Enriching Structural Diversity of Alkynyl‐Protected Gold Nanoclusters with Chlorides

The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12]...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 12; pp. 6699 - 6703
Main Authors Li, Jiao‐Jiao, Guan, Zong‐Jie, Yuan, Shang‐Fu, Hu, Feng, Wang, Quan‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.03.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202014154

Cover

Abstract The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V‐shaped Au2L3, 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102(p‐MBA)44. The surface structure of Au106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties. The combination of chloride and alkynyl as protecting agents leads to the formation of large gold nanoclusters. Silica gel column chromatography results in the successful isolation and crystallization of atomically precise gold nanoclusters [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), where L=3,5‐bis(trifluoromethyl)‐phenylacetylide. They are all superatomic clusters, and show size‐dependent electrochemical properties.
AbstractList The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as-synthesized cluster mixture to give the clusters Na[Au25 L18 ] (Au25 ), [HNEt3 ]3 [Au67 L32 Cl4 ] (Au67 ), [HNEt3 ]4 [Au106 L40 Cl12 ] (Au106 ), L=3,5-bis(trifluoromethyl)-phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X-ray single-crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V-shaped Au2 L3 , 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co-protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102 (p-MBA)44 . The surface structure of Au106 includes 20 linear Au-alkynyl staples, 5 Cl-Au-Cl and 2 Cl-Au motifs. These three gold nanoclusters show size-dependent electrochemical properties.The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as-synthesized cluster mixture to give the clusters Na[Au25 L18 ] (Au25 ), [HNEt3 ]3 [Au67 L32 Cl4 ] (Au67 ), [HNEt3 ]4 [Au106 L40 Cl12 ] (Au106 ), L=3,5-bis(trifluoromethyl)-phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X-ray single-crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V-shaped Au2 L3 , 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co-protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102 (p-MBA)44 . The surface structure of Au106 includes 20 linear Au-alkynyl staples, 5 Cl-Au-Cl and 2 Cl-Au motifs. These three gold nanoclusters show size-dependent electrochemical properties.
The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V‐shaped Au2L3, 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102(p‐MBA)44. The surface structure of Au106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties.
The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V‐shaped Au2L3, 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102(p‐MBA)44. The surface structure of Au106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties. The combination of chloride and alkynyl as protecting agents leads to the formation of large gold nanoclusters. Silica gel column chromatography results in the successful isolation and crystallization of atomically precise gold nanoclusters [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), where L=3,5‐bis(trifluoromethyl)‐phenylacetylide. They are all superatomic clusters, and show size‐dependent electrochemical properties.
The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as-synthesized cluster mixture to give the clusters Na[Au L ] (Au ), [HNEt ] [Au L Cl ] (Au ), [HNEt ] [Au L Cl ] (Au ), L=3,5-bis(trifluoromethyl)-phenylacetylide. Au and Au are new clusters; the structures were determined by X-ray single-crystal diffraction. Au contains a distorted Au Marks decahedron shelled by an irregular Au and further protected with two V-shaped Au L , 13 linear AuL staples and 4 chlorides. Au is the first structurally determined 34e superatomic gold nanocluster. Au is composed of 106 Au atoms co-protected by alkynyls and chlorides. It has a Au kernel, like in Au (p-MBA) . The surface structure of Au includes 20 linear Au-alkynyl staples, 5 Cl-Au-Cl and 2 Cl-Au motifs. These three gold nanoclusters show size-dependent electrochemical properties.
The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au 25 L 18 ] ( Au 25 ), [HNEt 3 ] 3 [Au 67 L 32 Cl 4 ] ( Au 67 ), [HNEt 3 ] 4 [Au 106 L 40 Cl 12 ] ( Au 106 ), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au 67 and Au 106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au 67 contains a distorted Au 18 Marks decahedron shelled by an irregular Au 32 and further protected with two V‐shaped Au 2 L 3 , 13 linear AuL 2 staples and 4 chlorides. Au 67 is the first structurally determined 34e superatomic gold nanocluster. Au 106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au 79 kernel, like in Au 102 ( p ‐MBA) 44 . The surface structure of Au 106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties.
Author Li, Jiao‐Jiao
Guan, Zong‐Jie
Wang, Quan‐Ming
Yuan, Shang‐Fu
Hu, Feng
Author_xml – sequence: 1
  givenname: Jiao‐Jiao
  surname: Li
  fullname: Li, Jiao‐Jiao
  organization: Tsinghua University
– sequence: 2
  givenname: Zong‐Jie
  orcidid: 0000-0001-8977-0850
  surname: Guan
  fullname: Guan, Zong‐Jie
  organization: Tsinghua University
– sequence: 3
  givenname: Shang‐Fu
  surname: Yuan
  fullname: Yuan, Shang‐Fu
  organization: Tsinghua University
– sequence: 4
  givenname: Feng
  surname: Hu
  fullname: Hu, Feng
  organization: Tsinghua University
– sequence: 5
  givenname: Quan‐Ming
  orcidid: 0000-0002-3764-6409
  surname: Wang
  fullname: Wang, Quan‐Ming
  email: qmwang@tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33336534$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9O2zAABnBrYlop25XjFInLLin-Fyc5VqWwSlWHBNs1cmxnNbg22M5QbjzCnnFPMleFIiEhfLEt_T7b8jcGB9ZZBcAxghMEIT7lVqsJhhgiigr6ARyiAqOclCU5SGtKSF5WBRqBcQg3yVcVZJ_AiKTBCkIPwa-59Vqstf2dXUXfi9h7brIz_Uf5oOOQuS6bmtvBDubf499L76ISUcnswhmZrbh1wvQhJps96LjOZmvjvJYqfAYfO26C-vI0H4Gf5_Pr2fd8-eNiMZsuc0ERpDnqECkhahlhWNY1pwUhLakowRixVqRNSyQWnDHZtbyFnHJGW8EqImvZMUaOwLfduXfe3fcqxGajg1DGcKtcHxpMS0RZWaAi0ZNX9Mb13qbXJVWXNa0hqZL6-qT6dqNkc-f1hvuhef6xBCY7ILwLwatuTxBstpU020qafSUpQF8FhI48amej59q8Hat3sQdt1PDOJc10tZi_ZP8D-WSgtw
CitedBy_id crossref_primary_10_1039_D4TA08510H
crossref_primary_10_1021_acs_inorgchem_2c03331
crossref_primary_10_1002_anie_202116965
crossref_primary_10_1002_chem_202401094
crossref_primary_10_1007_s11426_022_1216_2
crossref_primary_10_1016_j_surfin_2022_102555
crossref_primary_10_1021_jasms_1c00177
crossref_primary_10_1007_s40820_023_01266_4
crossref_primary_10_1021_acsami_2c08959
crossref_primary_10_1002_ange_202209725
crossref_primary_10_1039_D1NJ00873K
crossref_primary_10_1021_acsanm_3c01569
crossref_primary_10_1039_D4DT02098G
crossref_primary_10_1002_asia_202300605
crossref_primary_10_1002_asia_202300463
crossref_primary_10_1002_smll_202500189
crossref_primary_10_1021_jacs_3c01366
crossref_primary_10_3390_nano15010039
crossref_primary_10_1021_jacs_1c11643
crossref_primary_10_1002_ange_202116965
crossref_primary_10_1002_anie_202209725
crossref_primary_10_1016_j_ccr_2025_216544
crossref_primary_10_1038_s41467_024_51642_w
crossref_primary_10_1007_s12274_021_3928_4
crossref_primary_10_1021_jacs_1c06716
crossref_primary_10_1039_D1CC04934H
crossref_primary_10_1016_j_cej_2022_140982
crossref_primary_10_1039_D2CC02054H
crossref_primary_10_1039_D2QM01282K
crossref_primary_10_1038_s41467_022_29966_2
crossref_primary_10_1002_agt2_255
Cites_doi 10.1021/acs.chemrev.5b00703
10.1021/ja503724j
10.1002/anie.201804087
10.1021/ar400209a
10.1021/jacs.8b09440
10.1021/jacs.6b04471
10.1021/jacs.5b12730
10.1002/ange.201706021
10.1021/acs.jpclett.9b02920
10.1002/anie.201801261
10.1002/anie.201811859
10.1021/jacs.0c07397
10.1021/acs.chemrev.6b00769
10.1002/anie.201804481
10.1002/(SICI)1521-3757(19991004)111:19<3114::AID-ANGE3114>3.0.CO;2-S
10.1002/smll.200800051
10.1126/sciadv.aat7259
10.1002/anie.201915168
10.1021/nl202288j
10.1002/ange.201804087
10.1021/jacs.5b05378
10.1002/ange.201801261
10.1021/jacs.7b10201
10.1002/anie.201706021
10.1002/ange.201811859
10.1021/ja00033a073
10.1021/jp9044385
10.1002/ange.201804481
10.1002/ange.200906249
10.1002/ange.201814156
10.1002/1521-3773(20020603)41:11<1882::AID-ANIE1882>3.0.CO;2-N
10.1021/ja307256b
10.1002/anie.201912984
10.1002/1521-3757(20020603)114:11<1959::AID-ANGE1959>3.0.CO;2-O
10.1002/(SICI)1521-3773(20000218)39:4<799::AID-ANIE799>3.0.CO;2-B
10.1002/1521-3757(20021004)114:19<3682::AID-ANGE3682>3.0.CO;2-6
10.1002/ange.201900644
10.1021/jp311491v
10.1002/(SICI)1521-3773(19991004)38:19<2926::AID-ANIE2926>3.0.CO;2-B
10.1002/anie.201814156
10.1021/ja000990o
10.1126/science.aak9750
10.1021/cr068077e
10.1126/science.aaw8007
10.1021/ja5109968
10.1103/PhysRevLett.79.1873
10.1002/anie.200906249
10.1021/acs.accounts.8b00150
10.1039/C6DT04763G
10.1021/nn203113j
10.1002/(SICI)1521-3757(20000218)112:4<828::AID-ANGE828>3.0.CO;2-W
10.1021/jacs.9b11836
10.1016/j.ccr.2016.05.003
10.1002/ange.201912984
10.1002/smll.200902398
10.1002/anie.201900644
10.1002/1521-3773(20021004)41:19<3532::AID-ANIE3532>3.0.CO;2-4
10.1021/acs.accounts.8b00379
10.1126/science.1148624
10.1021/jacs.5b06235
10.1021/acs.accounts.8b00359
10.1021/ja513152h
10.1039/b718784j
10.1039/c2nr30377a
10.1021/ar9602664
10.1126/sciadv.1701823
10.1039/D0NR02986F
10.1002/ange.201915168
10.1021/jacs.7b04678
10.1021/ar300213z
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202014154
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6703
ExternalDocumentID 33336534
10_1002_anie_202014154
ANIE202014154
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 91961201, 21973116, and 21631007
– fundername: National Natural Science Foundation of China
  grantid: 91961201, 21973116, and 21631007
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4104-1f13701b6362d99a4533b38432216bc33bb3d2ca66dfbab0a4a64bc683d9df663
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:08:35 EDT 2025
Fri Jul 25 10:48:24 EDT 2025
Thu Apr 03 07:04:00 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Wed Oct 01 02:04:16 EDT 2025
Wed Jan 22 16:31:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords gold
silica gel column chromatography
chloride
cluster compounds
alkynes
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-1f13701b6362d99a4533b38432216bc33bb3d2ca66dfbab0a4a64bc683d9df663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8977-0850
0000-0002-3764-6409
PMID 33336534
PQID 2497949038
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2471467515
proquest_journals_2497949038
pubmed_primary_33336534
crossref_primary_10_1002_anie_202014154
crossref_citationtrail_10_1002_anie_202014154
wiley_primary_10_1002_anie_202014154_ANIE202014154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 15, 2021
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: March 15, 2021
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 3
2018; 140
2000 2000; 39 112
2019; 52
2013; 46
2020; 142
2019; 10
1999 1999; 38 111
2017; 46
2016; 322
2020 2020; 59 132
2008
2008; 108
2011; 11
2014; 47
2009; 113
2010 2010; 49 122
2020; 12
2017 2017; 56 129
2008; 4
2011; 5
2019; 364
2014; 136
2019 2019; 58 131
2017; 117
2017; 139
2012; 134
2018; 4
2002 2002; 41 114
2015; 137
2018 2018; 57 130
2000; 33
1997; 79
1992; 114
2013; 117
2016; 354
2016; 138
2018; 51
2016; 116
2000; 122
2007; 318
2012; 4
2010; 6
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_3
e_1_2_6_30_2
e_1_2_6_19_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_32_3
e_1_2_6_59_3
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_60_3
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_41_3
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_3
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_3
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_20_3
e_1_2_6_28_2
e_1_2_6_45_1
e_1_2_6_66_2
e_1_2_6_24_3
e_1_2_6_26_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_33_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_31_3
e_1_2_6_16_2
e_1_2_6_54_2
e_1_2_6_39_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_8_3
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 139
  start-page: 9994
  year: 2017
  end-page: 10001
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 12966
  year: 2009
  end-page: 12969
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 4610
  year: 2015
  end-page: 4613
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 5312 5350
  year: 2020 2020
  end-page: 5315 5353
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 3963
  year: 2011
  end-page: 3969
  publication-title: Nano Lett.
– volume: 57 130
  start-page: 7855 7981
  year: 2018 2018
  end-page: 7859 7985
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49 122
  start-page: 1295 1317
  year: 2010 2010
  end-page: 1298 1320
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 8935
  year: 2011
  end-page: 8942
  publication-title: ACS Nano
– volume: 142
  start-page: 18086
  year: 2020
  end-page: 18092
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 14750
  year: 2012
  end-page: 14752
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 27
  year: 2000
  end-page: 36
  publication-title: Acc. Chem. Res.
– volume: 108
  start-page: 2688
  year: 2008
  end-page: 2720
  publication-title: Chem. Rev.
– volume: 138
  start-page: 3278
  year: 2016
  end-page: 3281
  publication-title: J. Am. Chem. Soc.
– volume: 41 114
  start-page: 3532 3682
  year: 2002 2002
  end-page: 3554 3704
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 318
  start-page: 430
  year: 2007
  end-page: 433
  publication-title: Science
– volume: 136
  start-page: 11347
  year: 2014
  end-page: 11354
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 1206
  year: 2015
  end-page: 1212
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 8639 8775
  year: 2018 2018
  end-page: 8643 8779
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 6892
  year: 2019
  end-page: 6896
  publication-title: J. Phys. Chem. Lett.
– volume: 137
  start-page: 10076
  year: 2015
  end-page: 10079
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 15430
  year: 2018
  end-page: 15436
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 4234
  year: 2012
  end-page: 4239
  publication-title: Nanoscale
– volume: 51
  start-page: 2465
  year: 2018
  end-page: 2474
  publication-title: Acc. Chem. Res.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 58 131
  start-page: 5902 5962
  year: 2019 2019
  end-page: 5905 5966
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 79
  start-page: 1873
  year: 1997
  end-page: 1876
  publication-title: Phys. Rev. Lett.
– volume: 56 129
  start-page: 11494 11652
  year: 2017 2017
  end-page: 11497 11655
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 364
  start-page: 279
  year: 2019
  end-page: 282
  publication-title: Science
– volume: 138
  start-page: 7848
  year: 2016
  end-page: 7851
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1216
  year: 2010
  end-page: 1220
  publication-title: Small
– volume: 322
  start-page: 1
  year: 2016
  end-page: 29
  publication-title: Coord. Chem. Rev.
– volume: 116
  start-page: 10346
  year: 2016
  end-page: 10413
  publication-title: Chem. Rev.
– volume: 12
  start-page: 13346
  year: 2020
  end-page: 13350
  publication-title: Nanoscale
– volume: 137
  start-page: 10033
  year: 2015
  end-page: 10035
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 8208
  year: 2017
  end-page: 8271
  publication-title: Chem. Rev.
– volume: 51
  start-page: 1774
  year: 2018
  end-page: 1783
  publication-title: Acc. Chem. Res.
– start-page: 4344
  year: 2008
  end-page: 4362
  publication-title: Dalton Trans.
– volume: 52
  start-page: 12
  year: 2019
  end-page: 22
  publication-title: Acc. Chem. Res.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 139
  start-page: 17731
  year: 2017
  end-page: 17734
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 2995
  year: 2020
  end-page: 3001
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 5703 5805
  year: 2018 2018
  end-page: 5707 5809
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38 111
  start-page: 2926 3114
  year: 1999 1999
  end-page: 2928 3116
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 41 114
  start-page: 1882 1959
  year: 2002 2002
  end-page: 1884 1962
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 122
  start-page: 9178
  year: 2000
  end-page: 9181
  publication-title: J. Am. Chem. Soc.
– volume: 39 112
  start-page: 799 828
  year: 2000 2000
  end-page: 801 830
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 1749
  year: 2013
  end-page: 1758
  publication-title: Acc. Chem. Res.
– volume: 354
  start-page: 1580
  year: 2016
  end-page: 1584
  publication-title: Science
– volume: 114
  start-page: 2743
  year: 1992
  end-page: 2745
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3427
  year: 2017
  end-page: 3434
  publication-title: Dalton Trans.
– volume: 58 131
  start-page: 8291 8377
  year: 2019 2019
  end-page: 8302 8388
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 2309 2329
  year: 2020 2020
  end-page: 2312 2332
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47
  start-page: 816
  year: 2014
  end-page: 824
  publication-title: Acc. Chem. Res.
– volume: 58 131
  start-page: 1083 1095
  year: 2019 2019
  end-page: 1087 1099
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 534
  year: 2008
  end-page: 537
  publication-title: Small
– volume: 117
  start-page: 504
  year: 2013
  end-page: 517
  publication-title: J. Phys. Chem. A
– ident: e_1_2_6_16_2
  doi: 10.1021/acs.chemrev.5b00703
– ident: e_1_2_6_9_2
  doi: 10.1021/ja503724j
– ident: e_1_2_6_59_2
  doi: 10.1002/anie.201804087
– ident: e_1_2_6_14_2
  doi: 10.1021/ar400209a
– ident: e_1_2_6_28_2
  doi: 10.1021/jacs.8b09440
– ident: e_1_2_6_40_2
  doi: 10.1021/jacs.6b04471
– ident: e_1_2_6_44_2
– ident: e_1_2_6_10_2
  doi: 10.1021/jacs.5b12730
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.201706021
– ident: e_1_2_6_37_2
  doi: 10.1021/acs.jpclett.9b02920
– ident: e_1_2_6_42_1
  doi: 10.1002/anie.201801261
– ident: e_1_2_6_32_2
  doi: 10.1002/anie.201811859
– ident: e_1_2_6_29_1
– ident: e_1_2_6_36_2
  doi: 10.1021/jacs.0c07397
– ident: e_1_2_6_15_2
  doi: 10.1021/acs.chemrev.6b00769
– ident: e_1_2_6_45_1
– ident: e_1_2_6_31_2
  doi: 10.1002/anie.201804481
– ident: e_1_2_6_20_3
  doi: 10.1002/(SICI)1521-3757(19991004)111:19<3114::AID-ANGE3114>3.0.CO;2-S
– ident: e_1_2_6_47_2
  doi: 10.1002/smll.200800051
– ident: e_1_2_6_53_2
  doi: 10.1126/sciadv.aat7259
– ident: e_1_2_6_41_2
  doi: 10.1002/anie.201915168
– ident: e_1_2_6_5_2
  doi: 10.1021/nl202288j
– ident: e_1_2_6_59_3
  doi: 10.1002/ange.201804087
– ident: e_1_2_6_49_2
  doi: 10.1021/jacs.5b05378
– ident: e_1_2_6_42_2
  doi: 10.1002/ange.201801261
– ident: e_1_2_6_55_1
– ident: e_1_2_6_56_2
  doi: 10.1021/jacs.7b10201
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.201706021
– ident: e_1_2_6_32_3
  doi: 10.1002/ange.201811859
– ident: e_1_2_6_61_2
  doi: 10.1021/ja00033a073
– ident: e_1_2_6_4_2
  doi: 10.1021/jp9044385
– ident: e_1_2_6_31_3
  doi: 10.1002/ange.201804481
– ident: e_1_2_6_8_3
  doi: 10.1002/ange.200906249
– ident: e_1_2_6_7_3
  doi: 10.1002/ange.201814156
– ident: e_1_2_6_24_2
  doi: 10.1002/1521-3773(20020603)41:11<1882::AID-ANIE1882>3.0.CO;2-N
– ident: e_1_2_6_58_2
  doi: 10.1021/ja307256b
– ident: e_1_2_6_33_2
  doi: 10.1002/anie.201912984
– ident: e_1_2_6_24_3
  doi: 10.1002/1521-3757(20020603)114:11<1959::AID-ANGE1959>3.0.CO;2-O
– ident: e_1_2_6_26_1
– ident: e_1_2_6_21_2
  doi: 10.1002/(SICI)1521-3773(20000218)39:4<799::AID-ANIE799>3.0.CO;2-B
– ident: e_1_2_6_22_3
  doi: 10.1002/1521-3757(20021004)114:19<3682::AID-ANGE3682>3.0.CO;2-6
– ident: e_1_2_6_60_3
  doi: 10.1002/ange.201900644
– ident: e_1_2_6_1_1
– ident: e_1_2_6_54_2
  doi: 10.1021/jp311491v
– ident: e_1_2_6_20_2
  doi: 10.1002/(SICI)1521-3773(19991004)38:19<2926::AID-ANIE2926>3.0.CO;2-B
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.201814156
– ident: e_1_2_6_25_2
  doi: 10.1021/ja000990o
– ident: e_1_2_6_50_2
  doi: 10.1126/science.aak9750
– ident: e_1_2_6_66_2
  doi: 10.1021/cr068077e
– ident: e_1_2_6_2_2
  doi: 10.1126/science.aaw8007
– ident: e_1_2_6_38_1
  doi: 10.1021/ja5109968
– ident: e_1_2_6_51_2
  doi: 10.1103/PhysRevLett.79.1873
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.200906249
– ident: e_1_2_6_64_1
– ident: e_1_2_6_11_2
  doi: 10.1021/acs.accounts.8b00150
– ident: e_1_2_6_18_2
  doi: 10.1039/C6DT04763G
– ident: e_1_2_6_39_1
– ident: e_1_2_6_3_2
  doi: 10.1021/nn203113j
– ident: e_1_2_6_21_3
  doi: 10.1002/(SICI)1521-3757(20000218)112:4<828::AID-ANGE828>3.0.CO;2-W
– ident: e_1_2_6_34_2
  doi: 10.1021/jacs.9b11836
– ident: e_1_2_6_13_2
  doi: 10.1016/j.ccr.2016.05.003
– ident: e_1_2_6_33_3
  doi: 10.1002/ange.201912984
– ident: e_1_2_6_57_2
  doi: 10.1002/smll.200902398
– ident: e_1_2_6_19_1
– ident: e_1_2_6_60_2
  doi: 10.1002/anie.201900644
– ident: e_1_2_6_22_2
  doi: 10.1002/1521-3773(20021004)41:19<3532::AID-ANIE3532>3.0.CO;2-4
– ident: e_1_2_6_12_2
  doi: 10.1021/acs.accounts.8b00379
– ident: e_1_2_6_46_2
  doi: 10.1126/science.1148624
– ident: e_1_2_6_63_1
  doi: 10.1021/jacs.5b06235
– ident: e_1_2_6_17_2
  doi: 10.1021/acs.accounts.8b00359
– ident: e_1_2_6_52_2
  doi: 10.1021/ja513152h
– ident: e_1_2_6_23_2
  doi: 10.1039/b718784j
– ident: e_1_2_6_62_1
  doi: 10.1039/c2nr30377a
– ident: e_1_2_6_65_2
  doi: 10.1021/ar9602664
– ident: e_1_2_6_43_1
– ident: e_1_2_6_27_2
  doi: 10.1126/sciadv.1701823
– ident: e_1_2_6_35_2
  doi: 10.1039/D0NR02986F
– ident: e_1_2_6_41_3
  doi: 10.1002/ange.201915168
– ident: e_1_2_6_48_2
  doi: 10.1021/jacs.7b04678
– ident: e_1_2_6_6_2
  doi: 10.1021/ar300213z
SSID ssj0028806
Score 2.5099237
Snippet The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold...
The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6699
SubjectTerms alkynes
chloride
Chlorides
cluster compounds
Clusters
Column chromatography
Crystal structure
Electrochemical analysis
Electrochemistry
Gold
Nanoclusters
Silica
Silica gel
silica gel column chromatography
Silicon dioxide
Staples
Surface structure
Title Enriching Structural Diversity of Alkynyl‐Protected Gold Nanoclusters with Chlorides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202014154
https://www.ncbi.nlm.nih.gov/pubmed/33336534
https://www.proquest.com/docview/2497949038
https://www.proquest.com/docview/2471467515
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3773
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1433-7851
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_SSJm0e22yKCoWcnNiSLNvHZbPbbaFLaR7kZjSSTSDGLuzuYXPKT-hv7C_JjL12syklkPomJNmy5qGRNPMNY58C0CpWxnk6suApJXPPRDF4oQ2FzXwTCkPRyN-menKpvl6H14-i-Bt8iO7AjSSj1tck4AZmp39AQykCG_d3gjwVQwIEDWRY39P-6PCjBDJnE14kpUdZ6FvURl-crndfX5X-MjXXLdd66Rm_YaYddONxcnuymMOJvXuC5_g_f7XNtlZ2KR80jLTDXmXlW7Y5bNPBvWNXoxJVJp1X8fMac5bwOvhZ69bBq5wPittluSx-3__63qA_ZI5_rgrHUYVXtlgQJsOM08kvH96Q55_LZrvscjy6GE68VVIGz6qAMA7zQEY-khhXPpckRqG9CDJWqBgCDRYLIJ2wRmuXgwHfKKMVWB1Ll7gc7Zs9tlFWZXbAOIDFejThrMsVRDYGJ_I4hkwgo-g87jGvJUpqV4jllDijSBusZZHSbKXdbPXYcdf-Z4PV8c-W_ZbG6UpmZyluRFE5Jb7ED3_sqnGW6QrFlFm1oDYRLS1oBPbYfsMb3ackPjqU-HJRU_iZMaSD6ZdRV3r_kk6H7LUgFxtyLwz7bAOpnx2hjTSHD7UcPABp5QmX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EAvtNAftgVqpEo9BbK242SPq2XpUmCFWqh6izx2okpECdKyBzj1EfqMfZLOJJugbVVVgtws24ljz5_tmW8A3vfR6ERbH5jYYaC1ygMbJxhELpIuC20kLUcjn07N5EJ_-ha13oQcC9PgQ3QHbswZtbxmBucD6f071FAOwaYNnmRXxUg_hid8Sce8efC5Q5CSRJ5NgJFSAeehb3EbQ7m_3H9ZL_1lbC7brrXyOXwG2A678Tm53Jtf4567_QPR8UH_9RzWFqapGDa0tA6PsnIDVkdtRrgX8HVcktTkIyvxpYadZcgOcdB6dogqF8Pi8qa8KX79-HnWAEBkXnysCi9IileumDMsw0zw4a8YfWfnP5_NXsLF4fh8NAkWeRkCp_sMc5j3VRzSKpPy84OB1WQyoko0yYa-QUcFVF46a4zP0WJotTUanUmUH_icTJxXsFJWZbYJAtFRPVlxzucaY5egl3mSYCaJVkye9CBoVyV1C9Byzp1RpA3cskx5ttJutnrwoWt_1cB1_LPlVrvI6YJtZyntRUk-DUJFH97tqmmW-RbFllk15zYxaxeyA3vwuiGO7lOKHhMpermsl_g_Y0iH06NxV3pzn07vYHVyfnqSnhxNj9_CU8keN-xtGG3BClFCtk0m0zXu1EzxGwEyDbM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIkEvLfRBF1pwJaSe0mZtx8keV9tdWh6rCmjVW-RHLKRGSaXdPbQnfgK_kV_CTLIJ3aKqEuRm2Y4dz3j82Zn5DPCuZ5RMpHaBiq0JpBQ-0HFigshG3GahjrimaOTPE3V8Jj9cRBe3ovhrfoj2wI1mRmWvaYJfOX_4hzSUIrBxf8fJUzGSj-GJVLjFIlj0pSWQ4qiddXyREAFdQ9_QNob8cLn-8rL0F9Zchq7V2jNeA930unY5uTyYz8yBvblD6Pg_n_UcVhfAlA1qTXoBj7JiHZ4Nm_vgNuB8VKDNpAMr9rUinSXCDnbU-HWw0rNBfnldXOe_fvw8rekfMsfel7ljaMNLm8-JlGHK6OiXDb-T65_LpptwNh59Gx4Hi1sZAit7RHLoeyIOUca49Ll-X0sEjEYkEi1DTxmLCSMct1op5402oZZaSWNVIlzfeQQ4W9ApyiLbBmaMxXzEcNZ5aWKbGMd9kpiMo6Yon3QhaISS2gVlOd2ckac12TJPabTSdrS6sN-Wv6rJOu4tudPIOF1M2mmKO1G0Tv1QYMN7bTaOMv1D0UVWzqlMTGsLosAuvKx1o21K4KMigS_nlYQf6EM6mJyM2tSrf6n0Fp6eHo3TTyeTj69hhZO7DbkaRjvQQUXIdhEvzcybakr8BspiDGI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enriching+Structural+Diversity+of+Alkynyl-Protected+Gold+Nanoclusters+with+Chlorides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Jiao-Jiao&rft.au=Guan%2C+Zong-Jie&rft.au=Yuan%2C+Shang-Fu&rft.au=Hu%2C+Feng&rft.date=2021-03-15&rft.eissn=1521-3773&rft.volume=60&rft.issue=12&rft.spage=6699&rft_id=info:doi/10.1002%2Fanie.202014154&rft_id=info%3Apmid%2F33336534&rft.externalDocID=33336534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon