Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Comparison of Models
We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐pr...
Saved in:
| Published in | Space Weather Vol. 21; no. 5 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
John Wiley & Sons, Inc
01.05.2023
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1542-7390 1539-4964 1542-7390 |
| DOI | 10.1029/2022SW003263 |
Cover
| Abstract | We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions.
Plain Language Summary
As high levels of electrons in the radiation belts can damage satellites, accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We compare several algorithms to produce such models: regression and neural networks that depend on predictors at one or many previous time steps. We find that dependable predictions can be made from a regression model using predictors from only a single previous time step. More sophisticated neural network techniques are not necessary if interaction and nonlinear terms are introduced to the regression.
Key Points
Regression models incorporating interaction and quadratic terms predict electron flux as well as neural network models
The description of time series behavior by autoregressive moving average transfer function models, while useful for hypothesis testing, is not necessary for prediction
Magnetic local time as a predictor improves the models by describing changing flux levels and the differing influence of parameters over the diurnal period |
|---|---|
| AbstractList | Abstract We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models ( r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. As high levels of electrons in the radiation belts can damage satellites, accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We compare several algorithms to produce such models: regression and neural networks that depend on predictors at one or many previous time steps. We find that dependable predictions can be made from a regression model using predictors from only a single previous time step. More sophisticated neural network techniques are not necessary if interaction and nonlinear terms are introduced to the regression. Regression models incorporating interaction and quadratic terms predict electron flux as well as neural network models The description of time series behavior by autoregressive moving average transfer function models, while useful for hypothesis testing, is not necessary for prediction Magnetic local time as a predictor improves the models by describing changing flux levels and the differing influence of parameters over the diurnal period We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. Plain Language Summary As high levels of electrons in the radiation belts can damage satellites, accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We compare several algorithms to produce such models: regression and neural networks that depend on predictors at one or many previous time steps. We find that dependable predictions can be made from a regression model using predictors from only a single previous time step. More sophisticated neural network techniques are not necessary if interaction and nonlinear terms are introduced to the regression. Key Points Regression models incorporating interaction and quadratic terms predict electron flux as well as neural network models The description of time series behavior by autoregressive moving average transfer function models, while useful for hypothesis testing, is not necessary for prediction Magnetic local time as a predictor improves the models by describing changing flux levels and the differing influence of parameters over the diurnal period |
| Author | Liemohn, M. W. Simms, L. E. Ganushkina, N. Yu Balikhin, M. Kamp, M. |
| Author_xml | – sequence: 1 givenname: L. E. orcidid: 0000-0002-2934-8823 surname: Simms fullname: Simms, L. E. email: laurasim@umich.edu organization: Augsburg University – sequence: 2 givenname: N. Yu orcidid: 0000-0002-9259-850X surname: Ganushkina fullname: Ganushkina, N. Yu organization: Finnish Meteorological Institute – sequence: 3 givenname: M. orcidid: 0000-0001-6648-7921 surname: Kamp fullname: Kamp, M. organization: Finnish Meteorological Institute – sequence: 4 givenname: M. orcidid: 0000-0002-8110-5626 surname: Balikhin fullname: Balikhin, M. organization: University of Sheffield – sequence: 5 givenname: M. W. orcidid: 0000-0002-7039-2631 surname: Liemohn fullname: Liemohn, M. W. organization: University of Michigan |
| BookMark | eNp9ks9uEzEQxleoSLSFGw9giQtIDfhfNrvcoigpldKA0pZys7ze2cjp1g7j3YTceAdeoM_SE8_Bk-B0CyoIcRpr_JtvPs_4INlz3kGSPGf0NaM8f8Mp52eXlAqeikfJPutL3huInO49OD9JDkJYUspln8v95PsHhNKaxroFOQYfGt1Y7zRuiaQ_vn5jfXp7cwUfybgG06B3ZFK3X8hF2PHD-enwE3mpHRm2jUdYIIRg10BO_frufg2oF0DOUbtQAZJJ68xO_tURmc9msZLMwbSI4BoygxZ1HUOz8XgVCe1KMvULGxprIteJe_eWDMnIX6802hDt-Cp2K6EOT5PHla4DPLuPh8nFZHw-etebvj8-GQ2nPSMZlT1TFjSXIDMGNAMq80IAsBKEKAzN-4M8S5lIjdF8EHOUVTLjsuQmyysp4pDFYXLS6ZZeL9UK7XUclvLaqruEx4XSGC3XoCqaAk9ZmumMylJH-YIVIpW8z4vcSBG1ep1W61Z6u9F1_VuQUbVbqdqtNGy6lUb-Rcev0H9uITRq6Vt08bmKZyzLon0mI8U7yqAPAaFSxnZrbVDb-g_pX78lFh39VfQvJw_w-x4bW8P2v6w6uxxzJnMpfgL4ac9f |
| CitedBy_id | crossref_primary_10_5194_angeo_42_91_2024 crossref_primary_10_1029_2024JA032458 crossref_primary_10_1029_2023JA032026 crossref_primary_10_1029_2024SW004228 crossref_primary_10_1029_2024JA032977 crossref_primary_10_1029_2023JA031676 crossref_primary_10_1029_2024SW003962 crossref_primary_10_1029_2024SW003984 |
| Cites_doi | 10.1029/2010SW000597 10.1002/2015SW001168 10.1002/2013JA019304 10.1002/2014JA019779 10.1175/1520-0434 10.1002/2016SW001506 10.1029/1999JA900292 10.1029/2010SW000576 10.1002/2014JA019955 10.1029/ja079i028p04315 10.1086/593303 10.1002/2013JA019281 10.1080/00031305.1990.10475722 10.5194/angeo-27-851-2009 10.1186/s2864-019-6413-7 10.1029/2007SW000368 10.1029/2018SW002128 10.1029/2019JA027132 10.1029/90JA02380 10.1057/jors.2014.103 10.1002/jgra.50192 10.1029/2022SW003079 10.1029/2021SW002936 10.1029/2000GL012681 10.1029/2017JA025002 10.1002/2016JA022414 10.2307/4586294 10.1016/j.jastp.2021.105624 10.1007/s11214-013-9964-y 10.1002/swe.20049 10.1029/97JA03268 10.1002/2016SW001409 10.1029/2021JA030021 10.1029/2021SW002732 10.1029/2004SW000105 10.1002/2014JA020238 10.1029/2005SW000161 10.1029/2012SW000816 10.1016/j.patrec.2005.10.010 10.1029/2020SW002532 10.1002/2015SW001239 10.1002/2017SW001669 10.2307/2280041 10.1002/2015GL065737 10.1029/2018SW002028 10.1029/2008SW000452 10.1029/2022SW003150 10.1029/2011JA017253 10.1029/2022JA030538 10.1029/GM021p0180 10.1029/2010JA015735 10.1002/2014JA020239 10.1051/swsc/2020037 10.1029/2022JA030377 10.1029/2011GL048980 10.1111/j.1365-2656.2006.01141.x 10.1029/2022SW003102 10.1029/2017JA025003 10.1029/2020JA028580 10.1002/2016JA022470 10.1002/2015SW001303 10.1029/2012SW000811 10.1029/2010JA015505 10.1214/SS/1177013815 10.1162/neco.1997.9.8.1735 10.1029/2021SW002808 10.1029/2020EA001106 10.1186/s40537-018-0143-6 10.5194/angeo-33-405-2015 10.1029/2019JA027357 10.1080/20014422.1926.11881138 10.1371/journal.pone.0118432 10.1029/2019ja026726 10.1029/97GL00859 10.1029/2007GL032524 10.1002/2017SW001689 10.1002/2017SW001698 10.1029/2010GL045733 |
| ContentType | Journal Article |
| Copyright | 2023. The Authors. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 8FD H8D KL. L7M ADTOC UNPAY DOA |
| DOI | 10.1029/2022SW003263 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 1542-7390 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_f06e26168a804da095b1b364252b9c43 10.1029/2022sw003263 10_1029_2022SW003263 SWE21494 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: NASA Headquarters funderid: NNX17AI48G – fundername: National Science Foundation funderid: 1663770 – fundername: NASA funderid: 80NSSC20K0353 – fundername: Academy of Finland funderid: 339329 |
| GroupedDBID | 05W 0R~ 123 1OC 24P 31~ 50Y 6IK 8-1 8R4 8R5 AAESR AAHHS AAJGR AANHP AAZKR ABCUV ABHFT ACBWZ ACCFJ ACCMX ACGFO ACGFS ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADMGS ADNMO ADXAS AEEZP AEQDE AFBPY AFGKR AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK EBS EJD FEDTE G-S GODZA GROUPED_DOAJ HVGLF HZ~ IAO IGS IPLJI ITC KZ1 LITHE LMP LOXES LUTES LYRES MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W Q2X R.K ROL SUPJJ WBKPD WIN ZZTAW ~02 ~OA AAYXX AGQPQ CITATION 7TG 8FD H8D KL. L7M M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4104-cdb094e481e08e049b3ee1de33bc0957986136cca27e3301f4824d2c89f431023 |
| IEDL.DBID | DOA |
| ISSN | 1542-7390 1539-4964 |
| IngestDate | Fri Oct 03 12:41:16 EDT 2025 Tue Aug 19 21:57:18 EDT 2025 Wed Aug 13 07:19:41 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Wed Oct 01 04:28:34 EDT 2025 Wed Jan 22 16:21:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4104-cdb094e481e08e049b3ee1de33bc0957986136cca27e3301f4824d2c89f431023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9259-850X 0000-0002-7039-2631 0000-0002-2934-8823 0000-0002-8110-5626 0000-0001-6648-7921 |
| OpenAccessLink | https://doaj.org/article/f06e26168a804da095b1b364252b9c43 |
| PQID | 2818857914 |
| PQPubID | 54316 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f06e26168a804da095b1b364252b9c43 unpaywall_primary_10_1029_2022sw003263 proquest_journals_2818857914 crossref_citationtrail_10_1029_2022SW003263 crossref_primary_10_1029_2022SW003263 wiley_primary_10_1029_2022SW003263_SWE21494 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2023 2023-05-00 20230501 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Space Weather |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2011; 116 1944; 39 2006; 75 1926; 8 2021; 126 1991; 96 2018; 123 2015; 33 2019; 17 2019; 124 2008; 35 2022; 20 2008; 6 2020; 10 2020; 125 1997; 9 2012; 10 1979 2020; 18 2020; 7 1986; 1 1990; 44 2014; 3 2018; 5 1990 2013; 11 2000 2015; 42 2006; 27 2013; 118 2022; 127 2010; 8 2015; 13 2014; 119 1974; 79 2010; 37 2010 1997; 24 2015; 10 2016; 121 2009; 173 2001; 28 1947; 62 2011; 38 1999; 104 2016; 14 2009; 27 2011; 9 2017; 15 2022 2021; 218 2015; 66 2021; 19 2018 2013; 179 2009; 7 1998; 103 2005; 3 2020; 21 2012; 117 2018; 16 1990; 5 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Koons H. C. (e_1_2_10_42_1) 2000 Hyndman R. (e_1_2_10_36_1) 2018 Neter J. (e_1_2_10_57_1) 1990 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Alpaydin E. (e_1_2_10_2_1) 2014 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 Iyemori T. (e_1_2_10_37_1) 2010 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
| References_xml | – volume: 37 issue: 24 year: 2010 article-title: Data based quest for solar wind‐magnetosphere coupling function publication-title: Geophysical Research Letters – volume: 10 year: 2020 article-title: Probabilistic prediction of geomagnetic storms and the Kp index publication-title: Journal of Space Weather and Space Climate – volume: 20 issue: 11 year: 2022 article-title: Energetic electron flux predictions in the near‐earth plasma sheet from solar wind driving publication-title: Space Weather – volume: 125 issue: 5 year: 2020 article-title: Classifier neural network models predict relativistic electron events at geosynchronous orbit better than multiple regression or ARMAX models publication-title: Journal of Geophysical Research: Space Physics – volume: 119 start-page: 7297 issue: 9 year: 2014 end-page: 7318 article-title: Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis publication-title: Journal of Geophysical Research: Space Physics – volume: 18 issue: 11 year: 2020 article-title: Medium energy electron flux in Earth's outer radiation belt (MERLIN): A machine learning model publication-title: Space Weather – volume: 126 issue: 4 year: 2021 article-title: Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters publication-title: Journal of Geophysical Research: Space Physics – volume: 14 start-page: 511 issue: 7 year: 2016 end-page: 523 article-title: An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions publication-title: Space Weather – volume: 124 start-page: 10246 issue: 12 year: 2019 end-page: 10256 article-title: Comparison of multiple and logistic regression analyses of relativistic electron flux enhancement at geosynchronous orbit following storms publication-title: Journal of Geophysical Research: Space Physics – volume: 127 issue: 2 year: 2022 article-title: Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models publication-title: Journal of Geophysical Research – volume: 39 start-page: 357 issue: 227 year: 1944 end-page: 365 article-title: Application of the logistic function to bio‐assay publication-title: Journal of the American Statistical Association – volume: 42 start-page: 8302 issue: 20 year: 2015 end-page: 8311 article-title: Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm publication-title: Geophysical Research Letters – volume: 20 issue: 1 year: 2022 article-title: Radiation belt model including semi‐annual variation and solar driving (Sentinel) publication-title: Space Weather – volume: 8 issue: 9 year: 2010 article-title: A neural network‐based geosynchronous relativistic electron flux forecasting model publication-title: Space Weather – volume: 10 issue: 11 year: 2012 article-title: Intracalibration of particle detectors on a three‐axis stabilized geostationary platform publication-title: Space Weather – volume: 8 start-page: 301 issue: 4 year: 1926 end-page: 349 article-title: Measures of success and goodness of wind force forecasts by the gale‐warning service publication-title: Geografiska Annaler – volume: 119 start-page: 268 issue: 1 year: 2014 end-page: 289 article-title: Three‐dimensional electron radiation belt simulations using the BAS radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers publication-title: Journal of Geophysical Research: Space Physics – year: 2018 – year: 1990 – volume: 103 start-page: 26251 issue: A11 year: 1998 end-page: 26260 article-title: Energetic electrons at geostationary orbit during the November 3‐4, 1993 storm: Spatial/temporal morphology, characterization by a power law spectrum and, representation by an artificial neural network publication-title: Journal of Geophysical Research – volume: 13 start-page: 233 issue: 4 year: 2015 end-page: 249 article-title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit publication-title: Space Weather – volume: 96 start-page: 5549 issue: A4 year: 1991 end-page: 5556 article-title: A neural network model of the relativistic electron flux at geosynchronous orbit publication-title: Journal of Geophysical Research – volume: 10 issue: 10 year: 2012 article-title: Anik‐E1 and E2 satellite failures of January 1994 revisited publication-title: Space Weather – volume: 16 start-page: 89 issue: 1 year: 2018 end-page: 106 article-title: Spacecraft surface charging induced by severe environments at geosynchronous orbit publication-title: Space Weather – year: 2022 article-title: Analysis of features in a sliding threshold of observation for numeric evaluation (STONE) curve publication-title: Space Weather – volume: 218 year: 2021 article-title: RMSE is not enough: Guidelines to robust data‐model comparisons for magnetospheric physics publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 124 start-page: 5692 issue: 7 year: 2019 end-page: 5708 article-title: Predicting lower band chorus with autoregressive‐moving average transfer function (ARMAX) models publication-title: Journal of Geophysical Research: Space Physics – volume: 119 start-page: 246 issue: 1 year: 2014 end-page: 259 article-title: Low‐energy electrons (5‐50 keV) in the inner magnetosphere publication-title: Journal of Geophysical Research: Space Physics – volume: 24 start-page: 927 issue: 8 year: 1997 end-page: 929 article-title: Correlation of changes in the outer‐zone relativistic‐electron population with upstream solar wind and magnetic field measurements publication-title: Geophysical Research Letters – volume: 7 issue: 8 year: 2020 article-title: The STONE curve: A ROC‐derived model performance assessment tool publication-title: Earth and Space Science – volume: 17 start-page: 687 issue: 5 year: 2019 end-page: 708 article-title: Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with long‐term GOES MAGED measurements of keV electron fluxes at geostationary orbit publication-title: Space Weather – volume: 7 issue: 10 year: 2009 article-title: Three‐dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code publication-title: Space Weather – volume: 11 start-page: 237 issue: 5 year: 2013 end-page: 244 article-title: Statistical properties of the surface‐charging environment at geosynchronous orbit publication-title: Space Weather – volume: 79 start-page: 4315 issue: 28 year: 1974 end-page: 4317 article-title: Kp dependence of plasma sheet boundary publication-title: Journal of Geophysical Research – volume: 119 start-page: 8073 issue: 10 year: 2014 end-page: 8086 article-title: Simulation of high‐energy radiation belt electron fluxes using NARMAX‐VERB coupled codes publication-title: Journal of Geophysical Research: Space Physics – volume: 1 start-page: 54 year: 1986 end-page: 77 article-title: Boostrap methods for standard errors, confidence intervals, and other measures of statistical accuracy publication-title: Statistical Science – volume: 179 start-page: 579 issue: 1–4 year: 2013 end-page: 615 article-title: AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment publication-title: Space Science Reviews – volume: 33 start-page: 405 issue: 3 year: 2015 end-page: 411 article-title: Online NARMAX model for electron fluxes at GEO publication-title: Annales Geophysicae – volume: 6 issue: 7 year: 2008 article-title: A new international geostationary electron model: IGE‐2006, from 1 keV to 5.2 MeV publication-title: Space Weather – volume: 75 start-page: 1182 issue: 5 year: 2006 end-page: 1189 article-title: Why do we still use stepwise modelling in ecology and behaviour? publication-title: Journal of Animal Ecology – volume: 127 year: 2022 article-title: Data‐driven discovery of fokker‐planck equation for the earth’s radiation belts electrons using physics‐informed neural networks publication-title: Journal of Geophysical Research: Space Physics – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Computation – volume: 27 start-page: 851 issue: 2 year: 2009 end-page: 859 article-title: Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements publication-title: Annales Geophysicae – volume: 119 start-page: 4556 issue: 6 year: 2014 end-page: 4571 article-title: Electron number density, temperature, and energy density at GEO and links to the solar wind: A simple predictive capability publication-title: Journal of Geophysical Research: Space Physics – volume: 66 start-page: 1352 issue: 8 year: 2015 end-page: 1362 article-title: A better measure of relative prediction accuracy for model selection and model estimation publication-title: Journal of the Operational Research Society – volume: 17 start-page: 894 issue: 6 year: 2019 end-page: 906 article-title: The system science development of local time‐dependent 40‐keV electron flux models for geostationary orbit publication-title: Space Weather – volume: 3 issue: 12 year: 2005 article-title: Empirical models of the low‐energy plasma in the inner magnetosphere publication-title: Space Weather – volume: 14 start-page: 846 issue: 10 year: 2016 end-page: 860 article-title: Electron flux models for different energies at geostationary orbit publication-title: Space Weather – volume: 13 start-page: 484 issue: 8 year: 2015 end-page: 502 article-title: Space weather conditions during the Galaxy 15 spacecraft anomaly publication-title: Space Weather – volume: 14 start-page: 22 issue: 1 year: 2016 end-page: 31 article-title: Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high‐energy electrons at GEO publication-title: Space Weather – volume: 21 issue: 6 year: 2020 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics – volume: 116 issue: A5 year: 2011 article-title: Using the NARMAX OLS‐ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere publication-title: Journal of Geophysical Research – volume: 116 issue: A2 year: 2011 article-title: On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited publication-title: Journal of Geophysical Research – volume: 62 start-page: 1432 issue: 40 year: 1947 end-page: 1449 article-title: Statistical problems in assessing methods of medical diagnosis, with special reference to X‐Ray techniques publication-title: Public Health Reports – volume: 173 start-page: 119 issue: 1 year: 2009 end-page: 123 article-title: Stepwise model fitting and statistical inference: Turning noise into signal pollution publication-title: The American Naturalist – volume: 127 issue: 9 year: 2022 article-title: Using ARMAX models to determine the drivers of 40‐150 keV GOES electron fluxes publication-title: Journal of Geophysical Research – volume: 119 start-page: 7522 issue: 9 year: 2014 end-page: 7540 article-title: The comprehensive inner magnetosphere‐ionosphere model publication-title: Journal of Geophysical Research: Space Physics – volume: 5 issue: 32 year: 2018 article-title: Step away from stepwise publication-title: Journal of Big Data – year: 2000 – volume: 5 start-page: 570 issue: 4 year: 1990 end-page: 575 article-title: The critical success index as an indicator of warning skill publication-title: Weather and Forecasting – volume: 35 issue: 3 year: 2008 article-title: Effect of solar wind density on relativistic electrons at geosynchronous orbit publication-title: Geophysical Research Letters – start-page: 180 year: 1979 end-page: 202 – volume: 44 start-page: 214 issue: 3 year: 1990 end-page: 217 article-title: The impact of model selection on inference in linear regression publication-title: The American Statistician – volume: 121 start-page: 8712 issue: 9 year: 2016 end-page: 8727 article-title: RAM‐SCB simulations of electron transport and plasma wave scattering during the October 2012 double‐dip storm publication-title: Journal of Geophysical Research: Space Physics – volume: 20 year: 2022 article-title: Modeling the dynamic variability of sub‐relativistic outer radiation belt electron fluxes using machine learning publication-title: Space Weather – volume: 9 start-page: 1 issue: 5 year: 2011 end-page: 12 article-title: Analysis of GEO spacecraft anomalies: Space weather relationships publication-title: Space Weather – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters – year: 2010 – volume: 38 issue: 18 year: 2011 article-title: Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit publication-title: Geophysical Research Letters – volume: 19 issue: 9 year: 2021 article-title: Worst‐case severe environments for surface charging observed at LANL satellites as dependent on solar wind and geomagnetic conditions publication-title: Space Weather – volume: 3 issue: 4 year: 2005 article-title: Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: Their responses to solar wind variations publication-title: Space Weather – volume: 16 start-page: 69 issue: 1 year: 2018 end-page: 88 article-title: Measures of model performance based on the log accuracy ratio publication-title: Space Weather – volume: 10 issue: 3 year: 2015 article-title: The precision‐recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS One – volume: 117 issue: A5 year: 2012 article-title: On the influence of solar wind conditions on the outer‐electron radiation belt publication-title: Journal of Geophysical Research – volume: 3 year: 2014 – volume: 28 start-page: 1887 issue: 9 year: 2001 end-page: 1890 article-title: Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements publication-title: Geophysical Research Letters – volume: 15 start-page: 1602 issue: 12 year: 2017 end-page: 1614 article-title: Electron fluxes at geostationary orbit from GOES MAGED data publication-title: Space Weather – volume: 123 start-page: 3646 issue: 5 year: 2018 end-page: 3671 article-title: A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs publication-title: Journal of Geophysical Research: Space Physics – volume: 118 start-page: 1500 issue: 4 year: 2013 end-page: 1513 article-title: The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach publication-title: Journal of Geophysical Research: Space Physics – volume: 19 issue: 12 year: 2021 article-title: Relativistic electron model in the outer radiation belt using a neural network approach publication-title: Space Weather – volume: 104 start-page: 25047 issue: A11 year: 1999 end-page: 25061 article-title: Plasma sheet access to geosynchronous orbit publication-title: Journal of Geophysical Research – volume: 121 start-page: 3181 issue: 4 year: 2016 end-page: 3197 article-title: Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis publication-title: Journal of Geophysical Research: Space Physics – volume: 123 start-page: 4755 issue: 6 year: 2018 end-page: 4766 article-title: Nonlinear and synergistic effects of ULF Pc5, VLF Chorus, and EMIC waves on relativistic electron flux at geosynchronous orbit publication-title: Journal of Geophysical Research: Space Physics – ident: e_1_2_10_18_1 doi: 10.1029/2010SW000597 – ident: e_1_2_10_21_1 doi: 10.1002/2015SW001168 – ident: e_1_2_10_27_1 doi: 10.1002/2013JA019304 – ident: e_1_2_10_32_1 doi: 10.1002/2014JA019779 – ident: e_1_2_10_64_1 doi: 10.1175/1520-0434 – volume-title: Forecasting: Principles and practice year: 2018 ident: e_1_2_10_36_1 – ident: e_1_2_10_12_1 doi: 10.1002/2016SW001506 – ident: e_1_2_10_43_1 doi: 10.1029/1999JA900292 – ident: e_1_2_10_50_1 doi: 10.1029/2010SW000576 – ident: e_1_2_10_75_1 doi: 10.1002/2014JA019955 – ident: e_1_2_10_25_1 doi: 10.1029/ja079i028p04315 – ident: e_1_2_10_56_1 doi: 10.1086/593303 – ident: e_1_2_10_31_1 doi: 10.1002/2013JA019281 – ident: e_1_2_10_35_1 doi: 10.1080/00031305.1990.10475722 – ident: e_1_2_10_65_1 doi: 10.5194/angeo-27-851-2009 – ident: e_1_2_10_17_1 doi: 10.1186/s2864-019-6413-7 – ident: e_1_2_10_66_1 doi: 10.1029/2007SW000368 – ident: e_1_2_10_8_1 doi: 10.1029/2018SW002128 – ident: e_1_2_10_14_1 doi: 10.1029/2019JA027132 – ident: e_1_2_10_41_1 doi: 10.1029/90JA02380 – ident: e_1_2_10_82_1 doi: 10.1057/jors.2014.103 – ident: e_1_2_10_10_1 doi: 10.1002/jgra.50192 – ident: e_1_2_10_53_1 doi: 10.1029/2022SW003079 – ident: e_1_2_10_39_1 doi: 10.1029/2021SW002936 – ident: e_1_2_10_46_1 doi: 10.1029/2000GL012681 – volume-title: Internal report of data analysis center for geomagnetism and space magnetism year: 2010 ident: e_1_2_10_37_1 – ident: e_1_2_10_69_1 doi: 10.1029/2017JA025002 – ident: e_1_2_10_72_1 doi: 10.1002/2016JA022414 – ident: e_1_2_10_84_1 doi: 10.2307/4586294 – ident: e_1_2_10_49_1 doi: 10.1016/j.jastp.2021.105624 – ident: e_1_2_10_30_1 doi: 10.1007/s11214-013-9964-y – ident: e_1_2_10_81_1 doi: 10.1002/swe.20049 – ident: e_1_2_10_26_1 doi: 10.1029/97JA03268 – ident: e_1_2_10_20_1 doi: 10.1002/2016SW001409 – ident: e_1_2_10_70_1 doi: 10.1029/2021JA030021 – ident: e_1_2_10_29_1 doi: 10.1029/2021SW002732 – ident: e_1_2_10_45_1 doi: 10.1029/2004SW000105 – ident: e_1_2_10_58_1 doi: 10.1002/2014JA020238 – ident: e_1_2_10_61_1 doi: 10.1029/2005SW000161 – ident: e_1_2_10_62_1 doi: 10.1029/2012SW000816 – ident: e_1_2_10_23_1 doi: 10.1016/j.patrec.2005.10.010 – ident: e_1_2_10_76_1 doi: 10.1029/2020SW002532 – ident: e_1_2_10_51_1 doi: 10.1002/2015SW001239 – ident: e_1_2_10_55_1 doi: 10.1002/2017SW001669 – ident: e_1_2_10_6_1 doi: 10.2307/2280041 – ident: e_1_2_10_16_1 doi: 10.1002/2015GL065737 – ident: e_1_2_10_28_1 doi: 10.1029/2018SW002028 – ident: e_1_2_10_79_1 doi: 10.1029/2008SW000452 – ident: e_1_2_10_80_1 doi: 10.1029/2022SW003150 – ident: e_1_2_10_40_1 doi: 10.1029/2011JA017253 – ident: e_1_2_10_74_1 doi: 10.1029/2022JA030538 – ident: e_1_2_10_59_1 doi: 10.1029/GM021p0180 – ident: e_1_2_10_60_1 doi: 10.1029/2010JA015735 – ident: e_1_2_10_24_1 doi: 10.1002/2014JA020239 – ident: e_1_2_10_15_1 doi: 10.1051/swsc/2020037 – ident: e_1_2_10_13_1 doi: 10.1029/2022JA030377 – ident: e_1_2_10_4_1 doi: 10.1029/2011GL048980 – ident: e_1_2_10_83_1 doi: 10.1111/j.1365-2656.2006.01141.x – ident: e_1_2_10_47_1 doi: 10.1029/2022SW003102 – ident: e_1_2_10_71_1 doi: 10.1029/2017JA025003 – ident: e_1_2_10_78_1 doi: 10.1029/2020JA028580 – volume-title: Applied linear statistical models year: 1990 ident: e_1_2_10_57_1 – ident: e_1_2_10_38_1 doi: 10.1002/2016JA022470 – ident: e_1_2_10_5_1 doi: 10.1002/2015SW001303 – ident: e_1_2_10_44_1 doi: 10.1029/2012SW000811 – ident: e_1_2_10_11_1 doi: 10.1029/2010JA015505 – ident: e_1_2_10_22_1 doi: 10.1214/SS/1177013815 – ident: e_1_2_10_34_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_10_19_1 doi: 10.1029/2021SW002808 – ident: e_1_2_10_48_1 doi: 10.1029/2020EA001106 – ident: e_1_2_10_77_1 doi: 10.1186/s40537-018-0143-6 – volume-title: Introduction to machine learning year: 2014 ident: e_1_2_10_2_1 – ident: e_1_2_10_9_1 doi: 10.5194/angeo-33-405-2015 – ident: e_1_2_10_68_1 doi: 10.1029/2019JA027357 – ident: e_1_2_10_33_1 doi: 10.1080/20014422.1926.11881138 – ident: e_1_2_10_63_1 doi: 10.1371/journal.pone.0118432 – ident: e_1_2_10_73_1 doi: 10.1029/2019ja026726 – volume-title: The impact of the space environment on space systems year: 2000 ident: e_1_2_10_42_1 – ident: e_1_2_10_7_1 doi: 10.1029/97GL00859 – ident: e_1_2_10_52_1 doi: 10.1029/2007GL032524 – ident: e_1_2_10_54_1 doi: 10.1002/2017SW001689 – ident: e_1_2_10_67_1 doi: 10.1002/2017SW001698 – ident: e_1_2_10_3_1 doi: 10.1029/2010GL045733 |
| SSID | ssj0024524 ssj0000866621 |
| Score | 2.348058 |
| Snippet | We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13)... We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13)... Abstract We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms ARMAX Autoregressive moving-average models Electron flux electron flux prediction Electrons Fluctuations Forecasting Geomagnetic field Geosynchronous orbits Interplanetary magnetic field logistic regression Magnetic fields Model accuracy Modelling Neural networks Parameters precision recall curve Prediction models Radiation Radiation belts Radiation damage recurrent neural network Recurrent neural networks Regression analysis Regression models ROC curve Solar magnetic field Solar wind Statistical analysis Transfer functions |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BeuDEP2pQQXOACgSubO_G2NxMlVAhElUpoeFkrdfrCtXYUZyolBPvwAvwLJx4Dp6EmV3bahAgJG6WNbvetWdm58_fMPaAu5qLMJOOTFOPolWZE6pAODyS2o9chd-dMrrjSXAwE6_mg_mFf2EsPkQXcCPJMPqaBHyR5VbPN5ADEXnu_tExMqYf8MtsKxigPd5jW7PJYfzOAKUKNB_Rq28q3tsh9ZkdsnEWGcj-DTvzyrpcyPMzWRSblqs5ekbXmGoXbStOTvfWq3RPffoFz_H_dnWdXW0sU4gtK91gl3R5k23HNcXKqw_nsAvm2oZC6lvs--GSkjxUNg0vdVXbnD4-GYT74_MXNAG_fT3Vb2HYNNqBUbH-CKZEAeLpOJ7DI1lCTBgK2jj9qHdhbAIcEKOAoaIDc5LmegkjPH5p-sdPYTqZ4EiYUqKAoKWA8EVw4RNb0I4Usszgtfmz6b1COjt5VT6HGPa7totQ5UCN4Ir6NpuNhm_2D5ymL4SjBHqPjspSdEq1CD3thhpdnJRr7WWa81S5lHYM0UYJkDX9Z3jP9XIR-iLzVRjlaC6hkXKH9cqq1NsMgkAJmWk_41IJlZPzKQhjf8DzPJdS9dmTlkMS1YCmU--OIjHJez9KLn6sPnvYUS8sWMgf6F4Qs3U0BPFtblTLk6TRGEnuBhrd2yCUoSsyiRtLvZSjuzjw00gJnGSnZdWk0Tt1QtheIb4BT_TZbse-v11MKwS4RcOQf11xcnQ89NGZFnf_ddod1lst1_oemmyr9H4jkz8B4pI-2Q priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHOCC-FUXCpoDVKASkdhOcLiFapcKsatqS-neIttxKkRIqk1XpTfegRfgWTjxHDwJM0526UqAxC2yxpYTj-35ZibfMPZIhE5IVehAGxORt6oIlE1kIFLteBpaXHeK6I4nyd6hfDOLZ73Djf6F6fghVg432hn-vKYNrk3bkw0QRyaidn5whErJE3GZXYnQlCEN53L_N9de3BW1jSVakQju-8R37P_8Yu-1K8kz96-Zm1cX9Yk-P9NVtW7A-htodINd701HyLq1vskuufoW28xacmY3n85hG_xz56tob7Mf-3OKwlBeM7x2TdsF3fGFQYY_v3xFG-37t4_uPQz7SjgwqhafwecQQDYdZzN4omvIiOTAeVSOByOMvQcCMtwBeBKBv-pKN4cR3o80_NNnMJ1MsCdMyZNP3E9ABCA48UmXcY4Sui7grf_16INFuW7wpn4JGeyu6iJCUwJVaqvaO-xwNHy3uxf0hRsCKxHeBbYwiBqdVJELlUMMYoRzUeGEMDakuKBCIyJB3eEvsC2MSqm4LLhVaYn2DFoRd9lG3dRuk0GSWKkLxwuhrbQloUNJJPixKMtSaztgO8u1y23Pak7FNarcR9d5ml9c6QF7vJI-6dg8_iL3itRgJUMc3L6hmR_n_ZbOyzBxiD8TpVUoC40vZiIjEM_F3KRW4iBbSyXK-4OhzYl8S-EXiOSAba8U64-Tac-Wk9nxWvfPGecHR0OOaFfe-y_p--watvcZnFts43S-cA_Qyjo1D_1W-gWD_x2Y priority: 102 providerName: Wiley-Blackwell |
| Title | Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Comparison of Models |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022SW003263 https://www.proquest.com/docview/2818857914 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022SW003263 https://doaj.org/article/f06e26168a804da095b1b364252b9c43 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1542-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0024524 issn: 1542-7390 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1542-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000866621 issn: 1542-7390 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1542-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0024524 issn: 1542-7390 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLZgXMAN4lcrjOpcwAQaEY7tBoe7bGqZEI2qjrJyFTmOI02EZGpWjd7xDrwAz8IVz7En2bGTVKvEzw13beRYR_EX-zs_-Q4hTzk1XMhMeSpNfRutyjypA-HxUBkWUo3rbjO64zg4nIl388H8SqsvWxPWyAM3D-5VTgODLD-QSlKRKWQEqZ9yZM0DloZaOJ1PKsPOmepU9gZMtGXulIXWw2dHxwhgFvCNA8jp9G-Qy5vL8lStzlVRbNJVd96M7pDbLVGEqDHwLrlmyntkO6pt6Lr6soJdcL-byER9n_yaLGzOxVYxw1tT1U2KXS1WIOjFt-_IyH7--Gw-wrDtewOjYvkVXMUARNNxNIfnqoTIShoY54PjNghjF2-ACPGO-w64gy03CxjhaWinf_ESpnGMd8LUxu2t0hNYuQ80PG7qy3GEKjN47z40OtE4rpm8Kt9ABAfrLohQ5WD7shX1AzIbDT8cHHptmwZPC3TmPJ2l6CMaIX1DpUGPI-XG-JnhPNXUZgElUoYAkcJe4zXq50IykTEtwxzZC3KGh2SrrEqzTSAItFCZYRlXWujc-oLCSt4PeJ7nSuke2evWLtGthrltpVEkLpfOwuTqSvfIs_Xo00a74w_j9i0M1mOs4ra7gDhMWhwm_8Jhj-x0IErabaBOrNSWxCfgix7ZXQPrt8bU550xew51f7U4OToeMvRtxaP_Yfpjcgsnb8s4d8jW2WJpniDVOkv75DoTkz65sT-MJ9O-e8fw3yyeRJ8uAboDJuQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF5BOZQL4lcNFJgDVKBi1V6vF5ubqRICJFGVtjQ3a71eI4Sxq7hR6Y134AX6LD3xHDwJM2vHNBIgcYus2dU6O7M738z4G8ae-K7xRZgpR6WpR9GqzAm1FI4fKcMjV-O-U0Z3PJHDQ_FuFszaPqf0LUzDD9EF3Mgy7HlNBk4B6ZZtgEgyEbbz_SPUSi79q-yakJ4k9MXF3m-yvaDpahsIdCMR3beV7zh-5_LolTvJUvev-Jvri_JYnZ2qolj1YO0VNLjJbrS-I8TNZt9iV0x5m23ENUWzqy9nsAX2dxOsqO-wH3tzSsNQYTO8MVXdZN3xjUG4P799Ryft4vyz-QD9thUODIrFV7BFBBBPx_EMnqkSYmI5MBaW48kIYxuCgBhNAI8isHddbuYwwAuSpn_-AqaTCY6EKYXyifwJiAEEFz5pSs5RQpUZjOy3R580yjWTV-UriGG3a4wIVQ7Uqq2o77LDQf9gd-i0nRscLRDfOTpLETYaEXrGDQ2CkNQ3xsuM76fapcRgiF6EROXhL_GZ6-Ui5CLjOoxydGjQjbjH1sqqNBsMpNRCZYZnvtJC5wQPBbHgB36e50rpHtte7l2iW1pz6q5RJDa9zqPk8k732NNO-rih8_iL3GtSg06GSLjtg2r-MWltOsldaRCAylCFrsgUvljqpT4CuoCnkRY4yeZSiZL2ZKgTYt8K8R_wRI9tdYr1x8XUp8vFbFut--eKk_2jPke4K-7_l_Rjtj48GI-S0dvJ-wfsOsq05ZybbO1kvjAP0eU6SR9Zs_oF6sshBA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSMAF8atuKTAHqEAlIj9OSLiFsqFAN1ptabu3yHFshBqS1aar0hvvwAvwLJx4Dp6EGScbuhIgcVtFY8tZz9jzzUy-YeyhZyuPh4WwRJ47FK0qrFAG3PIiodzIlrjvlNEdpcHuAX879addn1P6Fqblh-gDbmQZ5rwmA1ezQndsA0SSibDd3T9CrXQD7yK7xH28DInamY9_k-35bVdbn6Mbiei-q3zH8c_Oj165kwx1_4q_eWVRzcTZqSjLVQ_WXEHJdXat8x0hbjf7BrugqptsPW4oml1_OoMtML_bYEVzi_0YzykNQ4XN8FrVTZt1xzcGbv_88hWdtO_fjtUhDLtWOJCUi89gigggnoziKTwWFcTEcqAMLMeTEUYmBAExmgAeRWDuOq3mkOAFSdM_eQqTNMWRMKFQPpE_ATGA4MLTtuQcJURVwJ759uijRLl28rp6ATHs9I0RodZArdrK5jY7SIbvd3atrnODJTniO0sWOcJGxUNH2aFCEJJ7SjmF8rxc2pQYDNGLCFB53Of4zHY0D11euDKMNDo06EbcYWtVXal1BkEguSiUW3hCcqkJHnJiwfc9rbUQcsC2l3uXyY7WnLprlJlJr7tRdn6nB-xRLz1r6Tz-IveS1KCXIRJu86Cef8g6m860HSgEoEEoQpsXAl8sd3IPAZ3v5pHkOMnmUomy7mRoMmLfCvEfcPiAbfWK9cfFNKfLxWwbrfvnirP9o6GLcJdv_Jf0A3Z5_CrJ9t6k7-6yqyjSVXNusrWT-ULdQ4_rJL9vrOoXewggkw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BeuDEP2pQQXOACgSubO_G2NxMlVAhElUpoeFkrdfrCtXYUZyolBPvwAvwLJx4Dp6EmV3bahAgJG6WNbvetWdm58_fMPaAu5qLMJOOTFOPolWZE6pAODyS2o9chd-dMrrjSXAwE6_mg_mFf2EsPkQXcCPJMPqaBHyR5VbPN5ADEXnu_tExMqYf8MtsKxigPd5jW7PJYfzOAKUKNB_Rq28q3tsh9ZkdsnEWGcj-DTvzyrpcyPMzWRSblqs5ekbXmGoXbStOTvfWq3RPffoFz_H_dnWdXW0sU4gtK91gl3R5k23HNcXKqw_nsAvm2oZC6lvs--GSkjxUNg0vdVXbnD4-GYT74_MXNAG_fT3Vb2HYNNqBUbH-CKZEAeLpOJ7DI1lCTBgK2jj9qHdhbAIcEKOAoaIDc5LmegkjPH5p-sdPYTqZ4EiYUqKAoKWA8EVw4RNb0I4Usszgtfmz6b1COjt5VT6HGPa7totQ5UCN4Ir6NpuNhm_2D5ymL4SjBHqPjspSdEq1CD3thhpdnJRr7WWa81S5lHYM0UYJkDX9Z3jP9XIR-iLzVRjlaC6hkXKH9cqq1NsMgkAJmWk_41IJlZPzKQhjf8DzPJdS9dmTlkMS1YCmU--OIjHJez9KLn6sPnvYUS8sWMgf6F4Qs3U0BPFtblTLk6TRGEnuBhrd2yCUoSsyiRtLvZSjuzjw00gJnGSnZdWk0Tt1QtheIb4BT_TZbse-v11MKwS4RcOQf11xcnQ89NGZFnf_ddod1lst1_oemmyr9H4jkz8B4pI-2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Geostationary+40%E2%80%93150+keV+Electron+Flux+Using+ARMAX+%28an+Autoregressive+Moving+Average+Transfer+Function%29%2C+RNN+%28a+Recurrent+Neural+Network%29%2C+and+Logistic+Regression%3A+A+Comparison+of+Models&rft.jtitle=Space+Weather&rft.au=Simms%2C+L+E&rft.au=N+Yu+Ganushkina&rft.au=Van+der+Kamp%2C+M&rft.au=Balikhin%2C+M&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1539-4964&rft.eissn=1542-7390&rft.volume=21&rft.issue=5&rft_id=info:doi/10.1029%2F2022SW003263&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-7390&client=summon |