Pt Nanoparticles Supported on a Dynamic Boronate Ester‐Based G‐quadruplex Hydrogel as a Nanoreactor
Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G‐quadruplex hydrogel as an ideal template for in situ and ‘green chemical’ approach for the synthesis and stabilization of Pt NPs. 11B NMR and FT‐IR spectra reveal the formation of dynamic boronate ester bonds. The TEM im...
Saved in:
Published in | Chemistry, an Asian journal Vol. 16; no. 3; pp. 215 - 223 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-4728 1861-471X 1861-471X |
DOI | 10.1002/asia.202001284 |
Cover
Abstract | Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G‐quadruplex hydrogel as an ideal template for in situ and ‘green chemical’ approach for the synthesis and stabilization of Pt NPs. 11B NMR and FT‐IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G‐quadruplex hydrogel reveal entangled three‐dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G‐quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G′) increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G‐quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G‐quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research.
A guanosine‐rich dynamic boronic ester‐mediated G‐quadruplex (G4) hydrogel which acts as a template for in situ synthesis of Pt NPs without treatment with any external reducing and stabilizing agents is reported. The G‐quadruplex hydrogel‐supported Pt NPs have been used as an effective catalyst for hydrogenation of different aromatic nitro compounds. |
---|---|
AbstractList | Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G‐quadruplex hydrogel as an ideal template for in situ and ‘green chemical’ approach for the synthesis and stabilization of Pt NPs.
11
B NMR and FT‐IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G‐quadruplex hydrogel reveal entangled three‐dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G‐quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G′) increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G‐quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G‐quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research. Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G-quadruplex hydrogel as an ideal template for in situ and 'green chemical' approach for the synthesis and stabilization of Pt NPs. B NMR and FT-IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G-quadruplex hydrogel reveal entangled three-dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G-quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G') increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G-quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G-quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research. Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G‐quadruplex hydrogel as an ideal template for in situ and ‘green chemical’ approach for the synthesis and stabilization of Pt NPs. 11B NMR and FT‐IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G‐quadruplex hydrogel reveal entangled three‐dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G‐quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G′) increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G‐quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G‐quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research. Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G-quadruplex hydrogel as an ideal template for in situ and 'green chemical' approach for the synthesis and stabilization of Pt NPs. 11 B NMR and FT-IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G-quadruplex hydrogel reveal entangled three-dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G-quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G') increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G-quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G-quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research.Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G-quadruplex hydrogel as an ideal template for in situ and 'green chemical' approach for the synthesis and stabilization of Pt NPs. 11 B NMR and FT-IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G-quadruplex hydrogel reveal entangled three-dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G-quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G') increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G-quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G-quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research. Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G‐quadruplex hydrogel as an ideal template for in situ and ‘green chemical’ approach for the synthesis and stabilization of Pt NPs. 11B NMR and FT‐IR spectra reveal the formation of dynamic boronate ester bonds. The TEM images of the G‐quadruplex hydrogel reveal entangled three‐dimensional (3D) crosslink nanofibrillar networks with average diameter of 20 nm. Similarly, AFM images of the hydrogel show dense nanofibrillar assembly with an average height of 6 nm. The in situ generated Pt NPs have been characterized using TEM and XPS techniques. The average size of the nanofiber supported Pt NPs is 1.5 nm. The Pt NPs embedded G‐quadruplex hydrogel shows better mechanical stiffness than the native hydrogel as the storage modulus (G′) increases to 2250 Pa from 317.08 Pa after the in situ generation of Pt NPs. Furthermore, G‐quadruplex hydrogel supported Pt NPs have been used as a catalytic system for hydrogenation reaction of different aromatic nitro compounds in aqueous medium. The use of G‐quadruplex molecular system as a template for the synthesis and stabilization of metal NPs would be an interesting area of research. A guanosine‐rich dynamic boronic ester‐mediated G‐quadruplex (G4) hydrogel which acts as a template for in situ synthesis of Pt NPs without treatment with any external reducing and stabilizing agents is reported. The G‐quadruplex hydrogel‐supported Pt NPs have been used as an effective catalyst for hydrogenation of different aromatic nitro compounds. |
Author | Bhowmik, Sourav Biswas, Ankan Ghosh, Tapas Das, Apurba K. |
Author_xml | – sequence: 1 givenname: Tapas orcidid: 0000-0002-0256-2467 surname: Ghosh fullname: Ghosh, Tapas organization: Indian Institute of Technology Indore – sequence: 2 givenname: Ankan orcidid: 0000-0002-2085-2572 surname: Biswas fullname: Biswas, Ankan organization: Indian Institute of Technology Indore – sequence: 3 givenname: Sourav surname: Bhowmik fullname: Bhowmik, Sourav organization: Indian Institute of Technology Indore – sequence: 4 givenname: Apurba K. orcidid: 0000-0002-8141-6854 surname: Das fullname: Das, Apurba K. email: apurba.das@iiti.ac.in organization: Indian Institute of Technology Indore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33332725$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEURkVJaP667bIIusnGjqTReGaWdpomgZAWkkB2w5XmjlEYS2NJQ-NdH6HP2CeJjBMXDCXa6C7OuRLfd0T2rLNIyGfOxpwxcQbBwFgwwRgXpfxADnk54SNZ8Me97SzKA3IUwhNjuWBV-ZEcZOmIQuSHZP4z0luwrgcfje4w0Luh752P2FBnKdBvKwsLo-nMeWchIr0IEf3f339mEBJzmablAI0f-g6f6dWq8W6OHYWQ3PVij6Cj8ydkv4Uu4KfX-5g8fL-4P78a3fy4vD6f3oy05EyOSiG5KhoFwKsqAyxU2wA2qFrZ5qpVFUouEppr4JBnE6WAtWXWYpUILHR2TE43e3vvlgOGWC9M0Nh1YNENoRYpGjlhlRQJ_bqDPrnB2_S7RJUyRVpkMlFfXqlBLbCpe28W4Ff1W4QJGG8A7V0IHtstwlm97qhed1RvO0qC3BG0iRCNs9GD6f6vVRvtl-lw9c4j9fTuevrPfQFzz6kV |
CitedBy_id | crossref_primary_10_1021_acsabm_3c00582 crossref_primary_10_1021_acsanm_4c00222 crossref_primary_10_1021_acs_langmuir_4c03470 crossref_primary_10_3389_fbioe_2023_1147943 crossref_primary_10_3390_ijms24044224 crossref_primary_10_1021_acs_biomac_3c00433 crossref_primary_10_1016_j_molliq_2024_125034 crossref_primary_10_1016_j_ijbiomac_2024_133460 crossref_primary_10_1021_acsabm_2c00912 crossref_primary_10_1039_D2TB01938H crossref_primary_10_1002_chem_202402687 crossref_primary_10_1039_D3CY00108C crossref_primary_10_1016_j_ccr_2023_215170 crossref_primary_10_1039_D1NA00439E crossref_primary_10_1016_j_jcis_2023_09_191 crossref_primary_10_1016_j_jinorgbio_2025_112843 crossref_primary_10_1021_acsanm_4c00856 crossref_primary_10_1021_acs_langmuir_1c00438 |
Cites_doi | 10.1016/j.biomaterials.2014.04.102 10.1039/C7CS00152E 10.1002/ange.200300589 10.1002/ange.202009332 10.1002/aoc.3048 10.1002/ange.200801000 10.1021/ja1117528 10.1002/adma.201706887 10.1039/C5RA19388E 10.1039/C4CS00363B 10.1039/C7CC09051J 10.1126/science.1546311 10.1039/D0NR01456G 10.1002/anie.200801000 10.1039/C6CS00183A 10.1016/j.arabjc.2017.05.011 10.1021/ja0487269 10.1038/365499a0 10.1021/ma501214k 10.1039/C8CS90006J 10.1039/C5CC05195A 10.1021/acsabm.9b01034 10.1021/acsnano.0c01021 10.1021/jacs.5b02753 10.1021/acsami.7b00957 10.1016/j.apsusc.2018.01.148 10.1016/j.apcatb.2018.09.066 10.1039/c2sm25126d 10.1016/j.biomaterials.2019.119598 10.1039/C7QI00569E 10.1021/la100211y 10.1002/asia.200900010 10.1039/c1jm11605c 10.1039/C9CC02770J 10.1039/C9CS00184K 10.1021/acs.chemrev.6b00221 10.1021/acssuschemeng.7b02610 10.3390/nano8110882 10.1039/b926219a 10.1038/nmat2371 10.1002/adhm.201901329 10.1021/acs.langmuir.9b03837 10.1039/B600282J 10.1002/anie.200300589 10.1016/j.fuel.2011.06.005 10.1039/C7CC03118A 10.1002/anie.202009332 10.1038/nnano.2007.460 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.202001284 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | 223 |
ExternalDocumentID | 33332725 10_1002_asia_202001284 ASIA202001284 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: CSIR, New Delhi, Government of India funderid: 01(2936)/18/EMR-II – fundername: DST Inspire Fellowship, Government of India – fundername: SERB, Government of India – fundername: SIC, IIT – fundername: Indian Institute of Technology Indore and Overseas Visiting Doctoral Fellowship (OVDF) – fundername: SAIF, IIT Bombay – fundername: IIC – fundername: IIT Roorkee – fundername: CSIR, New Delhi, Government of India grantid: 01(2936)/18/EMR-II |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HF~ HVGLF LH4 NPM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-8241b7dbaa1993ae7bfdaedebf4f5bfb9e412c415ca1a536bba0f83fe9bf4e7c3 |
ISSN | 1861-4728 1861-471X |
IngestDate | Fri Jul 11 04:36:29 EDT 2025 Mon Jun 30 10:18:19 EDT 2025 Wed Feb 19 02:29:53 EST 2025 Tue Jul 01 00:53:32 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Jan 22 16:31:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Pt NPs Catalysis G-quadruplex Nanoreactor |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4104-8241b7dbaa1993ae7bfdaedebf4f5bfb9e412c415ca1a536bba0f83fe9bf4e7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0256-2467 0000-0002-2085-2572 0000-0002-8141-6854 |
PMID | 33332725 |
PQID | 2484200734 |
PQPubID | 986338 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2471460942 proquest_journals_2484200734 pubmed_primary_33332725 crossref_primary_10_1002_asia_202001284 crossref_citationtrail_10_1002_asia_202001284 wiley_primary_10_1002_asia_202001284_ASIA202001284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 440 2004 2004; 43 116 2015; 5 2004; 126 2015; 51 2019; 55 2010; 39 2017; 46 2020 2020; 59 132 2014; 47 2020; 36 2020; 14 2020; 12 2008; 3 2014; 28 2008 2008; 47 120 2017; 9 2011; 133 2007; 36 2019; 241 1993; 365 2018; 47 2018; 6 2017; 53 2018; 8 2010; 26 2020; 3 2018; 5 2015; 137 2011; 90 2020; 230 1992; 255 2015; 44 2019; 48 2020; 9 2011; 21 2009; 8 2014; 35 2018; 30 2016; 116 2009; 4 2014; 9 2018; 54 2019; 112 2016; 45 2012; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 Iravani S. (e_1_2_7_8_1) 2014; 9 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_46_2 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 1052 year: 2020 end-page: 1060 publication-title: ACS Appl. Bio Mater. – volume: 8 start-page: 882 year: 2018 publication-title: Nanomaterials – volume: 9 start-page: 385 year: 2014 end-page: 406 publication-title: Res Pharm Sci. – volume: 241 start-page: 415 year: 2019 end-page: 423 publication-title: Appl. Catal. B – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 230 year: 2020 publication-title: Biomaterials – volume: 8 start-page: 132 year: 2009 end-page: 138 publication-title: Nat. Mater. – volume: 46 start-page: 4951 year: 2017 end-page: 4975 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 81 year: 2008 end-page: 87 publication-title: Nature Nanotech. – volume: 35 start-page: 7535 year: 2014 end-page: 7542 publication-title: Biomaterials – volume: 440 start-page: 680 year: 2018 end-page: 687 publication-title: Appl. Surf. Sci. – volume: 90 start-page: 3433 year: 2011 end-page: 3438 publication-title: Fuel – volume: 51 start-page: 15862 year: 2015 end-page: 15865 publication-title: Chem. Commun. – volume: 112 start-page: 908 year: 2019 end-page: 931 publication-title: Arabian J. Chem. – volume: 137 start-page: 5819 year: 2015 end-page: 5827 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 840 year: 2009 end-page: 848 publication-title: Chem. Asian J. – volume: 9 start-page: 13056 year: 2017 end-page: 13067 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 5301 year: 2012 end-page: 5308 publication-title: Soft Matter – volume: 55 start-page: 7922 year: 2019 end-page: 7925 publication-title: Chem. Commun. – volume: 365 start-page: 499 year: 1993 end-page: 505 publication-title: Nature – volume: 255 start-page: 1098 year: 1992 end-page: 1105 publication-title: Science – volume: 47 120 start-page: 5746 5830 year: 2008 2008 end-page: 5749 5833 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 5778 year: 2015 end-page: 5792 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 296 year: 2007 end-page: 313 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 1574 year: 2020 end-page: 1584 publication-title: Langmuir – volume: 28 start-page: 1 year: 2014 end-page: 17 publication-title: Appl. Organomet. Chem. – volume: 54 start-page: 1778 year: 2018 end-page: 1781 publication-title: Chem. Commun. – volume: 47 start-page: 6028 year: 2014 end-page: 6036 publication-title: Macromolecules – volume: 133 start-page: 4718 year: 2011 end-page: 4721 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 11967 year: 2016 end-page: 12028 publication-title: Chem. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 48 start-page: 3513 year: 2019 end-page: 3536 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 233 year: 2018 end-page: 257 publication-title: Inorg. Chem. Front. – volume: 53 start-page: 6235 year: 2017 end-page: 6238 publication-title: Chem. Commun. – volume: 14 start-page: 5874 year: 2020 end-page: 5886 publication-title: ACS Nano – volume: 5 start-page: 105003 year: 2015 end-page: 105037 publication-title: RSC Adv. – volume: 12 start-page: 10456 year: 2020 end-page: 10473 publication-title: Nanoscale – volume: 26 start-page: 10093 year: 2010 end-page: 10101 publication-title: Langmuir – volume: 21 start-page: 12579 year: 2011 end-page: 12587 publication-title: J. Mater. Chem. – volume: 59 132 start-page: 18768 18927 year: 2020 2020 end-page: 18773 18932 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 start-page: 3686 year: 2010 end-page: 3699 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 364 year: 2018 end-page: 373 publication-title: ACS Sustainable Chem. Eng. – volume: 126 start-page: 10076 year: 2004 end-page: 10084 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 668 684 year: 2004 2004 end-page: 698 716 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 1132 year: 2018 end-page: 1132 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 3188 year: 2016 end-page: 3206 publication-title: Chem. Soc. Rev. – ident: e_1_2_7_38_1 doi: 10.1016/j.biomaterials.2014.04.102 – ident: e_1_2_7_7_1 doi: 10.1039/C7CS00152E – ident: e_1_2_7_17_2 doi: 10.1002/ange.200300589 – ident: e_1_2_7_28_2 doi: 10.1002/ange.202009332 – ident: e_1_2_7_6_1 doi: 10.1002/aoc.3048 – ident: e_1_2_7_46_2 doi: 10.1002/ange.200801000 – ident: e_1_2_7_5_1 doi: 10.1021/ja1117528 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201706887 – ident: e_1_2_7_9_1 doi: 10.1039/C5RA19388E – ident: e_1_2_7_10_1 doi: 10.1039/C4CS00363B – ident: e_1_2_7_25_1 doi: 10.1039/C7CC09051J – ident: e_1_2_7_34_1 doi: 10.1126/science.1546311 – ident: e_1_2_7_12_1 doi: 10.1039/D0NR01456G – ident: e_1_2_7_46_1 doi: 10.1002/anie.200801000 – ident: e_1_2_7_16_1 doi: 10.1039/C6CS00183A – ident: e_1_2_7_1_1 doi: 10.1016/j.arabjc.2017.05.011 – ident: e_1_2_7_35_1 doi: 10.1021/ja0487269 – volume: 9 start-page: 385 year: 2014 ident: e_1_2_7_8_1 publication-title: Res Pharm Sci. – ident: e_1_2_7_33_1 doi: 10.1038/365499a0 – ident: e_1_2_7_45_1 doi: 10.1021/ma501214k – ident: e_1_2_7_40_1 doi: 10.1039/C8CS90006J – ident: e_1_2_7_11_1 doi: 10.1039/C5CC05195A – ident: e_1_2_7_24_1 doi: 10.1021/acsabm.9b01034 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.0c01021 – ident: e_1_2_7_20_1 doi: 10.1021/jacs.5b02753 – ident: e_1_2_7_30_1 doi: 10.1021/acsami.7b00957 – ident: e_1_2_7_43_1 doi: 10.1016/j.apsusc.2018.01.148 – ident: e_1_2_7_15_1 doi: 10.1016/j.apcatb.2018.09.066 – ident: e_1_2_7_37_1 doi: 10.1039/c2sm25126d – ident: e_1_2_7_22_1 doi: 10.1016/j.biomaterials.2019.119598 – ident: e_1_2_7_41_1 doi: 10.1039/C7QI00569E – ident: e_1_2_7_19_1 doi: 10.1021/la100211y – ident: e_1_2_7_14_1 doi: 10.1002/asia.200900010 – ident: e_1_2_7_2_1 doi: 10.1039/c1jm11605c – ident: e_1_2_7_27_1 doi: 10.1039/C9CC02770J – ident: e_1_2_7_29_1 doi: 10.1039/C9CS00184K – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemrev.6b00221 – ident: e_1_2_7_42_1 doi: 10.1021/acssuschemeng.7b02610 – ident: e_1_2_7_44_1 doi: 10.3390/nano8110882 – ident: e_1_2_7_32_1 doi: 10.1039/b926219a – ident: e_1_2_7_3_1 doi: 10.1038/nmat2371 – ident: e_1_2_7_21_1 doi: 10.1002/adhm.201901329 – ident: e_1_2_7_23_1 doi: 10.1021/acs.langmuir.9b03837 – ident: e_1_2_7_18_1 doi: 10.1039/B600282J – ident: e_1_2_7_17_1 doi: 10.1002/anie.200300589 – ident: e_1_2_7_4_1 doi: 10.1016/j.fuel.2011.06.005 – ident: e_1_2_7_31_1 doi: 10.1039/C7CC03118A – ident: e_1_2_7_28_1 doi: 10.1002/anie.202009332 – ident: e_1_2_7_39_1 doi: 10.1038/nnano.2007.460 |
SSID | ssj0052098 |
Score | 2.4020245 |
Snippet | Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G‐quadruplex hydrogel as an ideal template for in situ and ‘green chemical’... Herein, we have reported a dynamic boronic ester mediated guanosine (G) based G-quadruplex hydrogel as an ideal template for in situ and 'green chemical'... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 215 |
SubjectTerms | Aqueous solutions Aromatic compounds Catalysis Chemical synthesis Chemistry Diameters G-quadruplex Hydrogels Infrared spectroscopy Nanofibers Nanoparticles Nanoreactor Nitro compounds NMR Nuclear magnetic resonance Platinum Pt NPs Stabilization Stiffness Storage modulus |
Title | Pt Nanoparticles Supported on a Dynamic Boronate Ester‐Based G‐quadruplex Hydrogel as a Nanoreactor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202001284 https://www.ncbi.nlm.nih.gov/pubmed/33332725 https://www.proquest.com/docview/2484200734 https://www.proquest.com/docview/2471460942 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1861-471X dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0052098 issn: 1861-4728 databaseCode: ABDBF dateStart: 20120615 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAviPsKAxkJwUOV0TjO7bFl7QoaY9JaqW-RnTjbREm6tmHAEz-BX8SP4Zdw7NhJqnEZ9CFKHCd2fb7Y5xyfC0LPAm4DW8x6Fo8pt6gjelYQeNziDOidUFswtaP79tAbT-mbmTtrtb43rJaKNd-Nv_zSr-R_qAplQFfpJfsPlK1eCgVwDvSFI1AYjlei8dFazo4g9mrrtq7M0SmtZxO5B8C6e2W6-e5AhikAprI7VHk4jH3DAFawpLtfXZ8XLFkWi7n41B1_Tpb5iZjLNDRMNQLMZVxGJq4jG5hkcaUJKJD6TKv1Tc-lYc9pvlKqmwksyw2d_OqidCXrZ-9rgA5O84sPZ2qCPobXsI-1Ir2svCiWnGnVrNZVENuYN195RmzMxIEHwq2vPcdFs0zl2Kmnb68BU2djLnYbyzop3ZovrRhlBFrpsboLPVY7i7ReG409wOG7aDQ9OIgmw9nk-eLcklnL5O6-TuFyDW0R3_NIG231B3uDkeEFpI2RcsY0f8aEDe2Rl5tNbrJFl2SdTdFJ8T6TW-imFlpwv4TZbdQS2R10vSL_XXRytMYbSMQVEnGeYYY1ErFBIlZI_PH1m8Ig3oezGn3YoA-zFTzbQN89NB0NJ6_Glk7hYcUUBH0rAAaR-wlnTBqKMuHzNGEiETylqctTHgpqE6jqxsxmruNxznpp4KQihBrCj537qJ3lmdhGOCS-YMx3PBAhaBKTIPS5F_MARPDATkPRQZYZwSjW8e1lmpV5VEbmJpEc8aga8Q56UdVflJFdfltzxxAk0t_QKiI0oFLP78Dtp9VtGHa54cYykReyjg-MSC-kpIMelISsmnLgR3zidhBRlP1LH6L-8et-dfXwzz16hG7UX98Oaq-XhXgMvPOaP9EA_Qkzj8WP |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pt+Nanoparticles+Supported+on+a+Dynamic+Boronate+Ester%E2%80%90Based+G%E2%80%90quadruplex+Hydrogel+as+a+Nanoreactor&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Ghosh%2C+Tapas&rft.au=Biswas%2C+Ankan&rft.au=Bhowmik%2C+Sourav&rft.au=Das%2C+Apurba+K&rft.date=2021-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1861-4728&rft.eissn=1861-471X&rft.volume=16&rft.issue=3&rft.spage=215&rft.epage=223&rft_id=info:doi/10.1002%2Fasia.202001284&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |