Dynamic deep learning algorithm based on incremental compensation for fault diagnosis model

As one of research and practice hotspots in the field of intelligent manufacturing, the machine learning approach is applied to diagnose and predict equipment fault for running state data. Despite deep learning approach overcomes the problem that the traditional machine learning approaches for fault...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 11; no. 1; pp. 846 - 860
Main Authors Liu, Jing, An, Yacheng, Dou, Runliang, Ji, Haipeng
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2018
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1875-6891
1875-6883
1875-6883
DOI10.2991/ijcis.11.1.64

Cover

Abstract As one of research and practice hotspots in the field of intelligent manufacturing, the machine learning approach is applied to diagnose and predict equipment fault for running state data. Despite deep learning approach overcomes the problem that the traditional machine learning approaches for fault diagnosis is difficult to characterize the complex mapping between the massive fault data, the exponentially grown and newly generated data is learned repeatedly, and these approaches cannot incrementally correct the model to adapt the situation that the states and properties of equipment are changed over time, resulting in the increase of time costs and the decrease of diagnosis accuracy of model. In this paper, a dynamic deep learning algorithm based on incremental compensation is proposed. Firstly, the feature modes of the newly generated data are extracted by using deep learning algorithm; it is then compared with the fault modes extracted from the historical data. Next, a similarity computing model is presented to dynamically adjust the weights of incrementally merged modes. Finally, the SVM algorithm is employed to classify the weighted modes by supervised way, and the BP algorithm utilized to fine tune the model, in order to complete the dynamic and compensatory adjustment of deep learning with original modes and incremental modes. The experimental results of bearing running data demonstrate that the proposed approach could significantly improve the accuracy of diagnosis and save the time cost, contributing to meet the varied needs of the real-time equipment fault diagnosis.
AbstractList As one of research and practice hotspots in the field of intelligent manufacturing, the machine learning approach is applied to diagnose and predict equipment fault for running state data. Despite deep learning approach overcomes the problem that the traditional machine learning approaches for fault diagnosis is difficult to characterize the complex mapping between the massive fault data, the exponentially grown and newly generated data is learned repeatedly, and these approaches cannot incrementally correct the model to adapt the situation that the states and properties of equipment are changed over time, resulting in the increase of time costs and the decrease of diagnosis accuracy of model. In this paper, a dynamic deep learning algorithm based on incremental compensation is proposed. Firstly, the feature modes of the newly generated data are extracted by using deep learning algorithm; it is then compared with the fault modes extracted from the historical data. Next, a similarity computing model is presented to dynamically adjust the weights of incrementally merged modes. Finally, the SVM algorithm is employed to classify the weighted modes by supervised way, and the BP algorithm utilized to fine tune the model, in order to complete the dynamic and compensatory adjustment of deep learning with original modes and incremental modes. The experimental results of bearing running data demonstrate that the proposed approach could significantly improve the accuracy of diagnosis and save the time cost, contributing to meet the varied needs of the real-time equipment fault diagnosis.
Author Dou, Runliang
Liu, Jing
An, Yacheng
Ji, Haipeng
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: School of computer science and engineering, Hebei University of Technology, Hebei Key Laboratory of Dig data Calculation, The University of Iowa Engineering School
– sequence: 2
  givenname: Yacheng
  surname: An
  fullname: An, Yacheng
  organization: School of computer science and engineering, Hebei University of Technology
– sequence: 3
  givenname: Runliang
  surname: Dou
  fullname: Dou, Runliang
  email: drl@tju.edu.cn
  organization: College of Management and Economics, Tianjin University
– sequence: 4
  givenname: Haipeng
  surname: Ji
  fullname: Ji, Haipeng
  organization: The University of Iowa Engineering School, Research Institute for Energy Equipment Materials, Hebei University of Technology
BookMark eNqFkM2LFDEQxYOs4Dru0XvAc7f5mu70UdavhQUvevIQqquTNkM6aZMMMv-97cyygiieKlTee_zqPSdXMUVLyEvOWjEM_LU_oC8t5y1vO_WEXHPd75tOa3n1-B74M3JTyoExJrhiTKlr8vXtKcLikU7WrjRYyNHHmUKYU_b120JHKHaiKVIfMdvFxgqBYlpWGwtUv324lKmDY6h08jDHVHyhS5pseEGeOgjF3jzMHfny_t3n24_N_acPd7dv7htUbKiN6_TInBTSOa3QcdFrzsHte0SNg1JqtKidRK35AE45KxTXoDUoiT30o9yRu0vulOBg1uwXyCeTwJvzIuXZQK4egzUCEMHpTunRqlFIAC0BQWi0mk8bxY60l6xjXOH0A0J4DOTM_GranJs2nBtuOrUZXl0Ma07fj7ZUc0jHHLd7jVBdvx_2g-g2lbyoMKdSsnUGfT3XVzP48M_s5g_X_1ge4Mumi7PNv1n-bvgJKBezIg
CitedBy_id crossref_primary_10_1016_j_rcim_2022_102390
crossref_primary_10_1108_IJQRM_07_2021_0210
crossref_primary_10_1109_TIM_2022_3200695
crossref_primary_10_1109_JSEN_2024_3440002
crossref_primary_10_1016_j_future_2021_05_003
crossref_primary_10_1007_s00170_022_09784_y
crossref_primary_10_1016_j_eswa_2021_114820
crossref_primary_10_1016_j_procir_2021_11_138
crossref_primary_10_1109_ACCESS_2021_3101284
crossref_primary_10_1016_j_cie_2020_106889
crossref_primary_10_3390_pr11020369
crossref_primary_10_37391_ijeer_110325
crossref_primary_10_1007_s41939_024_00692_0
crossref_primary_10_1007_s44163_023_00089_x
ContentType Journal Article
Copyright the Authors. Published by Atlantis Press 2018
2018. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: the Authors. Published by Atlantis Press 2018
– notice: 2018. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.2991/ijcis.11.1.64
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
EndPage 860
ExternalDocumentID oai_doaj_org_article_2accaf8648be4b23aa83aca28ce81d0f
10.2991/ijcis.11.1.64
10_2991_ijcis_11_1_64
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFKRA
AFPKN
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IL9
IPNFZ
J~4
K7-
M4Z
O9-
OK1
PIMPY
RIG
RSV
SOJ
TDBHL
TFL
TFW
TR2
AASML
AAYXX
CITATION
7SC
8FD
8FE
8FG
AZQEC
CCPQU
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-f68b0f323ff84cf127811af57cc8c9444bec8f3c8819af4fe2418a88a43c7a7b3
IEDL.DBID UNPAY
ISSN 1875-6891
1875-6883
IngestDate Fri Oct 03 12:45:20 EDT 2025
Wed Oct 01 16:27:55 EDT 2025
Tue Oct 21 12:45:59 EDT 2025
Tue Jul 01 01:20:16 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Fri Feb 21 02:40:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Fault diagnosis
Dynamic compensation
Incremental learning
Denoising Autoencoder
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-f68b0f323ff84cf127811af57cc8c9444bec8f3c8819af4fe2418a88a43c7a7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://download.atlantis-press.com/article/25892538.pdf
PQID 2467595926
PQPubID 4869256
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_2accaf8648be4b23aa83aca28ce81d0f
unpaywall_primary_10_2991_ijcis_11_1_64
proquest_journals_2467595926
crossref_citationtrail_10_2991_ijcis_11_1_64
crossref_primary_10_2991_ijcis_11_1_64
springer_journals_10_2991_ijcis_11_1_64
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180100
2018-00-00
20180101
2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References M. Yuwono, Y. Qin, J. Zhou, Y. Guo, B.G. Celler and S.W. Su, Automatic bearing fault diagnosis using particle swarm clustering and hidden Markov model, Engineering Applications of Artificial Intelligence, 47(SI) (2016)88– 100.
A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, 25(2) (2012)1097–1105.
L.C. Jain, M. Seera, C.P. Lim and P. Balasubramaniam, A review of online learning in supervised neural networks, Neural Computing and Applications, 25(3–4) (2014)491–509.
M. Amar, I. Gondal and C. Wilson, Vibration spectrum imaging: A novel bearing fault classification approach, IEEE Transactions on Industrial Electronics, 62(1) (2014)494–502.
G E Hinton and R S Zemel. Autoencoders, minimum description length and Helmholtz free energy, in International Conference on Neural Information Processing Systems (CA, San Francisco, 1993), pp.3–10.
Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives, IEEE Transactions on Software Engineering, 35(8) (2013)1798 –1828.
C. Li, R.V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera and R.E. Vásquez, Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals, Mechanical Systems & Signal Processing, 76–77(2016) 283–293.
S. Yin and Z.H. Huang, Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements, IEEE- ASME Transactions on Mechatronics, 20(5) (2015)2613– 2620.
Z.X. Xu, M. Yao, Z.H. Wu and W.H. Dai, Incremental regularized extreme learning machine and it’s enhancement, Neurocomputing, 174(SI) (2016)134–142.
D. Fernández-Francos, D. Martínez-Rego, O. Fontenla-Romero and A. Alonso-Betanzos, Automatic bearing fault diagnosis based on one-class ν-SVM, Computers & Industrial Engineering, 64(1) (2013)357–365.
W.T. Mao, L. He, Y.J. Yan and J.W. Wang, Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine, Mechanical Systems & Signal Processing, 83(2017)450–473.
P. Tamilselvan and P.F. Wang, Failure diagnosis using deep belief learning based health state classification, Reliability Engineering & Systems Safety, 115(2013)124– 135.
J. Zheng, F.R. Shen, H.J. Fan and J.X. Zhao, An online incremental learning support vector machine for large-scale data, Neural Computing and Applications, 22(5) (2013)1023–1035.
F. Jia, Y.G. Lei, J. Lin, X. Zhou and N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mechanical Systems & Signal Processing, 72–73(2016)303–315.
M. Gan, C. Wang and C.A. Zhu, Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings, Mechanical Systems & Signal Processing, 72–73(2016)92–104.
P. Vincent, H. Larochelle, Y. Bengio and P.A. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning table of contents (Helsinki, Finland, 2008), pp. 1096–1103.
Z. Cui, H. Chang, S.G. Shan, B.P. Ma and X.L. Chen, Joint sparse representation for video-based face recognition, Neurocomputing, 135(SI) (2014)306–312.
Y.S. Wang, Q.H. Ma, Q. Zhu, X.T. Liu and L.H. Zhao, An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine, Applied Acoustics, 75(2014)1–9.
J. Liu and E. Zio, An adaptive online learning approach for Support Vector Regression: Online-SVR-FID, Mechanical Systems & Signal Processing, 76–77(2016) 796–809.
K.A. Loparo, Bearings data center (Ohio, Cleveland, 2014), http: //www.eecs.cwru.edu/laboratory/bearings/download.htm.
J. Liu, Y.F. Dong, Y. Li, S.Y. Lei and S.Q. He, Composite fault diagnosis and intelligent maintenance based on data driven, Key Engineering Materials, 685 (2016)247–250.
H. Fernando and B. Surgenor, An unsupervised artificial neural network versus a rule-based approach for fault detection and identification in an automated assembly machine, Robotics and Computer-Integrated Manufacturing, 43(SI) (2017)79–88.
S Kullback and R A Leibler, On information and sufficiency, The Annals of Mathematical Statistics, 22(1) (1951)79–86.
G. Yin, Y.T. Zhang, Z.N. Li, G.Q. Ren and H.B. Fan, Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure, Neurocomputing, 128(2014)224–231.
H.H. Chen, P. Tiňo and X. Yao, Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space, Computers & Chemical Engineering, 67(2014)33–42.
References_xml – reference: W.T. Mao, L. He, Y.J. Yan and J.W. Wang, Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine, Mechanical Systems & Signal Processing, 83(2017)450–473.
– reference: Y.S. Wang, Q.H. Ma, Q. Zhu, X.T. Liu and L.H. Zhao, An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine, Applied Acoustics, 75(2014)1–9.
– reference: F. Jia, Y.G. Lei, J. Lin, X. Zhou and N. Lu, Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data, Mechanical Systems & Signal Processing, 72–73(2016)303–315.
– reference: G E Hinton and R S Zemel. Autoencoders, minimum description length and Helmholtz free energy, in International Conference on Neural Information Processing Systems (CA, San Francisco, 1993), pp.3–10.
– reference: Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives, IEEE Transactions on Software Engineering, 35(8) (2013)1798 –1828.
– reference: H.H. Chen, P. Tiňo and X. Yao, Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space, Computers & Chemical Engineering, 67(2014)33–42.
– reference: P. Vincent, H. Larochelle, Y. Bengio and P.A. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning table of contents (Helsinki, Finland, 2008), pp. 1096–1103.
– reference: Z. Cui, H. Chang, S.G. Shan, B.P. Ma and X.L. Chen, Joint sparse representation for video-based face recognition, Neurocomputing, 135(SI) (2014)306–312.
– reference: C. Li, R.V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera and R.E. Vásquez, Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals, Mechanical Systems & Signal Processing, 76–77(2016) 283–293.
– reference: K.A. Loparo, Bearings data center (Ohio, Cleveland, 2014), http: //www.eecs.cwru.edu/laboratory/bearings/download.htm.
– reference: J. Liu and E. Zio, An adaptive online learning approach for Support Vector Regression: Online-SVR-FID, Mechanical Systems & Signal Processing, 76–77(2016) 796–809.
– reference: M. Amar, I. Gondal and C. Wilson, Vibration spectrum imaging: A novel bearing fault classification approach, IEEE Transactions on Industrial Electronics, 62(1) (2014)494–502.
– reference: M. Gan, C. Wang and C.A. Zhu, Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings, Mechanical Systems & Signal Processing, 72–73(2016)92–104.
– reference: Z.X. Xu, M. Yao, Z.H. Wu and W.H. Dai, Incremental regularized extreme learning machine and it’s enhancement, Neurocomputing, 174(SI) (2016)134–142.
– reference: S Kullback and R A Leibler, On information and sufficiency, The Annals of Mathematical Statistics, 22(1) (1951)79–86.
– reference: M. Yuwono, Y. Qin, J. Zhou, Y. Guo, B.G. Celler and S.W. Su, Automatic bearing fault diagnosis using particle swarm clustering and hidden Markov model, Engineering Applications of Artificial Intelligence, 47(SI) (2016)88– 100.
– reference: J. Liu, Y.F. Dong, Y. Li, S.Y. Lei and S.Q. He, Composite fault diagnosis and intelligent maintenance based on data driven, Key Engineering Materials, 685 (2016)247–250.
– reference: G. Yin, Y.T. Zhang, Z.N. Li, G.Q. Ren and H.B. Fan, Online fault diagnosis method based on Incremental Support Vector Data Description and Extreme Learning Machine with incremental output structure, Neurocomputing, 128(2014)224–231.
– reference: H. Fernando and B. Surgenor, An unsupervised artificial neural network versus a rule-based approach for fault detection and identification in an automated assembly machine, Robotics and Computer-Integrated Manufacturing, 43(SI) (2017)79–88.
– reference: A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, 25(2) (2012)1097–1105.
– reference: L.C. Jain, M. Seera, C.P. Lim and P. Balasubramaniam, A review of online learning in supervised neural networks, Neural Computing and Applications, 25(3–4) (2014)491–509.
– reference: J. Zheng, F.R. Shen, H.J. Fan and J.X. Zhao, An online incremental learning support vector machine for large-scale data, Neural Computing and Applications, 22(5) (2013)1023–1035.
– reference: D. Fernández-Francos, D. Martínez-Rego, O. Fontenla-Romero and A. Alonso-Betanzos, Automatic bearing fault diagnosis based on one-class ν-SVM, Computers & Industrial Engineering, 64(1) (2013)357–365.
– reference: S. Yin and Z.H. Huang, Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements, IEEE- ASME Transactions on Mechatronics, 20(5) (2015)2613– 2620.
– reference: P. Tamilselvan and P.F. Wang, Failure diagnosis using deep belief learning based health state classification, Reliability Engineering & Systems Safety, 115(2013)124– 135.
SSID ssj0002140044
ssib050732782
Score 2.2108955
Snippet As one of research and practice hotspots in the field of intelligent manufacturing, the machine learning approach is applied to diagnose and predict equipment...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 846
SubjectTerms Algorithms
Compensation
Deep learning
Denoising Autoencoder
Dynamic compensation
Fault diagnosis
Feature extraction
Incremental learning
Intelligent manufacturing systems
Machine learning
Model accuracy
Research Article
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QF-DAGzEYKAcEFwptmrbpkdc0IcEJJCQOkZMmMFS6iW1C_HucphvjAFy4tm5r2a79fWlqE3IAKo4Kk7EAq4kNuArdQpMtAi1UFFrOMlU3nr-5Tbv3_PoheZgZ9eX2hPn2wN5wpwzwGVakXCjDFYsBRAwamNAGoVZoXfYNRT5DplwOZpGLTe6bamLGjU57L7o3xARxEp2k_FsRqnv1fwOY02-iS2RhXA3g4x3KcqbsdFbJcoMX6ZnXc43MmWqdrExmMdDm1dwgj5d-tDwtjBnQZhbEE4XyqY_0__mVunJV0H5Fe5X2a4J4W7ehHHls7R2K8JVaGJcjWvj9d70hrQflbJL7ztXdRTdoBicEGunaKLCpUKGNWWyt4NpGzP1OCjbJtBY655yj44SNtUA4AJZbg2VcgBDAY51BpuItMl_1K7NNKNYylljmZHMOyJXQsylemuVCFWkCLXI8saTUTVdxN9yilMgunOFlbXgkGjKSKW-Rw6n4wLfT-Enw3LllKuS6YNcHMDZkExvyr9hokfbEqbJ5NYeSYWlI8iRnaYscTRz9dfoHbY6mcfC73jv_ofcuWURcJvxKT5vMj97GZg-xz0jt12H-Ce2NBso
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QE4lM-KLQX5gOiFtBvbSZwDQhRaVUisEKJSJQ6W7djLopBdulkh_j1jx97SQ3tNnC_PeOaN7bwH8Epplje2ohlmE5dxPfETTa7JjND5xHFa6UA8_3lanp3zTxfFxRZM078wfltliokhUDcL4-fIjyiO6KIualq-W_7OvGqUX11NEhoqSis0bwPF2B3Ypp4ZawTbxyfTL1-ThyH4YTTxt_tYTXPvw2HpGYF7Voo6H4g4MUrnR_OfZr7CoHKYH5b8WuIK_P7XQOlmHfU-3F13S_X3j2rb_1LV6UPYiRiTvB-c4hFs2e4xPEj6DSQO5yfw_eMgR08aa5ck6kfMiGpn-OH9j1_Ep7iGLDoy78wwj4i39ZvQsfYNFiUIeYlT67YnzbBnb74iQVznKZyfnnz7cJZFsYXMYInXZ64UeuIYZc4JblxO_S-oyhWVMcLUnHM0tnDMCIQQynFnMfULJYTizFSq0mwXRt2is8-AYP6jhaO-bc0V1lfoDSVeWtVCN2WhxvAm9aQ0kYncC2K0EisS3_EydDwWJzKXJR_D603z5UDBcVPDY2-WTSPPnB0OLC5nMg5ESdFVlBMlF9pyTZlSgimjqDAWofvEjWE_GVXG4bySV843hoNk6KvTN7zNwcYPbn_vvdsf-RzuIUoTw7zPPoz6y7V9gUio1y-je_8DXr4IiQ
  priority: 102
  providerName: ProQuest
Title Dynamic deep learning algorithm based on incremental compensation for fault diagnosis model
URI https://link.springer.com/article/10.2991/ijcis.11.1.64
https://www.proquest.com/docview/2467595926
https://download.atlantis-press.com/article/25892538.pdf
https://doaj.org/article/2accaf8648be4b23aa83aca28ce81d0f
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050732782
  issn: 1875-6891
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1875-6883
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: AAJSJ
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5t7QPigfFTFI3KD4i9kK5xHMd53GBlQqKaEJU28RDZTtwFQlK1qRD89ZwdpzCkIcRblFwsx3e--86xvwN4IVUU5kVCA4wmJmBqaheaTB5oocKpYTRRjnj-_ZyfL9i7y_hyD0R_Fia3FPGNzHGwKmy63ARuP6jz2X4sj2ksUooTdbLKzT4MeYwofADDxfzi5MrmVwjBAy4cA6e_TsOOXhN9b3hcftblBl3FJJxwdiMcOdb-G1Bz93f0LtzZ1iv5_Zusqt8C0OwArvqud_tOvky2rZroH3-wOv7Pt92Hex6VkpPu8QPYK-qHcNBXfCDeATyCT2-6AvYkL4oV8RUnlkRWy2ZdttdfiQ2KOWlqUta6W3nEZu22dcyWnQ0QBMnEyG3Vkrzb5VduiCvH8xgWs7OPr88DX54h0JgUtoHhQk1NRCNjBNMmpPbQqjRxorXQKWMMzUOYSAsEHdIwUyBYEFIIySKdyERFT2BQN3XxFAhGTBobamVTJjEjQ_vh-GqSCpXzWI7gVa-lTHvucltCo8owh7FKzZxSMZ3JwoyzEbzcia860o7bBE-tyndClmvb3WjWy8yrJKMSrdwIzoQqmKKRlCKSWlKhCwT7UzOCw95gMu8ANhnFABSncUr5CI56I_r1-JbeHO1s7O_9fvbPkocwaNfb4jkip1aNYV_M3o5heHo2v_gwdusPYz9xfgJcSSIC
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAe-q66LW19aMulgY3tJM4BVaWAlgKrqgIJiYPrOPY2Vchu2azQ_rn-to4TZykHuHHNevMYj-ebz4_5AN6rjIW5SWiAaGIDnvXdRJPNAy2ysG85TbKm8PzRMB6c8G-n0ekS_O3OwrhtlV1MbAJ1PtZujnyT4oiO0iil8efJn8CpRrnV1U5CQ3lphXyrKTHmD3YcmPklUrjp1v4O9vcHSvd2j78OAq8yEGjkNnVgY5H1LaPMWsG1Dak7e6lslGgtdMo5x68UlmmB2KkstwYxTyghFGc6UUnG8L73YIUzniL5W9neHX7_0Xk0JluMdvXiHTbQ0I2ZZqkbiUIQizRsC38iKoSbxW9dTDGIbYQbMb8GlI2ewLUkeLFu-wBWZ9VEzS9VWf4HjXuP4aHPacmX1gmfwJKpnsKjTi-C-PDxDM525pU6LzTJjZkQr1cxIqocoaHrX-fEQWpOxhUpKt3OW-Jt3aZ35NqNBxFMsYlVs7ImebtHsJiSRsznOZzcidlfwHI1rsxLIIi3NLLUtU25Qj6H3hfjX5NUZHkcqR586iwpta987gQ4SokMyBleNoZHMiRDGfMefFw0n7QlP25quO26ZdHIVepuLowvRtIPfEnRNZUVMReZ4RllSgmmtKJCG6QKfduDta5TpQ8fU3nl7D1Y7zr66ucb3mZ94Qe3v_er2x_5DlYHx0eH8nB_ePAa7mOGKNo5pzVYri9m5g1mYXX21rs6gZ93Pbr-AftzRjc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrcTjwLOIhQI-IHoh7cZxHEecFsqqLFAhQaVKHCzbsZegkF3tZoX494ydB1SoiGsytqx5aL4Zj2cAnimdxIXNaITexEVMT3yiyRWRETqeOEYzHRrPfzjlJ2dsfp6e78DL_i1MqHbvryTbNw2-S1PdHK0KFwqXEdAcld9MuUFrP4wPObsCuyLNGRvB7nQ6_zQfUiw09goa7pURlUdc5HHbZfPvPS54pdC8_wLiHC5Jb8C1bb1SP3-oqvrDD81uw80OQJJpK_E7sGPru3CrH85AOlu9B1-O21nzpLB2RbrhEAuiqsVyXTZfvxPvvwqyrElZmzZJiNv6CnMMbIO4COJZ4tS2akjRFuSVGxIm5-zB2ezN59cnUTdJITIYvzWR40JPXEIT5wQzLqb-falyaWaMMMg6hpIULjEC8YFyzFn060IJoVhiMpXp5D6M6mVtHwBB50ZTRz1tzhQGTyhqjkuzXOiCp2oML3pOStO1GffTLiqJ4YZnvAyMx8hDxpKzMTwfyFdtf43LCF95sQxEvi12-LBcL2RnZZIqVEgnOBPaMk0TpUSijKLCWMTlEzeG_V6osrPVjaToK9I8zSkfw0Ev6N-_LznNwaAH_z73w__e8ylc_Xg8k-_fnr57BNcRmIk21bMPo2a9tY8R_DT6SafkvwAU1ANu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QFxoDzVRaXyAdELSTeO4zjHQqkqJCoOrNSKQ-RHvISGZLWbFYJfz9hxFopUhLhFycRyPOOZbxz7G4AXUqWJqXIaYTSxEVMzt9BkTaSFSmaW0Vx54vn3F_x8zt5dZpc7IMazMMZRxHfS4GA12HS9jvx-UO-zw1ge00wUFCdqvDT2DuzyDFH4BHbnFx9Orlx-hRA84sIzcIbrIhnoNdH3Jsf1F12v0VXESczZjXDkWftvQM3t39F7cHfTLuX3b7JpfgtAZ3twNXZ92HdyHW96Fesff7A6_s-3PYD7AZWSk-HxQ9ip2kewN1Z8IMEBPIZPp0MBe2KqaklCxYkFkc2iW9X956_EBUVDupbUrR5WHrFZt20ds2VvAwRBMrFy0_TEDLv86jXx5XiewPzs7cc351EozxBpTAr7yHKhZjalqbWCaZtQd2hV2izXWuiCMYbmIWyqBYIOaZmtECwIKYRkqc5lrtKnMGm7ttoHghGTZpY62YJJzMjQfji-mhdCGZ7JKbwatVTqwF3uSmg0JeYwTqmlVyqmM2VScjaFl1vx5UDacZvga6fyrZDj2vY3utWiDCopqUQrt4IzoSqmaCqlSKWWVOgKwf7MTuFgNJgyOIB1STEAZUVWUD6Fo9GIfj2-pTdHWxv7e7-f_bPkAUz61aZ6jsipV4dhkvwE3xIejQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+deep+learning+algorithm+based+on+incremental+compensation+for+fault+diagnosis+model&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Liu%2C+Jing&rft.au=An%2C+Yacheng&rft.au=Dou%2C+Runliang&rft.au=Ji%2C+Haipeng&rft.date=2018&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=11&rft.issue=1&rft.spage=846&rft_id=info:doi/10.2991%2Fijcis.11.1.64&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_11_1_64
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon