Bilevel Hyperparameter Optimization and Neural Architecture Search for Enhanced Breast Cancer Detection in Smart Hospitals Interconnected With Decentralized Federated Learning Environment
Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality rates. The scarcity of medical data underscores the need for collaborative efforts among hospitals to enhance automated breast cancer detection....
Saved in:
| Published in | IEEE access Vol. 12; pp. 63618 - 63628 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2024.3392572 |
Cover
| Abstract | Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality rates. The scarcity of medical data underscores the need for collaborative efforts among hospitals to enhance automated breast cancer detection. This research employs decentralized Federated Learning (FL) to facilitate cooperative learning across an interconnected smart hospital network, addressing data privacy, regulatory compliance, voluminous medical image data, and the necessity for distributed machine learning. Our innovative approach integrates Ant Colony Optimization (ACO) for hyperparameter fine-tuning and Neural Architecture Search (NAS) in a collaborative framework for smart hospitals linked with decentralized edge intelligent networks. This optimization strategy significantly improves the performance of our breast cancer detection system. Through a comprehensive experimental study (including diverse datasets), we classify Normal vs. Mass and Benign vs. Malignant regions in mammograms within a decentralized, federated collaborative learning environment. Empirical results consistently highlight the superiority of models trained using our method over individual hospital client-level training. Our method yielded significant improvements across evaluation measures: for Normal vs. Mass, achieving 92.6% sensitivity, 93.0% specificity, and 93.0% accuracy; for Benign vs. Malignant, achieving 89.6% sensitivity, 91.6% specificity, and 89.7% accuracy. Moreover, it has obtained a 6% and 5% increase in accuracy for Normal vs. Mass and Benign vs. Malignant cases, respectively, compared to the PSO-based HPO method. This evidence underscores the potential of collaborative approaches, emphasizing decentralized FL as a robust paradigm in medical research. The incorporation of ACO optimization reinforces the effectiveness of the proposed computer-aided diagnosis (CAD) system, marking a noteworthy advancement in the ongoing fight against breast cancer. |
|---|---|
| AbstractList | Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality rates. The scarcity of medical data underscores the need for collaborative efforts among hospitals to enhance automated breast cancer detection. This research employs decentralized Federated Learning (FL) to facilitate cooperative learning across an interconnected smart hospital network, addressing data privacy, regulatory compliance, voluminous medical image data, and the necessity for distributed machine learning. Our innovative approach integrates Ant Colony Optimization (ACO) for hyperparameter fine-tuning and Neural Architecture Search (NAS) in a collaborative framework for smart hospitals linked with decentralized edge intelligent networks. This optimization strategy significantly improves the performance of our breast cancer detection system. Through a comprehensive experimental study (including diverse datasets), we classify Normal vs. Mass and Benign vs. Malignant regions in mammograms within a decentralized, federated collaborative learning environment. Empirical results consistently highlight the superiority of models trained using our method over individual hospital client-level training. Our method yielded significant improvements across evaluation measures: for Normal vs. Mass, achieving 92.6% sensitivity, 93.0% specificity, and 93.0% accuracy; for Benign vs. Malignant, achieving 89.6% sensitivity, 91.6% specificity, and 89.7% accuracy. Moreover, it has obtained a 6% and 5% increase in accuracy for Normal vs. Mass and Benign vs. Malignant cases, respectively, compared to the PSO-based HPO method. This evidence underscores the potential of collaborative approaches, emphasizing decentralized FL as a robust paradigm in medical research. The incorporation of ACO optimization reinforces the effectiveness of the proposed computer-aided diagnosis (CAD) system, marking a noteworthy advancement in the ongoing fight against breast cancer. |
| Author | Faseeh, Muhammad Khan, Salabat Kim, Do-Hyeun Nosheen, Fariha Naqvi, Syed Shehryar Ali Jamil, Harun Ali Khan, Murad |
| Author_xml | – sequence: 1 givenname: Salabat surname: Khan fullname: Khan, Salabat email: salabat.khan@jejunu.ac.kr organization: Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Pakistan – sequence: 2 givenname: Fariha surname: Nosheen fullname: Nosheen, Fariha organization: Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Pakistan – sequence: 3 givenname: Syed Shehryar Ali orcidid: 0009-0002-1751-1117 surname: Naqvi fullname: Naqvi, Syed Shehryar Ali organization: Department of Electronics Engineering, Jeju National University, Jeju, Republic of Korea – sequence: 4 givenname: Harun surname: Jamil fullname: Jamil, Harun organization: Department of Electronics Engineering, Jeju National University, Jeju, Republic of Korea – sequence: 5 givenname: Muhammad orcidid: 0009-0008-2375-7803 surname: Faseeh fullname: Faseeh, Muhammad organization: Department of Electronics Engineering, Jeju National University, Jeju, Republic of Korea – sequence: 6 givenname: Murad surname: Ali Khan fullname: Ali Khan, Murad organization: Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea – sequence: 7 givenname: Do-Hyeun orcidid: 0000-0002-3457-2301 surname: Kim fullname: Kim, Do-Hyeun email: kimdh@jejunu.ac.kr organization: Big Data Research Center, Jeju National University, Jeju, Republic of Korea |
| BookMark | eNptUl9v0zAQj9CQGGOfAB4s8dwS20kcP3alo5Uq9lAQj5bjXFZXqR0cZ1P31fhyXMg0TRV-se_8--O78_vkwnkHSfKRpnNKU_llsVyudrs5S1k251yyXLA3ySWjhZzxnBcXr87vkuu-P6S4Skzl4jL5c2NbeICWrE8dhE4HfYQIgdx10R7tk47WO6JdTb7DEHRLFsHsbQQThwBkBxpD0vhAVm6vnYGa3ATQfSTLMQrkK4zYUcM6sjvqEMna952Nuu3JxqGT8c4hBJm_bNwjwYCL6GSfMHULNQQ9Xm7Ryll3j0YPNnh3RNSH5G2DOnD9vF8lP29XP5br2fbu22a52M5Mlso4A8YZrWva0DxtsOwSsqYAUWa8orwsqRE5cAGGCqnzouEmE6AxVwnEG1nyq2Qz6dZeH1QXLNZxUl5b9S_hw73CwqxpQVHdQI0idcpoRgXVvBCVprypoKxE1qBWNmkNrtOnR922L4I0VeM8lTYG-l6N81TP80Ta54nWBf97gD6qgx-Cw6oVT3NGZSZlhig5oUzwfR-gUQY7PbYfO2rbF4fpx5w78DPu-bv-z_o0sSwAvGLkaSEZ438BrMfRlw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_61384_r_c_a__v4i4_771 crossref_primary_10_1016_j_critrevonc_2024_104528 crossref_primary_10_3390_bdcc8090099 |
| Cites_doi | 10.1016/j.cmpb.2022.107318 10.3390/diagnostics12071669 10.1007/s10723-018-9459-x 10.1007/978-94-011-5318-8_75 10.1561/2200000083 10.1038/s41598-023-32029-1 10.1016/j.bspc.2023.105080 10.1145/3412357 10.1007/978-3-030-60548-3_18 10.1109/ACCESS.2023.3257562 10.18653/v1/2021.privatenlp-1.4 10.1109/ACCESS.2020.2978082 10.1007/s10916-019-1483-2 10.1016/B978-1-55860-377-6.50039-6 10.1007/978-3-030-61609-0_60 10.1016/j.cie.2020.106854 10.1038/s41591-022-02155-w 10.48550/arXiv.1602.05629 10.3390/fi14050153 10.1109/ICSPIS57063.2022.10057227 10.1109/ICDE53745.2022.00077 10.1145/3298981 10.3389/fonc.2022.860532 10.2991/jegh.k.191008.001 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2024.3392572 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Public Health |
| EISSN | 2169-3536 |
| EndPage | 63628 |
| ExternalDocumentID | oai_doaj_org_article_1afed56fd0214171a367ba13fbe8b74f 10.1109/access.2024.3392572 10_1109_ACCESS_2024_3392572 10506922 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Creative Research Project grantid: RS-2023-00248526 funderid: 10.13039/100000874 – fundername: National Research Foundation of Korea (NRF) funderid: 10.13039/501100003725 – fundername: Brain Pool Program grantid: 2022H1D3A2A02055024 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c409t-e2321dd1f150f1698e4f6e7843b13881c75e37ec179a56f3c47ea75eb750fc983 |
| IEDL.DBID | DOA |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:48:14 EDT 2025 Tue Aug 19 20:26:11 EDT 2025 Sun Jun 29 12:14:42 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Wed Oct 01 04:52:29 EDT 2025 Wed Aug 27 02:05:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-e2321dd1f150f1698e4f6e7843b13881c75e37ec179a56f3c47ea75eb750fc983 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-2375-7803 0000-0002-3457-2301 0009-0002-1751-1117 |
| OpenAccessLink | https://doaj.org/article/1afed56fd0214171a367ba13fbe8b74f |
| PQID | 3052194994 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3052194994 crossref_citationtrail_10_1109_ACCESS_2024_3392572 ieee_primary_10506922 crossref_primary_10_1109_ACCESS_2024_3392572 doaj_primary_oai_doaj_org_article_1afed56fd0214171a367ba13fbe8b74f unpaywall_primary_10_1109_access_2024_3392572 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref10 ref2 ref1 ref17 ref19 ref18 Schwab (ref11) 2008 ref24 ref23 ref26 ref25 ref20 ref22 Apple (ref5) 2017; 1 ref21 McMahan (ref3) Stützle (ref4) 1999; 4 ref28 ref27 ref29 ref8 ref7 ref9 ref6 Zhang (ref16) 2021 |
| References_xml | – ident: ref18 doi: 10.1016/j.cmpb.2022.107318 – ident: ref20 doi: 10.3390/diagnostics12071669 – ident: ref29 doi: 10.1007/s10723-018-9459-x – ident: ref26 doi: 10.1007/978-94-011-5318-8_75 – ident: ref8 doi: 10.1561/2200000083 – ident: ref23 doi: 10.1038/s41598-023-32029-1 – ident: ref17 doi: 10.1016/j.bspc.2023.105080 – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref3 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref10 doi: 10.1145/3412357 – ident: ref14 doi: 10.1007/978-3-030-60548-3_18 – ident: ref22 doi: 10.1109/ACCESS.2023.3257562 – ident: ref7 doi: 10.18653/v1/2021.privatenlp-1.4 – ident: ref9 doi: 10.1109/ACCESS.2020.2978082 – ident: ref13 doi: 10.1007/s10916-019-1483-2 – ident: ref27 doi: 10.1016/B978-1-55860-377-6.50039-6 – ident: ref12 doi: 10.1007/978-3-030-61609-0_60 – volume: 1 start-page: 71 issue: 8 year: 2017 ident: ref5 article-title: Learning with privacy at scale publication-title: Apple Mach. Learn. J. – year: 2021 ident: ref16 article-title: Aegis: A trusted, automatic and accurate verification framework for vertical federated learning publication-title: arXiv:2108.06958 – ident: ref2 doi: 10.1016/j.cie.2020.106854 – ident: ref24 doi: 10.1038/s41591-022-02155-w – ident: ref28 doi: 10.48550/arXiv.1602.05629 – ident: ref21 doi: 10.3390/fi14050153 – ident: ref19 doi: 10.1109/ICSPIS57063.2022.10057227 – ident: ref25 doi: 10.1109/ICDE53745.2022.00077 – ident: ref6 doi: 10.1145/3298981 – volume: 4 start-page: 163 year: 1999 ident: ref4 article-title: ACO algorithms for the traveling salesman problem publication-title: Evol. Algorithm Eng. Comput. Sci. – ident: ref15 doi: 10.3389/fonc.2022.860532 – ident: ref1 doi: 10.2991/jegh.k.191008.001 – volume-title: Encyclopedia of Cancer year: 2008 ident: ref11 |
| SSID | ssj0000816957 |
| Score | 2.3410873 |
| Snippet | Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 63618 |
| SubjectTerms | Accuracy Ant colony optimization Breast cancer breast cancer detection Cancer Collaboration Cooperative learning Data models decentralized federated learning Detection algorithms Federated learning Hospitals Hyperparameter optimization Intelligent networks Machine learning Mammography Medical imaging Medical research metaheuristic ACO Metaheuristics neural architecture search Optimization Public health School environment Solid modeling Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgF-DAzyECA_nAkZQkduLkuJZWFRLjABO7RbbzzKq12dSlTNu_xj_He47btSAQt9R1Elv-8vI9573vMfY2y4y2uLKxESnEUgsRmwZEDLYABxJdn4KSkz8dFdNj-fEkPwnJ6j4XBgB88BkM6NB_y2_O7Yq2yvAJz5OiytDi3lVl0SdrbTZUqIJElaugLJQm1fvD0QgngT5gJgcCeUCusp23jxfpD1VVdgjmvVV7oa-v9Hy-9a6ZPGJH61H2ISZng1VnBvbmNwHH_57GY_YwsE5-2MPkCbsD7VP2YEuL8Bn7OUT78APmfIqe6ZIUwRcUKcM_o01ZhGRNrtuGk5yHv9btFwjeBy1zJMB83J76oAI-pHD3jo_o15J_gM4HfbV81vIvCwQsX5csueR-W9JSyI1FAsy_zbpTPCHEjc5usGlCmhea_gyCsN_5-DZFb58dT8ZfR9M4VHaILfqTXQzI49KmSR3SUYfLVoJ0BahSCpOKskytykEosGgtdF44YaUCjW0G-Y2zVSmes732vIUXjAubuKKwaEZyJ2XWVKqBRBjkQaU2pakilq1XvLZB9pyqb8xr7_4kVd3DpCaY1AEmEXu3OemiV_34d_chQWnTlSS7fQMuex0sQJ1qBw1OpiGVulSlWhTK6FQ4A6VR0kVsn6Cydb8eJRE7WCOzDvblshaUc026QjJi8Qatf4xV-6KbO2N9-ZfbvGL3qVu_u3TA9rrlCl4j3-rMG_-c_QIaHCqD priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FxElgX5wJG0Tew4ybEtrSokFiSoWE6W7Yx3K9qw6qYL7F_jzzF23G4LEhLcUtdJHOV5_CaeeUPIyzTVyuCbjTVLIOaKsVhXwGIwAixwdH2ES05-eyKmM_7mNDsNH9x8LgwA-OAz6LpDv5c_h8X3vCdSJ55W9gQu8egk4HTP-qJM0S-s7G1yIDLk4h1yMDt5P_jsKsolooyZ35t8FoQ1e8rXIESnMOVdhsQgy9O95cir9ocyK3uM8866vlA_vqnFYmfxmdwncjPsNubkS3fd6K65_k3R8f-f6wG5F3gpHbRAekhuQf2I3N1RK3xMfg7RglzBgk7Rd105zfCli6Wh79DqLEM6J1V1RZ3gh7_WzR4FbcOaKVJkOq7PfdgBHbqA-IaO3K8VfQ2NDwur6bymH5YIabopanJJ_YdL44JyDFJk-mnenOMJIbJ0fo1NE6eKodyfQTL2jI5vkvgOyWwy_jiaxqH2Q2zQ42xiQKaXVFVikbBafJUFcCsgLzjTCSuKxOQZsBwM2hOVCcsMz0Fhm0YGZE1ZsCekU3-t4SmhzPStEAYNTWY5T6syr6DPNDKlQulClxFJNxCQJgiju_ocC-kdpH4pB6MRzgbpcCMDbiLyanvSRasL8vfuQ4etbVcn6u0bEAcy2AiZKAsVPkzldOySPFFM5FolzGoodM5tRA4ddnbu1yIlIscbqMpggS4lc1nZTnmIRyTewvePsbZTYm-sR__Y_5h0mtUaniM5a_SLMAN_AX2cODU priority: 102 providerName: Unpaywall |
| Title | Bilevel Hyperparameter Optimization and Neural Architecture Search for Enhanced Breast Cancer Detection in Smart Hospitals Interconnected With Decentralized Federated Learning Environment |
| URI | https://ieeexplore.ieee.org/document/10506922 https://www.proquest.com/docview/3052194994 https://ieeexplore.ieee.org/ielx7/6287639/6514899/10506922.pdf https://doaj.org/article/1afed56fd0214171a367ba13fbe8b74f |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQeAAeED-GKIzKDzwSFsdO7Dy2pVWFxECCivEU2Y7NKrXZ1GVM41_jn-POcbtUSPDCY5zEcXzny3fO3XeEvM4yoy1INjGcuURozhNTO544WzjvBLg-BSYnfzgp5gvx_jQ_7ZX6wpiwjh64m7hjpr2r88LXSO7FJNO8kEYz7o1TRgqP1jdVZc-ZCjZYsaLMZaQZYml5PJpM4I3AIczEWw6gIJfZ3qcoMPbHEit7aPPeVXOhb671atX78MwekYcRMdJRN9LH5I5rnpAHPR7Bp-TXGNb2D7eic_AqN8jmvcYoF_oR7ME6JlpS3dQUqThCX7d_D2gXcEwBvNJpcxYCAugYQ9VbOsGjDX3n2hCw1dBlQz-vYc7ottzIJQ1bihbDZSyAV_p12Z7BDTHmc_kTmmbIV6HxZCRz_U6nt-l1h2Qxm36ZzJNYlSGx4Au2iQMMxuqaeYCSHmZZOeELJ5XghnGlmJW549JZWOka5MatkE5DmwFs4m2p-DNy0Jw37jmh3Ka-KCyYgNwLkdWlrF3KDWAYpY0y5YBkWwFVNlKWY-WMVRVcl7SsOqlWKNUqSnVA3uxuuugYO_5--Rglv7sU6bZDAyhhFZWw-pcSDsgh6k3veXlalBl0frRVpCrahsuKY740cgKJAUl2yvXHWHUomLk31hf_Y6wvyX3ss9tGOiIH7ebKvQJg1ZphWEPDkAM5JHcXJ59G334DrX0kAA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwENUw5VA48FkGQwEdOOJgW_LXsQnJBGjDgXbozSPJqzZD4nZSB4b-Nf4cu7KSJjAw3BzFsqXR8_qtvPuWsddJopXBlQ21iCGUSohQ1yBCMBlYkOj6ZJScfDTJxifyw2l66pPVXS4MALjgM-jRofuWX1-YJW2V4ROeRlmZoMW9nUop0y5da72lQjUkyjT32kJxVL49GAxwGugFJrInkAmkebL1_nEy_b6uyhbF3F02l-rHdzWbbbxtRvfZZDXOLsjka2_Z6p65_k3C8b8n8oDd87yTH3RAechuQfOI3d1QI3zMfvbRQnyDGR-jb7ogTfA5xcrwT2hV5j5dk6um5iTo4a518w2Cd2HLHCkwHzbnLqyA9yngveUD-rXg76B1YV8Nnzb88xwhy1dFS66425g0FHRjkALzL9P2HDv4yNHpNTaNSPVC0Z9eEvaMD2-S9PbYyWh4PBiHvrZDaNCjbENAJhfXdWyRkFpctgKkzSAvpNCxKIrY5CmIHAzaC5VmVhiZg8I2jQzHmrIQT9hOc9HAU8aFiWyWGTQkqZUyqcu8hkhoZEKF0oUuA5asVrwyXvic6m_MKucARWXVwaQimFQeJgF7s-502el-_Pv0PkFpfSqJdrsGXPbK24AqVhZqnExNOnVxHiuR5VrFwmoodC5twPYIKhv361ASsP0VMitvYa4qQVnXpCwkAxau0frHWJUru7k11md_uc0rtjs-PjqsDt9PPj5nd6hLt9e0z3baxRJeIPtq9Uv3zP0CzNAt0A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FxElgX5wJG0Tew4ybEtrSokFiSoWE6W7Yx3K9qw6qYL7F_jzzF23G4LEhLcUtdJHOV5_CaeeUPIyzTVyuCbjTVLIOaKsVhXwGIwAixwdH2ES05-eyKmM_7mNDsNH9x8LgwA-OAz6LpDv5c_h8X3vCdSJ55W9gQu8egk4HTP-qJM0S-s7G1yIDLk4h1yMDt5P_jsKsolooyZ35t8FoQ1e8rXIESnMOVdhsQgy9O95cir9ocyK3uM8866vlA_vqnFYmfxmdwncjPsNubkS3fd6K65_k3R8f-f6wG5F3gpHbRAekhuQf2I3N1RK3xMfg7RglzBgk7Rd105zfCli6Wh79DqLEM6J1V1RZ3gh7_WzR4FbcOaKVJkOq7PfdgBHbqA-IaO3K8VfQ2NDwur6bymH5YIabopanJJ_YdL44JyDFJk-mnenOMJIbJ0fo1NE6eKodyfQTL2jI5vkvgOyWwy_jiaxqH2Q2zQ42xiQKaXVFVikbBafJUFcCsgLzjTCSuKxOQZsBwM2hOVCcsMz0Fhm0YGZE1ZsCekU3-t4SmhzPStEAYNTWY5T6syr6DPNDKlQulClxFJNxCQJgiju_ocC-kdpH4pB6MRzgbpcCMDbiLyanvSRasL8vfuQ4etbVcn6u0bEAcy2AiZKAsVPkzldOySPFFM5FolzGoodM5tRA4ddnbu1yIlIscbqMpggS4lc1nZTnmIRyTewvePsbZTYm-sR__Y_5h0mtUaniM5a_SLMAN_AX2cODU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilevel+Hyperparameter+Optimization+and+Neural+Architecture+Search+for+Enhanced+Breast+Cancer+Detection+in+Smart+Hospitals+Interconnected+With+Decentralized+Federated+Learning+Environment&rft.jtitle=IEEE+access&rft.au=Khan%2C+Salabat&rft.au=Nosheen%2C+Fariha&rft.au=Naqvi%2C+Syed+Shehryar+Ali&rft.au=Jamil%2C+Harun&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=63618&rft.epage=63628&rft_id=info:doi/10.1109%2FACCESS.2024.3392572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3392572 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |