Enriching Structural Diversity of Alkynyl‐Protected Gold Nanoclusters with Chlorides
The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12]...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 12; pp. 6699 - 6703 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.03.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202014154 |
Cover
Abstract | The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V‐shaped Au2L3, 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102(p‐MBA)44. The surface structure of Au106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties.
The combination of chloride and alkynyl as protecting agents leads to the formation of large gold nanoclusters. Silica gel column chromatography results in the successful isolation and crystallization of atomically precise gold nanoclusters [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), where L=3,5‐bis(trifluoromethyl)‐phenylacetylide. They are all superatomic clusters, and show size‐dependent electrochemical properties. |
---|---|
AbstractList | The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as-synthesized cluster mixture to give the clusters Na[Au25 L18 ] (Au25 ), [HNEt3 ]3 [Au67 L32 Cl4 ] (Au67 ), [HNEt3 ]4 [Au106 L40 Cl12 ] (Au106 ), L=3,5-bis(trifluoromethyl)-phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X-ray single-crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V-shaped Au2 L3 , 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co-protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102 (p-MBA)44 . The surface structure of Au106 includes 20 linear Au-alkynyl staples, 5 Cl-Au-Cl and 2 Cl-Au motifs. These three gold nanoclusters show size-dependent electrochemical properties.The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as-synthesized cluster mixture to give the clusters Na[Au25 L18 ] (Au25 ), [HNEt3 ]3 [Au67 L32 Cl4 ] (Au67 ), [HNEt3 ]4 [Au106 L40 Cl12 ] (Au106 ), L=3,5-bis(trifluoromethyl)-phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X-ray single-crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V-shaped Au2 L3 , 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co-protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102 (p-MBA)44 . The surface structure of Au106 includes 20 linear Au-alkynyl staples, 5 Cl-Au-Cl and 2 Cl-Au motifs. These three gold nanoclusters show size-dependent electrochemical properties. The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V‐shaped Au2L3, 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102(p‐MBA)44. The surface structure of Au106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties. The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au25L18] (Au25), [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au67 and Au106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au67 contains a distorted Au18 Marks decahedron shelled by an irregular Au32 and further protected with two V‐shaped Au2L3, 13 linear AuL2 staples and 4 chlorides. Au67 is the first structurally determined 34e superatomic gold nanocluster. Au106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au79 kernel, like in Au102(p‐MBA)44. The surface structure of Au106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties. The combination of chloride and alkynyl as protecting agents leads to the formation of large gold nanoclusters. Silica gel column chromatography results in the successful isolation and crystallization of atomically precise gold nanoclusters [HNEt3]3[Au67L32Cl4] (Au67), [HNEt3]4[Au106L40Cl12] (Au106), where L=3,5‐bis(trifluoromethyl)‐phenylacetylide. They are all superatomic clusters, and show size‐dependent electrochemical properties. The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as-synthesized cluster mixture to give the clusters Na[Au L ] (Au ), [HNEt ] [Au L Cl ] (Au ), [HNEt ] [Au L Cl ] (Au ), L=3,5-bis(trifluoromethyl)-phenylacetylide. Au and Au are new clusters; the structures were determined by X-ray single-crystal diffraction. Au contains a distorted Au Marks decahedron shelled by an irregular Au and further protected with two V-shaped Au L , 13 linear AuL staples and 4 chlorides. Au is the first structurally determined 34e superatomic gold nanocluster. Au is composed of 106 Au atoms co-protected by alkynyls and chlorides. It has a Au kernel, like in Au (p-MBA) . The surface structure of Au includes 20 linear Au-alkynyl staples, 5 Cl-Au-Cl and 2 Cl-Au motifs. These three gold nanoclusters show size-dependent electrochemical properties. The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold nanoclusters from the as‐synthesized cluster mixture to give the clusters Na[Au 25 L 18 ] ( Au 25 ), [HNEt 3 ] 3 [Au 67 L 32 Cl 4 ] ( Au 67 ), [HNEt 3 ] 4 [Au 106 L 40 Cl 12 ] ( Au 106 ), L=3,5‐bis(trifluoromethyl)‐phenylacetylide. Au 67 and Au 106 are new clusters; the structures were determined by X‐ray single‐crystal diffraction. Au 67 contains a distorted Au 18 Marks decahedron shelled by an irregular Au 32 and further protected with two V‐shaped Au 2 L 3 , 13 linear AuL 2 staples and 4 chlorides. Au 67 is the first structurally determined 34e superatomic gold nanocluster. Au 106 is composed of 106 Au atoms co‐protected by alkynyls and chlorides. It has a Au 79 kernel, like in Au 102 ( p ‐MBA) 44 . The surface structure of Au 106 includes 20 linear Au‐alkynyl staples, 5 Cl‐Au‐Cl and 2 Cl‐Au motifs. These three gold nanoclusters show size‐dependent electrochemical properties. |
Author | Li, Jiao‐Jiao Guan, Zong‐Jie Wang, Quan‐Ming Yuan, Shang‐Fu Hu, Feng |
Author_xml | – sequence: 1 givenname: Jiao‐Jiao surname: Li fullname: Li, Jiao‐Jiao organization: Tsinghua University – sequence: 2 givenname: Zong‐Jie orcidid: 0000-0001-8977-0850 surname: Guan fullname: Guan, Zong‐Jie organization: Tsinghua University – sequence: 3 givenname: Shang‐Fu surname: Yuan fullname: Yuan, Shang‐Fu organization: Tsinghua University – sequence: 4 givenname: Feng surname: Hu fullname: Hu, Feng organization: Tsinghua University – sequence: 5 givenname: Quan‐Ming orcidid: 0000-0002-3764-6409 surname: Wang fullname: Wang, Quan‐Ming email: qmwang@tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33336534$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9O2zAABnBrYlop25XjFInLLin-Fyc5VqWwSlWHBNs1cmxnNbg22M5QbjzCnnFPMleFIiEhfLEt_T7b8jcGB9ZZBcAxghMEIT7lVqsJhhgiigr6ARyiAqOclCU5SGtKSF5WBRqBcQg3yVcVZJ_AiKTBCkIPwa-59Vqstf2dXUXfi9h7brIz_Uf5oOOQuS6bmtvBDubf499L76ISUcnswhmZrbh1wvQhJps96LjOZmvjvJYqfAYfO26C-vI0H4Gf5_Pr2fd8-eNiMZsuc0ERpDnqECkhahlhWNY1pwUhLakowRixVqRNSyQWnDHZtbyFnHJGW8EqImvZMUaOwLfduXfe3fcqxGajg1DGcKtcHxpMS0RZWaAi0ZNX9Mb13qbXJVWXNa0hqZL6-qT6dqNkc-f1hvuhef6xBCY7ILwLwatuTxBstpU020qafSUpQF8FhI48amej59q8Hat3sQdt1PDOJc10tZi_ZP8D-WSgtw |
CitedBy_id | crossref_primary_10_1039_D4TA08510H crossref_primary_10_1021_acs_inorgchem_2c03331 crossref_primary_10_1002_anie_202116965 crossref_primary_10_1002_chem_202401094 crossref_primary_10_1007_s11426_022_1216_2 crossref_primary_10_1016_j_surfin_2022_102555 crossref_primary_10_1021_jasms_1c00177 crossref_primary_10_1007_s40820_023_01266_4 crossref_primary_10_1021_acsami_2c08959 crossref_primary_10_1002_ange_202209725 crossref_primary_10_1039_D1NJ00873K crossref_primary_10_1021_acsanm_3c01569 crossref_primary_10_1039_D4DT02098G crossref_primary_10_1002_asia_202300605 crossref_primary_10_1002_asia_202300463 crossref_primary_10_1002_smll_202500189 crossref_primary_10_1021_jacs_3c01366 crossref_primary_10_3390_nano15010039 crossref_primary_10_1021_jacs_1c11643 crossref_primary_10_1002_ange_202116965 crossref_primary_10_1002_anie_202209725 crossref_primary_10_1016_j_ccr_2025_216544 crossref_primary_10_1038_s41467_024_51642_w crossref_primary_10_1007_s12274_021_3928_4 crossref_primary_10_1021_jacs_1c06716 crossref_primary_10_1039_D1CC04934H crossref_primary_10_1016_j_cej_2022_140982 crossref_primary_10_1039_D2CC02054H crossref_primary_10_1039_D2QM01282K crossref_primary_10_1038_s41467_022_29966_2 crossref_primary_10_1002_agt2_255 |
Cites_doi | 10.1021/acs.chemrev.5b00703 10.1021/ja503724j 10.1002/anie.201804087 10.1021/ar400209a 10.1021/jacs.8b09440 10.1021/jacs.6b04471 10.1021/jacs.5b12730 10.1002/ange.201706021 10.1021/acs.jpclett.9b02920 10.1002/anie.201801261 10.1002/anie.201811859 10.1021/jacs.0c07397 10.1021/acs.chemrev.6b00769 10.1002/anie.201804481 10.1002/(SICI)1521-3757(19991004)111:19<3114::AID-ANGE3114>3.0.CO;2-S 10.1002/smll.200800051 10.1126/sciadv.aat7259 10.1002/anie.201915168 10.1021/nl202288j 10.1002/ange.201804087 10.1021/jacs.5b05378 10.1002/ange.201801261 10.1021/jacs.7b10201 10.1002/anie.201706021 10.1002/ange.201811859 10.1021/ja00033a073 10.1021/jp9044385 10.1002/ange.201804481 10.1002/ange.200906249 10.1002/ange.201814156 10.1002/1521-3773(20020603)41:11<1882::AID-ANIE1882>3.0.CO;2-N 10.1021/ja307256b 10.1002/anie.201912984 10.1002/1521-3757(20020603)114:11<1959::AID-ANGE1959>3.0.CO;2-O 10.1002/(SICI)1521-3773(20000218)39:4<799::AID-ANIE799>3.0.CO;2-B 10.1002/1521-3757(20021004)114:19<3682::AID-ANGE3682>3.0.CO;2-6 10.1002/ange.201900644 10.1021/jp311491v 10.1002/(SICI)1521-3773(19991004)38:19<2926::AID-ANIE2926>3.0.CO;2-B 10.1002/anie.201814156 10.1021/ja000990o 10.1126/science.aak9750 10.1021/cr068077e 10.1126/science.aaw8007 10.1021/ja5109968 10.1103/PhysRevLett.79.1873 10.1002/anie.200906249 10.1021/acs.accounts.8b00150 10.1039/C6DT04763G 10.1021/nn203113j 10.1002/(SICI)1521-3757(20000218)112:4<828::AID-ANGE828>3.0.CO;2-W 10.1021/jacs.9b11836 10.1016/j.ccr.2016.05.003 10.1002/ange.201912984 10.1002/smll.200902398 10.1002/anie.201900644 10.1002/1521-3773(20021004)41:19<3532::AID-ANIE3532>3.0.CO;2-4 10.1021/acs.accounts.8b00379 10.1126/science.1148624 10.1021/jacs.5b06235 10.1021/acs.accounts.8b00359 10.1021/ja513152h 10.1039/b718784j 10.1039/c2nr30377a 10.1021/ar9602664 10.1126/sciadv.1701823 10.1039/D0NR02986F 10.1002/ange.201915168 10.1021/jacs.7b04678 10.1021/ar300213z |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202014154 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6703 |
ExternalDocumentID | 33336534 10_1002_anie_202014154 ANIE202014154 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 91961201, 21973116, and 21631007 – fundername: National Natural Science Foundation of China grantid: 91961201, 21973116, and 21631007 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-1f13701b6362d99a4533b38432216bc33bb3d2ca66dfbab0a4a64bc683d9df663 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:08:35 EDT 2025 Fri Jul 25 10:48:24 EDT 2025 Thu Apr 03 07:04:00 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Wed Oct 01 02:04:16 EDT 2025 Wed Jan 22 16:31:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | gold silica gel column chromatography chloride cluster compounds alkynes |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4104-1f13701b6362d99a4533b38432216bc33bb3d2ca66dfbab0a4a64bc683d9df663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8977-0850 0000-0002-3764-6409 |
PMID | 33336534 |
PQID | 2497949038 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2471467515 proquest_journals_2497949038 pubmed_primary_33336534 crossref_primary_10_1002_anie_202014154 crossref_citationtrail_10_1002_anie_202014154 wiley_primary_10_1002_anie_202014154_ANIE202014154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 15, 2021 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: March 15, 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 3 2018; 140 2000 2000; 39 112 2019; 52 2013; 46 2020; 142 2019; 10 1999 1999; 38 111 2017; 46 2016; 322 2020 2020; 59 132 2008 2008; 108 2011; 11 2014; 47 2009; 113 2010 2010; 49 122 2020; 12 2017 2017; 56 129 2008; 4 2011; 5 2019; 364 2014; 136 2019 2019; 58 131 2017; 117 2017; 139 2012; 134 2018; 4 2002 2002; 41 114 2015; 137 2018 2018; 57 130 2000; 33 1997; 79 1992; 114 2013; 117 2016; 354 2016; 138 2018; 51 2016; 116 2000; 122 2007; 318 2012; 4 2010; 6 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_3 e_1_2_6_30_2 e_1_2_6_19_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_32_3 e_1_2_6_59_3 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_38_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_60_3 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_3 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_3 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_3 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_20_3 e_1_2_6_28_2 e_1_2_6_45_1 e_1_2_6_66_2 e_1_2_6_24_3 e_1_2_6_26_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_33_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_31_3 e_1_2_6_16_2 e_1_2_6_54_2 e_1_2_6_39_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_8_3 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_3 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 139 start-page: 9994 year: 2017 end-page: 10001 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 12966 year: 2009 end-page: 12969 publication-title: J. Phys. Chem. C – volume: 137 start-page: 4610 year: 2015 end-page: 4613 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 5312 5350 year: 2020 2020 end-page: 5315 5353 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 3963 year: 2011 end-page: 3969 publication-title: Nano Lett. – volume: 57 130 start-page: 7855 7981 year: 2018 2018 end-page: 7859 7985 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 122 start-page: 1295 1317 year: 2010 2010 end-page: 1298 1320 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 8935 year: 2011 end-page: 8942 publication-title: ACS Nano – volume: 142 start-page: 18086 year: 2020 end-page: 18092 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 14750 year: 2012 end-page: 14752 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 27 year: 2000 end-page: 36 publication-title: Acc. Chem. Res. – volume: 108 start-page: 2688 year: 2008 end-page: 2720 publication-title: Chem. Rev. – volume: 138 start-page: 3278 year: 2016 end-page: 3281 publication-title: J. Am. Chem. Soc. – volume: 41 114 start-page: 3532 3682 year: 2002 2002 end-page: 3554 3704 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 318 start-page: 430 year: 2007 end-page: 433 publication-title: Science – volume: 136 start-page: 11347 year: 2014 end-page: 11354 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 1206 year: 2015 end-page: 1212 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 8639 8775 year: 2018 2018 end-page: 8643 8779 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 6892 year: 2019 end-page: 6896 publication-title: J. Phys. Chem. Lett. – volume: 137 start-page: 10076 year: 2015 end-page: 10079 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 15430 year: 2018 end-page: 15436 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 4234 year: 2012 end-page: 4239 publication-title: Nanoscale – volume: 51 start-page: 2465 year: 2018 end-page: 2474 publication-title: Acc. Chem. Res. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 58 131 start-page: 5902 5962 year: 2019 2019 end-page: 5905 5966 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 79 start-page: 1873 year: 1997 end-page: 1876 publication-title: Phys. Rev. Lett. – volume: 56 129 start-page: 11494 11652 year: 2017 2017 end-page: 11497 11655 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 364 start-page: 279 year: 2019 end-page: 282 publication-title: Science – volume: 138 start-page: 7848 year: 2016 end-page: 7851 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1216 year: 2010 end-page: 1220 publication-title: Small – volume: 322 start-page: 1 year: 2016 end-page: 29 publication-title: Coord. Chem. Rev. – volume: 116 start-page: 10346 year: 2016 end-page: 10413 publication-title: Chem. Rev. – volume: 12 start-page: 13346 year: 2020 end-page: 13350 publication-title: Nanoscale – volume: 137 start-page: 10033 year: 2015 end-page: 10035 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 8208 year: 2017 end-page: 8271 publication-title: Chem. Rev. – volume: 51 start-page: 1774 year: 2018 end-page: 1783 publication-title: Acc. Chem. Res. – start-page: 4344 year: 2008 end-page: 4362 publication-title: Dalton Trans. – volume: 52 start-page: 12 year: 2019 end-page: 22 publication-title: Acc. Chem. Res. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 139 start-page: 17731 year: 2017 end-page: 17734 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 2995 year: 2020 end-page: 3001 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 5703 5805 year: 2018 2018 end-page: 5707 5809 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 111 start-page: 2926 3114 year: 1999 1999 end-page: 2928 3116 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 41 114 start-page: 1882 1959 year: 2002 2002 end-page: 1884 1962 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 122 start-page: 9178 year: 2000 end-page: 9181 publication-title: J. Am. Chem. Soc. – volume: 39 112 start-page: 799 828 year: 2000 2000 end-page: 801 830 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 46 start-page: 1749 year: 2013 end-page: 1758 publication-title: Acc. Chem. Res. – volume: 354 start-page: 1580 year: 2016 end-page: 1584 publication-title: Science – volume: 114 start-page: 2743 year: 1992 end-page: 2745 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3427 year: 2017 end-page: 3434 publication-title: Dalton Trans. – volume: 58 131 start-page: 8291 8377 year: 2019 2019 end-page: 8302 8388 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 2309 2329 year: 2020 2020 end-page: 2312 2332 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 start-page: 816 year: 2014 end-page: 824 publication-title: Acc. Chem. Res. – volume: 58 131 start-page: 1083 1095 year: 2019 2019 end-page: 1087 1099 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 534 year: 2008 end-page: 537 publication-title: Small – volume: 117 start-page: 504 year: 2013 end-page: 517 publication-title: J. Phys. Chem. A – ident: e_1_2_6_16_2 doi: 10.1021/acs.chemrev.5b00703 – ident: e_1_2_6_9_2 doi: 10.1021/ja503724j – ident: e_1_2_6_59_2 doi: 10.1002/anie.201804087 – ident: e_1_2_6_14_2 doi: 10.1021/ar400209a – ident: e_1_2_6_28_2 doi: 10.1021/jacs.8b09440 – ident: e_1_2_6_40_2 doi: 10.1021/jacs.6b04471 – ident: e_1_2_6_44_2 – ident: e_1_2_6_10_2 doi: 10.1021/jacs.5b12730 – ident: e_1_2_6_30_3 doi: 10.1002/ange.201706021 – ident: e_1_2_6_37_2 doi: 10.1021/acs.jpclett.9b02920 – ident: e_1_2_6_42_1 doi: 10.1002/anie.201801261 – ident: e_1_2_6_32_2 doi: 10.1002/anie.201811859 – ident: e_1_2_6_29_1 – ident: e_1_2_6_36_2 doi: 10.1021/jacs.0c07397 – ident: e_1_2_6_15_2 doi: 10.1021/acs.chemrev.6b00769 – ident: e_1_2_6_45_1 – ident: e_1_2_6_31_2 doi: 10.1002/anie.201804481 – ident: e_1_2_6_20_3 doi: 10.1002/(SICI)1521-3757(19991004)111:19<3114::AID-ANGE3114>3.0.CO;2-S – ident: e_1_2_6_47_2 doi: 10.1002/smll.200800051 – ident: e_1_2_6_53_2 doi: 10.1126/sciadv.aat7259 – ident: e_1_2_6_41_2 doi: 10.1002/anie.201915168 – ident: e_1_2_6_5_2 doi: 10.1021/nl202288j – ident: e_1_2_6_59_3 doi: 10.1002/ange.201804087 – ident: e_1_2_6_49_2 doi: 10.1021/jacs.5b05378 – ident: e_1_2_6_42_2 doi: 10.1002/ange.201801261 – ident: e_1_2_6_55_1 – ident: e_1_2_6_56_2 doi: 10.1021/jacs.7b10201 – ident: e_1_2_6_30_2 doi: 10.1002/anie.201706021 – ident: e_1_2_6_32_3 doi: 10.1002/ange.201811859 – ident: e_1_2_6_61_2 doi: 10.1021/ja00033a073 – ident: e_1_2_6_4_2 doi: 10.1021/jp9044385 – ident: e_1_2_6_31_3 doi: 10.1002/ange.201804481 – ident: e_1_2_6_8_3 doi: 10.1002/ange.200906249 – ident: e_1_2_6_7_3 doi: 10.1002/ange.201814156 – ident: e_1_2_6_24_2 doi: 10.1002/1521-3773(20020603)41:11<1882::AID-ANIE1882>3.0.CO;2-N – ident: e_1_2_6_58_2 doi: 10.1021/ja307256b – ident: e_1_2_6_33_2 doi: 10.1002/anie.201912984 – ident: e_1_2_6_24_3 doi: 10.1002/1521-3757(20020603)114:11<1959::AID-ANGE1959>3.0.CO;2-O – ident: e_1_2_6_26_1 – ident: e_1_2_6_21_2 doi: 10.1002/(SICI)1521-3773(20000218)39:4<799::AID-ANIE799>3.0.CO;2-B – ident: e_1_2_6_22_3 doi: 10.1002/1521-3757(20021004)114:19<3682::AID-ANGE3682>3.0.CO;2-6 – ident: e_1_2_6_60_3 doi: 10.1002/ange.201900644 – ident: e_1_2_6_1_1 – ident: e_1_2_6_54_2 doi: 10.1021/jp311491v – ident: e_1_2_6_20_2 doi: 10.1002/(SICI)1521-3773(19991004)38:19<2926::AID-ANIE2926>3.0.CO;2-B – ident: e_1_2_6_7_2 doi: 10.1002/anie.201814156 – ident: e_1_2_6_25_2 doi: 10.1021/ja000990o – ident: e_1_2_6_50_2 doi: 10.1126/science.aak9750 – ident: e_1_2_6_66_2 doi: 10.1021/cr068077e – ident: e_1_2_6_2_2 doi: 10.1126/science.aaw8007 – ident: e_1_2_6_38_1 doi: 10.1021/ja5109968 – ident: e_1_2_6_51_2 doi: 10.1103/PhysRevLett.79.1873 – ident: e_1_2_6_8_2 doi: 10.1002/anie.200906249 – ident: e_1_2_6_64_1 – ident: e_1_2_6_11_2 doi: 10.1021/acs.accounts.8b00150 – ident: e_1_2_6_18_2 doi: 10.1039/C6DT04763G – ident: e_1_2_6_39_1 – ident: e_1_2_6_3_2 doi: 10.1021/nn203113j – ident: e_1_2_6_21_3 doi: 10.1002/(SICI)1521-3757(20000218)112:4<828::AID-ANGE828>3.0.CO;2-W – ident: e_1_2_6_34_2 doi: 10.1021/jacs.9b11836 – ident: e_1_2_6_13_2 doi: 10.1016/j.ccr.2016.05.003 – ident: e_1_2_6_33_3 doi: 10.1002/ange.201912984 – ident: e_1_2_6_57_2 doi: 10.1002/smll.200902398 – ident: e_1_2_6_19_1 – ident: e_1_2_6_60_2 doi: 10.1002/anie.201900644 – ident: e_1_2_6_22_2 doi: 10.1002/1521-3773(20021004)41:19<3532::AID-ANIE3532>3.0.CO;2-4 – ident: e_1_2_6_12_2 doi: 10.1021/acs.accounts.8b00379 – ident: e_1_2_6_46_2 doi: 10.1126/science.1148624 – ident: e_1_2_6_63_1 doi: 10.1021/jacs.5b06235 – ident: e_1_2_6_17_2 doi: 10.1021/acs.accounts.8b00359 – ident: e_1_2_6_52_2 doi: 10.1021/ja513152h – ident: e_1_2_6_23_2 doi: 10.1039/b718784j – ident: e_1_2_6_62_1 doi: 10.1039/c2nr30377a – ident: e_1_2_6_65_2 doi: 10.1021/ar9602664 – ident: e_1_2_6_43_1 – ident: e_1_2_6_27_2 doi: 10.1126/sciadv.1701823 – ident: e_1_2_6_35_2 doi: 10.1039/D0NR02986F – ident: e_1_2_6_41_3 doi: 10.1002/ange.201915168 – ident: e_1_2_6_48_2 doi: 10.1021/jacs.7b04678 – ident: e_1_2_6_6_2 doi: 10.1021/ar300213z |
SSID | ssj0028806 |
Score | 2.5099237 |
Snippet | The synthesis and isolation of alkynyl/chloride‐protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold... The synthesis and isolation of alkynyl/chloride-protected gold nanoclusters is described. Silica gel column chromatography is effective in isolating gold... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6699 |
SubjectTerms | alkynes chloride Chlorides cluster compounds Clusters Column chromatography Crystal structure Electrochemical analysis Electrochemistry Gold Nanoclusters Silica Silica gel silica gel column chromatography Silicon dioxide Staples Surface structure |
Title | Enriching Structural Diversity of Alkynyl‐Protected Gold Nanoclusters with Chlorides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202014154 https://www.ncbi.nlm.nih.gov/pubmed/33336534 https://www.proquest.com/docview/2497949038 https://www.proquest.com/docview/2471467515 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_SSJm0e22yKCoWcnNiSLNvHZbPbbaFLaR7kZjSSTSDGLuzuYXPKT-hv7C_JjL12syklkPomJNmy5qGRNPMNY58C0CpWxnk6suApJXPPRDF4oQ2FzXwTCkPRyN-menKpvl6H14-i-Bt8iO7AjSSj1tck4AZmp39AQykCG_d3gjwVQwIEDWRY39P-6PCjBDJnE14kpUdZ6FvURl-crndfX5X-MjXXLdd66Rm_YaYddONxcnuymMOJvXuC5_g_f7XNtlZ2KR80jLTDXmXlW7Y5bNPBvWNXoxJVJp1X8fMac5bwOvhZ69bBq5wPittluSx-3__63qA_ZI5_rgrHUYVXtlgQJsOM08kvH96Q55_LZrvscjy6GE68VVIGz6qAMA7zQEY-khhXPpckRqG9CDJWqBgCDRYLIJ2wRmuXgwHfKKMVWB1Ll7gc7Zs9tlFWZXbAOIDFejThrMsVRDYGJ_I4hkwgo-g87jGvJUpqV4jllDijSBusZZHSbKXdbPXYcdf-Z4PV8c-W_ZbG6UpmZyluRFE5Jb7ED3_sqnGW6QrFlFm1oDYRLS1oBPbYfsMb3ackPjqU-HJRU_iZMaSD6ZdRV3r_kk6H7LUgFxtyLwz7bAOpnx2hjTSHD7UcPABp5QmX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EAvtNAftgVqpEo9BbK242SPq2XpUmCFWqh6izx2okpECdKyBzj1EfqMfZLOJJugbVVVgtws24ljz5_tmW8A3vfR6ERbH5jYYaC1ygMbJxhELpIuC20kLUcjn07N5EJ_-ha13oQcC9PgQ3QHbswZtbxmBucD6f071FAOwaYNnmRXxUg_hid8Sce8efC5Q5CSRJ5NgJFSAeehb3EbQ7m_3H9ZL_1lbC7brrXyOXwG2A678Tm53Jtf4567_QPR8UH_9RzWFqapGDa0tA6PsnIDVkdtRrgX8HVcktTkIyvxpYadZcgOcdB6dogqF8Pi8qa8KX79-HnWAEBkXnysCi9IileumDMsw0zw4a8YfWfnP5_NXsLF4fh8NAkWeRkCp_sMc5j3VRzSKpPy84OB1WQyoko0yYa-QUcFVF46a4zP0WJotTUanUmUH_icTJxXsFJWZbYJAtFRPVlxzucaY5egl3mSYCaJVkye9CBoVyV1C9Byzp1RpA3cskx5ttJutnrwoWt_1cB1_LPlVrvI6YJtZyntRUk-DUJFH97tqmmW-RbFllk15zYxaxeyA3vwuiGO7lOKHhMpermsl_g_Y0iH06NxV3pzn07vYHVyfnqSnhxNj9_CU8keN-xtGG3BClFCtk0m0zXu1EzxGwEyDbM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BIkEvLfRBF1pwJaSe0mZtx8keV9tdWh6rCmjVW-RHLKRGSaXdPbQnfgK_kV_CTLIJ3aKqEuRm2Y4dz3j82Zn5DPCuZ5RMpHaBiq0JpBQ-0HFigshG3GahjrimaOTPE3V8Jj9cRBe3ovhrfoj2wI1mRmWvaYJfOX_4hzSUIrBxf8fJUzGSj-GJVLjFIlj0pSWQ4qiddXyREAFdQ9_QNob8cLn-8rL0F9Zchq7V2jNeA930unY5uTyYz8yBvblD6Pg_n_UcVhfAlA1qTXoBj7JiHZ4Nm_vgNuB8VKDNpAMr9rUinSXCDnbU-HWw0rNBfnldXOe_fvw8rekfMsfel7ljaMNLm8-JlGHK6OiXDb-T65_LpptwNh59Gx4Hi1sZAit7RHLoeyIOUca49Ll-X0sEjEYkEi1DTxmLCSMct1op5402oZZaSWNVIlzfeQQ4W9ApyiLbBmaMxXzEcNZ5aWKbGMd9kpiMo6Yon3QhaISS2gVlOd2ckac12TJPabTSdrS6sN-Wv6rJOu4tudPIOF1M2mmKO1G0Tv1QYMN7bTaOMv1D0UVWzqlMTGsLosAuvKx1o21K4KMigS_nlYQf6EM6mJyM2tSrf6n0Fp6eHo3TTyeTj69hhZO7DbkaRjvQQUXIdhEvzcybakr8BspiDGI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enriching+Structural+Diversity+of+Alkynyl-Protected+Gold+Nanoclusters+with+Chlorides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Jiao-Jiao&rft.au=Guan%2C+Zong-Jie&rft.au=Yuan%2C+Shang-Fu&rft.au=Hu%2C+Feng&rft.date=2021-03-15&rft.eissn=1521-3773&rft.volume=60&rft.issue=12&rft.spage=6699&rft_id=info:doi/10.1002%2Fanie.202014154&rft_id=info%3Apmid%2F33336534&rft.externalDocID=33336534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |