Technical note: Evaluation of a V‐Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient‐specific CT dosimetry

Purpose This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part o...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 49; no. 4; pp. 2342 - 2354
Main Authors Adamson, Philip M., Bhattbhatt, Vrunda, Principi, Sara, Beriwal, Surabhi, Strain, Linda S., Offe, Michael, Wang, Adam S., Vo, Nghia‐Jack, Gilat Schmidt, Taly, Jordan, Petr
Format Journal Article
LanguageEnglish
Published United States 01.04.2022
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
1522-8541
2473-4209
DOI10.1002/mp.15521

Cover

Abstract Purpose This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient‐specific CT dose estimation. Methods A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V‐Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age‐group‐specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient‐specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. Results Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age‐group‐specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. Conclusions Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient‐specific CT dose estimation.
AbstractList This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation.PURPOSEThis study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation.A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation.METHODSA collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation.Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%.RESULTSResults demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%.Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.CONCLUSIONSOverall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.
Purpose This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient‐specific CT dose estimation. Methods A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V‐Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age‐group‐specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient‐specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. Results Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age‐group‐specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. Conclusions Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient‐specific CT dose estimation.
This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN across image heterogeneities such as CT scanner model protocols and patient age. We also evaluated the autosegmentation models as part of a software tool for patient-specific CT dose estimation. A collection of 359 pediatric CT datasets with expert organ contours were used for model development and evaluation. Autosegmentation models were trained for each organ using a modified FCN 3D V-Net. An independent test set of 60 patients was withheld for testing. To evaluate the impact of CT scanner model protocol and patient age heterogeneities, separate models were trained using a subset of scanner model protocols and pediatric age groups. Train and test sets were split to answer questions about the generalizability of pediatric FCN autosegmentation models to unseen age groups and scanner model protocols, as well as the merit of scanner model protocol or age-group-specific models. Finally, the organ contours resulting from the autosegmentation models were applied to patient-specific dose maps to evaluate the impact of segmentation errors on organ dose estimation. Results demonstrate that the autosegmentation models generalize to CT scanner acquisition and reconstruction methods which were not present in the training dataset. While models are not equally generalizable across age groups, age-group-specific models do not hold any advantage over combining heterogeneous age groups into a single training set. Dice similarity coefficient (DSC) and mean surface distance results are presented for 19 organ structures, for example, median DSC of 0.52 (duodenum), 0.74 (pancreas), 0.92 (stomach), and 0.96 (heart). The FCN models achieve a mean dose error within 5% of expert segmentations for all 19 organs except for the spinal canal, where the mean error was 6.31%. Overall, these results are promising for the adoption of FCN autosegmentation models for pediatric CT, including applications for patient-specific CT dose estimation.
Author Adamson, Philip M.
Principi, Sara
Offe, Michael
Wang, Adam S.
Vo, Nghia‐Jack
Bhattbhatt, Vrunda
Beriwal, Surabhi
Jordan, Petr
Strain, Linda S.
Gilat Schmidt, Taly
AuthorAffiliation 3 Department of Radiology, Children’s Wisconsin and Medical College of Wisconsin, Milwaukee, WI 53226, United States
4 Department of Radiology, Stanford University, Stanford, CA 94305, United States
1 Varian Medical Systems, Palo Alto, CA 94304, United States
2 Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53201, United States
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53201, United States
– name: 4 Department of Radiology, Stanford University, Stanford, CA 94305, United States
– name: 3 Department of Radiology, Children’s Wisconsin and Medical College of Wisconsin, Milwaukee, WI 53226, United States
– name: 1 Varian Medical Systems, Palo Alto, CA 94304, United States
Author_xml – sequence: 1
  givenname: Philip M.
  surname: Adamson
  fullname: Adamson, Philip M.
  organization: Varian Medical Systems
– sequence: 2
  givenname: Vrunda
  surname: Bhattbhatt
  fullname: Bhattbhatt, Vrunda
  organization: Varian Medical Systems
– sequence: 3
  givenname: Sara
  surname: Principi
  fullname: Principi, Sara
  organization: Marquette University and Medical College of Wisconsin
– sequence: 4
  givenname: Surabhi
  surname: Beriwal
  fullname: Beriwal, Surabhi
  organization: Varian Medical Systems
– sequence: 5
  givenname: Linda S.
  surname: Strain
  fullname: Strain, Linda S.
  organization: Children's Wisconsin and Medical College of Wisconsin
– sequence: 6
  givenname: Michael
  surname: Offe
  fullname: Offe, Michael
  organization: Marquette University and Medical College of Wisconsin
– sequence: 7
  givenname: Adam S.
  surname: Wang
  fullname: Wang, Adam S.
  organization: Stanford University
– sequence: 8
  givenname: Nghia‐Jack
  surname: Vo
  fullname: Vo, Nghia‐Jack
  organization: Children's Wisconsin and Medical College of Wisconsin
– sequence: 9
  givenname: Taly
  surname: Gilat Schmidt
  fullname: Gilat Schmidt, Taly
  email: tal.gilat-schmidt@marquette.edu
  organization: Marquette University and Medical College of Wisconsin
– sequence: 10
  givenname: Petr
  surname: Jordan
  fullname: Jordan, Petr
  organization: Varian Medical Systems
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35128672$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtu1DAQhiNURA8g8QTIlyA1iw9xsukFElqVg1SgFwu31sSZ7Bo5doidVssVj8CD8FQ8CaYp5SBAvrCl_5_vH88cZnvOO8yy-4wuGKX8cT8smJSc3coOeFGJvOC03ssOKK2LnBdU7meHIbynlJZC0jvZvpCML8uKH2Rf1qi3zmiwxPmIJ-T0AuwE0XhHfEeAvPv66fNrjASm6ANuenRxVsFu_GjitiedH8mArYE4Gk1WaxI0uHBCznFMUg9O4zHZoMMRrPkIjbEm7o4JuJbAMNgUfgWMngzplQJSZBhQm27GtT6YHuO4u5vd7sAGvHd9H2Vvn52uVy_yszfPX66enuW6YJTlHAvWSCEQmJYNotTItGhYBR3XJW85iKaql6Ja0qpuy7qpOglc1BSgoyVtxFH2aOZOboDdJVirhtH0MO4Uo-r7xFU_qKuJJ--T2TtMTY-tTu2nb974PRj1u-LMVm38haoprZaSJsDDa8DoP0wYoupN0GgtOPRTULxMhwtZymR98GvWTciPdf5k6dGHMGL3v74Xf1i1mTebujT2bwX5XHBpLO7-CVavzmf_NwOh00I
CitedBy_id crossref_primary_10_1016_S2589_7500_24_00154_7
crossref_primary_10_1007_s10278_024_01273_w
crossref_primary_10_3390_jcm14030807
crossref_primary_10_1016_j_ejmp_2023_103195
crossref_primary_10_1088_1361_6498_ad9f71
crossref_primary_10_1007_s10278_024_01319_z
crossref_primary_10_1002_mp_17025
crossref_primary_10_1088_2057_1976_ad8c4a
crossref_primary_10_1088_1361_6560_ada67f
crossref_primary_10_3389_fonc_2024_1378449
crossref_primary_10_3390_bioengineering11040319
crossref_primary_10_1007_s00330_023_10494_6
crossref_primary_10_1016_j_ijrobp_2024_01_201
Cites_doi 10.1016/j.compmedimag.2016.07.012
10.1016/j.ijrobp.2004.01.026
10.1098/rsif.2017.0387
10.1118/1.4961121
10.1007/s10278-013-9622-7
10.1007/978-3-030-11726-9_28
10.1109/RBME.2020.2987975
10.1118/1.2723885
10.3348/kjr.2017.18.4.570
10.1118/1.4921066
10.1007/978-3-030-01261-8_1
10.1007/978-3-319-46976-8_3
10.1016/j.neuroimage.2017.04.039
10.1118/1.3533897
10.1002/mp.13937
10.1056/NEJMra072149
10.1118/1.4884227
10.1002/mp.14131
10.1148/radiol.13122617
10.1118/1.2896075
10.1109/TMI.2020.3031913
10.1016/j.radonc.2019.11.021
10.1118/1.4883778
10.1016/j.artmed.2018.08.008
10.2214/AJR.18.20018
10.1148/radiol.12112265
10.1118/1.4903899
10.1016/j.semradonc.2019.02.001
10.1007/s00330-007-0815-7
10.3389/fninf.2013.00045
10.1088/0031-9155/58/24/8755
10.1002/mp.14830
10.1109/ICCV48922.2021.00833
10.1109/NSSMIC.2018.8824626
10.1001/jamapediatrics.2013.311
10.1016/j.media.2020.101693
10.1088/0031-9155/60/14/5601
10.1109/ICCV.2015.123
10.1002/mp.14494
10.1016/j.compbiomed.2020.103792
10.1118/1.3611983
10.1038/s41592-020-01008-z
10.1109/TMI.2019.2948320
10.1097/RLI.0000000000000180
10.1088/0031-9155/54/9/007
10.1038/s41598-017-05300-5
10.1016/j.media.2020.101759
10.1088/0031-9155/52/9/017
10.1002/mp.12602
10.1088/0031-9155/54/3/003
10.1088/0952-4746/35/4/891
10.1109/TMI.2015.2481436
10.1007/s10278-019-00227-x
10.4103/2153-3539.186902
10.1109/CVPRW.2015.7301312
10.1118/1.3298015
10.1120/jacmp.v14i4.4347
10.2214/ajr.176.2.1760289
10.1117/1.JMI.3.4.043502
10.4065/mcp.2010.0260
10.1109/ISBI.2016.7493362
10.1109/TMI.2021.3084748
10.1109/CVPR42600.2020.01070
10.1007/s00247-002-0774-8
10.1109/TMI.2004.828354
10.1117/12.2582127
10.1088/0031-9155/48/16/306
10.1118/1.3693052
10.1002/mp.15485
10.1002/mp.13305
10.1148/radiol.12112201
10.1109/3DV.2016.79
10.1002/mp.12197
ContentType Journal Article
Copyright 2022 American Association of Physicists in Medicine
2022 American Association of Physicists in Medicine.
Copyright_xml – notice: 2022 American Association of Physicists in Medicine
– notice: 2022 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mp.15521
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 2354
ExternalDocumentID oai:pubmedcentral.nih.gov:9007850
PMC9007850
35128672
10_1002_mp_15521
MP15521
Genre article
Journal Article
GrantInformation_xml – fundername: HHS | National Institutes of Health (NIH)
  funderid: U01EB023822
– fundername: NIBIB NIH HHS
  grantid: U01 EB023822
– fundername: HHS | National Institutes of Health (NIH)
  grantid: U01EB023822
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c4101-2e41b533ea1c5bee5ce1c3b17af2c62d2a3b798378079d69b7f5a2390aaf060b3
IEDL.DBID UNPAY
ISSN 0094-2405
2473-4209
1522-8541
IngestDate Sun Oct 26 04:11:18 EDT 2025
Tue Sep 30 17:14:54 EDT 2025
Thu Oct 02 12:12:59 EDT 2025
Mon Jul 21 06:08:43 EDT 2025
Wed Oct 01 04:33:09 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Jan 22 16:26:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
segmentation
organ dose
Language English
License 2022 American Association of Physicists in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-2e41b533ea1c5bee5ce1c3b17af2c62d2a3b798378079d69b7f5a2390aaf060b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9007850
PMID 35128672
PQID 2626223565
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mp_15521
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007850
proquest_miscellaneous_2626223565
pubmed_primary_35128672
crossref_primary_10_1002_mp_15521
crossref_citationtrail_10_1002_mp_15521
wiley_primary_10_1002_mp_15521_MP15521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2022
References 2015; 35
2017; 7
2013; 26
2019; 95
2020; 63
2020; 121
2017; 44
2004; 23
2013; 167
2008; 35
2013; 7
2007; 34
2007; 37
2001; 176
2018; 170
2013; 58
2013; 14
2009; 54
2015; 42
2016; 43
2007; 9
2003; 48
2020; 47
2021; 40
2021; 48
2012; 264
2012; 265
2010; 37
2020; 40
2019; 32
2015; 50
2008; 18
2002; 32
2019; 39
2006
2020; 145
2012; 39
2007; 52
2014; 270
2014; 41
2011; 38
2010; 85
2021; 14
2007; 357
2016; 7
2016; 3
2015; 60
2020
2021; 18
2017; 55
2019; 46
2004; 59
2019
2019; 212
2018
2016
2017; 18
2015
2020; 65
2018; 15
e_1_2_9_75_1
e_1_2_9_31_1
Chodick G (e_1_2_9_33_1) 2007; 9
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Akram SU (e_1_2_9_12_1) 2016
Myronenko A (e_1_2_9_62_1) 2019
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Protection R (e_1_2_9_70_1) 2007; 37
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Schroeder W (e_1_2_9_60_1) 2006
References_xml – volume: 212
  start-page: 505
  year: 2019
  end-page: 512
  article-title: Effect of CT reconstruction algorithm on the diagnostic performance of radiomics models: a task‐based approach for pulmonary subsolid nodules
  publication-title: Am J Roentgenol
– start-page: 698
  year: 2016
  end-page: 701
  article-title: Retinal vessel segmentation via deep learning network and fully‐connected conditional random fields
– volume: 40
  start-page: 585
  year: 2020
  end-page: 593
  article-title: Closing the gap between deep neural network modeling and biomedical decision‐making metrics in segmentation via adaptive loss functions
  publication-title: IEEE Trans Med Imaging
– volume: 95
  start-page: 64
  year: 2019
  end-page: 81
  article-title: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review
  publication-title: Artif Intell Med
– volume: 3
  year: 2016
  article-title: Accuracy of patient‐specific organ dose estimates obtained using an automated image segmentation algorithm
  publication-title: J Med Imaging (Bellingham)
– volume: 32
  start-page: 582
  year: 2019
  end-page: 596
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: J Digit Imaging
– volume: 14
  start-page: 4
  year: 2021
  end-page: 15
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for Covid‐19
  publication-title: IEEE Rev Biomed Eng
– volume: 58
  start-page: 8755
  year: 2013
  article-title: Dose coefficients in pediatric and adult abdominopelvic CT based on 100 patient models
  publication-title: Phys Med Biol
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans Med Imaging
– year: 2020
  article-title: A method of rapid quantification of patient‐specific organ doses for CT using deep‐learning‐based multi‐organ segmentation and GPU‐accelerated Monte Carlo dose computing
  publication-title: Med Phys
– start-page: 1026
  year: 2015
  end-page: 1034
  article-title: Delving deep into rectifiers: surpassing human‐level performance on imagenet classification
– volume: 167
  start-page: 700
  year: 2013
  end-page: 707
  article-title: The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk
  publication-title: JAMA Pediatr
– volume: 35
  start-page: 2018
  year: 2008
  end-page: 2028
  article-title: On the use of Monte Carlo‐derived dosimetric data in the estimation of patient dose from CT examinations
  publication-title: Med Phys
– start-page: 21
  year: 2016
  end-page: 29
  article-title: Cell segmentation proposal network for microscopy image analysis
– volume: 44
  start-page: 6377
  year: 2017
  end-page: 6389
  article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks
  publication-title: Med Phys
– volume: 39
  start-page: 1316
  year: 2019
  end-page: 1325
  article-title: Modified U‐Net (mU‐Net) with incorporation of object‐dependent high level features for improved liver and liver‐tumor segmentation in CT images
  publication-title: IEEE Trans Med Imaging
– volume: 38
  start-page: 820
  year: 2011
  end-page: 829
  article-title: The feasibility of patient size‐corrected, scanner‐independent organ dose estimates for abdominal CT exams
  publication-title: Med Phys
– volume: 264
  start-page: 567
  year: 2012
  end-page: 580
  article-title: Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT
  publication-title: Radiology
– volume: 42
  start-page: 2740
  year: 2015
  end-page: 2751
  article-title: Dose reconstruction for real‐time patient‐specific dose estimation in CT
  publication-title: Med Phys
– volume: 37
  start-page: 2
  year: 2007
  article-title: ICRP publication 103
  publication-title: Ann ICRP
– volume: 7
  start-page: 45
  year: 2013
  article-title: The design of SimpleITK
  publication-title: Front Neuroinform
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  end-page: 1057
  article-title: The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository
  publication-title: J Digit Imaging
– article-title: Enhancing reproductive organ segmentation in pediatric CT via adversarial learning
– volume: 35
  start-page: 550
  year: 2015
  end-page: 566
  article-title: An automatic learning‐based framework for robust nucleus segmentation
  publication-title: IEEE Trans Med Imaging
– start-page: 565
  year: 2016
  end-page: 571
  article-title: V‐net: Fully convolutional neural networks for volumetric medical image segmentation
– volume: 65
  year: 2020
  article-title: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
  publication-title: Med Image Anal
– volume: 145
  start-page: 1
  year: 2020
  end-page: 6
  article-title: Clinical evaluation of a full‐image deep segmentation algorithm for the male pelvis on cone‐beam CT and CT
  publication-title: Radiother Oncol
– volume: 34
  start-page: 1858
  year: 2007
  end-page: 1873
  article-title: Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination
  publication-title: Med Phys
– start-page: 185
  year: 2019
  end-page: 197
  article-title: Advances in auto‐segmentation
– start-page: 1
  year: 2018
  end-page: 3
  article-title: Real‐time patient‐specific CT dose estimation using a deep convolutional neural network
– volume: 54
  start-page: 2699
  year: 2009
  article-title: The development, validation and application of a multi‐detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations
  publication-title: Phys Med Biol
– volume: 14
  start-page: 263
  year: 2013
  end-page: 271
  article-title: Physical characterization of a new CT iterative reconstruction method operating in sinogram space
  publication-title: J Appl Clin Med Phys
– start-page: 20
  year: 2015
  end-page: 28
  article-title: Deep neural networks for anatomical brain segmentation
– volume: 37
  start-page: 842
  year: 2010
  end-page: 847
  article-title: Organ doses to adult patients for chest CT
  publication-title: Med Phys
– start-page: 3
  year: 2018
  end-page: 19
  article-title: Group normalization
– volume: 121
  year: 2020
  article-title: Automated detection of COVID‐19 cases using deep neural networks with X‐ray images
  publication-title: Comput Biol Med
– volume: 176
  start-page: 289
  year: 2001
  end-page: 296
  article-title: Estimated risks of radiation‐induced fatal cancer from pediatric CT
  publication-title: Am J Roentgenol
– volume: 47
  start-page: 480
  year: 2020
  end-page: 487
  article-title: Impact on central frequency and noise magnitude ratios by advanced CT image reconstruction techniques
  publication-title: Med Phys
– volume: 40
  start-page: 3369
  year: 2021
  end-page: 337
  article-title: Deep neural network with consistency regularization of multi‐output channels for improved tumor detection and delineation
  publication-title: IEEE Trans Med Imaging
– volume: 270
  start-page: 535
  year: 2014
  end-page: 547
  article-title: Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models
  publication-title: Radiology
– volume: 42
  start-page: 314
  year: 2015
  end-page: 323
  article-title: Assessment of the dose reduction potential of a model‐based iterative reconstruction algorithm using a task‐based performance metrology
  publication-title: Med Phys
– volume: 48
  start-page: 2906
  issue: 6
  year: 2021
  end-page: 2919
  article-title: Reproducibility of lung nodule radiomic features: Multivariable and univariable investigations that account for interactions between CT acquisition and reconstruction parameters
  publication-title: Med Phys
– volume: 54
  start-page: 497
  year: 2009
  article-title: Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT
  publication-title: Phys Med Biol
– volume: 50
  start-page: 757
  year: 2015
  article-title: Measuring CT scanner variability of radiomics features
  publication-title: Invest Radiol
– volume: 47
  start-page: 6470
  issue: 12
  year: 2020
  end-page: 6483
  article-title: Deterministic linear Boltzmann transport equation solver for patient‐specific CT dose estimation: Comparison against a Monte Carlo benchmark for realistic scanner configurations and patient models
  publication-title: Med Phys
– volume: 60
  start-page: 5601
  year: 2015
  article-title: VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients
  publication-title: Phys Med Biol
– volume: 32
  start-page: 700
  year: 2002
  end-page: 706
  article-title: Lessons we have learned from our children: cancer risks from diagnostic radiology
  publication-title: Pediatr Radiol
– volume: 41
  year: 2014
  article-title: Size‐specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations
  publication-title: Med Phys
– volume: 41
  year: 2014
  article-title: Patient‐based estimation of organ dose for a population of 58 adult patients across 13 protocol categories
  publication-title: Med Phys
– volume: 9
  start-page: 584
  year: 2007
  end-page: 587
  article-title: Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children
  publication-title: Isr Med Assoc J‐RAMAT GAN‐
– volume: 39
  start-page: 2129
  year: 2012
  end-page: 2146
  article-title: Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation
  publication-title: Med Phys
– volume: 52
  start-page: 2583
  year: 2007
  article-title: Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose
  publication-title: Phys Med Biol
– start-page: 311
  year: 2019
  end-page: 320
  article-title: 3D MRI brain tumor segmentation using autoencoder regularization
– volume: 85
  start-page: 1142
  year: 2010
  end-page: 1146
  article-title: Radiation risk from medical imaging
  publication-title: Mayo Clin Proc
– volume: 7
  start-page: 29
  year: 2016
  article-title: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases
  publication-title: J Pathol Inform
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  article-title: NNU‐Net: a self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nat Methods
– volume: 170
  start-page: 456
  year: 2018
  end-page: 470
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: A large‐scale study
  publication-title: NeuroImage
– volume: 38
  start-page: 3493
  year: 2011
  end-page: 3493
  article-title: SU‐E‐T‐33: pydicom: an open source DICOM library
  publication-title: Med Phys
– volume: 63
  year: 2020
  article-title: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation
  publication-title: Med Image Anal
– volume: 35
  start-page: 891
  year: 2015
  article-title: NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans
  publication-title: J Radiol Prot
– year: 2006
– volume: 43
  start-page: 5155
  year: 2016
  end-page: 5160
  article-title: Plastimatch MABS, an open source tool for automatic image segmentation
  publication-title: Med Phys
– volume: 15
  year: 2018
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
– volume: 59
  start-page: 300
  year: 2004
  end-page: 312
  article-title: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 46
  start-page: 925
  year: 2019
  end-page: 933
  article-title: A fast, linear Boltzmann transport equation solver for computed tomography dose calculation (Acuros CTD)
  publication-title: Med Phys
– volume: 44
  start-page: 2020
  year: 2017
  end-page: 2036
  article-title: Evaluation of segmentation methods on head and neck CT: auto‐segmentation challenge 2015
  publication-title: Med Phys
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities
  publication-title: Sci Rep
– volume: 18
  start-page: 570
  year: 2017
  end-page: 584
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J Radiol
– start-page: 10687
  year: 2020
  end-page: 10698
  article-title: Self‐training with noisy student improves imagenet classification
– volume: 357
  start-page: 2277
  year: 2007
  end-page: 2284
  article-title: Computed tomography—an increasing source of radiation exposure
  publication-title: N Engl J Med
– volume: 48
  start-page: 2645
  year: 2003
  end-page: 2663
  article-title: A Monte Carlo‐based method to estimate radiation dose from spiral CT: from phantom testing to patient‐specific models
  publication-title: Phys Med Biol
– volume: 18
  start-page: 759
  year: 2008
  end-page: 772
  article-title: Validation of a Monte Carlo tool for patient‐specific dose simulations in multi‐slice computed tomography
  publication-title: Eur Radiol
– volume: 55
  start-page: 28
  year: 2017
  end-page: 41
  article-title: Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation
  publication-title: Comput Med Imaging Graph
– volume: 265
  start-page: 544
  year: 2012
  end-page: 554
  article-title: Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure—proceedings and recommendations of the radiation dose summit, sponsored by NIBIB, February 24–25, 2011
  publication-title: Radiology
– article-title: Pediatric chest‐abdomen‐pelvis and abdomen‐pelvis CT images with expert organ contours
– ident: e_1_2_9_14_1
  doi: 10.1016/j.compmedimag.2016.07.012
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ijrobp.2004.01.026
– ident: e_1_2_9_4_1
  doi: 10.1098/rsif.2017.0387
– ident: e_1_2_9_66_1
  doi: 10.1118/1.4961121
– ident: e_1_2_9_57_1
  doi: 10.1007/s10278-013-9622-7
– start-page: 311
  volume-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
  year: 2019
  ident: e_1_2_9_62_1
  doi: 10.1007/978-3-030-11726-9_28
– ident: e_1_2_9_23_1
  doi: 10.1109/RBME.2020.2987975
– ident: e_1_2_9_45_1
  doi: 10.1118/1.2723885
– volume: 9
  start-page: 584
  year: 2007
  ident: e_1_2_9_33_1
  article-title: Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children
  publication-title: Isr Med Assoc J‐RAMAT GAN‐
– ident: e_1_2_9_3_1
  doi: 10.3348/kjr.2017.18.4.570
– ident: e_1_2_9_53_1
  doi: 10.1118/1.4921066
– ident: e_1_2_9_63_1
  doi: 10.1007/978-3-030-01261-8_1
– start-page: 21
  volume-title: Deep Learning and Data Labeling for Medical Applications
  year: 2016
  ident: e_1_2_9_12_1
  doi: 10.1007/978-3-319-46976-8_3
– ident: e_1_2_9_8_1
  doi: 10.1016/j.neuroimage.2017.04.039
– ident: e_1_2_9_48_1
  doi: 10.1118/1.3533897
– ident: e_1_2_9_67_1
  doi: 10.1002/mp.13937
– ident: e_1_2_9_31_1
  doi: 10.1056/NEJMra072149
– ident: e_1_2_9_43_1
  doi: 10.1118/1.4884227
– ident: e_1_2_9_79_1
  doi: 10.1002/mp.14131
– ident: e_1_2_9_24_1
– ident: e_1_2_9_41_1
  doi: 10.1148/radiol.13122617
– ident: e_1_2_9_47_1
  doi: 10.1118/1.2896075
– ident: e_1_2_9_6_1
  doi: 10.1109/TMI.2020.3031913
– ident: e_1_2_9_18_1
  doi: 10.1016/j.radonc.2019.11.021
– ident: e_1_2_9_49_1
  doi: 10.1118/1.4883778
– ident: e_1_2_9_7_1
  doi: 10.1016/j.artmed.2018.08.008
– ident: e_1_2_9_27_1
  doi: 10.2214/AJR.18.20018
– ident: e_1_2_9_35_1
  doi: 10.1148/radiol.12112265
– ident: e_1_2_9_69_1
  doi: 10.1118/1.4903899
– ident: e_1_2_9_16_1
  doi: 10.1016/j.semradonc.2019.02.001
– ident: e_1_2_9_50_1
  doi: 10.1007/s00330-007-0815-7
– ident: e_1_2_9_59_1
  doi: 10.3389/fninf.2013.00045
– ident: e_1_2_9_40_1
  doi: 10.1088/0031-9155/58/24/8755
– ident: e_1_2_9_28_1
  doi: 10.1002/mp.14830
– ident: e_1_2_9_74_1
  doi: 10.1109/ICCV48922.2021.00833
– ident: e_1_2_9_54_1
  doi: 10.1109/NSSMIC.2018.8824626
– ident: e_1_2_9_29_1
  doi: 10.1001/jamapediatrics.2013.311
– ident: e_1_2_9_72_1
  doi: 10.1016/j.media.2020.101693
– ident: e_1_2_9_51_1
  doi: 10.1088/0031-9155/60/14/5601
– ident: e_1_2_9_64_1
  doi: 10.1109/ICCV.2015.123
– ident: e_1_2_9_77_1
  doi: 10.1002/mp.14494
– ident: e_1_2_9_25_1
  doi: 10.1016/j.compbiomed.2020.103792
– ident: e_1_2_9_65_1
  doi: 10.1118/1.3611983
– ident: e_1_2_9_5_1
  doi: 10.1038/s41592-020-01008-z
– ident: e_1_2_9_21_1
  doi: 10.1109/TMI.2019.2948320
– ident: e_1_2_9_26_1
  doi: 10.1097/RLI.0000000000000180
– ident: e_1_2_9_46_1
  doi: 10.1088/0031-9155/54/9/007
– ident: e_1_2_9_10_1
  doi: 10.1038/s41598-017-05300-5
– ident: e_1_2_9_58_1
– ident: e_1_2_9_71_1
  doi: 10.1016/j.media.2020.101759
– ident: e_1_2_9_38_1
  doi: 10.1088/0031-9155/52/9/017
– ident: e_1_2_9_19_1
  doi: 10.1002/mp.12602
– ident: e_1_2_9_39_1
  doi: 10.1088/0031-9155/54/3/003
– ident: e_1_2_9_52_1
  doi: 10.1088/0952-4746/35/4/891
– ident: e_1_2_9_13_1
  doi: 10.1109/TMI.2015.2481436
– ident: e_1_2_9_2_1
  doi: 10.1007/s10278-019-00227-x
– ident: e_1_2_9_11_1
  doi: 10.4103/2153-3539.186902
– ident: e_1_2_9_9_1
  doi: 10.1109/CVPRW.2015.7301312
– volume: 37
  start-page: 2
  year: 2007
  ident: e_1_2_9_70_1
  article-title: ICRP publication 103
  publication-title: Ann ICRP
– ident: e_1_2_9_42_1
  doi: 10.1118/1.3298015
– ident: e_1_2_9_68_1
  doi: 10.1120/jacmp.v14i4.4347
– ident: e_1_2_9_32_1
  doi: 10.2214/ajr.176.2.1760289
– volume-title: The Visualization Toolkit
  year: 2006
  ident: e_1_2_9_60_1
– ident: e_1_2_9_55_1
  doi: 10.1117/1.JMI.3.4.043502
– ident: e_1_2_9_30_1
  doi: 10.4065/mcp.2010.0260
– ident: e_1_2_9_15_1
  doi: 10.1109/ISBI.2016.7493362
– ident: e_1_2_9_22_1
  doi: 10.1109/TMI.2021.3084748
– ident: e_1_2_9_73_1
  doi: 10.1109/CVPR42600.2020.01070
– ident: e_1_2_9_34_1
  doi: 10.1007/s00247-002-0774-8
– ident: e_1_2_9_78_1
  doi: 10.1109/TMI.2004.828354
– ident: e_1_2_9_75_1
  doi: 10.1117/12.2582127
– ident: e_1_2_9_37_1
  doi: 10.1088/0031-9155/48/16/306
– ident: e_1_2_9_44_1
  doi: 10.1118/1.3693052
– ident: e_1_2_9_56_1
  doi: 10.1002/mp.15485
– ident: e_1_2_9_76_1
  doi: 10.1002/mp.13305
– ident: e_1_2_9_36_1
  doi: 10.1148/radiol.12112201
– ident: e_1_2_9_61_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_9_17_1
  doi: 10.1002/mp.12197
SSID ssj0006350
Score 2.4673858
Snippet Purpose This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the...
This study developed and evaluated a fully convolutional network (FCN) for pediatric CT organ segmentation and investigated the generalizability of the FCN...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2342
SubjectTerms Algorithms
Child
deep learning
Humans
Image Processing, Computer-Assisted - methods
organ dose
Radiometry
segmentation
Thorax
Tomography, X-Ray Computed
Title Technical note: Evaluation of a V‐Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient‐specific CT dosimetry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.15521
https://www.ncbi.nlm.nih.gov/pubmed/35128672
https://www.proquest.com/docview/2626223565
https://pubmed.ncbi.nlm.nih.gov/PMC9007850
https://www.ncbi.nlm.nih.gov/pmc/articles/9007850
UnpaywallVersion submittedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtMwGP41reJww2EwKIfJIAQ3S5s4p3l31dg0IVpVsKJxFdmO01U0BzWpULniEXgQnoon4beTFMoAwVUubDm2_Dn-nP_7PwM8c2zJRBgmVuLTwPKkKyzhJtIKtJmbywLhSOP2OQpOJ96rc_98C5w2F8aI9qWY9bJ52stmF0ZbWaSy3-rE-kzvavqU3gl8pN_b0JmMxoP3tdukp6MFvvFIxUPWgW9urqRe6FoetVlrPmvTflr0tPmYs7kdXeKYl6WS15ZZwVcf-Xy-SWfNfnRyE960I6llKB96y0r05KdfTB7_a6i34EbDTsmgLroNWyrbgavDJv6-A1eMYFSWd-Cr-SevZ5hkeaUOyfHaNpzkCeHk3bfPX0aqInxZ5aWapk2OU0b4fJovZtVFSpAvk6K9KoQcnZES57k8JOMfyQz7ZFr7YmvxmZbxrvYJz2LyU9ydVDlp3GHxlTpzVKufdHNxXs5SVS1Wd2Fycnx2dGo1Nz9Y0sNvhEWV5wgkooo70hdK-VI5CCMn5AmVAY0pd0XItBe-HbI4QLQlPqcuszlP7MAW7i5sZ3mm7gNhLm4FlHkhEjkP6S9DkhKHIZOJVLHyeBdetACIZGOLrm_nmEe1oTON0iIyUOnCk3XNorYC-V2dFkMRrlMdfOGZypdlRPHkiFQM-XMX7tWYWrfiIus6wF52IdxA27qC9gDfLEG8GC_wBiJdeLrG5V8699wA9o8VouHYPB_8S2sP4TrVqSBGxfQItqvFUj1GglaJPegMXg5fv91rluZ3Wz493Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWqqXhseBQK4SWDEGyaTOI8XHdXVa0qpI5GqIPKKrIdZzoiL00SoWHFJ_AhfBVfwrWTDAwFBKssbDm2fBwf5557jNBLz5VMUJraaUgiO5C-sIWfSjvSZm4-i4QnjdvnJDqdBW8uwost5A25MEa0L8XCKbLcKRaXRltZ5XI86MTGTO9q-pS-HYVAv0doezaZHr7v3CYDHS0IjUcqHLL2Q3NzJQmobwfEZYP5rEvGeeVo8zFvczu6wjGvSiVvtEXFVx95lm3SWbMfndxGb4eRdDKUD07bCEd--sXk8b-Gegfd6tkpPuyK7qItVeyg62d9_H0HXTOCUVnfQ1_NP3k9w7goG3WAj9e24bhMMcfvvn3-MlEN5m1T1mqe9zlOBebZvFwumsscA1_G1XBVCD46xzXMc32Apz-SGfbwvPPF1uIzLeNd7WFeJPinuDtuSty7w8IrdeaoVj_p5pKyXuSqWa7uo9nJ8fnRqd3f_GDLAL4RNlGBJ4CIKu7JUCgVSuUBjDzKUyIjkhDuC8q0F75LWRIB2tKQE5-5nKdu5Ap_F42KslAPEWY-bAWEBRSIXAD0lwFJSShlMpUqUQG30OsBALHsbdH17RxZ3Bk6kzivYgMVCz1f16w6K5Df1RkwFMM61cEXXqiyrWMCJ0egYsCfLfSgw9S6FR9Y1z700kJ0A23rCtoDfLME8GK8wHuIWOjFGpd_6dwrA9g_VojPpub56F9ae4xuEp0KYlRMT9CoWbbqKRC0Rjzrl-R3dIM8SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+note%3A+Evaluation+of+a+V-Net+autosegmentation+algorithm+for+pediatric+CT+scans%3A+Performance%2C+generalizability%2C+and+application+to+patient-specific+CT+dosimetry&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Adamson%2C+Philip+M&rft.au=Bhattbhatt%2C+Vrunda&rft.au=Principi%2C+Sara&rft.au=Beriwal%2C+Surabhi&rft.date=2022-04-01&rft.issn=2473-4209&rft.eissn=2473-4209&rft.volume=49&rft.issue=4&rft.spage=2342&rft_id=info:doi/10.1002%2Fmp.15521&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon