– volume: 2
  start-page: 1
  issue: 365
  year: 2009
  ident: e_1_2_9_35_1
  article-title: Advanced normalization tools (ANTS)
  publication-title: Insight J
– ident: e_1_2_9_29_1
  doi: 10.1016/j.neuroimage.2020.116923
– ident: e_1_2_9_39_1
  doi: 10.1109/TPAMI.2012.143
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neuroimage.2019.03.041
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2007.12.035
– ident: e_1_2_9_9_1
  doi: 10.1006/nimg.2002.1136
– ident: e_1_2_9_8_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuroimage.2018.07.070
– ident: e_1_2_9_44_1
  doi: 10.1145/37402.37422
– ident: e_1_2_9_38_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_9_4_1
  doi: 10.1002/nbm.3785
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neuroimage.2008.07.009
– ident: e_1_2_9_42_1
  doi: 10.1016/j.neuroimage.2018.10.029
– ident: e_1_2_9_37_1
– ident: e_1_2_9_30_1
  doi: 10.3389/fninf.2011.00023
– ident: e_1_2_9_3_1
  doi: 10.1152/jn.00221.2016
– ident: e_1_2_9_12_1
  doi: 10.1007/s00429-018-1798-7
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.28678
– ident: e_1_2_9_43_1
  doi: 10.1007/978-1-4612-4380-9_16
– volume: 2
  start-page: 1
  issue: 365
  year: 2009
  ident: e_1_2_9_40_1
  article-title: Advanced normalization tools (ANTS)
  publication-title: Insight J
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2017.02.035
SSID ssj0006350
Score 2.4221032
Snippet Purpose Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography‐based methods derived from...
Mapping brain white matter (WM) is essential for building an understanding of brain anatomy and function. Tractography-based methods derived from...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2502
SubjectTerms Brain - diagnostic imaging
Diffusion Tensor Imaging - methods
Humans
Image Processing, Computer-Assisted - methods
learning methods and patch‐wise deep neural network
Longitudinal Studies
Magnetic Resonance Imaging
T1 weight MRI
tractography algorithms
white matter
White Matter - diagnostic imaging
Title Learning white matter subject‐specific segmentation from structural MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15495
https://www.ncbi.nlm.nih.gov/pubmed/35090192
https://www.proquest.com/docview/2623887728
https://pubmed.ncbi.nlm.nih.gov/PMC9053869
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4gXxMZXgE1BQuOhCkudxK4fp25joGSM0UrlKXIch1Va005thcRfz_kjSUOLNHhJKsdKLP-u9t357ncIvfPhQVBQ7gWC5B4IRehx0GI92GwF5QEBk0RlIycX5HwUfh5H4yZdUWeXLLMP4tfWvJL_QRXaAFeVJfsPyNYvhQb4DfjCFRCG650wjiu_xk91GNCdaq7M7mKVKeeKp5IoVSBQdyF_TG2KUWnySQxrrGbcSK4-rSuo1cGN8Xhol6xKk-amgEftNfhu3cxfJ80SVlpnzkDVAWqqOQ9MwetYwsdrvfkK9oDVzbJSncVs0vI_gOnahK3oZQqHNACQfTMCuaXNrrOGmtTKU7i-aEY66XpzNTfssNO5cn-ZUpxtwuyLL-nZKI7T4el4eDi_9VQtMXXmbgur3Ec7mBKCO2jn-CSJv9U7NChZyvdWj7IiJfbxUfWxtpqyYXtshtCumzZaNxk-QY-tUeEeGwnZRfdkuYceJjZsYg89uDRoPkUfK5Fxtci4RmTcP0XGXRcZV4mM24iMCyLzDI3OToeDc8_W0vCECuT1cuHziGa9rC8xxVEhe76kBQvzsMAF7_FeQBiL_IBlNJSg1HGKcyYF4xGTQSTz4DnqlLNSvkSuCInIKeU5BtOB-BlYvKFQgQGZECzgxEHvq6lLhSWaV_VOblJDkY3T6TzVk-ygt3XPuSFX2danmv0UVj51nMVLOVstUgyaO2yRFPcd9MKgUb8FAGbKeHEQbeFUd1Cs6u0n5eRas6sz2Jb6hDnoUCP614GlyaW-v7rDAF-jR81f5w3qAGJyH5TZZXZgZfM31RqiAw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+white+matter+subject-specific+segmentation+from+structural+MRI&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Yang%2C+Qi&rft.au=Hansen%2C+Colin+B&rft.au=Cai%2C+Leon+Y&rft.au=Rheault%2C+Francois&rft.date=2022-04-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=49&rft.issue=4&rft.spage=2502&rft_id=info:doi/10.1002%2Fmp.15495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon