Technical Note: Ontology‐guided radiomics analysis workflow (O‐RAW)

Purpose Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 46; no. 12; pp. 5677 - 5684
Main Authors Shi, Zhenwei, Traverso, Alberto, Soest, Johan, Dekker, Andre, Wee, Leonard
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.13844

Cover

Abstract Purpose Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are semantically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpolation parameters). These barriers hamper multicenter validation studies applying subtly different imaging protocols, preprocessing steps and radiomics software. We propose an open‐source ontology‐guided radiomics analysis workflow (O‐RAW) to address the above challenges in the following manner: (a) distributing a free and open‐source software package for radiomics analysis, (b) deploying a standard lexicon to uniquely describe features in common usage and (c) provide methods to publish radiomic features as a semantically interoperable data graph object complying to FAIR (findable accessible interoperable reusable) data principles. Methods O‐RAW was developed in Python, and has three major modules using open‐source component libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes standard DICOM‐RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file) and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of interest (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction procedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary as a W3C‐compliant Semantic Web “triple store” (i.e., list of subject‐predicate‐object statements) with relevant semantic meta‐labels drawn from the radiation oncology ontology and radiomics ontology. The output can be published on an SPARQL endpoint, and can be remotely examined via SPARQL queries or to a comma separated file for further analysis. Results We showed that O‐RAW executed efficiently on four datasets with different modalities, RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP laptop running Windows 7 operating system and 8GB RAM on which we noted execution time including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single VOI, batch‐processing of feature extraction (105 basic features in PyRadiomics), and the conversion to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case, taking images from a public repository and publishing the radiomics results as FAIR data in this study on www.radiomics.org. Finally, we provided a practical instance to show how a user could query radiomic features and track the calculation details based on the RDF graph object created by O‐RAW via a simple SPARQL query. Conclusions We implemented O‐RAW for FAIR radiomics analysis, and successfully published radiomic features from DICOM‐RT objects as semantic web triples. Its practicability and flexibility can greatly increase the development of radiomics research and ease transfer to clinical practice.
AbstractList Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are semantically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpolation parameters). These barriers hamper multicenter validation studies applying subtly different imaging protocols, preprocessing steps and radiomics software. We propose an open-source ontology-guided radiomics analysis workflow (O-RAW) to address the above challenges in the following manner: (a) distributing a free and open-source software package for radiomics analysis, (b) deploying a standard lexicon to uniquely describe features in common usage and (c) provide methods to publish radiomic features as a semantically interoperable data graph object complying to FAIR (findable accessible interoperable reusable) data principles.PURPOSERadiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are semantically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpolation parameters). These barriers hamper multicenter validation studies applying subtly different imaging protocols, preprocessing steps and radiomics software. We propose an open-source ontology-guided radiomics analysis workflow (O-RAW) to address the above challenges in the following manner: (a) distributing a free and open-source software package for radiomics analysis, (b) deploying a standard lexicon to uniquely describe features in common usage and (c) provide methods to publish radiomic features as a semantically interoperable data graph object complying to FAIR (findable accessible interoperable reusable) data principles.O-RAW was developed in Python, and has three major modules using open-source component libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes standard DICOM-RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file) and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of interest (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction procedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary as a W3C-compliant Semantic Web "triple store" (i.e., list of subject-predicate-object statements) with relevant semantic meta-labels drawn from the radiation oncology ontology and radiomics ontology. The output can be published on an SPARQL endpoint, and can be remotely examined via SPARQL queries or to a comma separated file for further analysis.METHODSO-RAW was developed in Python, and has three major modules using open-source component libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes standard DICOM-RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file) and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of interest (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction procedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary as a W3C-compliant Semantic Web "triple store" (i.e., list of subject-predicate-object statements) with relevant semantic meta-labels drawn from the radiation oncology ontology and radiomics ontology. The output can be published on an SPARQL endpoint, and can be remotely examined via SPARQL queries or to a comma separated file for further analysis.We showed that O-RAW executed efficiently on four datasets with different modalities, RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP laptop running Windows 7 operating system and 8GB RAM on which we noted execution time including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single VOI, batch-processing of feature extraction (105 basic features in PyRadiomics), and the conversion to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case, taking images from a public repository and publishing the radiomics results as FAIR data in this study on www.radiomics.org. Finally, we provided a practical instance to show how a user could query radiomic features and track the calculation details based on the RDF graph object created by O-RAW via a simple SPARQL query.RESULTSWe showed that O-RAW executed efficiently on four datasets with different modalities, RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP laptop running Windows 7 operating system and 8GB RAM on which we noted execution time including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single VOI, batch-processing of feature extraction (105 basic features in PyRadiomics), and the conversion to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case, taking images from a public repository and publishing the radiomics results as FAIR data in this study on www.radiomics.org. Finally, we provided a practical instance to show how a user could query radiomic features and track the calculation details based on the RDF graph object created by O-RAW via a simple SPARQL query.We implemented O-RAW for FAIR radiomics analysis, and successfully published radiomic features from DICOM-RT objects as semantic web triples. Its practicability and flexibility can greatly increase the development of radiomics research and ease transfer to clinical practice.CONCLUSIONSWe implemented O-RAW for FAIR radiomics analysis, and successfully published radiomic features from DICOM-RT objects as semantic web triples. Its practicability and flexibility can greatly increase the development of radiomics research and ease transfer to clinical practice.
Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are semantically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpolation parameters). These barriers hamper multicenter validation studies applying subtly different imaging protocols, preprocessing steps and radiomics software. We propose an open-source ontology-guided radiomics analysis workflow (O-RAW) to address the above challenges in the following manner: (a) distributing a free and open-source software package for radiomics analysis, (b) deploying a standard lexicon to uniquely describe features in common usage and (c) provide methods to publish radiomic features as a semantically interoperable data graph object complying to FAIR (findable accessible interoperable reusable) data principles. O-RAW was developed in Python, and has three major modules using open-source component libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes standard DICOM-RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file) and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of interest (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction procedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary as a W3C-compliant Semantic Web "triple store" (i.e., list of subject-predicate-object statements) with relevant semantic meta-labels drawn from the radiation oncology ontology and radiomics ontology. The output can be published on an SPARQL endpoint, and can be remotely examined via SPARQL queries or to a comma separated file for further analysis. We showed that O-RAW executed efficiently on four datasets with different modalities, RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP laptop running Windows 7 operating system and 8GB RAM on which we noted execution time including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single VOI, batch-processing of feature extraction (105 basic features in PyRadiomics), and the conversion to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case, taking images from a public repository and publishing the radiomics results as FAIR data in this study on www.radiomics.org. Finally, we provided a practical instance to show how a user could query radiomic features and track the calculation details based on the RDF graph object created by O-RAW via a simple SPARQL query. We implemented O-RAW for FAIR radiomics analysis, and successfully published radiomic features from DICOM-RT objects as semantic web triples. Its practicability and flexibility can greatly increase the development of radiomics research and ease transfer to clinical practice.
Purpose Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are semantically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpolation parameters). These barriers hamper multicenter validation studies applying subtly different imaging protocols, preprocessing steps and radiomics software. We propose an open‐source ontology‐guided radiomics analysis workflow (O‐RAW) to address the above challenges in the following manner: (a) distributing a free and open‐source software package for radiomics analysis, (b) deploying a standard lexicon to uniquely describe features in common usage and (c) provide methods to publish radiomic features as a semantically interoperable data graph object complying to FAIR (findable accessible interoperable reusable) data principles. Methods O‐RAW was developed in Python, and has three major modules using open‐source component libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes standard DICOM‐RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file) and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of interest (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction procedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary as a W3C‐compliant Semantic Web “triple store” (i.e., list of subject‐predicate‐object statements) with relevant semantic meta‐labels drawn from the radiation oncology ontology and radiomics ontology. The output can be published on an SPARQL endpoint, and can be remotely examined via SPARQL queries or to a comma separated file for further analysis. Results We showed that O‐RAW executed efficiently on four datasets with different modalities, RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP laptop running Windows 7 operating system and 8GB RAM on which we noted execution time including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single VOI, batch‐processing of feature extraction (105 basic features in PyRadiomics), and the conversion to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case, taking images from a public repository and publishing the radiomics results as FAIR data in this study on www.radiomics.org. Finally, we provided a practical instance to show how a user could query radiomic features and track the calculation details based on the RDF graph object created by O‐RAW via a simple SPARQL query. Conclusions We implemented O‐RAW for FAIR radiomics analysis, and successfully published radiomic features from DICOM‐RT objects as semantic web triples. Its practicability and flexibility can greatly increase the development of radiomics research and ease transfer to clinical practice.
Author Traverso, Alberto
Shi, Zhenwei
Soest, Johan
Wee, Leonard
Dekker, Andre
AuthorAffiliation 1 Department of Radiation Oncology (MAASTRO) GROW – School for Oncology and Development Biology Maastricht University Medical Centre+ Maastricht 6229 ET The Netherlands
AuthorAffiliation_xml – name: 1 Department of Radiation Oncology (MAASTRO) GROW – School for Oncology and Development Biology Maastricht University Medical Centre+ Maastricht 6229 ET The Netherlands
Author_xml – sequence: 1
  givenname: Zhenwei
  surname: Shi
  fullname: Shi, Zhenwei
  email: zhenwei.shi@maastro.nl
  organization: Maastricht University Medical Centre+
– sequence: 2
  givenname: Alberto
  surname: Traverso
  fullname: Traverso, Alberto
  organization: Maastricht University Medical Centre+
– sequence: 3
  givenname: Johan
  surname: Soest
  fullname: Soest, Johan
  organization: Maastricht University Medical Centre+
– sequence: 4
  givenname: Andre
  surname: Dekker
  fullname: Dekker, Andre
  organization: Maastricht University Medical Centre+
– sequence: 5
  givenname: Leonard
  surname: Wee
  fullname: Wee, Leonard
  organization: Maastricht University Medical Centre+
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31580484$$D View this record in MEDLINE/PubMed
BookMark eNp9kM1u1DAURq2qiE4HJJ4AZdkuMtz4b5wuKo2qUpAGBqEilpbjOFO3jp3GSUfZ8Qh9xj4JM0yhFLWs7uKe79yrbx_t-uANQm8ymGQA-F3dTDIiKN1BI0ynJKUY8l00AshpiimwPbQf4yUAcMLgJdojGRNABR2hs3OjL7zVyiWfQ2eOkoXvggvL4e7H7bK3pSmTVpU21FbHRHnlhmhjsgrtVeXCKjlYrLmvs--Hr9CLSrloXt_PMfr2_vT85EM6X5x9PJnNU00zoCnJi0IJgIpqXpQ5E0zzEvPpVJWGCg0lZnqqOBhTEZILKATmwITmpsKK45yM0eHW2_tGDSvlnGxaW6t2kBnITRmybuSvMtbs8ZZt-qI2pTa-a9UDH5SVjzfeXshluJE8zzjBZC04uBe04bo3sZO1jdo4p7wJfZSYALBcML5B3_5968-R300_uHQbYmxN9b-_J_-g2naqs2HzpXVPBdJtYGWdGZ4Vy09ftvxPzg-s5A
CitedBy_id crossref_primary_10_1016_j_acra_2023_05_026
crossref_primary_10_1186_s41747_023_00326_z
crossref_primary_10_1109_TRPMS_2021_3113860
crossref_primary_10_1007_s10278_021_00527_1
crossref_primary_10_1007_s11042_022_11936_x
crossref_primary_10_1016_j_nicl_2021_102744
crossref_primary_10_1186_s12967_024_04891_8
crossref_primary_10_1371_journal_pone_0304350
crossref_primary_10_1016_j_phro_2021_09_007
crossref_primary_10_1038_s41597_023_02641_x
crossref_primary_10_1186_s41747_022_00281_1
crossref_primary_10_1016_j_radonc_2021_05_002
crossref_primary_10_1016_j_ijrobp_2022_08_047
crossref_primary_10_1093_bjrai_ubae005
crossref_primary_10_2196_24278
crossref_primary_10_1186_s13244_023_01500_y
crossref_primary_10_3389_fcvm_2022_870132
crossref_primary_10_1088_1361_6560_ac16c0
crossref_primary_10_3390_cancers15020351
crossref_primary_10_1002_med_21846
crossref_primary_10_1177_17085381221091061
crossref_primary_10_2139_ssrn_4852168
crossref_primary_10_1016_j_ejmp_2020_02_010
crossref_primary_10_1007_s11547_023_01710_w
crossref_primary_10_12688_f1000research_129826_1
crossref_primary_10_3390_cancers15113026
crossref_primary_10_1016_j_ejrad_2021_109956
crossref_primary_10_1016_j_radonc_2020_10_023
crossref_primary_10_1002_mp_14322
crossref_primary_10_3390_a18020086
crossref_primary_10_1007_s12262_022_03506_0
crossref_primary_10_3390_biotech13030034
crossref_primary_10_1148_radiol_2021202553
crossref_primary_10_18632_aging_203850
crossref_primary_10_3390_biology12020213
crossref_primary_10_1186_s13014_025_02583_1
crossref_primary_10_1186_s13027_023_00495_x
crossref_primary_10_1038_s41598_022_16520_9
crossref_primary_10_1038_s41598_021_96600_4
crossref_primary_10_1136_jitc_2023_008355
crossref_primary_10_62347_GUWV5636
Cites_doi 10.1158/0008-5472.CAN-18-0125
10.1002/mp.13046
10.1038/nrclinonc.2010.227
10.1002/mp.12879
10.1016/j.ctro.2016.12.004
10.1016/j.ijrobp.2006.12.067
10.1158/0008-5472.CAN-17-0339
10.1016/j.radonc.2018.11.021
10.3389/fninf.2012.00012
10.1038/ncomms5006
10.3109/0284186X.2015.1061214
10.1148/radiol.2522081593
10.1016/j.mri.2012.06.010
10.1118/1.4908210
10.1038/nrclinonc.2012.196
10.1016/j.ejca.2011.11.036
10.1016/j.cmpb.2008.08.005
10.1200/JCO.2015.65.9128
10.1016/j.radonc.2016.10.002
10.2307/1932409
10.1038/sdata.2016.18
10.1038/srep11044
10.1016/j.radonc.2015.02.015
10.21037/tcr.2016.07.11
10.1007/s11307-016-0973-6
10.1038/nrclinonc.2017.141
10.1016/j.radonc.2016.04.004
10.1016/S1470-2045(15)00040-6
10.1016/j.ijrobp.2017.04.021
10.1053/j.semnuclmed.2019.06.005
ContentType Journal Article
Copyright 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine
2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Copyright_xml – notice: 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine
– notice: 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.13844
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Ontology‐guided radiomics workflow
EISSN 2473-4209
EndPage 5684
ExternalDocumentID 10.1002/mp.13844
PMC6916323
31580484
10_1002_mp_13844
MP13844
Genre technicalNote
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
24P
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4104-39bba800f4c6bd9585c6d2677ade48c0d25c7a60eef33980b826058c6ef2a6293
IEDL.DBID 24P
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Wed Oct 01 15:39:44 EDT 2025
Tue Sep 30 16:31:29 EDT 2025
Thu Sep 04 19:24:14 EDT 2025
Thu Apr 03 07:07:13 EDT 2025
Wed Oct 01 04:33:02 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Wed Jan 22 16:36:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords radiomics
software
semantic web
FAIR data
ontology
Language English
License Attribution
2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-39bba800f4c6bd9585c6d2677ade48c0d25c7a60eef33980b826058c6ef2a6293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13844
PMID 31580484
PQID 2300598563
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_mp_13844
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6916323
proquest_miscellaneous_2300598563
pubmed_primary_31580484
crossref_primary_10_1002_mp_13844
crossref_citationtrail_10_1002_mp_13844
wiley_primary_10_1002_mp_13844_MP13844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2019
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2015; 5
2015; 16
2017; 4
2015; 54
2016; 121
2009; 252
2018; 45
2016; 18
2011; 8
2012; 30
2016; 34
2016; 5
2014; 5
2016; 3
2013; 10
2017; 14
2016; 119
2009; 94
2015; 114
2017; 99
2017; 77
2015; 42
1945; 26
2019; 49
2018
2017
2016
2012; 48
2012; 6
2018; 78
2007; 68
2019; 131
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Shi Z (e_1_2_7_21_1) 2017
Traverso A (e_1_2_7_26_1) 2017
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
Traverso A (e_1_2_7_31_1) 2018
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – volume: 30
  start-page: 1234
  year: 2012
  end-page: 1248
  article-title: Radiomics: the process and the challenges
  publication-title: Magn Reson Imaging
– volume: 119
  start-page: 480
  year: 2016
  end-page: 486
  article-title: Radiomic phenotype features predict pathological response in non‐small cell lung cancer
  publication-title: Radiother Oncol
– volume: 99
  start-page: 344
  year: 2017
  end-page: 352
  article-title: Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 5
  start-page: 11044
  year: 2015
  article-title: Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer
  publication-title: Sci Rep
– volume: 68
  start-page: 771
  year: 2007
  end-page: 778
  article-title: pet‐ct–based auto‐contouring in non–small‐cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 6
  start-page: 12
  year: 2012
  article-title: PyXNAT: XNAT in python
  publication-title: Front Neuroinform
– volume: 49
  start-page: 438
  year: 2019
  end-page: 449
  article-title: Radiomics analysis for clinical decision support in nuclear medicine
  publication-title: Semin Nucl Med
– volume: 5
  start-page: 4006
  year: 2014
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 8
  start-page: 184
  year: 2011
  article-title: Predictive, personalized, preventive, participatory (P4) cancer medicine
  publication-title: Nat Rev Clin Oncol
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 78
  start-page: 4786
  year: 2018
  end-page: 4789
  article-title: LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity
  publication-title: Can Res
– volume: 121
  start-page: 459
  year: 2016
  end-page: 467
  article-title: Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital–A real life proof of concept
  publication-title: Radiother Oncol
– year: 2016
– year: 2018
– volume: 10
  start-page: 27
  year: 2013
  end-page: 40
  article-title: Predicting outcomes in radiation oncology—multifactorial decision support systems
  publication-title: Nat Rev Clin Oncol
– volume: 94
  start-page: 66
  year: 2009
  end-page: 76
  article-title: MaZda—a software package for image texture analysis
  publication-title: Comput Methods Programs Biomed
– volume: 5
  start-page: 349
  year: 2016
  end-page: 363
  article-title: Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non‐small cell lung cancer
  publication-title: Transl Cancer Res
– volume: 45
  start-page: e854
  year: 2018
  end-page: e862
  article-title: The radiation oncology ontology (ROO): publishing linked data in radiation oncology using semantic web and ontology techniques
  publication-title: Med Phys
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 18
  start-page: 935
  year: 2016
  end-page: 945
  article-title: Robustness of radiomic features in [11 C] Choline and [18 F] FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization
  publication-title: Mol Imag Biol
– volume: 4
  start-page: 24
  year: 2017
  end-page: 31
  article-title: Infrastructure and distributed learning methodology for privacy‐preserving multi‐centric rapid learning health care: euroCAT
  publication-title: Clin Transl Radiat Oncol
– volume: 16
  start-page: 1090
  year: 2015
  end-page: 1098
  article-title: Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long‐term results of a randomised controlled trial
  publication-title: Lancet Oncol
– volume: 42
  start-page: 1341
  year: 2015
  end-page: 1353
  article-title: IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics
  publication-title: Med Phys
– volume: 114
  start-page: 345
  year: 2015
  end-page: 350
  article-title: CT‐based radiomic signature predicts distant metastasis in lung adenocarcinoma
  publication-title: Radiother Oncol
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Can Res
– volume: 48
  start-page: 441
  year: 2012
  end-page: 446
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
– volume: 54
  start-page: 1423
  year: 2015
  end-page: 1429
  article-title: External validation of a prognostic CT‐based radiomic signature in oropharyngeal squamous cell carcinoma
  publication-title: Acta Oncol
– volume: 3
  start-page: 160018
  year: 2016
  article-title: Guiding principles for scientific data management and stewardship
  publication-title: Scientific data
– volume: 45
  start-page: 3713
  year: 2018
  end-page: 3720
  article-title: Extension of CERR for computational radiomics: a comprehensive MATLAB platform for reproducible radiomics research
  publication-title: Med Phys
– year: 2017
– volume: 34
  start-page: 2157
  year: 2016
  end-page: 2164
  article-title: Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer
  publication-title: J Clin Oncol
– volume: 131
  start-page: 108
  year: 2019
  end-page: 111
  article-title: MITK Phenotyping: an open‐source toolchain for image‐based personalized medicine with radiomics
  publication-title: Radiother Oncol
– volume: 252
  start-page: 263
  year: 2009
  end-page: 272
  article-title: Evaluating variability in tumor measurements from same‐day repeat CT scans of patients with non–small cell lung cancer
  publication-title: Radiology
– ident: e_1_2_7_32_1
  doi: 10.1158/0008-5472.CAN-18-0125
– ident: e_1_2_7_25_1
  doi: 10.1002/mp.13046
– ident: e_1_2_7_3_1
  doi: 10.1038/nrclinonc.2010.227
– ident: e_1_2_7_28_1
  doi: 10.1002/mp.12879
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ctro.2016.12.004
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijrobp.2006.12.067
– ident: e_1_2_7_20_1
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: e_1_2_7_22_1
  doi: 10.1016/j.radonc.2018.11.021
– ident: e_1_2_7_27_1
  doi: 10.3389/fninf.2012.00012
– volume-title: RadiomicsOntologyIBSI
  year: 2018
  ident: e_1_2_7_31_1
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms5006
– ident: e_1_2_7_11_1
  doi: 10.3109/0284186X.2015.1061214
– ident: e_1_2_7_17_1
  doi: 10.1148/radiol.2522081593
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mri.2012.06.010
– ident: e_1_2_7_24_1
  doi: 10.1118/1.4908210
– ident: e_1_2_7_2_1
  doi: 10.1038/nrclinonc.2012.196
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ejca.2011.11.036
– ident: e_1_2_7_23_1
  doi: 10.1016/j.cmpb.2008.08.005
– ident: e_1_2_7_9_1
  doi: 10.1200/JCO.2015.65.9128
– ident: e_1_2_7_30_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.radonc.2016.10.002
– ident: e_1_2_7_29_1
  doi: 10.2307/1932409
– ident: e_1_2_7_13_1
  doi: 10.1038/sdata.2016.18
– ident: e_1_2_7_12_1
  doi: 10.1038/srep11044
– volume-title: Radiomics Ontology
  year: 2017
  ident: e_1_2_7_26_1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.radonc.2015.02.015
– ident: e_1_2_7_34_1
  doi: 10.21037/tcr.2016.07.11
– ident: e_1_2_7_35_1
  doi: 10.1007/s11307-016-0973-6
– ident: e_1_2_7_7_1
  doi: 10.1038/nrclinonc.2017.141
– ident: e_1_2_7_10_1
  doi: 10.1016/j.radonc.2016.04.004
– ident: e_1_2_7_19_1
  doi: 10.1016/S1470-2045(15)00040-6
– volume-title: PyRadiomics Extension (Py‐rex)
  year: 2017
  ident: e_1_2_7_21_1
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ijrobp.2017.04.021
– ident: e_1_2_7_33_1
  doi: 10.1053/j.semnuclmed.2019.06.005
SSID ssj0006350
Score 2.479903
Snippet Purpose Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and...
Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5677
SubjectTerms Biological Ontologies
FAIR data
Image Processing, Computer-Assisted - methods
ontology
QUANTITATIVE IMAGING AND IMAGE PROCESSING
radiomics
semantic web
software
Technical Note
Workflow
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVDwuBQq0KQ8ZhHgcHOzd9XrNLaooFVLSChFRTta-DBGJYzWxqnLiJ_Ab-SXsw7YIBYTEyQePR7Z3ZvfbnZlvAB4nqWCCqixMtGQhoYSGGVdJqCNbNokZF8QWJ4_G9HBC3pwkJxuw39bCcF7NB54kojt1s-7hJm3r5ZUq_GTfhPjRi3k1iDEj5BJsUhtl6sHmZHw8_OD5J4mNHySONdVsu1jielkikuKQoChr6Wh_UrO-QF1AnReTJ6_WZcXPz_hstg5w3Qp1cB1U-20-MeXzoF6JgfzyC-3jf378DdhqEGww9CZ3EzZ0uQ1XRk2Mfhsuu6RSubwFr925vbWCYLxY6ZfBUem65Z5___rtYz1VWgWnXE1tXfQy4A07SmAzxYrZ4ix4dmTk3g7fP78Nk4NX7_YPw6ZxQyhJbCMtmRDcINGCSCpUZnYkkipE05QrTZiMFEpkymmkdYFxxiLB7K6KSaoLxKkBIHegVy5KvQuBpCkyqigiWBGqUm5gtogxEUXMBaVZH562o5XLhtXcNteY5Z6PGeXzKnd_qA8PO8nKM3n8TqYd8Ny4mY2d8FIv6mWOLK1_xhKK-7DjDaDTguOEmYnQPJ2umUYnYCm81--U00-OypsadI6R0fmoM6K_vNwTZw1_FMhHx-669y_a7sI1g_0yn5lzD3qr01rfN_hqJR40_vMD6hIilQ
  priority: 102
  providerName: Unpaywall
Title Technical Note: Ontology‐guided radiomics analysis workflow (O‐RAW)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13844
https://www.ncbi.nlm.nih.gov/pubmed/31580484
https://www.proquest.com/docview/2300598563
https://pubmed.ncbi.nlm.nih.gov/PMC6916323
https://aapm.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.13844
UnpaywallVersion publishedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbhMxELagFZQLggIl_FQLQkAPS3dt76zNLQJKhUgaAVHb08p_C5HSTdQkqnrjEfqMfRI83s2iqIA4-bDj0cpjez57Zj4T8iLLtdBgZZw5I2IOHGKpbBa7BMsmmVCaY3Fyrw_7Q_7pKDtqsiqxFqbmh2gv3HBlhP0aF7jSs93fpKEn0zcpE5xfJ-spOn1kdeaDdhf2jrQuP5EcIwjZkng2obvLnquu6Aq-vJomubGopur8TI3Hq1A2-KK9O-R2AyKjbm31u-SaqzbJzV4TJt8kN0Jep5ndIx_D1TkaIupP5u5tdFCFB2vPL39efF-MrLPRqbIjLE2eRaohKIkwWascT86i1wde7kv3cOc-Ge59-PZuP27eTogNTzHYIbVWHgyW3IC20h8KDFgKea6s48IklmYmV5A4VzImRaIFHmyEAVdSBR4DPCBr1aRyD0lkIKdeFVDOLAebK490dcq4LlOlAWSHvFoOY2EaYnF832Jc1JTItDiZFmHAO-RZKzmtyTT-JLO0ROFnOoYvVOUmi1lBkVlfigxYh2zVlmm1sDQTfi_yvfMVm7UCyKK9-qUa_Qhs2uABMqNe5_PWuv_4uZfB7H8VKHqD0D76X8HH5JaHYLJOkHlC1uanC_fUw5y53g7zeZusd9_3Pn_17bA_6B7_Aqnq-_I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL0qRVA2CAqF4RkQAroITWznxoZVhSgDdKYVakV3kV-BkaaZUWdGVXd8Qr-xX4LtPNCogFhl4Wsr8vHj2PfeY4AXWa64QiPizGoeM2QYC2my2CY-bZJyqZhPTh4MsX_IPh9lRyvwrs2FqfUhugs3PzPCeu0nuL-Q3vqtGno8fZNSztgVuMqQJH5IE7bfLcNuJ63zTwTzLoSsVZ5NyFZbc3kvukQwL8dJri2qqTw7lePxMpcNm9HOLbjZsMhou4b9NqzYah2uDxo_-TpcC4GdenYHPoa7c49ENJzM7dtorwov1p5d_Dz_vhgZa6ITaUY-N3kWyUahJPLRWuV4chq93nN2X7e_bd6Fw50PB-_7cfN4QqxZ6r0dQinp2GDJNCoj3KlAoyGY59JYxnViSKZziYm1JaWCJ4r7kw3XaEsi0ZGADVitJpW9D5HGnLimkDBqGJpcOqqrUspUmUqFKHrwqu3GQjfK4v6Bi3FRayKT4nhahA7vwbPOclqrafzJpkWicEPd-y9kZSeLWUG8tL7gGdIe3KuR6VqhacbdYuRq50uYdQZeRnu5pBr9CHLa6BgyJa7N5x26__i5lwH2vxoUg_3wffC_hk9hrX8w2C12Pw2_PIQbjo-JOlrmEazOTxb2seM8c_UkjO1fezP8HQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL2CIko3CMpryisgBGURmtiOY7OrgKE8ZjpCrdpd5FdgpGkm6syo6o5P4Bv5EnydTNCogFhl4Wsr8vHj2PfeY4BnWa6F5lbGmTMiZpzxWCqbxS7BtEkqlGaYnDwY8r1D9vE4O26jKjEXptGH6C7ccGaE9RoneG3Lnd-ioSf1q5QKxi7DFYaKLajqzEbdKuw30ib9RDL0IGRL4dmE7Cxrrm5FF_jlxTDJa4uqVudnajJZpbJhL-rfgOstiYx2G9RvwiVXbcL6oHWTb8LVENdpZrfgfbg6RyCi4XTuXkf7VXiw9vzn9x9fF2PrbHSq7BhTk2eRagVKIgzWKifTs2h739t92T16eRsO--8O3uzF7dsJsWEpOjuk1sqTwZIZrq30hwLDLeF5rqxjwiSWZCZXPHGupFSKRAs82AjDXUkU9xzgDqxV08rdg8jwnPimOGHUMm5z5ZmuTinTZao057IHL5bdWJhWWBzft5gUjSQyKU7qInR4D550lnUjpvEnmyUShR_p6L5QlZsuZgVBZX0pMk57cLdBpmuFppnwa5Gvna9g1hmgivZqSTX-FtS0uSfIlPg2n3bo_uPnngfY_2pQDEbhu_W_ho9hffS2X3z-MPx0HzY8G5NNrMwDWJufLtxDz3jm-lEY2r8ACD37Tw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VVDwuBQq0KQ8ZhHgcHOzd9XrNLaooFVLSChFRTta-DBGJYzWxqnLiJ_Ab-SXsw7YIBYTEyQePR7Z3ZvfbnZlvAB4nqWCCqixMtGQhoYSGGVdJqCNbNokZF8QWJ4_G9HBC3pwkJxuw39bCcF7NB54kojt1s-7hJm3r5ZUq_GTfhPjRi3k1iDEj5BJsUhtl6sHmZHw8_OD5J4mNHySONdVsu1jielkikuKQoChr6Wh_UrO-QF1AnReTJ6_WZcXPz_hstg5w3Qp1cB1U-20-MeXzoF6JgfzyC-3jf378DdhqEGww9CZ3EzZ0uQ1XRk2Mfhsuu6RSubwFr925vbWCYLxY6ZfBUem65Z5___rtYz1VWgWnXE1tXfQy4A07SmAzxYrZ4ix4dmTk3g7fP78Nk4NX7_YPw6ZxQyhJbCMtmRDcINGCSCpUZnYkkipE05QrTZiMFEpkymmkdYFxxiLB7K6KSaoLxKkBIHegVy5KvQuBpCkyqigiWBGqUm5gtogxEUXMBaVZH562o5XLhtXcNteY5Z6PGeXzKnd_qA8PO8nKM3n8TqYd8Ny4mY2d8FIv6mWOLK1_xhKK-7DjDaDTguOEmYnQPJ2umUYnYCm81--U00-OypsadI6R0fmoM6K_vNwTZw1_FMhHx-669y_a7sI1g_0yn5lzD3qr01rfN_hqJR40_vMD6hIilQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+Note%3A+Ontology%E2%80%90guided+radiomics+analysis+workflow+%28O%E2%80%90RAW%29&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Shi%2C+Zhenwei&rft.au=Traverso%2C+Alberto&rft.au=van+Soest%2C+Johan&rft.au=Dekker%2C+Andre&rft.date=2019-12-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=46&rft.issue=12&rft.spage=5677&rft.epage=5684&rft_id=info:doi/10.1002%2Fmp.13844&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_13844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon