Thermally‐Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstate‐Metalorganic Three‐Dimensional Hybrid Framework

The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clust...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 23; no. 59; pp. 14962 - 14974
Main Authors Martín‐Caballero, Jagoba, Artetxe, Beñat, Reinoso, Santiago, San Felices, Leire, Castillo, Oscar, Beobide, Garikoitz, Vilas, José Luis, Gutiérrez‐Zorrilla, Juan M.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 20.10.2017
Subjects
Online AccessGet full text
ISSN0947-6539
1521-3765
1521-3765
DOI10.1002/chem.201703585

Cover

Abstract The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF‐like framework that displays water‐filled channels. This dynamic architecture undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3(W7O24)]⋅12 H2O (2) and anhydrous [Cu(cyclam)]0.5[{Cu(cyclam)}2.5(W7O24)] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2, CO2), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. Framework transformation: A three‐dimensional covalent open framework built of copper(II)‐complexes of a macrocyclic tetraaza ligand and heptatungstate anions undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon dehydration. The permanent porosity of the system has been confirmed by CO2 and N2 sorption experiments.
AbstractList The hybrid compound [{Cu(cyclam)} (W O )]⋅15.5 H O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)} (W O )]⋅12 H O (2) and anhydrous [Cu(cyclam)] [{Cu(cyclam)} (W O )] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the Cu coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N , CO ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.
The hybrid compound [{Cu(cyclam)}3 (W7 O24 )]⋅15.5 H2 O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3 (W7 O24 )]⋅12 H2 O (2) and anhydrous [Cu(cyclam)]0.5 [{Cu(cyclam)}2.5 (W7 O24 )] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2 , CO2 ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.The hybrid compound [{Cu(cyclam)}3 (W7 O24 )]⋅15.5 H2 O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3 (W7 O24 )]⋅12 H2 O (2) and anhydrous [Cu(cyclam)]0.5 [{Cu(cyclam)}2.5 (W7 O24 )] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2 , CO2 ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.
The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF‐like framework that displays water‐filled channels. This dynamic architecture undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3(W7O24)]⋅12 H2O (2) and anhydrous [Cu(cyclam)]0.5[{Cu(cyclam)}2.5(W7O24)] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2, CO2), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. Framework transformation: A three‐dimensional covalent open framework built of copper(II)‐complexes of a macrocyclic tetraaza ligand and heptatungstate anions undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon dehydration. The permanent porosity of the system has been confirmed by CO2 and N2 sorption experiments.
The hybrid compound [{Cu(cyclam)}3(W7O24)]15.5H2O(1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH8. Compound1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3(W7O24)]12H2O(2) and anhydrous [Cu(cyclam)]0.5[{Cu(cyclam)}2.5(W7O24)](3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2, CO2), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.
The hybrid compound [{Cu(cyclam)} 3 (W 7 O 24 )] ⋅ 15.5 H 2 O ( 1 ) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} 2+ complex with a tungstate source in water at pH 8. Compound  1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF‐like framework that displays water‐filled channels. This dynamic architecture undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)} 3 (W 7 O 24 )] ⋅ 12 H 2 O ( 2 ) and anhydrous [Cu(cyclam)] 0.5 [{Cu(cyclam)} 2.5 (W 7 O 24 )] ( 3 ) crystalline phases. These transitions are associated with cluster rotations and modifications in the Cu II coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N 2 , CO 2 ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.
Author Reinoso, Santiago
Castillo, Oscar
Beobide, Garikoitz
Gutiérrez‐Zorrilla, Juan M.
Martín‐Caballero, Jagoba
San Felices, Leire
Artetxe, Beñat
Vilas, José Luis
Author_xml – sequence: 1
  givenname: Jagoba
  surname: Martín‐Caballero
  fullname: Martín‐Caballero, Jagoba
  organization: BCMaterials
– sequence: 2
  givenname: Beñat
  orcidid: 0000-0002-7373-4596
  surname: Artetxe
  fullname: Artetxe, Beñat
  organization: Universidad del País Vasco UPV/EHU
– sequence: 3
  givenname: Santiago
  orcidid: 0000-0001-8329-5972
  surname: Reinoso
  fullname: Reinoso, Santiago
  organization: Universidad Pública de Navarra (UPNA)
– sequence: 4
  givenname: Leire
  surname: San Felices
  fullname: San Felices, Leire
  organization: Universidad del País Vasco UPV/EHU
– sequence: 5
  givenname: Oscar
  orcidid: 0000-0002-5614-9301
  surname: Castillo
  fullname: Castillo, Oscar
  organization: Universidad del País Vasco UPV/EHU
– sequence: 6
  givenname: Garikoitz
  orcidid: 0000-0002-6262-6506
  surname: Beobide
  fullname: Beobide, Garikoitz
  organization: Universidad del País Vasco UPV/EHU
– sequence: 7
  givenname: José Luis
  orcidid: 0000-0002-0188-4579
  surname: Vilas
  fullname: Vilas, José Luis
  email: joseluis.vilas@ehu.es
  organization: Universidad del País Vasco UPV/EHU
– sequence: 8
  givenname: Juan M.
  orcidid: 0000-0001-8777-8533
  surname: Gutiérrez‐Zorrilla
  fullname: Gutiérrez‐Zorrilla, Juan M.
  email: juanma.zorrilla@ehu.es
  organization: Universidad del País Vasco UPV/EHU
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28857402$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEYh4NU7LZ69SgBL15mzd_J5CjbrltosYf1PGQz7-6mzmTWJEOZm19A8DP6SZpha4WCeAqE5_kl7-89Qye-94DQW0rmlBD20e6hmzNCFeGyki_QjEpGC65KeYJmRAtVlJLrU3QW4x0hRJecv0KnrKqkEoTN0M_1HkJn2nb8_ePXOrjdDgI0eBHGmEyLL0ZvOmcjNr7BtxPpwSd824c-ujRi53HaA166EBNewSGZNPhdVhPkvBvIGX3YGe8sXu8DTJcXrgMfXe9z_GrcBNfgZTAd3Pfh22v0cmvaCG8ez3P0dXm5XqyK6y-frxafrgsrKJGFNYypLRBJREO1LrVlVDNQSlqhhAAjqkZQAY1qLFMU6JY2YlOVlWbCGA38HH045h5C_32AmOrORQttm8frh1hTzQWriCY8o--foXf9EPLnJ0pywirFVKbePVLDpoOmPgTXmTDWf4rOwPwI2NxcDLB9Qiipp03W0ybrp01mQTwTrMu15t5SMK79t6aP2r1rYfzPI_VidXnz130AM723eg
CitedBy_id crossref_primary_10_1134_S0022476620020146
crossref_primary_10_1016_j_ccr_2020_213260
crossref_primary_10_1002_anie_202307436
crossref_primary_10_3390_cryst8010020
crossref_primary_10_1021_acs_cgd_0c00286
crossref_primary_10_1016_j_cattod_2024_114899
crossref_primary_10_1107_S2053229618011269
crossref_primary_10_1039_D1CC00388G
crossref_primary_10_1021_acs_inorgchem_8b03471
crossref_primary_10_1039_D4DT00690A
crossref_primary_10_1002_ange_202307436
crossref_primary_10_1021_acs_inorgchem_0c02318
crossref_primary_10_1021_acs_inorgchem_1c02276
Cites_doi 10.1016/S0167-2991(07)80008-5
10.1107/S0567740876003907
10.1002/anie.201002672
10.1021/ic4031574
10.1002/anie.201506170
10.1021/cr1000578
10.1016/j.ccr.2007.02.019
10.1038/nchem.581
10.1021/ja00051a040
10.1039/C4TA05496B
10.1002/anie.200504600
10.1107/S0021889899006020
10.1107/S0567740878006664
10.1021/cg500027f
10.1002/jcc.540050204
10.1002/ange.19931051043
10.1002/ange.201206572
10.1021/ja201165c
10.1002/ejic.200900630
10.1021/jacs.5b02688
10.1002/ange.201202994
10.1107/S090744490804362X
10.1107/S0021889808042726
10.1021/ja809422k
10.1039/C6SC01385F
10.1021/ic4022849
10.1002/ange.200802594
10.1039/C4CS00097H
10.1107/S0108270184002924
10.1002/ange.201002672
10.1002/ange.200702698
10.1002/ange.19961082221
10.1021/ic2020572
10.1021/ja01269a023
10.1039/C5RA18059G
10.1002/anie.200705709
10.1021/ic801946m
10.1002/ange.201107906
10.1107/S0567740877004130
10.1039/b919503c
10.1103/PhysRevLett.77.3865
10.1021/ic0619862
10.1039/C5CE01076D
10.1002/ange.200802109
10.1063/1.1316015
10.1002/anie.199314921
10.1107/S0567740871004047
10.1021/ja046410v
10.1021/jp810871f
10.1016/j.ccr.2015.07.001
10.1107/S0108768196010403
10.1021/acs.inorgchem.6b00505
10.1515/znb-1988-0116
10.1002/ange.200504600
10.1039/b718523e
10.1002/(SICI)1521-3757(19981002)110:19<2814::AID-ANGE2814>3.0.CO;2-0
10.1016/j.solidstatesciences.2012.11.018
10.1002/ange.200705709
10.1515/znb-1979-0311
10.1002/anie.201206572
10.1002/anie.199626511
10.1002/ejic.201200810
10.1002/anie.200702698
10.1002/anie.201107906
10.1039/dt9920000209
10.1016/S0022-2860(99)00032-0
10.1002/aic.690470719
10.1107/S0108767307043930
10.1007/978-3-662-12004-0
10.1021/ic302499f
10.1002/(SICI)1521-3773(19981016)37:19<2668::AID-ANIE2668>3.0.CO;2-8
10.1002/anie.201202994
10.1039/C3CS60404G
10.1039/c3cc40990b
10.1002/ange.201506170
10.1021/ja069319v
10.1002/anie.200802109
10.1039/DT9740002021
10.1021/la804168b
10.1002/anie.200802594
10.1021/ic50030a003
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201703585
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 14974
ExternalDocumentID 28857402
10_1002_chem_201703585
CHEM201703585
Genre article
Journal Article
GrantInformation_xml – fundername: Euskal Herriko Unibertsitatea
  funderid: PPG17/37; Convocatorias de Ayudas para la Especialización de Personal Investigador
– fundername: Universidad Pública de Navarra
  funderid: Ayudas para la Captación del Talento Adscritas a los Institutos de Investigación de la UPNA
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
NPM
RGC
RWI
WRC
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4105-ca227fe0504d19969c2192e775c4744ea48d414ed7dc271e1f1d4b868924aa9e3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 17:36:44 EDT 2025
Fri Jul 25 10:21:34 EDT 2025
Wed Feb 19 02:41:29 EST 2025
Tue Jul 01 02:47:50 EDT 2025
Thu Apr 24 23:04:42 EDT 2025
Tue Sep 09 05:10:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 59
Keywords SCSC transformations
X-ray diffraction
gas sorption
supramolecular chemistry
polyoxometalates
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-ca227fe0504d19969c2192e775c4744ea48d414ed7dc271e1f1d4b868924aa9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7373-4596
0000-0002-5614-9301
0000-0001-8329-5972
0000-0002-0188-4579
0000-0002-6262-6506
0000-0001-8777-8533
PMID 28857402
PQID 1953028727
PQPubID 986340
PageCount 13
ParticipantIDs proquest_miscellaneous_1934280903
proquest_journals_1953028727
pubmed_primary_28857402
crossref_primary_10_1002_chem_201703585
crossref_citationtrail_10_1002_chem_201703585
wiley_primary_10_1002_chem_201703585_CHEM201703585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 20, 2017
PublicationDateYYYYMMDD 2017-10-20
PublicationDate_xml – month: 10
  year: 2017
  text: October 20, 2017
  day: 20
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1979; 34
2004; 126
2009; 42
1978; 34
2016; 307
1974
2009; 113
2008 2008; 47 120
2001; 47
2009; 48
1998 1998; 37 110
1996; 77
1976; 32
2015 2015; 137 137
2013; 17
1997; 53
2012 2012; 51 124
2007; 251
1992; 114
2013; 52
1965; 4
2010; 110
1988; 43
1987
2014; 14
2015 2015; 54 127
1983
1977; 33
2008; 64
2010; 2
2014; 53
1984; 40
1999; 508
2009; 25
2007; 129
2015; 17
2015; 5
2009; 65
2013; 49
2015; 3
2000; 113
1971; 27
2010; 39
2007; 160
1993 1993; 32 105
2009
1994
2008; 10
2010 2010; 49 122
1992
2002
2009; 131
1938; 60
2011; 133
2014; 43
2016; 55
2006 2006; 45 118
2016; 7
1996 1996; 35 108
2006; 45
2007 2007; 46 119
2011; 50
1984; 5
1999; 32
2016
2014
2013
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_83_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_41_2
e_1_2_7_11_3
e_1_2_7_11_2
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_26_1
e_1_2_7_49_2
e_1_2_7_49_3
Reinoso S. (e_1_2_7_30_1) 2016
e_1_2_7_90_1
e_1_2_7_71_1
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_52_3
e_1_2_7_75_1
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_33_3
e_1_2_7_37_1
Fuchs J. (e_1_2_7_44_2) 1979; 34
e_1_2_7_56_3
e_1_2_7_79_1
Allen M. P. (e_1_2_7_84_2) 1987
(e_1_2_7_3_2) 1994
e_1_2_7_8_2
Frenkel D. (e_1_2_7_85_2) 2002
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_2
e_1_2_7_86_1
e_1_2_7_67_1
(e_1_2_7_5_2) 2013
e_1_2_7_48_2
Neogi S. (e_1_2_7_29_1) 2014
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_24_3
e_1_2_7_24_2
e_1_2_7_32_1
e_1_2_7_74_1
e_1_2_7_55_3
e_1_2_7_55_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_78_1
e_1_2_7_59_2
e_1_2_7_9_1
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_2
e_1_2_7_66_2
e_1_2_7_89_1
e_1_2_7_47_2
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_2
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_50_3
e_1_2_7_77_1
e_1_2_7_54_2
e_1_2_7_21_1
e_1_2_7_54_3
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_35_3
e_1_2_7_39_2
(e_1_2_7_4_2) 2002
e_1_2_7_6_1
e_1_2_7_2_2
e_1_2_7_80_1
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_14_3
e_1_2_7_14_2
e_1_2_7_61_3
e_1_2_7_88_1
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_76_1
e_1_2_7_22_3
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_57_1
e_1_2_7_34_2
e_1_2_7_38_2
References_xml – volume: 34
  start-page: 1764
  year: 1978
  end-page: 1770
  publication-title: Acta Crystallogr. Sect. B
– volume: 137 137
  start-page: 7169 7169
  year: 2015 2015
  end-page: 7177 7177
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 55
  start-page: 4970
  year: 2016
  end-page: 4979
  publication-title: Inorg. Chem.
– volume: 39
  start-page: 1916
  year: 2010
  end-page: 1919
  publication-title: Dalton Trans.
– volume: 42
  start-page: 339
  year: 2009
  end-page: 341
  publication-title: J. Appl. Crystallogr.
– volume: 45 118
  start-page: 4798 4916
  year: 2006 2006
  end-page: 4803 4921
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  publication-title: J. Am. Chem. Soc.
– volume: 65
  start-page: 148
  year: 2009
  end-page: 155
  publication-title: Acta Crystallogr. Sect. D
– volume: 46 119
  start-page: 7579 7723
  year: 2007 2007
  end-page: 7582 7726
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 5352
  year: 2009
  end-page: 5359
  publication-title: Langmuir
– volume: 33
  start-page: 574
  year: 1977
  end-page: 577
  publication-title: Acta Crystallogr. Sect. B
– year: 1994
– year: 2014
– volume: 51 124
  start-page: 7985 8109
  year: 2012 2012
  end-page: 7989 8113
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 143
  year: 2016
  end-page: 212
– volume: 53
  start-page: 102
  year: 1997
  end-page: 112
  publication-title: Acta Crystallogr. Sect. B
– volume: 40
  start-page: 35
  year: 1984
  end-page: 37
  publication-title: Acta. Crystallogr. Sect. C
– volume: 54 127
  start-page: 14308 14516
  year: 2015 2015
  end-page: 14312 14520
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 1393
  year: 1971
  end-page: 1404
  publication-title: Acta Crystallogr. Sect. B
– start-page: 5247
  year: 2009
  end-page: 5252
  publication-title: Eur. J. Inorg. Chem.
– volume: 129
  start-page: 15094
  year: 2007
  end-page: 15095
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 837
  year: 1999
  end-page: 838
  publication-title: J. Appl. Crystallogr.
– start-page: 1788
  year: 2013
  end-page: 1792
  publication-title: Eur. J. Inorg. Chem.
– volume: 10
  start-page: 652
  year: 2008
  end-page: 654
  publication-title: CrystEngComm
– volume: 49 122
  start-page: 6984 7138
  year: 2010 2010
  end-page: 6988 7142
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 89
  year: 1988
  end-page: 93
  publication-title: Z. Naturforsch. B
– volume: 126
  start-page: 13880
  year: 2004
  end-page: 13881
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 4615
  year: 2014
  end-page: 4632
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 13363
  year: 2011
  end-page: 13374
  publication-title: J. Am. Chem. Soc.
– volume: 32 105
  start-page: 1492 1545
  year: 1993 1993
  end-page: 1494 1547
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr. Sect. A
– volume: 251
  start-page: 2537
  year: 2007
  end-page: 2546
  publication-title: Coord. Chem. Rev.
– volume: 5
  start-page: 83377
  year: 2015
  end-page: 83382
  publication-title: RSC Adv.
– volume: 37 110
  start-page: 2668 2814
  year: 1998 1998
  end-page: 2671 2817
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 308
  year: 2010
  end-page: 312
  publication-title: Nat. Chem.
– volume: 4
  start-page: 1102
  year: 1965
  end-page: 1108
  publication-title: Inorg. Chem.
– year: 1983
– volume: 45
  start-page: 10422
  year: 2006
  end-page: 10424
  publication-title: Inorg. Chem.
– volume: 17
  start-page: 146
  year: 2013
  end-page: 150
  publication-title: Solid State Sci.
– volume: 43
  start-page: 5679
  year: 2014
  end-page: 5699
  publication-title: Chem. Soc. Rev.
– start-page: 209
  year: 1992
  end-page: 215
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 113
  start-page: 8814
  year: 2009
  end-page: 8820
  publication-title: J. Phys. Chem. C
– volume: 51 124
  start-page: 12759 12931
  year: 2012 2012
  end-page: 12762 12934
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 1676
  year: 2001
  end-page: 1682
  publication-title: AIChE J.
– volume: 51 124
  start-page: 1635 1667
  year: 2012 2012
  end-page: 1639 1671
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 2021
  year: 1974
  end-page: 2024
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 17
  start-page: 8915
  year: 2015
  end-page: 8925
  publication-title: CrystEngComm
– volume: 508
  start-page: 59
  year: 1999
  end-page: 72
  publication-title: J. Mol. Struct.
– year: 1987
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  publication-title: J. Chem. Phys.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  publication-title: Phys. Rev. Lett.
– volume: 32
  start-page: 740
  year: 1976
  end-page: 749
  publication-title: Acta Crystallogr. Sect. B
– volume: 307
  start-page: 42
  year: 2016
  end-page: 64
  publication-title: Coord. Chem. Rev.
– volume: 53
  start-page: 903
  year: 2014
  end-page: 911
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 746
  year: 2015
  end-page: 755
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 3655
  year: 2014
  end-page: 3661
  publication-title: Inorg. Chem.
– volume: 47 120
  start-page: 8420 8548
  year: 2008 2008
  end-page: 8423 8551
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 4180
  year: 2009
  end-page: 4181
  publication-title: J. Am. Chem. Soc.
– volume: 47 120
  start-page: 6881 6987
  year: 2008 2008
  end-page: 6884 6990
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  start-page: 412
  year: 1979
  end-page: 422
  publication-title: Z. Naturforsch. B
– volume: 5
  start-page: 129
  year: 1984
  end-page: 145
  publication-title: J. Comput. Chem.
– volume: 50
  start-page: 12387
  year: 2011
  end-page: 12389
  publication-title: Inorg. Chem.
– volume: 160
  start-page: 49
  year: 2007
  end-page: 56
  publication-title: Stud. Surf. Sci. Catal.
– volume: 52
  start-page: 3084
  year: 2013
  end-page: 3093
  publication-title: Inorg. Chem.
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  publication-title: J. Am. Chem. Soc.
– year: 2002
– volume: 48
  start-page: 1559
  year: 2009
  end-page: 1565
  publication-title: Inorg. Chem.
– volume: 110
  start-page: 6009
  year: 2010
  end-page: 6048
  publication-title: Chem. Rev.
– volume: 35 108
  start-page: 2651 2820
  year: 1996 1996
  end-page: 2653 2822
  publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem.
– volume: 7
  start-page: 5470
  year: 2016
  end-page: 5476
  publication-title: Chem. Sci.
– volume: 14
  start-page: 2318
  year: 2014
  end-page: 2328
  publication-title: Cryst. Growth Des.
– volume: 49
  start-page: 3673
  year: 2013
  end-page: 3675
  publication-title: Chem. Commun.
– year: 2013
– volume: 47 120
  start-page: 3909 3973
  year: 2008 2008
  end-page: 3913 3977
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_7_75_1
  doi: 10.1016/S0167-2991(07)80008-5
– ident: e_1_2_7_42_2
  doi: 10.1107/S0567740876003907
– start-page: 143
  volume-title: Polyoxometalates: Properties, Structure and Synthesis
  year: 2016
  ident: e_1_2_7_30_1
– ident: e_1_2_7_35_2
  doi: 10.1002/anie.201002672
– ident: e_1_2_7_12_2
  doi: 10.1021/ic4031574
– ident: e_1_2_7_56_2
  doi: 10.1002/anie.201506170
– ident: e_1_2_7_26_1
  doi: 10.1021/cr1000578
– ident: e_1_2_7_10_2
  doi: 10.1016/j.ccr.2007.02.019
– ident: e_1_2_7_15_2
  doi: 10.1038/nchem.581
– ident: e_1_2_7_88_1
  doi: 10.1021/ja00051a040
– ident: e_1_2_7_18_2
  doi: 10.1039/C4TA05496B
– ident: e_1_2_7_54_2
  doi: 10.1002/anie.200504600
– ident: e_1_2_7_80_1
  doi: 10.1107/S0021889899006020
– ident: e_1_2_7_43_2
  doi: 10.1107/S0567740878006664
– volume-title: Understanding Molecular Simulation: from Algorithms to Applications
  year: 2002
  ident: e_1_2_7_85_2
– ident: e_1_2_7_39_2
  doi: 10.1021/cg500027f
– ident: e_1_2_7_13_1
– ident: e_1_2_7_89_1
  doi: 10.1002/jcc.540050204
– ident: e_1_2_7_49_3
  doi: 10.1002/ange.19931051043
– ident: e_1_2_7_61_3
  doi: 10.1002/ange.201206572
– ident: e_1_2_7_23_2
  doi: 10.1021/ja201165c
– ident: e_1_2_7_59_2
  doi: 10.1002/ejic.200900630
– ident: e_1_2_7_57_1
– volume-title: Polyoxometalate Chemistry: Some Recent Trends
  year: 2013
  ident: e_1_2_7_5_2
– ident: e_1_2_7_25_2
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_7_24_3
  doi: 10.1002/ange.201202994
– ident: e_1_2_7_72_1
  doi: 10.1107/S090744490804362X
– ident: e_1_2_7_78_1
  doi: 10.1107/S0021889808042726
– ident: e_1_2_7_34_2
  doi: 10.1021/ja809422k
– ident: e_1_2_7_76_1
  doi: 10.1039/C6SC01385F
– ident: e_1_2_7_17_2
  doi: 10.1021/ic4022849
– ident: e_1_2_7_33_3
  doi: 10.1002/ange.200802594
– ident: e_1_2_7_7_2
  doi: 10.1039/C4CS00097H
– ident: e_1_2_7_45_2
  doi: 10.1107/S0108270184002924
– ident: e_1_2_7_83_1
– ident: e_1_2_7_35_3
  doi: 10.1002/ange.201002672
– ident: e_1_2_7_14_3
  doi: 10.1002/ange.200702698
– volume-title: Metal-Organic Frameworks: Single-Crystal-to-Single-Crystal Transformations in Encyclopedia of Inorganic and Bioinorganic Chemistry
  year: 2014
  ident: e_1_2_7_29_1
– ident: e_1_2_7_50_3
  doi: 10.1002/ange.19961082221
– ident: e_1_2_7_77_1
– ident: e_1_2_7_36_1
  doi: 10.1021/ic2020572
– ident: e_1_2_7_64_1
– volume-title: Polyoxometalate Chemistry for Nanocomposite Design
  year: 2002
  ident: e_1_2_7_4_2
– ident: e_1_2_7_74_1
  doi: 10.1021/ja01269a023
– ident: e_1_2_7_66_2
  doi: 10.1039/C5RA18059G
– ident: e_1_2_7_6_1
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.200705709
– ident: e_1_2_7_60_2
  doi: 10.1021/ic801946m
– ident: e_1_2_7_11_3
  doi: 10.1002/ange.201107906
– ident: e_1_2_7_9_1
– ident: e_1_2_7_67_1
  doi: 10.1107/S0567740877004130
– ident: e_1_2_7_19_1
  doi: 10.1039/b919503c
– ident: e_1_2_7_91_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_58_2
  doi: 10.1021/ic0619862
– ident: e_1_2_7_51_1
– ident: e_1_2_7_28_1
  doi: 10.1039/C5CE01076D
– ident: e_1_2_7_55_3
  doi: 10.1002/ange.200802109
– ident: e_1_2_7_90_1
  doi: 10.1063/1.1316015
– ident: e_1_2_7_49_2
  doi: 10.1002/anie.199314921
– ident: e_1_2_7_41_2
  doi: 10.1107/S0567740871004047
– ident: e_1_2_7_82_1
– ident: e_1_2_7_53_2
  doi: 10.1021/ja046410v
– ident: e_1_2_7_21_1
– ident: e_1_2_7_87_1
  doi: 10.1021/jp810871f
– ident: e_1_2_7_69_1
  doi: 10.1016/j.ccr.2015.07.001
– ident: e_1_2_7_32_1
– ident: e_1_2_7_25_3
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_7_46_1
– ident: e_1_2_7_68_1
  doi: 10.1107/S0108768196010403
– ident: e_1_2_7_81_1
– ident: e_1_2_7_27_1
  doi: 10.1021/acs.inorgchem.6b00505
– ident: e_1_2_7_48_2
  doi: 10.1515/znb-1988-0116
– ident: e_1_2_7_54_3
  doi: 10.1002/ange.200504600
– ident: e_1_2_7_31_1
  doi: 10.1039/b718523e
– ident: e_1_2_7_37_1
– ident: e_1_2_7_52_3
  doi: 10.1002/(SICI)1521-3757(19981002)110:19<2814::AID-ANGE2814>3.0.CO;2-0
– ident: e_1_2_7_63_1
  doi: 10.1016/j.solidstatesciences.2012.11.018
– ident: e_1_2_7_22_3
  doi: 10.1002/ange.200705709
– volume: 34
  start-page: 412
  year: 1979
  ident: e_1_2_7_44_2
  publication-title: Z. Naturforsch. B
  doi: 10.1515/znb-1979-0311
– ident: e_1_2_7_40_1
– ident: e_1_2_7_61_2
  doi: 10.1002/anie.201206572
– ident: e_1_2_7_50_2
  doi: 10.1002/anie.199626511
– ident: e_1_2_7_62_1
  doi: 10.1002/ejic.201200810
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.200702698
– ident: e_1_2_7_1_1
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201107906
– ident: e_1_2_7_65_2
  doi: 10.1039/dt9920000209
– ident: e_1_2_7_71_1
  doi: 10.1016/S0022-2860(99)00032-0
– ident: e_1_2_7_86_1
  doi: 10.1002/aic.690470719
– ident: e_1_2_7_79_1
  doi: 10.1107/S0108767307043930
– ident: e_1_2_7_2_2
  doi: 10.1007/978-3-662-12004-0
– ident: e_1_2_7_38_2
  doi: 10.1021/ic302499f
– ident: e_1_2_7_52_2
  doi: 10.1002/(SICI)1521-3773(19981016)37:19<2668::AID-ANIE2668>3.0.CO;2-8
– volume-title: Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity
  year: 1994
  ident: e_1_2_7_3_2
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.201202994
– volume-title: Computer Simulation of Liquids
  year: 1987
  ident: e_1_2_7_84_2
– ident: e_1_2_7_8_2
  doi: 10.1039/C3CS60404G
– ident: e_1_2_7_16_2
  doi: 10.1039/c3cc40990b
– ident: e_1_2_7_56_3
  doi: 10.1002/ange.201506170
– ident: e_1_2_7_20_1
  doi: 10.1021/ja069319v
– ident: e_1_2_7_55_2
  doi: 10.1002/anie.200802109
– ident: e_1_2_7_47_2
  doi: 10.1039/DT9740002021
– ident: e_1_2_7_73_1
  doi: 10.1021/la804168b
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.200802594
– ident: e_1_2_7_70_1
  doi: 10.1021/ic50030a003
SSID ssj0009633
Score 2.310898
Snippet The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with...
The hybrid compound [{Cu(cyclam)} 3 (W 7 O 24 )] ⋅ 15.5 H 2 O ( 1 ) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} 2+...
The hybrid compound [{Cu(cyclam)} (W O )]⋅15.5 H O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} complex with a...
The hybrid compound [{Cu(cyclam)}3(W7O24)]15.5H2O(1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a...
The hybrid compound [{Cu(cyclam)}3 (W7 O24 )]⋅15.5 H2 O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14962
SubjectTerms Carbon dioxide
Channels
Chemistry
Computer simulation
Copper
Dehydration
gas sorption
Microporosity
Monte Carlo simulation
Neck
polyoxometalates
Porosity
SCSC transformations
Single crystals
supramolecular chemistry
Water chemistry
X-ray diffraction
Title Thermally‐Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstate‐Metalorganic Three‐Dimensional Hybrid Framework
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201703585
https://www.ncbi.nlm.nih.gov/pubmed/28857402
https://www.proquest.com/docview/1953028727
https://www.proquest.com/docview/1934280903
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bSR_pymxYVAj0pseXxSnssu12WQkIIG8jN6OUSunjDPg6bU_5AIL-xv6Qz1trpNpRCc_NDsvUYjT5JM98wth-M1qZSIDwEK8AWSvSlS4UubK-oHHiryN_56Lg3PoNv58X5b178kR-i23CjkdHoaxrgxi4O70hDsU7kSZ6hyCLkRSWc5T0izx-e3vFHoXTFWPKgBHGwtqyNqTzczr49K92DmtvItZl6Rs-YaQsdLU5-HKyW9sBd_cHn-JBaPWdPN7iUf4mC9II9CvUuezxow8G9ZDcoUKjEp9P1z-vbCa7pv1OUTz6YrxFfTvkwRrZfcFN7fkIpa5zO-MlsTlZha35Rc4SafHSBaJOPwyViXFQzjTsTfu8o0CZS4xbq-ATFix4OKfBAJA3h4zV5lvFRa0r2ip2Nvk4GY7GJ5SAcGZIKZ6RUVUiLFDwZPvcdqkoZlCocKIBgQHvIIHjlnVRZyKrMg9U9jetDY_ohf8126lkd3jIONqucss5KF0CnuTUacl0h0sll5q1MmGj7snQbonOKtzEtI0WzLKmRy66RE_a5S38ZKT7-mnKvFY1yM9QXJZ1DIkhDHJiwT91r7Bw6ecG2nq0oTY7LPNoSS9ibKFLdr6TWhcJVfMJkIxj_KENJVBnd3bv_yfSePaFrmoFlusd2lvNV-IDQamk_NsPnF60DH_o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lAuQHkGSjESEie3ieOsvUe0ZZVCt6rQVuIWxY9UFatstd09LCf-ABK_sb-kM_Em1YIqJDjGsRM_xvY39sw3AO98qXVZKcmd9IZLkyneFzbmOjO9rLLSGUX-zqOTXn4mP33NWmtC8oUJ_BDdgRvNjGa9pglOB9IHt6yh2ChyJU9QZhHz3oOt5pKOcNGXWwYplK8QTV4qTiysLW9jLA7Wy6_vS3-AzXXs2mw-w4dg2moHm5Nv-4u52bfff2N0_K92PYIHK2jKPgRZ2oENXz-G7UEbEe4J_ESZwnV8Mlle__g1RrX-nAJ9ssFsiRBzwg5DcPsrVtaOnVLOGnc0djqdkWHYkl3UDNEmG14g4GS5v0SYiytN49GE3xt5OkdqPEMtG6OEUeIhxR4IvCEsX5JzGRu21mRP4Wz4cTzI-SqcA7dkS8ptKYSqfJzF0pHtc9_iaim8UpmVSkpfSu1kIr1TzgqV-KRKnDS6p1FFLMu-T5_BZj2t_Qtg0iSVVcYaYb3UcWpKLVNdIdhJReKMiIC3g1nYFdc5hdyYFIGlWRTUyUXXyRG87_JfBpaPO3PutrJRrGb7VUFXkYjTEApG8LZ7jYNDly_Y19MF5UlR06NTsQieB5nqfiW0zhQq8hGIRjL-UoeC2DK6p5f_UugNbOfj0XFxfHTy-RXcp3TakEW8C5vz2cK_RqQ1N3vNXLoBmnskGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CIQEvjDthA4yExFO2xHFq93FqF5XLpgp10t4i34ImqrTq2ofyxB9A4jfySzgnbjIKQkjwmMS52P7s89k55zsAr7xWSldSxE54EwuTy7jPbRKr3PTyygpnJMU7n5z2Rmfi7Xl-_lMUf9CH6DbcaGQ08zUN8LmrDq9EQ7FOFEmeImSR8l6HG6KHtpJo0YcrASmEV0gmL2RMIqytbGPCD7fv3zZLv3HNbera2J5iF3T71cHl5NPBamkO7OdfBB3_p1p34c6GmLKjgKR7cM3X9-HWoM0H9wC-IqJwFp9O19-_fJvgov4jpflkg8UaCeaUDUNq-0uma8fGVLJGe8bGswW5ha3ZRc2Qa7LiAukmG_k5klycZ5p4JnzeiaddpCYu1LIJ4otODinzQFANYaM1hZaxovUlewhnxfFkMIo3yRxiS56ksdWcy8oneSIceT73Lc6V3EuZWyGF8FooJ1LhnXSWy9SnVeqEUT2FC0St-z57BDv1rPZPgAmTVlYaa7j1QiWZ0UpkqkKqk_HUGR5B3PZlaTdK55RwY1oGjWZeUiOXXSNH8LorPw8aH38sud9Co9yM9cuSfkQi8pAIRvCyu4ydQ79esK1nKyqT4TqP9sQieBwg1b2KK5VLXMZHwBtg_OUbStLK6I6e_stNL-DmeFiU79-cvtuD23SarDFP9mFnuVj5Z0izluZ5M5J-ABf8Isc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally%E2%80%90Triggered+Crystal+Dynamics+and+Permanent+Porosity+in+the+First+Heptatungstate%E2%80%90Metalorganic+Three%E2%80%90Dimensional+Hybrid+Framework&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mart%C3%ADn%E2%80%90Caballero%2C+Jagoba&rft.au=Artetxe%2C+Be%C3%B1at&rft.au=Reinoso%2C+Santiago&rft.au=San%E2%80%85Felices%2C+Leire&rft.date=2017-10-20&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=23&rft.issue=59&rft.spage=14962&rft.epage=14974&rft_id=info:doi/10.1002%2Fchem.201703585&rft.externalDBID=10.1002%252Fchem.201703585&rft.externalDocID=CHEM201703585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon