Technical note: Evaluation of a V‐Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient‐specific CT dosimetry
Purpose This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part o...
        Saved in:
      
    
          | Published in | Medical physics (Lancaster) Vol. 49; no. 4; pp. 2342 - 2354 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
        
        01.04.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-2405 2473-4209 1522-8541 2473-4209  | 
| DOI | 10.1002/mp.15521 | 
Cover
| Abstract | Purpose
This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient‐specific CT dose estimation.
Methods
A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V‐Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age‐group‐specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient‐specific dose maps to evaluate the impact of segmentation errors on organ dose estimation.
Results
Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age‐group‐specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%.
Conclusions
Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient‐specific CT dose estimation. | 
    
|---|---|
| AbstractList | This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation.PURPOSEThis study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation.A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation.METHODSA collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation.Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%.RESULTSResults demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%.Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.CONCLUSIONSOverall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation. Purpose This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient‐specific CT dose estimation. Methods A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V‐Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age‐group‐specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient‐specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. Results Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age‐group‐specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. Conclusions Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient‐specific CT dose estimation. This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation. A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.  | 
    
| Author | Adamson, Philip M. Principi, Sara Offe, Michael Wang, Adam S. Vo, Nghia‐Jack Bhattbhatt, Vrunda Beriwal, Surabhi Jordan, Petr Strain, Linda S. Gilat Schmidt, Taly  | 
    
| AuthorAffiliation | 3 Department of Radiology, Children’s Wisconsin and Medical College of Wisconsin, Milwaukee, WI 53226, United States 4 Department of Radiology, Stanford University, Stanford, CA 94305, United States 1 Varian Medical Systems, Palo Alto, CA 94304, United States 2 Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53201, United States  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53201, United States – name: 4 Department of Radiology, Stanford University, Stanford, CA 94305, United States – name: 3 Department of Radiology, Children’s Wisconsin and Medical College of Wisconsin, Milwaukee, WI 53226, United States – name: 1 Varian Medical Systems, Palo Alto, CA 94304, United States  | 
    
| Author_xml | – sequence: 1 givenname: Philip M. surname: Adamson fullname: Adamson, Philip M. organization: Varian Medical Systems – sequence: 2 givenname: Vrunda surname: Bhattbhatt fullname: Bhattbhatt, Vrunda organization: Varian Medical Systems – sequence: 3 givenname: Sara surname: Principi fullname: Principi, Sara organization: Marquette University and Medical College of Wisconsin – sequence: 4 givenname: Surabhi surname: Beriwal fullname: Beriwal, Surabhi organization: Varian Medical Systems – sequence: 5 givenname: Linda S. surname: Strain fullname: Strain, Linda S. organization: Children's Wisconsin and Medical College of Wisconsin – sequence: 6 givenname: Michael surname: Offe fullname: Offe, Michael organization: Marquette University and Medical College of Wisconsin – sequence: 7 givenname: Adam S. surname: Wang fullname: Wang, Adam S. organization: Stanford University – sequence: 8 givenname: Nghia‐Jack surname: Vo fullname: Vo, Nghia‐Jack organization: Children's Wisconsin and Medical College of Wisconsin – sequence: 9 givenname: Taly surname: Gilat Schmidt fullname: Gilat Schmidt, Taly email: tal.gilat-schmidt@marquette.edu organization: Marquette University and Medical College of Wisconsin – sequence: 10 givenname: Petr surname: Jordan fullname: Jordan, Petr organization: Varian Medical Systems  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35128672$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kdtu1DAQhiNURA8g8QTIlyA1iw9xsukFElqVg1SgFwu31sSZ7Bo5doidVssVj8CD8FQ8CaYp5SBAvrCl_5_vH88cZnvOO8yy-4wuGKX8cT8smJSc3coOeFGJvOC03ssOKK2LnBdU7meHIbynlJZC0jvZvpCML8uKH2Rf1qi3zmiwxPmIJ-T0AuwE0XhHfEeAvPv66fNrjASm6ANuenRxVsFu_GjitiedH8mArYE4Gk1WaxI0uHBCznFMUg9O4zHZoMMRrPkIjbEm7o4JuJbAMNgUfgWMngzplQJSZBhQm27GtT6YHuO4u5vd7sAGvHd9H2Vvn52uVy_yszfPX66enuW6YJTlHAvWSCEQmJYNotTItGhYBR3XJW85iKaql6Ja0qpuy7qpOglc1BSgoyVtxFH2aOZOboDdJVirhtH0MO4Uo-r7xFU_qKuJJ--T2TtMTY-tTu2nb974PRj1u-LMVm38haoprZaSJsDDa8DoP0wYoupN0GgtOPRTULxMhwtZymR98GvWTciPdf5k6dGHMGL3v74Xf1i1mTebujT2bwX5XHBpLO7-CVavzmf_NwOh00I | 
    
| CitedBy_id | crossref_primary_10_1016_S2589_7500_24_00154_7 crossref_primary_10_1007_s10278_024_01273_w crossref_primary_10_3390_jcm14030807 crossref_primary_10_1016_j_ejmp_2023_103195 crossref_primary_10_1088_1361_6498_ad9f71 crossref_primary_10_1007_s10278_024_01319_z crossref_primary_10_1002_mp_17025 crossref_primary_10_1088_2057_1976_ad8c4a crossref_primary_10_1088_1361_6560_ada67f crossref_primary_10_3389_fonc_2024_1378449 crossref_primary_10_3390_bioengineering11040319 crossref_primary_10_1007_s00330_023_10494_6 crossref_primary_10_1016_j_ijrobp_2024_01_201  | 
    
| Cites_doi | 10.1016/j.compmedimag.2016.07.012 10.1016/j.ijrobp.2004.01.026 10.1098/rsif.2017.0387 10.1118/1.4961121 10.1007/s10278-013-9622-7 10.1007/978-3-030-11726-9_28 10.1109/RBME.2020.2987975 10.1118/1.2723885 10.3348/kjr.2017.18.4.570 10.1118/1.4921066 10.1007/978-3-030-01261-8_1 10.1007/978-3-319-46976-8_3 10.1016/j.neuroimage.2017.04.039 10.1118/1.3533897 10.1002/mp.13937 10.1056/NEJMra072149 10.1118/1.4884227 10.1002/mp.14131 10.1148/radiol.13122617 10.1118/1.2896075 10.1109/TMI.2020.3031913 10.1016/j.radonc.2019.11.021 10.1118/1.4883778 10.1016/j.artmed.2018.08.008 10.2214/AJR.18.20018 10.1148/radiol.12112265 10.1118/1.4903899 10.1016/j.semradonc.2019.02.001 10.1007/s00330-007-0815-7 10.3389/fninf.2013.00045 10.1088/0031-9155/58/24/8755 10.1002/mp.14830 10.1109/ICCV48922.2021.00833 10.1109/NSSMIC.2018.8824626 10.1001/jamapediatrics.2013.311 10.1016/j.media.2020.101693 10.1088/0031-9155/60/14/5601 10.1109/ICCV.2015.123 10.1002/mp.14494 10.1016/j.compbiomed.2020.103792 10.1118/1.3611983 10.1038/s41592-020-01008-z 10.1109/TMI.2019.2948320 10.1097/RLI.0000000000000180 10.1088/0031-9155/54/9/007 10.1038/s41598-017-05300-5 10.1016/j.media.2020.101759 10.1088/0031-9155/52/9/017 10.1002/mp.12602 10.1088/0031-9155/54/3/003 10.1088/0952-4746/35/4/891 10.1109/TMI.2015.2481436 10.1007/s10278-019-00227-x 10.4103/2153-3539.186902 10.1109/CVPRW.2015.7301312 10.1118/1.3298015 10.1120/jacmp.v14i4.4347 10.2214/ajr.176.2.1760289 10.1117/1.JMI.3.4.043502 10.4065/mcp.2010.0260 10.1109/ISBI.2016.7493362 10.1109/TMI.2021.3084748 10.1109/CVPR42600.2020.01070 10.1007/s00247-002-0774-8 10.1109/TMI.2004.828354 10.1117/12.2582127 10.1088/0031-9155/48/16/306 10.1118/1.3693052 10.1002/mp.15485 10.1002/mp.13305 10.1148/radiol.12112201 10.1109/3DV.2016.79 10.1002/mp.12197  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 American Association of Physicists in Medicine 2022 American Association of Physicists in Medicine.  | 
    
| Copyright_xml | – notice: 2022 American Association of Physicists in Medicine – notice: 2022 American Association of Physicists in Medicine.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/mp.15521 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Physics  | 
    
| EISSN | 2473-4209 | 
    
| EndPage | 2354 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:9007850 PMC9007850 35128672 10_1002_mp_15521 MP15521  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: HHS | National Institutes of Health (NIH) funderid: U01EB023822 – fundername: NIBIB NIH HHS grantid: U01 EB023822 – fundername: HHS | National Institutes of Health (NIH) grantid: U01EB023822  | 
    
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM ABUFD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4101-2e41b533ea1c5bee5ce1c3b17af2c62d2a3b798378079d69b7f5a2390aaf060b3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0094-2405 2473-4209 1522-8541  | 
    
| IngestDate | Sun Oct 26 04:11:18 EDT 2025 Tue Sep 30 17:14:54 EDT 2025 Thu Oct 02 12:12:59 EDT 2025 Mon Jul 21 06:08:43 EDT 2025 Wed Oct 01 04:33:09 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Jan 22 16:26:13 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | deep learning segmentation organ dose  | 
    
| Language | English | 
    
| License | 2022 American Association of Physicists in Medicine. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4101-2e41b533ea1c5bee5ce1c3b17af2c62d2a3b798378079d69b7f5a2390aaf060b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9007850 | 
    
| PMID | 35128672 | 
    
| PQID | 2626223565 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_mp_15521 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007850 proquest_miscellaneous_2626223565 pubmed_primary_35128672 crossref_primary_10_1002_mp_15521 crossref_citationtrail_10_1002_mp_15521 wiley_primary_10_1002_mp_15521_MP15521  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2022 | 
    
| PublicationDateYYYYMMDD | 2022-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Medical physics (Lancaster) | 
    
| PublicationTitleAlternate | Med Phys | 
    
| PublicationYear | 2022 | 
    
| References | 2015; 35 2017; 7 2013; 26 2019; 95 2020; 63 2020; 121 2017; 44 2004; 23 2013; 167 2008; 35 2013; 7 2007; 34 2007; 37 2001; 176 2018; 170 2013; 58 2013; 14 2009; 54 2015; 42 2016; 43 2007; 9 2003; 48 2020; 47 2021; 40 2021; 48 2012; 264 2012; 265 2010; 37 2020; 40 2019; 32 2015; 50 2008; 18 2002; 32 2019; 39 2006 2020; 145 2012; 39 2007; 52 2014; 270 2014; 41 2011; 38 2010; 85 2021; 14 2007; 357 2016; 7 2016; 3 2015; 60 2020 2021; 18 2017; 55 2019; 46 2004; 59 2019 2019; 212 2018 2016 2017; 18 2015 2020; 65 2018; 15 e_1_2_9_75_1 e_1_2_9_31_1 Chodick G (e_1_2_9_33_1) 2007; 9 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Akram SU (e_1_2_9_12_1) 2016 Myronenko A (e_1_2_9_62_1) 2019 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Protection R (e_1_2_9_70_1) 2007; 37 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 Schroeder W (e_1_2_9_60_1) 2006  | 
    
| References_xml | – volume: 212 start-page: 505 year: 2019 end-page: 512 article-title: Effect of CT reconstruction algorithm on the diagnostic performance of radiomics models: a task‐based approach for pulmonary subsolid nodules publication-title: Am J Roentgenol – start-page: 698 year: 2016 end-page: 701 article-title: Retinal vessel segmentation via deep learning network and fully‐connected conditional random fields – volume: 40 start-page: 585 year: 2020 end-page: 593 article-title: Closing the gap between deep neural network modeling and biomedical decision‐making metrics in segmentation via adaptive loss functions publication-title: IEEE Trans Med Imaging – volume: 95 start-page: 64 year: 2019 end-page: 81 article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review publication-title: Artif Intell Med – volume: 3 year: 2016 article-title: Accuracy of patient‐specific organ dose estimates obtained using an automated image segmentation algorithm publication-title: J Med Imaging (Bellingham) – volume: 32 start-page: 582 year: 2019 end-page: 596 article-title: Deep learning techniques for medical image segmentation: achievements and challenges publication-title: J Digit Imaging – volume: 14 start-page: 4 year: 2021 end-page: 15 article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for Covid‐19 publication-title: IEEE Rev Biomed Eng – volume: 58 start-page: 8755 year: 2013 article-title: Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models publication-title: Phys Med Biol – volume: 23 start-page: 903 year: 2004 end-page: 921 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans Med Imaging – year: 2020 article-title: A method of rapid quantification of patient‐specific organ doses for CT using deep‐learning‐based multi‐organ segmentation and GPU‐accelerated Monte Carlo dose computing publication-title: Med Phys – start-page: 1026 year: 2015 end-page: 1034 article-title: Delving deep into rectifiers: surpassing human‐level performance on imagenet classification – volume: 167 start-page: 700 year: 2013 end-page: 707 article-title: The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk publication-title: JAMA Pediatr – volume: 35 start-page: 2018 year: 2008 end-page: 2028 article-title: On the use of Monte Carlo‐derived dosimetric data in the estimation of patient dose from CT examinations publication-title: Med Phys – start-page: 21 year: 2016 end-page: 29 article-title: Cell segmentation proposal network for microscopy image analysis – volume: 44 start-page: 6377 year: 2017 end-page: 6389 article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks publication-title: Med Phys – volume: 39 start-page: 1316 year: 2019 end-page: 1325 article-title: Modified U‐Net (mU‐Net) with incorporation of object‐dependent high level features for improved liver and liver‐tumor segmentation in CT images publication-title: IEEE Trans Med Imaging – volume: 38 start-page: 820 year: 2011 end-page: 829 article-title: The feasibility of patient size‐corrected, scanner‐independent organ dose estimates for abdominal CT exams publication-title: Med Phys – volume: 264 start-page: 567 year: 2012 end-page: 580 article-title: Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT publication-title: Radiology – volume: 42 start-page: 2740 year: 2015 end-page: 2751 article-title: Dose reconstruction for real‐time patient‐specific dose estimation in CT publication-title: Med Phys – volume: 37 start-page: 2 year: 2007 article-title: ICRP publication 103 publication-title: Ann ICRP – volume: 7 start-page: 45 year: 2013 article-title: The design of SimpleITK publication-title: Front Neuroinform – volume: 26 start-page: 1045 issue: 6 year: 2013 end-page: 1057 article-title: The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository publication-title: J Digit Imaging – article-title: Enhancing reproductive organ segmentation in pediatric CT via adversarial learning – volume: 35 start-page: 550 year: 2015 end-page: 566 article-title: An automatic learning‐based framework for robust nucleus segmentation publication-title: IEEE Trans Med Imaging – start-page: 565 year: 2016 end-page: 571 article-title: V‐net: Fully convolutional neural networks for volumetric medical image segmentation – volume: 65 year: 2020 article-title: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis publication-title: Med Image Anal – volume: 145 start-page: 1 year: 2020 end-page: 6 article-title: Clinical evaluation of a full‐image deep segmentation algorithm for the male pelvis on cone‐beam CT and CT publication-title: Radiother Oncol – volume: 34 start-page: 1858 year: 2007 end-page: 1873 article-title: Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination publication-title: Med Phys – start-page: 185 year: 2019 end-page: 197 article-title: Advances in auto‐segmentation – start-page: 1 year: 2018 end-page: 3 article-title: Real‐time patient‐specific CT dose estimation using a deep convolutional neural network – volume: 54 start-page: 2699 year: 2009 article-title: The development, validation and application of a multi‐detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations publication-title: Phys Med Biol – volume: 14 start-page: 263 year: 2013 end-page: 271 article-title: Physical characterization of a new CT iterative reconstruction method operating in sinogram space publication-title: J Appl Clin Med Phys – start-page: 20 year: 2015 end-page: 28 article-title: Deep neural networks for anatomical brain segmentation – volume: 37 start-page: 842 year: 2010 end-page: 847 article-title: Organ doses to adult patients for chest CT publication-title: Med Phys – start-page: 3 year: 2018 end-page: 19 article-title: Group normalization – volume: 121 year: 2020 article-title: Automated detection of COVID‐19 cases using deep neural networks with X‐ray images publication-title: Comput Biol Med – volume: 176 start-page: 289 year: 2001 end-page: 296 article-title: Estimated risks of radiation‐induced fatal cancer from pediatric CT publication-title: Am J Roentgenol – volume: 47 start-page: 480 year: 2020 end-page: 487 article-title: Impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques publication-title: Med Phys – volume: 40 start-page: 3369 year: 2021 end-page: 337 article-title: Deep neural network with consistency regularization of multi‐output channels for improved tumor detection and delineation publication-title: IEEE Trans Med Imaging – volume: 270 start-page: 535 year: 2014 end-page: 547 article-title: Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models publication-title: Radiology – volume: 42 start-page: 314 year: 2015 end-page: 323 article-title: Assessment of the dose reduction potential of a model‐based iterative reconstruction algorithm using a task‐based performance metrology publication-title: Med Phys – volume: 48 start-page: 2906 issue: 6 year: 2021 end-page: 2919 article-title: Reproducibility of lung nodule radiomic features: Multivariable and univariable investigations that account for interactions between CT acquisition and reconstruction parameters publication-title: Med Phys – volume: 54 start-page: 497 year: 2009 article-title: Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT publication-title: Phys Med Biol – volume: 50 start-page: 757 year: 2015 article-title: Measuring CT scanner variability of radiomics features publication-title: Invest Radiol – volume: 47 start-page: 6470 issue: 12 year: 2020 end-page: 6483 article-title: Deterministic linear Boltzmann transport equation solver for patient‐specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models publication-title: Med Phys – volume: 60 start-page: 5601 year: 2015 article-title: VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients publication-title: Phys Med Biol – volume: 32 start-page: 700 year: 2002 end-page: 706 article-title: Lessons we have learned from our children: cancer risks from diagnostic radiology publication-title: Pediatr Radiol – volume: 41 year: 2014 article-title: Size‐specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations publication-title: Med Phys – volume: 41 year: 2014 article-title: Patient‐based estimation of organ dose for a population of 58 adult patients across 13 protocol categories publication-title: Med Phys – volume: 9 start-page: 584 year: 2007 end-page: 587 article-title: Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children publication-title: Isr Med Assoc J‐RAMAT GAN‐ – volume: 39 start-page: 2129 year: 2012 end-page: 2146 article-title: Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation publication-title: Med Phys – volume: 52 start-page: 2583 year: 2007 article-title: Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose publication-title: Phys Med Biol – start-page: 311 year: 2019 end-page: 320 article-title: 3D MRI brain tumor segmentation using autoencoder regularization – volume: 85 start-page: 1142 year: 2010 end-page: 1146 article-title: Radiation risk from medical imaging publication-title: Mayo Clin Proc – volume: 7 start-page: 29 year: 2016 article-title: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases publication-title: J Pathol Inform – volume: 18 start-page: 203 year: 2021 end-page: 211 article-title: NNU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation publication-title: Nat Methods – volume: 170 start-page: 456 year: 2018 end-page: 470 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large‐scale study publication-title: NeuroImage – volume: 38 start-page: 3493 year: 2011 end-page: 3493 article-title: SU‐E‐T‐33: pydicom: an open source DICOM library publication-title: Med Phys – volume: 63 year: 2020 article-title: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation publication-title: Med Image Anal – volume: 35 start-page: 891 year: 2015 article-title: NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans publication-title: J Radiol Prot – year: 2006 – volume: 43 start-page: 5155 year: 2016 end-page: 5160 article-title: Plastimatch MABS, an open source tool for automatic image segmentation publication-title: Med Phys – volume: 15 year: 2018 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface – volume: 59 start-page: 300 year: 2004 end-page: 312 article-title: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation publication-title: Int J Radiat Oncol Biol Phys – volume: 46 start-page: 925 year: 2019 end-page: 933 article-title: A fast, linear Boltzmann transport equation solver for computed tomography dose calculation (Acuros CTD) publication-title: Med Phys – volume: 44 start-page: 2020 year: 2017 end-page: 2036 article-title: Evaluation of segmentation methods on head and neck CT: auto‐segmentation challenge 2015 publication-title: Med Phys – volume: 7 start-page: 1 year: 2017 end-page: 12 article-title: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities publication-title: Sci Rep – volume: 18 start-page: 570 year: 2017 end-page: 584 article-title: Deep learning in medical imaging: general overview publication-title: Korean J Radiol – start-page: 10687 year: 2020 end-page: 10698 article-title: Self‐training with noisy student improves imagenet classification – volume: 357 start-page: 2277 year: 2007 end-page: 2284 article-title: Computed tomography—an increasing source of radiation exposure publication-title: N Engl J Med – volume: 48 start-page: 2645 year: 2003 end-page: 2663 article-title: A Monte Carlo‐based method to estimate radiation dose from spiral CT: from phantom testing to patient‐specific models publication-title: Phys Med Biol – volume: 18 start-page: 759 year: 2008 end-page: 772 article-title: Validation of a Monte Carlo tool for patient‐specific dose simulations in multi‐slice computed tomography publication-title: Eur Radiol – volume: 55 start-page: 28 year: 2017 end-page: 41 article-title: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation publication-title: Comput Med Imaging Graph – volume: 265 start-page: 544 year: 2012 end-page: 554 article-title: Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure—proceedings and recommendations of the radiation dose summit, sponsored by NIBIB, February 24–25, 2011 publication-title: Radiology – article-title: Pediatric chest‐abdomen‐pelvis and abdomen‐pelvis CT images with expert organ contours – ident: e_1_2_9_14_1 doi: 10.1016/j.compmedimag.2016.07.012 – ident: e_1_2_9_20_1 doi: 10.1016/j.ijrobp.2004.01.026 – ident: e_1_2_9_4_1 doi: 10.1098/rsif.2017.0387 – ident: e_1_2_9_66_1 doi: 10.1118/1.4961121 – ident: e_1_2_9_57_1 doi: 10.1007/s10278-013-9622-7 – start-page: 311 volume-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries year: 2019 ident: e_1_2_9_62_1 doi: 10.1007/978-3-030-11726-9_28 – ident: e_1_2_9_23_1 doi: 10.1109/RBME.2020.2987975 – ident: e_1_2_9_45_1 doi: 10.1118/1.2723885 – volume: 9 start-page: 584 year: 2007 ident: e_1_2_9_33_1 article-title: Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children publication-title: Isr Med Assoc J‐RAMAT GAN‐ – ident: e_1_2_9_3_1 doi: 10.3348/kjr.2017.18.4.570 – ident: e_1_2_9_53_1 doi: 10.1118/1.4921066 – ident: e_1_2_9_63_1 doi: 10.1007/978-3-030-01261-8_1 – start-page: 21 volume-title: Deep Learning and Data Labeling for Medical Applications year: 2016 ident: e_1_2_9_12_1 doi: 10.1007/978-3-319-46976-8_3 – ident: e_1_2_9_8_1 doi: 10.1016/j.neuroimage.2017.04.039 – ident: e_1_2_9_48_1 doi: 10.1118/1.3533897 – ident: e_1_2_9_67_1 doi: 10.1002/mp.13937 – ident: e_1_2_9_31_1 doi: 10.1056/NEJMra072149 – ident: e_1_2_9_43_1 doi: 10.1118/1.4884227 – ident: e_1_2_9_79_1 doi: 10.1002/mp.14131 – ident: e_1_2_9_24_1 – ident: e_1_2_9_41_1 doi: 10.1148/radiol.13122617 – ident: e_1_2_9_47_1 doi: 10.1118/1.2896075 – ident: e_1_2_9_6_1 doi: 10.1109/TMI.2020.3031913 – ident: e_1_2_9_18_1 doi: 10.1016/j.radonc.2019.11.021 – ident: e_1_2_9_49_1 doi: 10.1118/1.4883778 – ident: e_1_2_9_7_1 doi: 10.1016/j.artmed.2018.08.008 – ident: e_1_2_9_27_1 doi: 10.2214/AJR.18.20018 – ident: e_1_2_9_35_1 doi: 10.1148/radiol.12112265 – ident: e_1_2_9_69_1 doi: 10.1118/1.4903899 – ident: e_1_2_9_16_1 doi: 10.1016/j.semradonc.2019.02.001 – ident: e_1_2_9_50_1 doi: 10.1007/s00330-007-0815-7 – ident: e_1_2_9_59_1 doi: 10.3389/fninf.2013.00045 – ident: e_1_2_9_40_1 doi: 10.1088/0031-9155/58/24/8755 – ident: e_1_2_9_28_1 doi: 10.1002/mp.14830 – ident: e_1_2_9_74_1 doi: 10.1109/ICCV48922.2021.00833 – ident: e_1_2_9_54_1 doi: 10.1109/NSSMIC.2018.8824626 – ident: e_1_2_9_29_1 doi: 10.1001/jamapediatrics.2013.311 – ident: e_1_2_9_72_1 doi: 10.1016/j.media.2020.101693 – ident: e_1_2_9_51_1 doi: 10.1088/0031-9155/60/14/5601 – ident: e_1_2_9_64_1 doi: 10.1109/ICCV.2015.123 – ident: e_1_2_9_77_1 doi: 10.1002/mp.14494 – ident: e_1_2_9_25_1 doi: 10.1016/j.compbiomed.2020.103792 – ident: e_1_2_9_65_1 doi: 10.1118/1.3611983 – ident: e_1_2_9_5_1 doi: 10.1038/s41592-020-01008-z – ident: e_1_2_9_21_1 doi: 10.1109/TMI.2019.2948320 – ident: e_1_2_9_26_1 doi: 10.1097/RLI.0000000000000180 – ident: e_1_2_9_46_1 doi: 10.1088/0031-9155/54/9/007 – ident: e_1_2_9_10_1 doi: 10.1038/s41598-017-05300-5 – ident: e_1_2_9_58_1 – ident: e_1_2_9_71_1 doi: 10.1016/j.media.2020.101759 – ident: e_1_2_9_38_1 doi: 10.1088/0031-9155/52/9/017 – ident: e_1_2_9_19_1 doi: 10.1002/mp.12602 – ident: e_1_2_9_39_1 doi: 10.1088/0031-9155/54/3/003 – ident: e_1_2_9_52_1 doi: 10.1088/0952-4746/35/4/891 – ident: e_1_2_9_13_1 doi: 10.1109/TMI.2015.2481436 – ident: e_1_2_9_2_1 doi: 10.1007/s10278-019-00227-x – ident: e_1_2_9_11_1 doi: 10.4103/2153-3539.186902 – ident: e_1_2_9_9_1 doi: 10.1109/CVPRW.2015.7301312 – volume: 37 start-page: 2 year: 2007 ident: e_1_2_9_70_1 article-title: ICRP publication 103 publication-title: Ann ICRP – ident: e_1_2_9_42_1 doi: 10.1118/1.3298015 – ident: e_1_2_9_68_1 doi: 10.1120/jacmp.v14i4.4347 – ident: e_1_2_9_32_1 doi: 10.2214/ajr.176.2.1760289 – volume-title: The Visualization Toolkit year: 2006 ident: e_1_2_9_60_1 – ident: e_1_2_9_55_1 doi: 10.1117/1.JMI.3.4.043502 – ident: e_1_2_9_30_1 doi: 10.4065/mcp.2010.0260 – ident: e_1_2_9_15_1 doi: 10.1109/ISBI.2016.7493362 – ident: e_1_2_9_22_1 doi: 10.1109/TMI.2021.3084748 – ident: e_1_2_9_73_1 doi: 10.1109/CVPR42600.2020.01070 – ident: e_1_2_9_34_1 doi: 10.1007/s00247-002-0774-8 – ident: e_1_2_9_78_1 doi: 10.1109/TMI.2004.828354 – ident: e_1_2_9_75_1 doi: 10.1117/12.2582127 – ident: e_1_2_9_37_1 doi: 10.1088/0031-9155/48/16/306 – ident: e_1_2_9_44_1 doi: 10.1118/1.3693052 – ident: e_1_2_9_56_1 doi: 10.1002/mp.15485 – ident: e_1_2_9_76_1 doi: 10.1002/mp.13305 – ident: e_1_2_9_36_1 doi: 10.1148/radiol.12112201 – ident: e_1_2_9_61_1 doi: 10.1109/3DV.2016.79 – ident: e_1_2_9_17_1 doi: 10.1002/mp.12197  | 
    
| SSID | ssj0006350 | 
    
| Score | 2.4673858 | 
    
| Snippet | Purpose
This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the... This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2342 | 
    
| SubjectTerms | Algorithms Child deep learning Humans Image Processing, Computer-Assisted - methods organ dose Radiometry segmentation Thorax Tomography, X-Ray Computed  | 
    
| Title | Technical note: Evaluation of a V‐Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient‐specific CT dosimetry | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15521 https://www.ncbi.nlm.nih.gov/pubmed/35128672 https://www.proquest.com/docview/2626223565 https://pubmed.ncbi.nlm.nih.gov/PMC9007850 https://www.ncbi.nlm.nih.gov/pmc/articles/9007850  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtMwGP41reJww2EwKIfJIAQ3S5s4p3l31dg0IVpVsKJxFdmO01U0BzWpULniEXgQnoon4beTFMoAwVUubDm2_Dn-nP_7PwM8c2zJRBgmVuLTwPKkKyzhJtIKtJmbywLhSOP2OQpOJ96rc_98C5w2F8aI9qWY9bJ52stmF0ZbWaSy3-rE-kzvavqU3gl8pN_b0JmMxoP3tdukp6MFvvFIxUPWgW9urqRe6FoetVlrPmvTflr0tPmYs7kdXeKYl6WS15ZZwVcf-Xy-SWfNfnRyE960I6llKB96y0r05KdfTB7_a6i34EbDTsmgLroNWyrbgavDJv6-A1eMYFSWd-Cr-SevZ5hkeaUOyfHaNpzkCeHk3bfPX0aqInxZ5aWapk2OU0b4fJovZtVFSpAvk6K9KoQcnZES57k8JOMfyQz7ZFr7YmvxmZbxrvYJz2LyU9ydVDlp3GHxlTpzVKufdHNxXs5SVS1Wd2Fycnx2dGo1Nz9Y0sNvhEWV5wgkooo70hdK-VI5CCMn5AmVAY0pd0XItBe-HbI4QLQlPqcuszlP7MAW7i5sZ3mm7gNhLm4FlHkhEjkP6S9DkhKHIZOJVLHyeBdetACIZGOLrm_nmEe1oTON0iIyUOnCk3XNorYC-V2dFkMRrlMdfOGZypdlRPHkiFQM-XMX7tWYWrfiIus6wF52IdxA27qC9gDfLEG8GC_wBiJdeLrG5V8699wA9o8VouHYPB_8S2sP4TrVqSBGxfQItqvFUj1GglaJPegMXg5fv91rluZ3Wz493Q | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWqqXhseBQK4SWDEGyaTOI8XHdXVa0qpI5GqIPKKrIdZzoiL00SoWHFJ_AhfBVfwrWTDAwFBKssbDm2fBwf5557jNBLz5VMUJraaUgiO5C-sIWfSjvSZm4-i4QnjdvnJDqdBW8uwost5A25MEa0L8XCKbLcKRaXRltZ5XI86MTGTO9q-pS-HYVAv0doezaZHr7v3CYDHS0IjUcqHLL2Q3NzJQmobwfEZYP5rEvGeeVo8zFvczu6wjGvSiVvtEXFVx95lm3SWbMfndxGb4eRdDKUD07bCEd--sXk8b-Gegfd6tkpPuyK7qItVeyg62d9_H0HXTOCUVnfQ1_NP3k9w7goG3WAj9e24bhMMcfvvn3-MlEN5m1T1mqe9zlOBebZvFwumsscA1_G1XBVCD46xzXMc32Apz-SGfbwvPPF1uIzLeNd7WFeJPinuDtuSty7w8IrdeaoVj_p5pKyXuSqWa7uo9nJ8fnRqd3f_GDLAL4RNlGBJ4CIKu7JUCgVSuUBjDzKUyIjkhDuC8q0F75LWRIB2tKQE5-5nKdu5Ap_F42KslAPEWY-bAWEBRSIXAD0lwFJSShlMpUqUQG30OsBALHsbdH17RxZ3Bk6kzivYgMVCz1f16w6K5Df1RkwFMM61cEXXqiyrWMCJ0egYsCfLfSgw9S6FR9Y1z700kJ0A23rCtoDfLME8GK8wHuIWOjFGpd_6dwrA9g_VojPpub56F9ae4xuEp0KYlRMT9CoWbbqKRC0Rjzrl-R3dIM8SQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+Evaluation+of+a+V-Net+autosegmentation+algorithm+for+pediatric+CT+scans%3A+Performance%2C+generalizability%2C+and+application+to+patient-specific+CT+dosimetry&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Adamson%2C+Philip+M&rft.au=Bhattbhatt%2C+Vrunda&rft.au=Principi%2C+Sara&rft.au=Beriwal%2C+Surabhi&rft.date=2022-04-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=49&rft.issue=4&rft.spage=2342&rft_id=info:doi/10.1002%2Fmp.15521&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |