Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Comparison of Models

We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐pr...

Full description

Saved in:
Bibliographic Details
Published inSpace Weather Vol. 21; no. 5
Main Authors Simms, L. E., Ganushkina, N. Yu, Kamp, M., Balikhin, M., Liemohn, M. W.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.05.2023
Wiley
Subjects
Online AccessGet full text
ISSN1542-7390
1539-4964
1542-7390
DOI10.1029/2022SW003263

Cover

Abstract We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. Plain Language Summary As high levels of electrons in the radiation belts can damage satellites, accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We compare several algorithms to produce such models: regression and neural networks that depend on predictors at one or many previous time steps. We find that dependable predictions can be made from a regression model using predictors from only a single previous time step. More sophisticated neural network techniques are not necessary if interaction and nonlinear terms are introduced to the regression. Key Points Regression models incorporating interaction and quadratic terms predict electron flux as well as neural network models The description of time series behavior by autoregressive moving average transfer function models, while useful for hypothesis testing, is not necessary for prediction Magnetic local time as a predictor improves the models by describing changing flux levels and the differing influence of parameters over the diurnal period
AbstractList Abstract We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions.
We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions.
We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models ( r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. As high levels of electrons in the radiation belts can damage satellites, accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We compare several algorithms to produce such models: regression and neural networks that depend on predictors at one or many previous time steps. We find that dependable predictions can be made from a regression model using predictors from only a single previous time step. More sophisticated neural network techniques are not necessary if interaction and nonlinear terms are introduced to the regression. Regression models incorporating interaction and quadratic terms predict electron flux as well as neural network models The description of time series behavior by autoregressive moving average transfer function models, while useful for hypothesis testing, is not necessary for prediction Magnetic local time as a predictor improves the models by describing changing flux levels and the differing influence of parameters over the diurnal period
We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13) using solar wind, Interplanetary Magnetic Field, and geomagnetic index parameters that would be available for real time forecasting. Value‐predicting models developed using ARMAX (autoregressive moving average transfer function), RNN (recurrent neural network), or stepwise‐reduced regression produced roughly similar results. Including magnetic local time as a categorical variable to describe both the differing levels of flux and the differing influence of parameters improved the models (r as high as 0.814; Heidke Skill Score (HSS) as high as 0.663), however value‐predicting models did a poor job at predicting highs and lows. Diagnostic tests are introduced (cubic fit to observation‐prediction relationship and Lag1 correlation) that better assess predictions of extremes than single metrics such as root mean square error, mean absolute error, or median symmetric accuracy. Classifier models (RNN and logistic regression) were equally able to predict flux rise above the 75th percentile (HSS as high as 0.667). Logistic regression models were improved by the addition of multiplicative interaction and quadratic terms. Only predictors from 1 or 3 hr before were necessary and a detailed description of flux time series behavior was not needed. Stepwise selection of these variables trimmed non‐contributing parameters for a more parsimonious and portable logistic regression model that predicted as well as neural network‐derived models. We provide a logistic regression model (LL3: LogisticLag3) based on inputs measured 3 hr previous, along with optimal probability thresholds, for future predictions. Plain Language Summary As high levels of electrons in the radiation belts can damage satellites, accurate forecasting would be a useful tool. Electron levels can be predicted using information from the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field. We compare several algorithms to produce such models: regression and neural networks that depend on predictors at one or many previous time steps. We find that dependable predictions can be made from a regression model using predictors from only a single previous time step. More sophisticated neural network techniques are not necessary if interaction and nonlinear terms are introduced to the regression. Key Points Regression models incorporating interaction and quadratic terms predict electron flux as well as neural network models The description of time series behavior by autoregressive moving average transfer function models, while useful for hypothesis testing, is not necessary for prediction Magnetic local time as a predictor improves the models by describing changing flux levels and the differing influence of parameters over the diurnal period
Author Liemohn, M. W.
Simms, L. E.
Ganushkina, N. Yu
Balikhin, M.
Kamp, M.
Author_xml – sequence: 1
  givenname: L. E.
  orcidid: 0000-0002-2934-8823
  surname: Simms
  fullname: Simms, L. E.
  email: laurasim@umich.edu
  organization: Augsburg University
– sequence: 2
  givenname: N. Yu
  orcidid: 0000-0002-9259-850X
  surname: Ganushkina
  fullname: Ganushkina, N. Yu
  organization: Finnish Meteorological Institute
– sequence: 3
  givenname: M.
  orcidid: 0000-0001-6648-7921
  surname: Kamp
  fullname: Kamp, M.
  organization: Finnish Meteorological Institute
– sequence: 4
  givenname: M.
  orcidid: 0000-0002-8110-5626
  surname: Balikhin
  fullname: Balikhin, M.
  organization: University of Sheffield
– sequence: 5
  givenname: M. W.
  orcidid: 0000-0002-7039-2631
  surname: Liemohn
  fullname: Liemohn, M. W.
  organization: University of Michigan
BookMark eNp9ks9uEzEQxleoSLSFGw9giQtIDfhfNrvcoigpldKA0pZys7ze2cjp1g7j3YTceAdeoM_SE8_Bk-B0CyoIcRpr_JtvPs_4INlz3kGSPGf0NaM8f8Mp52eXlAqeikfJPutL3huInO49OD9JDkJYUspln8v95PsHhNKaxroFOQYfGt1Y7zRuiaQ_vn5jfXp7cwUfybgG06B3ZFK3X8hF2PHD-enwE3mpHRm2jUdYIIRg10BO_frufg2oF0DOUbtQAZJJ68xO_tURmc9msZLMwbSI4BoygxZ1HUOz8XgVCe1KMvULGxprIteJe_eWDMnIX6802hDt-Cp2K6EOT5PHla4DPLuPh8nFZHw-etebvj8-GQ2nPSMZlT1TFjSXIDMGNAMq80IAsBKEKAzN-4M8S5lIjdF8EHOUVTLjsuQmyysp4pDFYXLS6ZZeL9UK7XUclvLaqruEx4XSGC3XoCqaAk9ZmumMylJH-YIVIpW8z4vcSBG1ep1W61Z6u9F1_VuQUbVbqdqtNGy6lUb-Rcev0H9uITRq6Vt08bmKZyzLon0mI8U7yqAPAaFSxnZrbVDb-g_pX78lFh39VfQvJw_w-x4bW8P2v6w6uxxzJnMpfgL4ac9f
CitedBy_id crossref_primary_10_5194_angeo_42_91_2024
crossref_primary_10_1029_2024JA032458
crossref_primary_10_1029_2023JA032026
crossref_primary_10_1029_2024SW004228
crossref_primary_10_1029_2024JA032977
crossref_primary_10_1029_2023JA031676
crossref_primary_10_1029_2024SW003962
crossref_primary_10_1029_2024SW003984
Cites_doi 10.1029/2010SW000597
10.1002/2015SW001168
10.1002/2013JA019304
10.1002/2014JA019779
10.1175/1520-0434
10.1002/2016SW001506
10.1029/1999JA900292
10.1029/2010SW000576
10.1002/2014JA019955
10.1029/ja079i028p04315
10.1086/593303
10.1002/2013JA019281
10.1080/00031305.1990.10475722
10.5194/angeo-27-851-2009
10.1186/s2864-019-6413-7
10.1029/2007SW000368
10.1029/2018SW002128
10.1029/2019JA027132
10.1029/90JA02380
10.1057/jors.2014.103
10.1002/jgra.50192
10.1029/2022SW003079
10.1029/2021SW002936
10.1029/2000GL012681
10.1029/2017JA025002
10.1002/2016JA022414
10.2307/4586294
10.1016/j.jastp.2021.105624
10.1007/s11214-013-9964-y
10.1002/swe.20049
10.1029/97JA03268
10.1002/2016SW001409
10.1029/2021JA030021
10.1029/2021SW002732
10.1029/2004SW000105
10.1002/2014JA020238
10.1029/2005SW000161
10.1029/2012SW000816
10.1016/j.patrec.2005.10.010
10.1029/2020SW002532
10.1002/2015SW001239
10.1002/2017SW001669
10.2307/2280041
10.1002/2015GL065737
10.1029/2018SW002028
10.1029/2008SW000452
10.1029/2022SW003150
10.1029/2011JA017253
10.1029/2022JA030538
10.1029/GM021p0180
10.1029/2010JA015735
10.1002/2014JA020239
10.1051/swsc/2020037
10.1029/2022JA030377
10.1029/2011GL048980
10.1111/j.1365-2656.2006.01141.x
10.1029/2022SW003102
10.1029/2017JA025003
10.1029/2020JA028580
10.1002/2016JA022470
10.1002/2015SW001303
10.1029/2012SW000811
10.1029/2010JA015505
10.1214/SS/1177013815
10.1162/neco.1997.9.8.1735
10.1029/2021SW002808
10.1029/2020EA001106
10.1186/s40537-018-0143-6
10.5194/angeo-33-405-2015
10.1029/2019JA027357
10.1080/20014422.1926.11881138
10.1371/journal.pone.0118432
10.1029/2019ja026726
10.1029/97GL00859
10.1029/2007GL032524
10.1002/2017SW001689
10.1002/2017SW001698
10.1029/2010GL045733
ContentType Journal Article
Copyright 2023. The Authors.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ADTOC
UNPAY
DOA
DOI 10.1029/2022SW003263
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1542-7390
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f06e26168a804da095b1b364252b9c43
10.1029/2022sw003263
10_1029_2022SW003263
SWE21494
Genre researchArticle
GrantInformation_xml – fundername: NASA Headquarters
  funderid: NNX17AI48G
– fundername: National Science Foundation
  funderid: 1663770
– fundername: NASA
  funderid: 80NSSC20K0353
– fundername: Academy of Finland
  funderid: 339329
GroupedDBID 05W
0R~
123
1OC
24P
31~
50Y
6IK
8-1
8R4
8R5
AAESR
AAHHS
AAJGR
AANHP
AAZKR
ABCUV
ABHFT
ACBWZ
ACCFJ
ACCMX
ACGFO
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADMGS
ADNMO
ADXAS
AEEZP
AEQDE
AFBPY
AFGKR
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
EBS
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HVGLF
HZ~
IAO
IGS
IPLJI
ITC
KZ1
LITHE
LMP
LOXES
LUTES
LYRES
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
ROL
SUPJJ
WBKPD
WIN
ZZTAW
~02
~OA
AAYXX
AGQPQ
CITATION
7TG
8FD
H8D
KL.
L7M
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c4104-cdb094e481e08e049b3ee1de33bc0957986136cca27e3301f4824d2c89f431023
IEDL.DBID DOA
ISSN 1542-7390
1539-4964
IngestDate Fri Oct 03 12:41:16 EDT 2025
Tue Aug 19 21:57:18 EDT 2025
Wed Aug 13 07:19:41 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Wed Oct 01 04:28:34 EDT 2025
Wed Jan 22 16:21:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-cdb094e481e08e049b3ee1de33bc0957986136cca27e3301f4824d2c89f431023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9259-850X
0000-0002-7039-2631
0000-0002-2934-8823
0000-0002-8110-5626
0000-0001-6648-7921
OpenAccessLink https://doaj.org/article/f06e26168a804da095b1b364252b9c43
PQID 2818857914
PQPubID 54316
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_f06e26168a804da095b1b364252b9c43
unpaywall_primary_10_1029_2022sw003263
proquest_journals_2818857914
crossref_citationtrail_10_1029_2022SW003263
crossref_primary_10_1029_2022SW003263
wiley_primary_10_1029_2022SW003263_SWE21494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Space Weather
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2011; 116
1944; 39
2006; 75
1926; 8
2021; 126
1991; 96
2018; 123
2015; 33
2019; 17
2019; 124
2008; 35
2022; 20
2008; 6
2020; 10
2020; 125
1997; 9
2012; 10
1979
2020; 18
2020; 7
1986; 1
1990; 44
2014; 3
2018; 5
1990
2013; 11
2000
2015; 42
2006; 27
2013; 118
2022; 127
2010; 8
2015; 13
2014; 119
1974; 79
2010; 37
2010
1997; 24
2015; 10
2016; 121
2009; 173
2001; 28
1947; 62
2011; 38
1999; 104
2016; 14
2009; 27
2011; 9
2017; 15
2022
2021; 218
2015; 66
2021; 19
2018
2013; 179
2009; 7
1998; 103
2005; 3
2020; 21
2012; 117
2018; 16
1990; 5
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Koons H. C. (e_1_2_10_42_1) 2000
Hyndman R. (e_1_2_10_36_1) 2018
Neter J. (e_1_2_10_57_1) 1990
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
Alpaydin E. (e_1_2_10_2_1) 2014
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
Iyemori T. (e_1_2_10_37_1) 2010
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 37
  issue: 24
  year: 2010
  article-title: Data based quest for solar wind‐magnetosphere coupling function
  publication-title: Geophysical Research Letters
– volume: 10
  year: 2020
  article-title: Probabilistic prediction of geomagnetic storms and the Kp index
  publication-title: Journal of Space Weather and Space Climate
– volume: 20
  issue: 11
  year: 2022
  article-title: Energetic electron flux predictions in the near‐earth plasma sheet from solar wind driving
  publication-title: Space Weather
– volume: 125
  issue: 5
  year: 2020
  article-title: Classifier neural network models predict relativistic electron events at geosynchronous orbit better than multiple regression or ARMAX models
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 119
  start-page: 7297
  issue: 9
  year: 2014
  end-page: 7318
  article-title: Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 18
  issue: 11
  year: 2020
  article-title: Medium energy electron flux in Earth's outer radiation belt (MERLIN): A machine learning model
  publication-title: Space Weather
– volume: 126
  issue: 4
  year: 2021
  article-title: Superthermal proton and electron fluxes in the plasma sheet transition region and their dependence on solar wind parameters
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 14
  start-page: 511
  issue: 7
  year: 2016
  end-page: 523
  article-title: An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions
  publication-title: Space Weather
– volume: 124
  start-page: 10246
  issue: 12
  year: 2019
  end-page: 10256
  article-title: Comparison of multiple and logistic regression analyses of relativistic electron flux enhancement at geosynchronous orbit following storms
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 127
  issue: 2
  year: 2022
  article-title: Removing diurnal signals and longer term trends from electron flux and ULF correlations: A comparison of spectral subtraction, simple differencing, and ARIMAX models
  publication-title: Journal of Geophysical Research
– volume: 39
  start-page: 357
  issue: 227
  year: 1944
  end-page: 365
  article-title: Application of the logistic function to bio‐assay
  publication-title: Journal of the American Statistical Association
– volume: 42
  start-page: 8302
  issue: 20
  year: 2015
  end-page: 8311
  article-title: Comparison of simulated and observed trapped and precipitating electron fluxes during a magnetic storm
  publication-title: Geophysical Research Letters
– volume: 20
  issue: 1
  year: 2022
  article-title: Radiation belt model including semi‐annual variation and solar driving (Sentinel)
  publication-title: Space Weather
– volume: 8
  issue: 9
  year: 2010
  article-title: A neural network‐based geosynchronous relativistic electron flux forecasting model
  publication-title: Space Weather
– volume: 10
  issue: 11
  year: 2012
  article-title: Intracalibration of particle detectors on a three‐axis stabilized geostationary platform
  publication-title: Space Weather
– volume: 8
  start-page: 301
  issue: 4
  year: 1926
  end-page: 349
  article-title: Measures of success and goodness of wind force forecasts by the gale‐warning service
  publication-title: Geografiska Annaler
– volume: 119
  start-page: 268
  issue: 1
  year: 2014
  end-page: 289
  article-title: Three‐dimensional electron radiation belt simulations using the BAS radiation belt model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers
  publication-title: Journal of Geophysical Research: Space Physics
– year: 2018
– year: 1990
– volume: 103
  start-page: 26251
  issue: A11
  year: 1998
  end-page: 26260
  article-title: Energetic electrons at geostationary orbit during the November 3‐4, 1993 storm: Spatial/temporal morphology, characterization by a power law spectrum and, representation by an artificial neural network
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 233
  issue: 4
  year: 2015
  end-page: 249
  article-title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
  publication-title: Space Weather
– volume: 96
  start-page: 5549
  issue: A4
  year: 1991
  end-page: 5556
  article-title: A neural network model of the relativistic electron flux at geosynchronous orbit
  publication-title: Journal of Geophysical Research
– volume: 10
  issue: 10
  year: 2012
  article-title: Anik‐E1 and E2 satellite failures of January 1994 revisited
  publication-title: Space Weather
– volume: 16
  start-page: 89
  issue: 1
  year: 2018
  end-page: 106
  article-title: Spacecraft surface charging induced by severe environments at geosynchronous orbit
  publication-title: Space Weather
– year: 2022
  article-title: Analysis of features in a sliding threshold of observation for numeric evaluation (STONE) curve
  publication-title: Space Weather
– volume: 218
  year: 2021
  article-title: RMSE is not enough: Guidelines to robust data‐model comparisons for magnetospheric physics
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 124
  start-page: 5692
  issue: 7
  year: 2019
  end-page: 5708
  article-title: Predicting lower band chorus with autoregressive‐moving average transfer function (ARMAX) models
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 119
  start-page: 246
  issue: 1
  year: 2014
  end-page: 259
  article-title: Low‐energy electrons (5‐50 keV) in the inner magnetosphere
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 24
  start-page: 927
  issue: 8
  year: 1997
  end-page: 929
  article-title: Correlation of changes in the outer‐zone relativistic‐electron population with upstream solar wind and magnetic field measurements
  publication-title: Geophysical Research Letters
– volume: 7
  issue: 8
  year: 2020
  article-title: The STONE curve: A ROC‐derived model performance assessment tool
  publication-title: Earth and Space Science
– volume: 17
  start-page: 687
  issue: 5
  year: 2019
  end-page: 708
  article-title: Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with long‐term GOES MAGED measurements of keV electron fluxes at geostationary orbit
  publication-title: Space Weather
– volume: 7
  issue: 10
  year: 2009
  article-title: Three‐dimensional modeling of the radiation belts using the Versatile Electron Radiation Belt (VERB) code
  publication-title: Space Weather
– volume: 11
  start-page: 237
  issue: 5
  year: 2013
  end-page: 244
  article-title: Statistical properties of the surface‐charging environment at geosynchronous orbit
  publication-title: Space Weather
– volume: 79
  start-page: 4315
  issue: 28
  year: 1974
  end-page: 4317
  article-title: Kp dependence of plasma sheet boundary
  publication-title: Journal of Geophysical Research
– volume: 119
  start-page: 8073
  issue: 10
  year: 2014
  end-page: 8086
  article-title: Simulation of high‐energy radiation belt electron fluxes using NARMAX‐VERB coupled codes
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 1
  start-page: 54
  year: 1986
  end-page: 77
  article-title: Boostrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
  publication-title: Statistical Science
– volume: 179
  start-page: 579
  issue: 1–4
  year: 2013
  end-page: 615
  article-title: AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment
  publication-title: Space Science Reviews
– volume: 33
  start-page: 405
  issue: 3
  year: 2015
  end-page: 411
  article-title: Online NARMAX model for electron fluxes at GEO
  publication-title: Annales Geophysicae
– volume: 6
  issue: 7
  year: 2008
  article-title: A new international geostationary electron model: IGE‐2006, from 1 keV to 5.2 MeV
  publication-title: Space Weather
– volume: 75
  start-page: 1182
  issue: 5
  year: 2006
  end-page: 1189
  article-title: Why do we still use stepwise modelling in ecology and behaviour?
  publication-title: Journal of Animal Ecology
– volume: 127
  year: 2022
  article-title: Data‐driven discovery of fokker‐planck equation for the earth’s radiation belts electrons using physics‐informed neural networks
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation
– volume: 27
  start-page: 851
  issue: 2
  year: 2009
  end-page: 859
  article-title: Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements
  publication-title: Annales Geophysicae
– volume: 119
  start-page: 4556
  issue: 6
  year: 2014
  end-page: 4571
  article-title: Electron number density, temperature, and energy density at GEO and links to the solar wind: A simple predictive capability
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 66
  start-page: 1352
  issue: 8
  year: 2015
  end-page: 1362
  article-title: A better measure of relative prediction accuracy for model selection and model estimation
  publication-title: Journal of the Operational Research Society
– volume: 17
  start-page: 894
  issue: 6
  year: 2019
  end-page: 906
  article-title: The system science development of local time‐dependent 40‐keV electron flux models for geostationary orbit
  publication-title: Space Weather
– volume: 3
  issue: 12
  year: 2005
  article-title: Empirical models of the low‐energy plasma in the inner magnetosphere
  publication-title: Space Weather
– volume: 14
  start-page: 846
  issue: 10
  year: 2016
  end-page: 860
  article-title: Electron flux models for different energies at geostationary orbit
  publication-title: Space Weather
– volume: 13
  start-page: 484
  issue: 8
  year: 2015
  end-page: 502
  article-title: Space weather conditions during the Galaxy 15 spacecraft anomaly
  publication-title: Space Weather
– volume: 14
  start-page: 22
  issue: 1
  year: 2016
  end-page: 31
  article-title: Comparative analysis of NOAA REFM and SNB3GEO tools for the forecast of the fluxes of high‐energy electrons at GEO
  publication-title: Space Weather
– volume: 21
  issue: 6
  year: 2020
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– volume: 116
  issue: A5
  year: 2011
  article-title: Using the NARMAX OLS‐ERR algorithm to obtain the most influential coupling functions that affect the evolution of the magnetosphere
  publication-title: Journal of Geophysical Research
– volume: 116
  issue: A2
  year: 2011
  article-title: On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited
  publication-title: Journal of Geophysical Research
– volume: 62
  start-page: 1432
  issue: 40
  year: 1947
  end-page: 1449
  article-title: Statistical problems in assessing methods of medical diagnosis, with special reference to X‐Ray techniques
  publication-title: Public Health Reports
– volume: 173
  start-page: 119
  issue: 1
  year: 2009
  end-page: 123
  article-title: Stepwise model fitting and statistical inference: Turning noise into signal pollution
  publication-title: The American Naturalist
– volume: 127
  issue: 9
  year: 2022
  article-title: Using ARMAX models to determine the drivers of 40‐150 keV GOES electron fluxes
  publication-title: Journal of Geophysical Research
– volume: 119
  start-page: 7522
  issue: 9
  year: 2014
  end-page: 7540
  article-title: The comprehensive inner magnetosphere‐ionosphere model
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 5
  issue: 32
  year: 2018
  article-title: Step away from stepwise
  publication-title: Journal of Big Data
– year: 2000
– volume: 5
  start-page: 570
  issue: 4
  year: 1990
  end-page: 575
  article-title: The critical success index as an indicator of warning skill
  publication-title: Weather and Forecasting
– volume: 35
  issue: 3
  year: 2008
  article-title: Effect of solar wind density on relativistic electrons at geosynchronous orbit
  publication-title: Geophysical Research Letters
– start-page: 180
  year: 1979
  end-page: 202
– volume: 44
  start-page: 214
  issue: 3
  year: 1990
  end-page: 217
  article-title: The impact of model selection on inference in linear regression
  publication-title: The American Statistician
– volume: 121
  start-page: 8712
  issue: 9
  year: 2016
  end-page: 8727
  article-title: RAM‐SCB simulations of electron transport and plasma wave scattering during the October 2012 double‐dip storm
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 20
  year: 2022
  article-title: Modeling the dynamic variability of sub‐relativistic outer radiation belt electron fluxes using machine learning
  publication-title: Space Weather
– volume: 9
  start-page: 1
  issue: 5
  year: 2011
  end-page: 12
  article-title: Analysis of GEO spacecraft anomalies: Space weather relationships
  publication-title: Space Weather
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
– year: 2010
– volume: 38
  issue: 18
  year: 2011
  article-title: Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit
  publication-title: Geophysical Research Letters
– volume: 19
  issue: 9
  year: 2021
  article-title: Worst‐case severe environments for surface charging observed at LANL satellites as dependent on solar wind and geomagnetic conditions
  publication-title: Space Weather
– volume: 3
  issue: 4
  year: 2005
  article-title: Energetic electrons, 50 keV to 6 MeV, at geosynchronous orbit: Their responses to solar wind variations
  publication-title: Space Weather
– volume: 16
  start-page: 69
  issue: 1
  year: 2018
  end-page: 88
  article-title: Measures of model performance based on the log accuracy ratio
  publication-title: Space Weather
– volume: 10
  issue: 3
  year: 2015
  article-title: The precision‐recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS One
– volume: 117
  issue: A5
  year: 2012
  article-title: On the influence of solar wind conditions on the outer‐electron radiation belt
  publication-title: Journal of Geophysical Research
– volume: 3
  year: 2014
– volume: 28
  start-page: 1887
  issue: 9
  year: 2001
  end-page: 1890
  article-title: Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements
  publication-title: Geophysical Research Letters
– volume: 15
  start-page: 1602
  issue: 12
  year: 2017
  end-page: 1614
  article-title: Electron fluxes at geostationary orbit from GOES MAGED data
  publication-title: Space Weather
– volume: 123
  start-page: 3646
  issue: 5
  year: 2018
  end-page: 3671
  article-title: A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 118
  start-page: 1500
  issue: 4
  year: 2013
  end-page: 1513
  article-title: The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 19
  issue: 12
  year: 2021
  article-title: Relativistic electron model in the outer radiation belt using a neural network approach
  publication-title: Space Weather
– volume: 104
  start-page: 25047
  issue: A11
  year: 1999
  end-page: 25061
  article-title: Plasma sheet access to geosynchronous orbit
  publication-title: Journal of Geophysical Research
– volume: 121
  start-page: 3181
  issue: 4
  year: 2016
  end-page: 3197
  article-title: Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 123
  start-page: 4755
  issue: 6
  year: 2018
  end-page: 4766
  article-title: Nonlinear and synergistic effects of ULF Pc5, VLF Chorus, and EMIC waves on relativistic electron flux at geosynchronous orbit
  publication-title: Journal of Geophysical Research: Space Physics
– ident: e_1_2_10_18_1
  doi: 10.1029/2010SW000597
– ident: e_1_2_10_21_1
  doi: 10.1002/2015SW001168
– ident: e_1_2_10_27_1
  doi: 10.1002/2013JA019304
– ident: e_1_2_10_32_1
  doi: 10.1002/2014JA019779
– ident: e_1_2_10_64_1
  doi: 10.1175/1520-0434
– volume-title: Forecasting: Principles and practice
  year: 2018
  ident: e_1_2_10_36_1
– ident: e_1_2_10_12_1
  doi: 10.1002/2016SW001506
– ident: e_1_2_10_43_1
  doi: 10.1029/1999JA900292
– ident: e_1_2_10_50_1
  doi: 10.1029/2010SW000576
– ident: e_1_2_10_75_1
  doi: 10.1002/2014JA019955
– ident: e_1_2_10_25_1
  doi: 10.1029/ja079i028p04315
– ident: e_1_2_10_56_1
  doi: 10.1086/593303
– ident: e_1_2_10_31_1
  doi: 10.1002/2013JA019281
– ident: e_1_2_10_35_1
  doi: 10.1080/00031305.1990.10475722
– ident: e_1_2_10_65_1
  doi: 10.5194/angeo-27-851-2009
– ident: e_1_2_10_17_1
  doi: 10.1186/s2864-019-6413-7
– ident: e_1_2_10_66_1
  doi: 10.1029/2007SW000368
– ident: e_1_2_10_8_1
  doi: 10.1029/2018SW002128
– ident: e_1_2_10_14_1
  doi: 10.1029/2019JA027132
– ident: e_1_2_10_41_1
  doi: 10.1029/90JA02380
– ident: e_1_2_10_82_1
  doi: 10.1057/jors.2014.103
– ident: e_1_2_10_10_1
  doi: 10.1002/jgra.50192
– ident: e_1_2_10_53_1
  doi: 10.1029/2022SW003079
– ident: e_1_2_10_39_1
  doi: 10.1029/2021SW002936
– ident: e_1_2_10_46_1
  doi: 10.1029/2000GL012681
– volume-title: Internal report of data analysis center for geomagnetism and space magnetism
  year: 2010
  ident: e_1_2_10_37_1
– ident: e_1_2_10_69_1
  doi: 10.1029/2017JA025002
– ident: e_1_2_10_72_1
  doi: 10.1002/2016JA022414
– ident: e_1_2_10_84_1
  doi: 10.2307/4586294
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jastp.2021.105624
– ident: e_1_2_10_30_1
  doi: 10.1007/s11214-013-9964-y
– ident: e_1_2_10_81_1
  doi: 10.1002/swe.20049
– ident: e_1_2_10_26_1
  doi: 10.1029/97JA03268
– ident: e_1_2_10_20_1
  doi: 10.1002/2016SW001409
– ident: e_1_2_10_70_1
  doi: 10.1029/2021JA030021
– ident: e_1_2_10_29_1
  doi: 10.1029/2021SW002732
– ident: e_1_2_10_45_1
  doi: 10.1029/2004SW000105
– ident: e_1_2_10_58_1
  doi: 10.1002/2014JA020238
– ident: e_1_2_10_61_1
  doi: 10.1029/2005SW000161
– ident: e_1_2_10_62_1
  doi: 10.1029/2012SW000816
– ident: e_1_2_10_23_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_10_76_1
  doi: 10.1029/2020SW002532
– ident: e_1_2_10_51_1
  doi: 10.1002/2015SW001239
– ident: e_1_2_10_55_1
  doi: 10.1002/2017SW001669
– ident: e_1_2_10_6_1
  doi: 10.2307/2280041
– ident: e_1_2_10_16_1
  doi: 10.1002/2015GL065737
– ident: e_1_2_10_28_1
  doi: 10.1029/2018SW002028
– ident: e_1_2_10_79_1
  doi: 10.1029/2008SW000452
– ident: e_1_2_10_80_1
  doi: 10.1029/2022SW003150
– ident: e_1_2_10_40_1
  doi: 10.1029/2011JA017253
– ident: e_1_2_10_74_1
  doi: 10.1029/2022JA030538
– ident: e_1_2_10_59_1
  doi: 10.1029/GM021p0180
– ident: e_1_2_10_60_1
  doi: 10.1029/2010JA015735
– ident: e_1_2_10_24_1
  doi: 10.1002/2014JA020239
– ident: e_1_2_10_15_1
  doi: 10.1051/swsc/2020037
– ident: e_1_2_10_13_1
  doi: 10.1029/2022JA030377
– ident: e_1_2_10_4_1
  doi: 10.1029/2011GL048980
– ident: e_1_2_10_83_1
  doi: 10.1111/j.1365-2656.2006.01141.x
– ident: e_1_2_10_47_1
  doi: 10.1029/2022SW003102
– ident: e_1_2_10_71_1
  doi: 10.1029/2017JA025003
– ident: e_1_2_10_78_1
  doi: 10.1029/2020JA028580
– volume-title: Applied linear statistical models
  year: 1990
  ident: e_1_2_10_57_1
– ident: e_1_2_10_38_1
  doi: 10.1002/2016JA022470
– ident: e_1_2_10_5_1
  doi: 10.1002/2015SW001303
– ident: e_1_2_10_44_1
  doi: 10.1029/2012SW000811
– ident: e_1_2_10_11_1
  doi: 10.1029/2010JA015505
– ident: e_1_2_10_22_1
  doi: 10.1214/SS/1177013815
– ident: e_1_2_10_34_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_10_19_1
  doi: 10.1029/2021SW002808
– ident: e_1_2_10_48_1
  doi: 10.1029/2020EA001106
– ident: e_1_2_10_77_1
  doi: 10.1186/s40537-018-0143-6
– volume-title: Introduction to machine learning
  year: 2014
  ident: e_1_2_10_2_1
– ident: e_1_2_10_9_1
  doi: 10.5194/angeo-33-405-2015
– ident: e_1_2_10_68_1
  doi: 10.1029/2019JA027357
– ident: e_1_2_10_33_1
  doi: 10.1080/20014422.1926.11881138
– ident: e_1_2_10_63_1
  doi: 10.1371/journal.pone.0118432
– ident: e_1_2_10_73_1
  doi: 10.1029/2019ja026726
– volume-title: The impact of the space environment on space systems
  year: 2000
  ident: e_1_2_10_42_1
– ident: e_1_2_10_7_1
  doi: 10.1029/97GL00859
– ident: e_1_2_10_52_1
  doi: 10.1029/2007GL032524
– ident: e_1_2_10_54_1
  doi: 10.1002/2017SW001689
– ident: e_1_2_10_67_1
  doi: 10.1002/2017SW001698
– ident: e_1_2_10_3_1
  doi: 10.1029/2010GL045733
SSID ssj0024524
ssj0000866621
Score 2.348058
Snippet We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13)...
We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from GOES‐13)...
Abstract We screen several algorithms for their ability to produce good predictive models of hourly 40–150 keV electron flux at geostationary orbit (data from...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
ARMAX
Autoregressive moving-average models
Electron flux
electron flux prediction
Electrons
Fluctuations
Forecasting
Geomagnetic field
Geosynchronous orbits
Interplanetary magnetic field
logistic regression
Magnetic fields
Model accuracy
Modelling
Neural networks
Parameters
precision recall curve
Prediction models
Radiation
Radiation belts
Radiation damage
recurrent neural network
Recurrent neural networks
Regression analysis
Regression models
ROC curve
Solar magnetic field
Solar wind
Statistical analysis
Transfer functions
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BeuDEP2pQQXOACgSubO_G2NxMlVAhElUpoeFkrdfrCtXYUZyolBPvwAvwLJx4Dp6EmV3bahAgJG6WNbvetWdm58_fMPaAu5qLMJOOTFOPolWZE6pAODyS2o9chd-dMrrjSXAwE6_mg_mFf2EsPkQXcCPJMPqaBHyR5VbPN5ADEXnu_tExMqYf8MtsKxigPd5jW7PJYfzOAKUKNB_Rq28q3tsh9ZkdsnEWGcj-DTvzyrpcyPMzWRSblqs5ekbXmGoXbStOTvfWq3RPffoFz_H_dnWdXW0sU4gtK91gl3R5k23HNcXKqw_nsAvm2oZC6lvs--GSkjxUNg0vdVXbnD4-GYT74_MXNAG_fT3Vb2HYNNqBUbH-CKZEAeLpOJ7DI1lCTBgK2jj9qHdhbAIcEKOAoaIDc5LmegkjPH5p-sdPYTqZ4EiYUqKAoKWA8EVw4RNb0I4Usszgtfmz6b1COjt5VT6HGPa7totQ5UCN4Ir6NpuNhm_2D5ymL4SjBHqPjspSdEq1CD3thhpdnJRr7WWa81S5lHYM0UYJkDX9Z3jP9XIR-iLzVRjlaC6hkXKH9cqq1NsMgkAJmWk_41IJlZPzKQhjf8DzPJdS9dmTlkMS1YCmU--OIjHJez9KLn6sPnvYUS8sWMgf6F4Qs3U0BPFtblTLk6TRGEnuBhrd2yCUoSsyiRtLvZSjuzjw00gJnGSnZdWk0Tt1QtheIb4BT_TZbse-v11MKwS4RcOQf11xcnQ89NGZFnf_ddod1lst1_oemmyr9H4jkz8B4pI-2Q
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHOCC-FUXCpoDVKASkdhOcLiFapcKsatqS-neIttxKkRIqk1XpTfegRfgWTjxHDwJM0526UqAxC2yxpYTj-35ZibfMPZIhE5IVehAGxORt6oIlE1kIFLteBpaXHeK6I4nyd6hfDOLZ73Djf6F6fghVg432hn-vKYNrk3bkw0QRyaidn5whErJE3GZXYnQlCEN53L_N9de3BW1jSVakQju-8R37P_8Yu-1K8kz96-Zm1cX9Yk-P9NVtW7A-htodINd701HyLq1vskuufoW28xacmY3n85hG_xz56tob7Mf-3OKwlBeM7x2TdsF3fGFQYY_v3xFG-37t4_uPQz7SjgwqhafwecQQDYdZzN4omvIiOTAeVSOByOMvQcCMtwBeBKBv-pKN4cR3o80_NNnMJ1MsCdMyZNP3E9ABCA48UmXcY4Sui7grf_16INFuW7wpn4JGeyu6iJCUwJVaqvaO-xwNHy3uxf0hRsCKxHeBbYwiBqdVJELlUMMYoRzUeGEMDakuKBCIyJB3eEvsC2MSqm4LLhVaYn2DFoRd9lG3dRuk0GSWKkLxwuhrbQloUNJJPixKMtSaztgO8u1y23Pak7FNarcR9d5ml9c6QF7vJI-6dg8_iL3itRgJUMc3L6hmR_n_ZbOyzBxiD8TpVUoC40vZiIjEM_F3KRW4iBbSyXK-4OhzYl8S-EXiOSAba8U64-Tac-Wk9nxWvfPGecHR0OOaFfe-y_p--watvcZnFts43S-cA_Qyjo1D_1W-gWD_x2Y
  priority: 102
  providerName: Wiley-Blackwell
Title Predicting Geostationary 40–150 keV Electron Flux Using ARMAX (an Autoregressive Moving Average Transfer Function), RNN (a Recurrent Neural Network), and Logistic Regression: A Comparison of Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022SW003263
https://www.proquest.com/docview/2818857914
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022SW003263
https://doaj.org/article/f06e26168a804da095b1b364252b9c43
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1542-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024524
  issn: 1542-7390
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1542-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000866621
  issn: 1542-7390
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1542-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024524
  issn: 1542-7390
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLZgXMAN4lcrjOpcwAQaEY7tBoe7bGqZEI2qjrJyFTmOI02EZGpWjd7xDrwAz8IVz7En2bGTVKvEzw13beRYR_EX-zs_-Q4hTzk1XMhMeSpNfRutyjypA-HxUBkWUo3rbjO64zg4nIl388H8SqsvWxPWyAM3D-5VTgODLD-QSlKRKWQEqZ9yZM0DloZaOJ1PKsPOmepU9gZMtGXulIXWw2dHxwhgFvCNA8jp9G-Qy5vL8lStzlVRbNJVd96M7pDbLVGEqDHwLrlmyntkO6pt6Lr6soJdcL-byER9n_yaLGzOxVYxw1tT1U2KXS1WIOjFt-_IyH7--Gw-wrDtewOjYvkVXMUARNNxNIfnqoTIShoY54PjNghjF2-ACPGO-w64gy03CxjhaWinf_ESpnGMd8LUxu2t0hNYuQ80PG7qy3GEKjN47z40OtE4rpm8Kt9ABAfrLohQ5WD7shX1AzIbDT8cHHptmwZPC3TmPJ2l6CMaIX1DpUGPI-XG-JnhPNXUZgElUoYAkcJe4zXq50IykTEtwxzZC3KGh2SrrEqzTSAItFCZYRlXWujc-oLCSt4PeJ7nSuke2evWLtGthrltpVEkLpfOwuTqSvfIs_Xo00a74w_j9i0M1mOs4ra7gDhMWhwm_8Jhj-x0IErabaBOrNSWxCfgix7ZXQPrt8bU550xew51f7U4OToeMvRtxaP_Yfpjcgsnb8s4d8jW2WJpniDVOkv75DoTkz65sT-MJ9O-e8fw3yyeRJ8uAboDJuQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF5BOZQL4lcNFJgDVKBi1V6vF5ubqRICJFGVtjQ3a71eI4Sxq7hR6Y134AX6LD3xHDwJM2vHNBIgcYus2dU6O7M738z4G8ae-K7xRZgpR6WpR9GqzAm1FI4fKcMjV-O-U0Z3PJHDQ_FuFszaPqf0LUzDD9EF3Mgy7HlNBk4B6ZZtgEgyEbbz_SPUSi79q-yakJ4k9MXF3m-yvaDpahsIdCMR3beV7zh-5_LolTvJUvev-Jvri_JYnZ2qolj1YO0VNLjJbrS-I8TNZt9iV0x5m23ENUWzqy9nsAX2dxOsqO-wH3tzSsNQYTO8MVXdZN3xjUG4P799Ryft4vyz-QD9thUODIrFV7BFBBBPx_EMnqkSYmI5MBaW48kIYxuCgBhNAI8isHddbuYwwAuSpn_-AqaTCY6EKYXyifwJiAEEFz5pSs5RQpUZjOy3R580yjWTV-UriGG3a4wIVQ7Uqq2o77LDQf9gd-i0nRscLRDfOTpLETYaEXrGDQ2CkNQ3xsuM76fapcRgiF6EROXhL_GZ6-Ui5CLjOoxydGjQjbjH1sqqNBsMpNRCZYZnvtJC5wQPBbHgB36e50rpHtte7l2iW1pz6q5RJDa9zqPk8k732NNO-rih8_iL3GtSg06GSLjtg2r-MWltOsldaRCAylCFrsgUvljqpT4CuoCnkRY4yeZSiZL2ZKgTYt8K8R_wRI9tdYr1x8XUp8vFbFut--eKk_2jPke4K-7_l_Rjtj48GI-S0dvJ-wfsOsq05ZybbO1kvjAP0eU6SR9Zs_oF6sshBA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSMAF8atuKTAHqEAlIj9OSLiFsqFAN1ptabu3yHFshBqS1aar0hvvwAvwLJx4Dp6EGScbuhIgcVtFY8tZz9jzzUy-YeyhZyuPh4WwRJ47FK0qrFAG3PIiodzIlrjvlNEdpcHuAX879addn1P6Fqblh-gDbmQZ5rwmA1ezQndsA0SSibDd3T9CrXQD7yK7xH28DInamY9_k-35bVdbn6Mbiei-q3zH8c_Oj165kwx1_4q_eWVRzcTZqSjLVQ_WXEHJdXat8x0hbjf7BrugqptsPW4oml1_OoMtML_bYEVzi_0YzykNQ4XN8FrVTZt1xzcGbv_88hWdtO_fjtUhDLtWOJCUi89gigggnoziKTwWFcTEcqAMLMeTEUYmBAExmgAeRWDuOq3mkOAFSdM_eQqTNMWRMKFQPpE_ATGA4MLTtuQcJURVwJ759uijRLl28rp6ATHs9I0RodZArdrK5jY7SIbvd3atrnODJTniO0sWOcJGxUNH2aFCEJJ7SjmF8rxc2pQYDNGLCFB53Of4zHY0D11euDKMNDo06EbcYWtVXal1BkEguSiUW3hCcqkJHnJiwfc9rbUQcsC2l3uXyY7WnLprlJlJr7tRdn6nB-xRLz1r6Tz-IveS1KCXIRJu86Cef8g6m860HSgEoEEoQpsXAl8sd3IPAZ3v5pHkOMnmUomy7mRoMmLfCvEfcPiAbfWK9cfFNKfLxWwbrfvnirP9o6GLcJdv_Jf0A3Z5_CrJ9t6k7-6yqyjSVXNusrWT-ULdQ4_rJL9vrOoXewggkw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BeuDEP2pQQXOACgSubO_G2NxMlVAhElUpoeFkrdfrCtXYUZyolBPvwAvwLJx4Dp6EmV3bahAgJG6WNbvetWdm58_fMPaAu5qLMJOOTFOPolWZE6pAODyS2o9chd-dMrrjSXAwE6_mg_mFf2EsPkQXcCPJMPqaBHyR5VbPN5ADEXnu_tExMqYf8MtsKxigPd5jW7PJYfzOAKUKNB_Rq28q3tsh9ZkdsnEWGcj-DTvzyrpcyPMzWRSblqs5ekbXmGoXbStOTvfWq3RPffoFz_H_dnWdXW0sU4gtK91gl3R5k23HNcXKqw_nsAvm2oZC6lvs--GSkjxUNg0vdVXbnD4-GYT74_MXNAG_fT3Vb2HYNNqBUbH-CKZEAeLpOJ7DI1lCTBgK2jj9qHdhbAIcEKOAoaIDc5LmegkjPH5p-sdPYTqZ4EiYUqKAoKWA8EVw4RNb0I4Usszgtfmz6b1COjt5VT6HGPa7totQ5UCN4Ir6NpuNhm_2D5ymL4SjBHqPjspSdEq1CD3thhpdnJRr7WWa81S5lHYM0UYJkDX9Z3jP9XIR-iLzVRjlaC6hkXKH9cqq1NsMgkAJmWk_41IJlZPzKQhjf8DzPJdS9dmTlkMS1YCmU--OIjHJez9KLn6sPnvYUS8sWMgf6F4Qs3U0BPFtblTLk6TRGEnuBhrd2yCUoSsyiRtLvZSjuzjw00gJnGSnZdWk0Tt1QtheIb4BT_TZbse-v11MKwS4RcOQf11xcnQ89NGZFnf_ddod1lst1_oemmyr9H4jkz8B4pI-2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Geostationary+40%E2%80%93150+keV+Electron+Flux+Using+ARMAX+%28an+Autoregressive+Moving+Average+Transfer+Function%29%2C+RNN+%28a+Recurrent+Neural+Network%29%2C+and+Logistic+Regression%3A+A+Comparison+of+Models&rft.jtitle=Space+Weather&rft.au=Simms%2C+L+E&rft.au=N+Yu+Ganushkina&rft.au=Van+der+Kamp%2C+M&rft.au=Balikhin%2C+M&rft.date=2023-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1539-4964&rft.eissn=1542-7390&rft.volume=21&rft.issue=5&rft_id=info:doi/10.1029%2F2022SW003263&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-7390&client=summon