Thermally‐Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstate‐Metalorganic Three‐Dimensional Hybrid Framework
The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clust...
Saved in:
Published in | Chemistry : a European journal Vol. 23; no. 59; pp. 14962 - 14974 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
20.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0947-6539 1521-3765 1521-3765 |
DOI | 10.1002/chem.201703585 |
Cover
Abstract | The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF‐like framework that displays water‐filled channels. This dynamic architecture undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3(W7O24)]⋅12 H2O (2) and anhydrous [Cu(cyclam)]0.5[{Cu(cyclam)}2.5(W7O24)] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2, CO2), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.
Framework transformation: A three‐dimensional covalent open framework built of copper(II)‐complexes of a macrocyclic tetraaza ligand and heptatungstate anions undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon dehydration. The permanent porosity of the system has been confirmed by CO2 and N2 sorption experiments. |
---|---|
AbstractList | The hybrid compound [{Cu(cyclam)}
(W
O
)]⋅15.5 H
O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}
complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}
(W
O
)]⋅12 H
O (2) and anhydrous [Cu(cyclam)]
[{Cu(cyclam)}
(W
O
)] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the Cu
coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N
, CO
), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. The hybrid compound [{Cu(cyclam)}3 (W7 O24 )]⋅15.5 H2 O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3 (W7 O24 )]⋅12 H2 O (2) and anhydrous [Cu(cyclam)]0.5 [{Cu(cyclam)}2.5 (W7 O24 )] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2 , CO2 ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations.The hybrid compound [{Cu(cyclam)}3 (W7 O24 )]⋅15.5 H2 O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3 (W7 O24 )]⋅12 H2 O (2) and anhydrous [Cu(cyclam)]0.5 [{Cu(cyclam)}2.5 (W7 O24 )] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2 , CO2 ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF‐like framework that displays water‐filled channels. This dynamic architecture undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3(W7O24)]⋅12 H2O (2) and anhydrous [Cu(cyclam)]0.5[{Cu(cyclam)}2.5(W7O24)] (3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2, CO2), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. Framework transformation: A three‐dimensional covalent open framework built of copper(II)‐complexes of a macrocyclic tetraaza ligand and heptatungstate anions undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon dehydration. The permanent porosity of the system has been confirmed by CO2 and N2 sorption experiments. The hybrid compound [{Cu(cyclam)}3(W7O24)]15.5H2O(1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a tungstate source in water at pH8. Compound1 exhibits an unprecedented three-dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF-like framework that displays water-filled channels. This dynamic architecture undergoes two sequential single-crystal-to-single-crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)}3(W7O24)]12H2O(2) and anhydrous [Cu(cyclam)]0.5[{Cu(cyclam)}2.5(W7O24)](3) crystalline phases. These transitions are associated with cluster rotations and modifications in the CuII coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N2, CO2), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. The hybrid compound [{Cu(cyclam)} 3 (W 7 O 24 )] ⋅ 15.5 H 2 O ( 1 ) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} 2+ complex with a tungstate source in water at pH 8. Compound 1 exhibits an unprecedented three‐dimensional covalent structure built of heptatungstate clusters linked through metalorganic complexes in a POMOF‐like framework that displays water‐filled channels. This dynamic architecture undergoes two sequential single‐crystal‐to‐single‐crystal transformations upon thermal evacuation of water molecules to result in the partially dehydrated [{Cu(cyclam)} 3 (W 7 O 24 )] ⋅ 12 H 2 O ( 2 ) and anhydrous [Cu(cyclam)] 0.5 [{Cu(cyclam)} 2.5 (W 7 O 24 )] ( 3 ) crystalline phases. These transitions are associated with cluster rotations and modifications in the Cu II coordination geometries, which reduce the dimensionality of the original lattice to layered systems but preserving the porous nature. Phase 3 reverts to 2 upon exposure to ambient moisture, whereas the transition between 1 and 2 proved to be irreversible. The permanent microporosity of 3 was confirmed by gas sorption measurements (N 2 , CO 2 ), which reveal a system of parallel channels made of wide cavities connected through narrow necks that limit the adsorption process. This observation is in good agreement with Grand Canonical Monte Carlo simulations. |
Author | Reinoso, Santiago Castillo, Oscar Beobide, Garikoitz Gutiérrez‐Zorrilla, Juan M. Martín‐Caballero, Jagoba San Felices, Leire Artetxe, Beñat Vilas, José Luis |
Author_xml | – sequence: 1 givenname: Jagoba surname: Martín‐Caballero fullname: Martín‐Caballero, Jagoba organization: BCMaterials – sequence: 2 givenname: Beñat orcidid: 0000-0002-7373-4596 surname: Artetxe fullname: Artetxe, Beñat organization: Universidad del País Vasco UPV/EHU – sequence: 3 givenname: Santiago orcidid: 0000-0001-8329-5972 surname: Reinoso fullname: Reinoso, Santiago organization: Universidad Pública de Navarra (UPNA) – sequence: 4 givenname: Leire surname: San Felices fullname: San Felices, Leire organization: Universidad del País Vasco UPV/EHU – sequence: 5 givenname: Oscar orcidid: 0000-0002-5614-9301 surname: Castillo fullname: Castillo, Oscar organization: Universidad del País Vasco UPV/EHU – sequence: 6 givenname: Garikoitz orcidid: 0000-0002-6262-6506 surname: Beobide fullname: Beobide, Garikoitz organization: Universidad del País Vasco UPV/EHU – sequence: 7 givenname: José Luis orcidid: 0000-0002-0188-4579 surname: Vilas fullname: Vilas, José Luis email: joseluis.vilas@ehu.es organization: Universidad del País Vasco UPV/EHU – sequence: 8 givenname: Juan M. orcidid: 0000-0001-8777-8533 surname: Gutiérrez‐Zorrilla fullname: Gutiérrez‐Zorrilla, Juan M. email: juanma.zorrilla@ehu.es organization: Universidad del País Vasco UPV/EHU |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28857402$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFDEYh4NU7LZ69SgBL15mzd_J5CjbrltosYf1PGQz7-6mzmTWJEOZm19A8DP6SZpha4WCeAqE5_kl7-89Qye-94DQW0rmlBD20e6hmzNCFeGyki_QjEpGC65KeYJmRAtVlJLrU3QW4x0hRJecv0KnrKqkEoTN0M_1HkJn2nb8_ePXOrjdDgI0eBHGmEyLL0ZvOmcjNr7BtxPpwSd824c-ujRi53HaA166EBNewSGZNPhdVhPkvBvIGX3YGe8sXu8DTJcXrgMfXe9z_GrcBNfgZTAd3Pfh22v0cmvaCG8ez3P0dXm5XqyK6y-frxafrgsrKJGFNYypLRBJREO1LrVlVDNQSlqhhAAjqkZQAY1qLFMU6JY2YlOVlWbCGA38HH045h5C_32AmOrORQttm8frh1hTzQWriCY8o--foXf9EPLnJ0pywirFVKbePVLDpoOmPgTXmTDWf4rOwPwI2NxcDLB9Qiipp03W0ybrp01mQTwTrMu15t5SMK79t6aP2r1rYfzPI_VidXnz130AM723eg |
CitedBy_id | crossref_primary_10_1134_S0022476620020146 crossref_primary_10_1016_j_ccr_2020_213260 crossref_primary_10_1002_anie_202307436 crossref_primary_10_3390_cryst8010020 crossref_primary_10_1021_acs_cgd_0c00286 crossref_primary_10_1016_j_cattod_2024_114899 crossref_primary_10_1107_S2053229618011269 crossref_primary_10_1039_D1CC00388G crossref_primary_10_1021_acs_inorgchem_8b03471 crossref_primary_10_1039_D4DT00690A crossref_primary_10_1002_ange_202307436 crossref_primary_10_1021_acs_inorgchem_0c02318 crossref_primary_10_1021_acs_inorgchem_1c02276 |
Cites_doi | 10.1016/S0167-2991(07)80008-5 10.1107/S0567740876003907 10.1002/anie.201002672 10.1021/ic4031574 10.1002/anie.201506170 10.1021/cr1000578 10.1016/j.ccr.2007.02.019 10.1038/nchem.581 10.1021/ja00051a040 10.1039/C4TA05496B 10.1002/anie.200504600 10.1107/S0021889899006020 10.1107/S0567740878006664 10.1021/cg500027f 10.1002/jcc.540050204 10.1002/ange.19931051043 10.1002/ange.201206572 10.1021/ja201165c 10.1002/ejic.200900630 10.1021/jacs.5b02688 10.1002/ange.201202994 10.1107/S090744490804362X 10.1107/S0021889808042726 10.1021/ja809422k 10.1039/C6SC01385F 10.1021/ic4022849 10.1002/ange.200802594 10.1039/C4CS00097H 10.1107/S0108270184002924 10.1002/ange.201002672 10.1002/ange.200702698 10.1002/ange.19961082221 10.1021/ic2020572 10.1021/ja01269a023 10.1039/C5RA18059G 10.1002/anie.200705709 10.1021/ic801946m 10.1002/ange.201107906 10.1107/S0567740877004130 10.1039/b919503c 10.1103/PhysRevLett.77.3865 10.1021/ic0619862 10.1039/C5CE01076D 10.1002/ange.200802109 10.1063/1.1316015 10.1002/anie.199314921 10.1107/S0567740871004047 10.1021/ja046410v 10.1021/jp810871f 10.1016/j.ccr.2015.07.001 10.1107/S0108768196010403 10.1021/acs.inorgchem.6b00505 10.1515/znb-1988-0116 10.1002/ange.200504600 10.1039/b718523e 10.1002/(SICI)1521-3757(19981002)110:19<2814::AID-ANGE2814>3.0.CO;2-0 10.1016/j.solidstatesciences.2012.11.018 10.1002/ange.200705709 10.1515/znb-1979-0311 10.1002/anie.201206572 10.1002/anie.199626511 10.1002/ejic.201200810 10.1002/anie.200702698 10.1002/anie.201107906 10.1039/dt9920000209 10.1016/S0022-2860(99)00032-0 10.1002/aic.690470719 10.1107/S0108767307043930 10.1007/978-3-662-12004-0 10.1021/ic302499f 10.1002/(SICI)1521-3773(19981016)37:19<2668::AID-ANIE2668>3.0.CO;2-8 10.1002/anie.201202994 10.1039/C3CS60404G 10.1039/c3cc40990b 10.1002/ange.201506170 10.1021/ja069319v 10.1002/anie.200802109 10.1039/DT9740002021 10.1021/la804168b 10.1002/anie.200802594 10.1021/ic50030a003 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201703585 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 14974 |
ExternalDocumentID | 28857402 10_1002_chem_201703585 CHEM201703585 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Euskal Herriko Unibertsitatea funderid: PPG17/37; Convocatorias de Ayudas para la Especialización de Personal Investigador – fundername: Universidad Pública de Navarra funderid: Ayudas para la Captación del Talento Adscritas a los Institutos de Investigación de la UPNA |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT NPM RGC RWI WRC 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4105-ca227fe0504d19969c2192e775c4744ea48d414ed7dc271e1f1d4b868924aa9e3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 17:36:44 EDT 2025 Fri Jul 25 10:21:34 EDT 2025 Wed Feb 19 02:41:29 EST 2025 Tue Jul 01 02:47:50 EDT 2025 Thu Apr 24 23:04:42 EDT 2025 Tue Sep 09 05:10:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 59 |
Keywords | SCSC transformations X-ray diffraction gas sorption supramolecular chemistry polyoxometalates |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4105-ca227fe0504d19969c2192e775c4744ea48d414ed7dc271e1f1d4b868924aa9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7373-4596 0000-0002-5614-9301 0000-0001-8329-5972 0000-0002-0188-4579 0000-0002-6262-6506 0000-0001-8777-8533 |
PMID | 28857402 |
PQID | 1953028727 |
PQPubID | 986340 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1934280903 proquest_journals_1953028727 pubmed_primary_28857402 crossref_primary_10_1002_chem_201703585 crossref_citationtrail_10_1002_chem_201703585 wiley_primary_10_1002_chem_201703585_CHEM201703585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 20, 2017 |
PublicationDateYYYYMMDD | 2017-10-20 |
PublicationDate_xml | – month: 10 year: 2017 text: October 20, 2017 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1979; 34 2004; 126 2009; 42 1978; 34 2016; 307 1974 2009; 113 2008 2008; 47 120 2001; 47 2009; 48 1998 1998; 37 110 1996; 77 1976; 32 2015 2015; 137 137 2013; 17 1997; 53 2012 2012; 51 124 2007; 251 1992; 114 2013; 52 1965; 4 2010; 110 1988; 43 1987 2014; 14 2015 2015; 54 127 1983 1977; 33 2008; 64 2010; 2 2014; 53 1984; 40 1999; 508 2009; 25 2007; 129 2015; 17 2015; 5 2009; 65 2013; 49 2015; 3 2000; 113 1971; 27 2010; 39 2007; 160 1993 1993; 32 105 2009 1994 2008; 10 2010 2010; 49 122 1992 2002 2009; 131 1938; 60 2011; 133 2014; 43 2016; 55 2006 2006; 45 118 2016; 7 1996 1996; 35 108 2006; 45 2007 2007; 46 119 2011; 50 1984; 5 1999; 32 2016 2014 2013 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_83_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_41_2 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_26_1 e_1_2_7_49_2 e_1_2_7_49_3 Reinoso S. (e_1_2_7_30_1) 2016 e_1_2_7_90_1 e_1_2_7_71_1 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_52_3 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_33_3 e_1_2_7_37_1 Fuchs J. (e_1_2_7_44_2) 1979; 34 e_1_2_7_56_3 e_1_2_7_79_1 Allen M. P. (e_1_2_7_84_2) 1987 (e_1_2_7_3_2) 1994 e_1_2_7_8_2 Frenkel D. (e_1_2_7_85_2) 2002 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_2 e_1_2_7_86_1 e_1_2_7_67_1 (e_1_2_7_5_2) 2013 e_1_2_7_48_2 Neogi S. (e_1_2_7_29_1) 2014 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_55_3 e_1_2_7_55_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_78_1 e_1_2_7_59_2 e_1_2_7_9_1 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_2 e_1_2_7_66_2 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_2 e_1_2_7_25_3 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_50_3 e_1_2_7_77_1 e_1_2_7_54_2 e_1_2_7_21_1 e_1_2_7_54_3 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_35_3 e_1_2_7_39_2 (e_1_2_7_4_2) 2002 e_1_2_7_6_1 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_14_3 e_1_2_7_14_2 e_1_2_7_61_3 e_1_2_7_88_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_76_1 e_1_2_7_22_3 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_57_1 e_1_2_7_34_2 e_1_2_7_38_2 |
References_xml | – volume: 34 start-page: 1764 year: 1978 end-page: 1770 publication-title: Acta Crystallogr. Sect. B – volume: 137 137 start-page: 7169 7169 year: 2015 2015 end-page: 7177 7177 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 55 start-page: 4970 year: 2016 end-page: 4979 publication-title: Inorg. Chem. – volume: 39 start-page: 1916 year: 2010 end-page: 1919 publication-title: Dalton Trans. – volume: 42 start-page: 339 year: 2009 end-page: 341 publication-title: J. Appl. Crystallogr. – volume: 45 118 start-page: 4798 4916 year: 2006 2006 end-page: 4803 4921 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 start-page: 309 year: 1938 end-page: 319 publication-title: J. Am. Chem. Soc. – volume: 65 start-page: 148 year: 2009 end-page: 155 publication-title: Acta Crystallogr. Sect. D – volume: 46 119 start-page: 7579 7723 year: 2007 2007 end-page: 7582 7726 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 5352 year: 2009 end-page: 5359 publication-title: Langmuir – volume: 33 start-page: 574 year: 1977 end-page: 577 publication-title: Acta Crystallogr. Sect. B – year: 1994 – year: 2014 – volume: 51 124 start-page: 7985 8109 year: 2012 2012 end-page: 7989 8113 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 143 year: 2016 end-page: 212 – volume: 53 start-page: 102 year: 1997 end-page: 112 publication-title: Acta Crystallogr. Sect. B – volume: 40 start-page: 35 year: 1984 end-page: 37 publication-title: Acta. Crystallogr. Sect. C – volume: 54 127 start-page: 14308 14516 year: 2015 2015 end-page: 14312 14520 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 1393 year: 1971 end-page: 1404 publication-title: Acta Crystallogr. Sect. B – start-page: 5247 year: 2009 end-page: 5252 publication-title: Eur. J. Inorg. Chem. – volume: 129 start-page: 15094 year: 2007 end-page: 15095 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 837 year: 1999 end-page: 838 publication-title: J. Appl. Crystallogr. – start-page: 1788 year: 2013 end-page: 1792 publication-title: Eur. J. Inorg. Chem. – volume: 10 start-page: 652 year: 2008 end-page: 654 publication-title: CrystEngComm – volume: 49 122 start-page: 6984 7138 year: 2010 2010 end-page: 6988 7142 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 89 year: 1988 end-page: 93 publication-title: Z. Naturforsch. B – volume: 126 start-page: 13880 year: 2004 end-page: 13881 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 4615 year: 2014 end-page: 4632 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 13363 year: 2011 end-page: 13374 publication-title: J. Am. Chem. Soc. – volume: 32 105 start-page: 1492 1545 year: 1993 1993 end-page: 1494 1547 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 64 start-page: 112 year: 2008 end-page: 122 publication-title: Acta Crystallogr. Sect. A – volume: 251 start-page: 2537 year: 2007 end-page: 2546 publication-title: Coord. Chem. Rev. – volume: 5 start-page: 83377 year: 2015 end-page: 83382 publication-title: RSC Adv. – volume: 37 110 start-page: 2668 2814 year: 1998 1998 end-page: 2671 2817 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 308 year: 2010 end-page: 312 publication-title: Nat. Chem. – volume: 4 start-page: 1102 year: 1965 end-page: 1108 publication-title: Inorg. Chem. – year: 1983 – volume: 45 start-page: 10422 year: 2006 end-page: 10424 publication-title: Inorg. Chem. – volume: 17 start-page: 146 year: 2013 end-page: 150 publication-title: Solid State Sci. – volume: 43 start-page: 5679 year: 2014 end-page: 5699 publication-title: Chem. Soc. Rev. – start-page: 209 year: 1992 end-page: 215 publication-title: J. Chem. Soc. Dalton Trans. – volume: 113 start-page: 8814 year: 2009 end-page: 8820 publication-title: J. Phys. Chem. C – volume: 51 124 start-page: 12759 12931 year: 2012 2012 end-page: 12762 12934 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 1676 year: 2001 end-page: 1682 publication-title: AIChE J. – volume: 51 124 start-page: 1635 1667 year: 2012 2012 end-page: 1639 1671 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 2021 year: 1974 end-page: 2024 publication-title: J. Chem. Soc. Dalton Trans. – volume: 17 start-page: 8915 year: 2015 end-page: 8925 publication-title: CrystEngComm – volume: 508 start-page: 59 year: 1999 end-page: 72 publication-title: J. Mol. Struct. – year: 1987 – volume: 113 start-page: 7756 year: 2000 end-page: 7764 publication-title: J. Chem. Phys. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 publication-title: Phys. Rev. Lett. – volume: 32 start-page: 740 year: 1976 end-page: 749 publication-title: Acta Crystallogr. Sect. B – volume: 307 start-page: 42 year: 2016 end-page: 64 publication-title: Coord. Chem. Rev. – volume: 53 start-page: 903 year: 2014 end-page: 911 publication-title: Inorg. Chem. – volume: 3 start-page: 746 year: 2015 end-page: 755 publication-title: J. Mater. Chem. A – volume: 53 start-page: 3655 year: 2014 end-page: 3661 publication-title: Inorg. Chem. – volume: 47 120 start-page: 8420 8548 year: 2008 2008 end-page: 8423 8551 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 131 start-page: 4180 year: 2009 end-page: 4181 publication-title: J. Am. Chem. Soc. – volume: 47 120 start-page: 6881 6987 year: 2008 2008 end-page: 6884 6990 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 start-page: 412 year: 1979 end-page: 422 publication-title: Z. Naturforsch. B – volume: 5 start-page: 129 year: 1984 end-page: 145 publication-title: J. Comput. Chem. – volume: 50 start-page: 12387 year: 2011 end-page: 12389 publication-title: Inorg. Chem. – volume: 160 start-page: 49 year: 2007 end-page: 56 publication-title: Stud. Surf. Sci. Catal. – volume: 52 start-page: 3084 year: 2013 end-page: 3093 publication-title: Inorg. Chem. – volume: 114 start-page: 10024 year: 1992 end-page: 10035 publication-title: J. Am. Chem. Soc. – year: 2002 – volume: 48 start-page: 1559 year: 2009 end-page: 1565 publication-title: Inorg. Chem. – volume: 110 start-page: 6009 year: 2010 end-page: 6048 publication-title: Chem. Rev. – volume: 35 108 start-page: 2651 2820 year: 1996 1996 end-page: 2653 2822 publication-title: Angew. Chem. Int. Ed. Engl. Angew. Chem. – volume: 7 start-page: 5470 year: 2016 end-page: 5476 publication-title: Chem. Sci. – volume: 14 start-page: 2318 year: 2014 end-page: 2328 publication-title: Cryst. Growth Des. – volume: 49 start-page: 3673 year: 2013 end-page: 3675 publication-title: Chem. Commun. – year: 2013 – volume: 47 120 start-page: 3909 3973 year: 2008 2008 end-page: 3913 3977 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_7_75_1 doi: 10.1016/S0167-2991(07)80008-5 – ident: e_1_2_7_42_2 doi: 10.1107/S0567740876003907 – start-page: 143 volume-title: Polyoxometalates: Properties, Structure and Synthesis year: 2016 ident: e_1_2_7_30_1 – ident: e_1_2_7_35_2 doi: 10.1002/anie.201002672 – ident: e_1_2_7_12_2 doi: 10.1021/ic4031574 – ident: e_1_2_7_56_2 doi: 10.1002/anie.201506170 – ident: e_1_2_7_26_1 doi: 10.1021/cr1000578 – ident: e_1_2_7_10_2 doi: 10.1016/j.ccr.2007.02.019 – ident: e_1_2_7_15_2 doi: 10.1038/nchem.581 – ident: e_1_2_7_88_1 doi: 10.1021/ja00051a040 – ident: e_1_2_7_18_2 doi: 10.1039/C4TA05496B – ident: e_1_2_7_54_2 doi: 10.1002/anie.200504600 – ident: e_1_2_7_80_1 doi: 10.1107/S0021889899006020 – ident: e_1_2_7_43_2 doi: 10.1107/S0567740878006664 – volume-title: Understanding Molecular Simulation: from Algorithms to Applications year: 2002 ident: e_1_2_7_85_2 – ident: e_1_2_7_39_2 doi: 10.1021/cg500027f – ident: e_1_2_7_13_1 – ident: e_1_2_7_89_1 doi: 10.1002/jcc.540050204 – ident: e_1_2_7_49_3 doi: 10.1002/ange.19931051043 – ident: e_1_2_7_61_3 doi: 10.1002/ange.201206572 – ident: e_1_2_7_23_2 doi: 10.1021/ja201165c – ident: e_1_2_7_59_2 doi: 10.1002/ejic.200900630 – ident: e_1_2_7_57_1 – volume-title: Polyoxometalate Chemistry: Some Recent Trends year: 2013 ident: e_1_2_7_5_2 – ident: e_1_2_7_25_2 doi: 10.1021/jacs.5b02688 – ident: e_1_2_7_24_3 doi: 10.1002/ange.201202994 – ident: e_1_2_7_72_1 doi: 10.1107/S090744490804362X – ident: e_1_2_7_78_1 doi: 10.1107/S0021889808042726 – ident: e_1_2_7_34_2 doi: 10.1021/ja809422k – ident: e_1_2_7_76_1 doi: 10.1039/C6SC01385F – ident: e_1_2_7_17_2 doi: 10.1021/ic4022849 – ident: e_1_2_7_33_3 doi: 10.1002/ange.200802594 – ident: e_1_2_7_7_2 doi: 10.1039/C4CS00097H – ident: e_1_2_7_45_2 doi: 10.1107/S0108270184002924 – ident: e_1_2_7_83_1 – ident: e_1_2_7_35_3 doi: 10.1002/ange.201002672 – ident: e_1_2_7_14_3 doi: 10.1002/ange.200702698 – volume-title: Metal-Organic Frameworks: Single-Crystal-to-Single-Crystal Transformations in Encyclopedia of Inorganic and Bioinorganic Chemistry year: 2014 ident: e_1_2_7_29_1 – ident: e_1_2_7_50_3 doi: 10.1002/ange.19961082221 – ident: e_1_2_7_77_1 – ident: e_1_2_7_36_1 doi: 10.1021/ic2020572 – ident: e_1_2_7_64_1 – volume-title: Polyoxometalate Chemistry for Nanocomposite Design year: 2002 ident: e_1_2_7_4_2 – ident: e_1_2_7_74_1 doi: 10.1021/ja01269a023 – ident: e_1_2_7_66_2 doi: 10.1039/C5RA18059G – ident: e_1_2_7_6_1 – ident: e_1_2_7_22_2 doi: 10.1002/anie.200705709 – ident: e_1_2_7_60_2 doi: 10.1021/ic801946m – ident: e_1_2_7_11_3 doi: 10.1002/ange.201107906 – ident: e_1_2_7_9_1 – ident: e_1_2_7_67_1 doi: 10.1107/S0567740877004130 – ident: e_1_2_7_19_1 doi: 10.1039/b919503c – ident: e_1_2_7_91_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_58_2 doi: 10.1021/ic0619862 – ident: e_1_2_7_51_1 – ident: e_1_2_7_28_1 doi: 10.1039/C5CE01076D – ident: e_1_2_7_55_3 doi: 10.1002/ange.200802109 – ident: e_1_2_7_90_1 doi: 10.1063/1.1316015 – ident: e_1_2_7_49_2 doi: 10.1002/anie.199314921 – ident: e_1_2_7_41_2 doi: 10.1107/S0567740871004047 – ident: e_1_2_7_82_1 – ident: e_1_2_7_53_2 doi: 10.1021/ja046410v – ident: e_1_2_7_21_1 – ident: e_1_2_7_87_1 doi: 10.1021/jp810871f – ident: e_1_2_7_69_1 doi: 10.1016/j.ccr.2015.07.001 – ident: e_1_2_7_32_1 – ident: e_1_2_7_25_3 doi: 10.1021/jacs.5b02688 – ident: e_1_2_7_46_1 – ident: e_1_2_7_68_1 doi: 10.1107/S0108768196010403 – ident: e_1_2_7_81_1 – ident: e_1_2_7_27_1 doi: 10.1021/acs.inorgchem.6b00505 – ident: e_1_2_7_48_2 doi: 10.1515/znb-1988-0116 – ident: e_1_2_7_54_3 doi: 10.1002/ange.200504600 – ident: e_1_2_7_31_1 doi: 10.1039/b718523e – ident: e_1_2_7_37_1 – ident: e_1_2_7_52_3 doi: 10.1002/(SICI)1521-3757(19981002)110:19<2814::AID-ANGE2814>3.0.CO;2-0 – ident: e_1_2_7_63_1 doi: 10.1016/j.solidstatesciences.2012.11.018 – ident: e_1_2_7_22_3 doi: 10.1002/ange.200705709 – volume: 34 start-page: 412 year: 1979 ident: e_1_2_7_44_2 publication-title: Z. Naturforsch. B doi: 10.1515/znb-1979-0311 – ident: e_1_2_7_40_1 – ident: e_1_2_7_61_2 doi: 10.1002/anie.201206572 – ident: e_1_2_7_50_2 doi: 10.1002/anie.199626511 – ident: e_1_2_7_62_1 doi: 10.1002/ejic.201200810 – ident: e_1_2_7_14_2 doi: 10.1002/anie.200702698 – ident: e_1_2_7_1_1 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201107906 – ident: e_1_2_7_65_2 doi: 10.1039/dt9920000209 – ident: e_1_2_7_71_1 doi: 10.1016/S0022-2860(99)00032-0 – ident: e_1_2_7_86_1 doi: 10.1002/aic.690470719 – ident: e_1_2_7_79_1 doi: 10.1107/S0108767307043930 – ident: e_1_2_7_2_2 doi: 10.1007/978-3-662-12004-0 – ident: e_1_2_7_38_2 doi: 10.1021/ic302499f – ident: e_1_2_7_52_2 doi: 10.1002/(SICI)1521-3773(19981016)37:19<2668::AID-ANIE2668>3.0.CO;2-8 – volume-title: Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity year: 1994 ident: e_1_2_7_3_2 – ident: e_1_2_7_24_2 doi: 10.1002/anie.201202994 – volume-title: Computer Simulation of Liquids year: 1987 ident: e_1_2_7_84_2 – ident: e_1_2_7_8_2 doi: 10.1039/C3CS60404G – ident: e_1_2_7_16_2 doi: 10.1039/c3cc40990b – ident: e_1_2_7_56_3 doi: 10.1002/ange.201506170 – ident: e_1_2_7_20_1 doi: 10.1021/ja069319v – ident: e_1_2_7_55_2 doi: 10.1002/anie.200802109 – ident: e_1_2_7_47_2 doi: 10.1039/DT9740002021 – ident: e_1_2_7_73_1 doi: 10.1021/la804168b – ident: e_1_2_7_33_2 doi: 10.1002/anie.200802594 – ident: e_1_2_7_70_1 doi: 10.1021/ic50030a003 |
SSID | ssj0009633 |
Score | 2.310898 |
Snippet | The hybrid compound [{Cu(cyclam)}3(W7O24)]⋅15.5 H2O (1) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with... The hybrid compound [{Cu(cyclam)} 3 (W 7 O 24 )] ⋅ 15.5 H 2 O ( 1 ) (cyclam=1,4,8,11‐tetraaza‐cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} 2+... The hybrid compound [{Cu(cyclam)} (W O )]⋅15.5 H O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)} complex with a... The hybrid compound [{Cu(cyclam)}3(W7O24)]15.5H2O(1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex with a... The hybrid compound [{Cu(cyclam)}3 (W7 O24 )]⋅15.5 H2 O (1) (cyclam=1,4,8,11-tetraaza-cyclotetradecane) was synthesized by reacting the {Cu(cyclam)}2+ complex... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14962 |
SubjectTerms | Carbon dioxide Channels Chemistry Computer simulation Copper Dehydration gas sorption Microporosity Monte Carlo simulation Neck polyoxometalates Porosity SCSC transformations Single crystals supramolecular chemistry Water chemistry X-ray diffraction |
Title | Thermally‐Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstate‐Metalorganic Three‐Dimensional Hybrid Framework |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201703585 https://www.ncbi.nlm.nih.gov/pubmed/28857402 https://www.proquest.com/docview/1953028727 https://www.proquest.com/docview/1934280903 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bSR_pymxYVAj0pseXxSnssu12WQkIIG8jN6OUSunjDPg6bU_5AIL-xv6Qz1trpNpRCc_NDsvUYjT5JM98wth-M1qZSIDwEK8AWSvSlS4UubK-oHHiryN_56Lg3PoNv58X5b178kR-i23CjkdHoaxrgxi4O70hDsU7kSZ6hyCLkRSWc5T0izx-e3vFHoXTFWPKgBHGwtqyNqTzczr49K92DmtvItZl6Rs-YaQsdLU5-HKyW9sBd_cHn-JBaPWdPN7iUf4mC9II9CvUuezxow8G9ZDcoUKjEp9P1z-vbCa7pv1OUTz6YrxFfTvkwRrZfcFN7fkIpa5zO-MlsTlZha35Rc4SafHSBaJOPwyViXFQzjTsTfu8o0CZS4xbq-ATFix4OKfBAJA3h4zV5lvFRa0r2ip2Nvk4GY7GJ5SAcGZIKZ6RUVUiLFDwZPvcdqkoZlCocKIBgQHvIIHjlnVRZyKrMg9U9jetDY_ohf8126lkd3jIONqucss5KF0CnuTUacl0h0sll5q1MmGj7snQbonOKtzEtI0WzLKmRy66RE_a5S38ZKT7-mnKvFY1yM9QXJZ1DIkhDHJiwT91r7Bw6ecG2nq0oTY7LPNoSS9ibKFLdr6TWhcJVfMJkIxj_KENJVBnd3bv_yfSePaFrmoFlusd2lvNV-IDQamk_NsPnF60DH_o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V9lAuQHkGSjESEie3ieOsvUe0ZZVCt6rQVuIWxY9UFatstd09LCf-ABK_sb-kM_Em1YIqJDjGsRM_xvY39sw3AO98qXVZKcmd9IZLkyneFzbmOjO9rLLSGUX-zqOTXn4mP33NWmtC8oUJ_BDdgRvNjGa9pglOB9IHt6yh2ChyJU9QZhHz3oOt5pKOcNGXWwYplK8QTV4qTiysLW9jLA7Wy6_vS3-AzXXs2mw-w4dg2moHm5Nv-4u52bfff2N0_K92PYIHK2jKPgRZ2oENXz-G7UEbEe4J_ESZwnV8Mlle__g1RrX-nAJ9ssFsiRBzwg5DcPsrVtaOnVLOGnc0djqdkWHYkl3UDNEmG14g4GS5v0SYiytN49GE3xt5OkdqPEMtG6OEUeIhxR4IvCEsX5JzGRu21mRP4Wz4cTzI-SqcA7dkS8ptKYSqfJzF0pHtc9_iaim8UpmVSkpfSu1kIr1TzgqV-KRKnDS6p1FFLMu-T5_BZj2t_Qtg0iSVVcYaYb3UcWpKLVNdIdhJReKMiIC3g1nYFdc5hdyYFIGlWRTUyUXXyRG87_JfBpaPO3PutrJRrGb7VUFXkYjTEApG8LZ7jYNDly_Y19MF5UlR06NTsQieB5nqfiW0zhQq8hGIRjL-UoeC2DK6p5f_UugNbOfj0XFxfHTy-RXcp3TakEW8C5vz2cK_RqQ1N3vNXLoBmnskGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CIQEvjDthA4yExFO2xHFq93FqF5XLpgp10t4i34ImqrTq2ofyxB9A4jfySzgnbjIKQkjwmMS52P7s89k55zsAr7xWSldSxE54EwuTy7jPbRKr3PTyygpnJMU7n5z2Rmfi7Xl-_lMUf9CH6DbcaGQ08zUN8LmrDq9EQ7FOFEmeImSR8l6HG6KHtpJo0YcrASmEV0gmL2RMIqytbGPCD7fv3zZLv3HNbera2J5iF3T71cHl5NPBamkO7OdfBB3_p1p34c6GmLKjgKR7cM3X9-HWoM0H9wC-IqJwFp9O19-_fJvgov4jpflkg8UaCeaUDUNq-0uma8fGVLJGe8bGswW5ha3ZRc2Qa7LiAukmG_k5klycZ5p4JnzeiaddpCYu1LIJ4otODinzQFANYaM1hZaxovUlewhnxfFkMIo3yRxiS56ksdWcy8oneSIceT73Lc6V3EuZWyGF8FooJ1LhnXSWy9SnVeqEUT2FC0St-z57BDv1rPZPgAmTVlYaa7j1QiWZ0UpkqkKqk_HUGR5B3PZlaTdK55RwY1oGjWZeUiOXXSNH8LorPw8aH38sud9Co9yM9cuSfkQi8pAIRvCyu4ydQ79esK1nKyqT4TqP9sQieBwg1b2KK5VLXMZHwBtg_OUbStLK6I6e_stNL-DmeFiU79-cvtuD23SarDFP9mFnuVj5Z0izluZ5M5J-ABf8Isc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally%E2%80%90Triggered+Crystal+Dynamics+and+Permanent+Porosity+in+the+First+Heptatungstate%E2%80%90Metalorganic+Three%E2%80%90Dimensional+Hybrid+Framework&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Mart%C3%ADn%E2%80%90Caballero%2C+Jagoba&rft.au=Artetxe%2C+Be%C3%B1at&rft.au=Reinoso%2C+Santiago&rft.au=San%E2%80%85Felices%2C+Leire&rft.date=2017-10-20&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=23&rft.issue=59&rft.spage=14962&rft.epage=14974&rft_id=info:doi/10.1002%2Fchem.201703585&rft.externalDBID=10.1002%252Fchem.201703585&rft.externalDocID=CHEM201703585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |