Bilevel Hyperparameter Optimization and Neural Architecture Search for Enhanced Breast Cancer Detection in Smart Hospitals Interconnected With Decentralized Federated Learning Environment

Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality rates. The scarcity of medical data underscores the need for collaborative efforts among hospitals to enhance automated breast cancer detection....

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 63618 - 63628
Main Authors Khan, Salabat, Nosheen, Fariha, Naqvi, Syed Shehryar Ali, Jamil, Harun, Faseeh, Muhammad, Ali Khan, Murad, Kim, Do-Hyeun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3392572

Cover

Abstract Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality rates. The scarcity of medical data underscores the need for collaborative efforts among hospitals to enhance automated breast cancer detection. This research employs decentralized Federated Learning (FL) to facilitate cooperative learning across an interconnected smart hospital network, addressing data privacy, regulatory compliance, voluminous medical image data, and the necessity for distributed machine learning. Our innovative approach integrates Ant Colony Optimization (ACO) for hyperparameter fine-tuning and Neural Architecture Search (NAS) in a collaborative framework for smart hospitals linked with decentralized edge intelligent networks. This optimization strategy significantly improves the performance of our breast cancer detection system. Through a comprehensive experimental study (including diverse datasets), we classify Normal vs. Mass and Benign vs. Malignant regions in mammograms within a decentralized, federated collaborative learning environment. Empirical results consistently highlight the superiority of models trained using our method over individual hospital client-level training. Our method yielded significant improvements across evaluation measures: for Normal vs. Mass, achieving 92.6% sensitivity, 93.0% specificity, and 93.0% accuracy; for Benign vs. Malignant, achieving 89.6% sensitivity, 91.6% specificity, and 89.7% accuracy. Moreover, it has obtained a 6% and 5% increase in accuracy for Normal vs. Mass and Benign vs. Malignant cases, respectively, compared to the PSO-based HPO method. This evidence underscores the potential of collaborative approaches, emphasizing decentralized FL as a robust paradigm in medical research. The incorporation of ACO optimization reinforces the effectiveness of the proposed computer-aided diagnosis (CAD) system, marking a noteworthy advancement in the ongoing fight against breast cancer.
AbstractList Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality rates. The scarcity of medical data underscores the need for collaborative efforts among hospitals to enhance automated breast cancer detection. This research employs decentralized Federated Learning (FL) to facilitate cooperative learning across an interconnected smart hospital network, addressing data privacy, regulatory compliance, voluminous medical image data, and the necessity for distributed machine learning. Our innovative approach integrates Ant Colony Optimization (ACO) for hyperparameter fine-tuning and Neural Architecture Search (NAS) in a collaborative framework for smart hospitals linked with decentralized edge intelligent networks. This optimization strategy significantly improves the performance of our breast cancer detection system. Through a comprehensive experimental study (including diverse datasets), we classify Normal vs. Mass and Benign vs. Malignant regions in mammograms within a decentralized, federated collaborative learning environment. Empirical results consistently highlight the superiority of models trained using our method over individual hospital client-level training. Our method yielded significant improvements across evaluation measures: for Normal vs. Mass, achieving 92.6% sensitivity, 93.0% specificity, and 93.0% accuracy; for Benign vs. Malignant, achieving 89.6% sensitivity, 91.6% specificity, and 89.7% accuracy. Moreover, it has obtained a 6% and 5% increase in accuracy for Normal vs. Mass and Benign vs. Malignant cases, respectively, compared to the PSO-based HPO method. This evidence underscores the potential of collaborative approaches, emphasizing decentralized FL as a robust paradigm in medical research. The incorporation of ACO optimization reinforces the effectiveness of the proposed computer-aided diagnosis (CAD) system, marking a noteworthy advancement in the ongoing fight against breast cancer.
Author Faseeh, Muhammad
Khan, Salabat
Kim, Do-Hyeun
Nosheen, Fariha
Naqvi, Syed Shehryar Ali
Jamil, Harun
Ali Khan, Murad
Author_xml – sequence: 1
  givenname: Salabat
  surname: Khan
  fullname: Khan, Salabat
  email: salabat.khan@jejunu.ac.kr
  organization: Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
– sequence: 2
  givenname: Fariha
  surname: Nosheen
  fullname: Nosheen, Fariha
  organization: Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
– sequence: 3
  givenname: Syed Shehryar Ali
  orcidid: 0009-0002-1751-1117
  surname: Naqvi
  fullname: Naqvi, Syed Shehryar Ali
  organization: Department of Electronics Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 4
  givenname: Harun
  surname: Jamil
  fullname: Jamil, Harun
  organization: Department of Electronics Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 5
  givenname: Muhammad
  orcidid: 0009-0008-2375-7803
  surname: Faseeh
  fullname: Faseeh, Muhammad
  organization: Department of Electronics Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 6
  givenname: Murad
  surname: Ali Khan
  fullname: Ali Khan, Murad
  organization: Department of Computer Engineering, Jeju National University, Jeju, Republic of Korea
– sequence: 7
  givenname: Do-Hyeun
  orcidid: 0000-0002-3457-2301
  surname: Kim
  fullname: Kim, Do-Hyeun
  email: kimdh@jejunu.ac.kr
  organization: Big Data Research Center, Jeju National University, Jeju, Republic of Korea
BookMark eNptUl9v0zAQj9CQGGOfAB4s8dwS20kcP3alo5Uq9lAQj5bjXFZXqR0cZ1P31fhyXMg0TRV-se_8--O78_vkwnkHSfKRpnNKU_llsVyudrs5S1k251yyXLA3ySWjhZzxnBcXr87vkuu-P6S4Skzl4jL5c2NbeICWrE8dhE4HfYQIgdx10R7tk47WO6JdTb7DEHRLFsHsbQQThwBkBxpD0vhAVm6vnYGa3ATQfSTLMQrkK4zYUcM6sjvqEMna952Nuu3JxqGT8c4hBJm_bNwjwYCL6GSfMHULNQQ9Xm7Ryll3j0YPNnh3RNSH5G2DOnD9vF8lP29XP5br2fbu22a52M5Mlso4A8YZrWva0DxtsOwSsqYAUWa8orwsqRE5cAGGCqnzouEmE6AxVwnEG1nyq2Qz6dZeH1QXLNZxUl5b9S_hw73CwqxpQVHdQI0idcpoRgXVvBCVprypoKxE1qBWNmkNrtOnR922L4I0VeM8lTYG-l6N81TP80Ta54nWBf97gD6qgx-Cw6oVT3NGZSZlhig5oUzwfR-gUQY7PbYfO2rbF4fpx5w78DPu-bv-z_o0sSwAvGLkaSEZ438BrMfRlw
CODEN IAECCG
CitedBy_id crossref_primary_10_61384_r_c_a__v4i4_771
crossref_primary_10_1016_j_critrevonc_2024_104528
crossref_primary_10_3390_bdcc8090099
Cites_doi 10.1016/j.cmpb.2022.107318
10.3390/diagnostics12071669
10.1007/s10723-018-9459-x
10.1007/978-94-011-5318-8_75
10.1561/2200000083
10.1038/s41598-023-32029-1
10.1016/j.bspc.2023.105080
10.1145/3412357
10.1007/978-3-030-60548-3_18
10.1109/ACCESS.2023.3257562
10.18653/v1/2021.privatenlp-1.4
10.1109/ACCESS.2020.2978082
10.1007/s10916-019-1483-2
10.1016/B978-1-55860-377-6.50039-6
10.1007/978-3-030-61609-0_60
10.1016/j.cie.2020.106854
10.1038/s41591-022-02155-w
10.48550/arXiv.1602.05629
10.3390/fi14050153
10.1109/ICSPIS57063.2022.10057227
10.1109/ICDE53745.2022.00077
10.1145/3298981
10.3389/fonc.2022.860532
10.2991/jegh.k.191008.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2024.3392572
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2169-3536
EndPage 63628
ExternalDocumentID oai_doaj_org_article_1afed56fd0214171a367ba13fbe8b74f
10.1109/access.2024.3392572
10_1109_ACCESS_2024_3392572
10506922
Genre orig-research
GrantInformation_xml – fundername: Creative Research Project
  grantid: RS-2023-00248526
  funderid: 10.13039/100000874
– fundername: National Research Foundation of Korea (NRF)
  funderid: 10.13039/501100003725
– fundername: Brain Pool Program
  grantid: 2022H1D3A2A02055024
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c409t-e2321dd1f150f1698e4f6e7843b13881c75e37ec179a56f3c47ea75eb750fc983
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:48:14 EDT 2025
Tue Aug 19 20:26:11 EDT 2025
Sun Jun 29 12:14:42 EDT 2025
Thu Apr 24 22:50:56 EDT 2025
Wed Oct 01 04:52:29 EDT 2025
Wed Aug 27 02:05:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-e2321dd1f150f1698e4f6e7843b13881c75e37ec179a56f3c47ea75eb750fc983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-2375-7803
0000-0002-3457-2301
0009-0002-1751-1117
OpenAccessLink https://doaj.org/article/1afed56fd0214171a367ba13fbe8b74f
PQID 3052194994
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_3052194994
crossref_citationtrail_10_1109_ACCESS_2024_3392572
ieee_primary_10506922
crossref_primary_10_1109_ACCESS_2024_3392572
doaj_primary_oai_doaj_org_article_1afed56fd0214171a367ba13fbe8b74f
unpaywall_primary_10_1109_access_2024_3392572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
ref2
ref1
ref17
ref19
ref18
Schwab (ref11) 2008
ref24
ref23
ref26
ref25
ref20
ref22
Apple (ref5) 2017; 1
ref21
McMahan (ref3)
Stützle (ref4) 1999; 4
ref28
ref27
ref29
ref8
ref7
ref9
ref6
Zhang (ref16) 2021
References_xml – ident: ref18
  doi: 10.1016/j.cmpb.2022.107318
– ident: ref20
  doi: 10.3390/diagnostics12071669
– ident: ref29
  doi: 10.1007/s10723-018-9459-x
– ident: ref26
  doi: 10.1007/978-94-011-5318-8_75
– ident: ref8
  doi: 10.1561/2200000083
– ident: ref23
  doi: 10.1038/s41598-023-32029-1
– ident: ref17
  doi: 10.1016/j.bspc.2023.105080
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref3
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref10
  doi: 10.1145/3412357
– ident: ref14
  doi: 10.1007/978-3-030-60548-3_18
– ident: ref22
  doi: 10.1109/ACCESS.2023.3257562
– ident: ref7
  doi: 10.18653/v1/2021.privatenlp-1.4
– ident: ref9
  doi: 10.1109/ACCESS.2020.2978082
– ident: ref13
  doi: 10.1007/s10916-019-1483-2
– ident: ref27
  doi: 10.1016/B978-1-55860-377-6.50039-6
– ident: ref12
  doi: 10.1007/978-3-030-61609-0_60
– volume: 1
  start-page: 71
  issue: 8
  year: 2017
  ident: ref5
  article-title: Learning with privacy at scale
  publication-title: Apple Mach. Learn. J.
– year: 2021
  ident: ref16
  article-title: Aegis: A trusted, automatic and accurate verification framework for vertical federated learning
  publication-title: arXiv:2108.06958
– ident: ref2
  doi: 10.1016/j.cie.2020.106854
– ident: ref24
  doi: 10.1038/s41591-022-02155-w
– ident: ref28
  doi: 10.48550/arXiv.1602.05629
– ident: ref21
  doi: 10.3390/fi14050153
– ident: ref19
  doi: 10.1109/ICSPIS57063.2022.10057227
– ident: ref25
  doi: 10.1109/ICDE53745.2022.00077
– ident: ref6
  doi: 10.1145/3298981
– volume: 4
  start-page: 163
  year: 1999
  ident: ref4
  article-title: ACO algorithms for the traveling salesman problem
  publication-title: Evol. Algorithm Eng. Comput. Sci.
– ident: ref15
  doi: 10.3389/fonc.2022.860532
– ident: ref1
  doi: 10.2991/jegh.k.191008.001
– volume-title: Encyclopedia of Cancer
  year: 2008
  ident: ref11
SSID ssj0000816957
Score 2.3410873
Snippet Breast cancer, a widespread malignancy predominantly affecting women aged 40 and above, presents a significant global health challenge with high mortality...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63618
SubjectTerms Accuracy
Ant colony optimization
Breast cancer
breast cancer detection
Cancer
Collaboration
Cooperative learning
Data models
decentralized federated learning
Detection algorithms
Federated learning
Hospitals
Hyperparameter optimization
Intelligent networks
Machine learning
Mammography
Medical imaging
Medical research
metaheuristic ACO
Metaheuristics
neural architecture search
Optimization
Public health
School environment
Solid modeling
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLZgF-DAzyECA_nAkZQkduLkuJZWFRLjABO7RbbzzKq12dSlTNu_xj_He47btSAQt9R1Elv-8vI9573vMfY2y4y2uLKxESnEUgsRmwZEDLYABxJdn4KSkz8dFdNj-fEkPwnJ6j4XBgB88BkM6NB_y2_O7Yq2yvAJz5OiytDi3lVl0SdrbTZUqIJElaugLJQm1fvD0QgngT5gJgcCeUCusp23jxfpD1VVdgjmvVV7oa-v9Hy-9a6ZPGJH61H2ISZng1VnBvbmNwHH_57GY_YwsE5-2MPkCbsD7VP2YEuL8Bn7OUT78APmfIqe6ZIUwRcUKcM_o01ZhGRNrtuGk5yHv9btFwjeBy1zJMB83J76oAI-pHD3jo_o15J_gM4HfbV81vIvCwQsX5csueR-W9JSyI1FAsy_zbpTPCHEjc5usGlCmhea_gyCsN_5-DZFb58dT8ZfR9M4VHaILfqTXQzI49KmSR3SUYfLVoJ0BahSCpOKskytykEosGgtdF44YaUCjW0G-Y2zVSmes732vIUXjAubuKKwaEZyJ2XWVKqBRBjkQaU2pakilq1XvLZB9pyqb8xr7_4kVd3DpCaY1AEmEXu3OemiV_34d_chQWnTlSS7fQMuex0sQJ1qBw1OpiGVulSlWhTK6FQ4A6VR0kVsn6Cydb8eJRE7WCOzDvblshaUc026QjJi8Qatf4xV-6KbO2N9-ZfbvGL3qVu_u3TA9rrlCl4j3-rMG_-c_QIaHCqD
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FxElgX5wJG0Tew4ybEtrSokFiSoWE6W7Yx3K9qw6qYL7F_jzzF23G4LEhLcUtdJHOV5_CaeeUPIyzTVyuCbjTVLIOaKsVhXwGIwAixwdH2ES05-eyKmM_7mNDsNH9x8LgwA-OAz6LpDv5c_h8X3vCdSJ55W9gQu8egk4HTP-qJM0S-s7G1yIDLk4h1yMDt5P_jsKsolooyZ35t8FoQ1e8rXIESnMOVdhsQgy9O95cir9ocyK3uM8866vlA_vqnFYmfxmdwncjPsNubkS3fd6K65_k3R8f-f6wG5F3gpHbRAekhuQf2I3N1RK3xMfg7RglzBgk7Rd105zfCli6Wh79DqLEM6J1V1RZ3gh7_WzR4FbcOaKVJkOq7PfdgBHbqA-IaO3K8VfQ2NDwur6bymH5YIabopanJJ_YdL44JyDFJk-mnenOMJIbJ0fo1NE6eKodyfQTL2jI5vkvgOyWwy_jiaxqH2Q2zQ42xiQKaXVFVikbBafJUFcCsgLzjTCSuKxOQZsBwM2hOVCcsMz0Fhm0YGZE1ZsCekU3-t4SmhzPStEAYNTWY5T6syr6DPNDKlQulClxFJNxCQJgiju_ocC-kdpH4pB6MRzgbpcCMDbiLyanvSRasL8vfuQ4etbVcn6u0bEAcy2AiZKAsVPkzldOySPFFM5FolzGoodM5tRA4ddnbu1yIlIscbqMpggS4lc1nZTnmIRyTewvePsbZTYm-sR__Y_5h0mtUaniM5a_SLMAN_AX2cODU
  priority: 102
  providerName: Unpaywall
Title Bilevel Hyperparameter Optimization and Neural Architecture Search for Enhanced Breast Cancer Detection in Smart Hospitals Interconnected With Decentralized Federated Learning Environment
URI https://ieeexplore.ieee.org/document/10506922
https://www.proquest.com/docview/3052194994
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10506922.pdf
https://doaj.org/article/1afed56fd0214171a367ba13fbe8b74f
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQeAAeED-GKIzKDzwSFsdO7Dy2pVWFxECCivEU2Y7NKrXZ1GVM41_jn-POcbtUSPDCY5zEcXzny3fO3XeEvM4yoy1INjGcuURozhNTO544WzjvBLg-BSYnfzgp5gvx_jQ_7ZX6wpiwjh64m7hjpr2r88LXSO7FJNO8kEYz7o1TRgqP1jdVZc-ZCjZYsaLMZaQZYml5PJpM4I3AIczEWw6gIJfZ3qcoMPbHEit7aPPeVXOhb671atX78MwekYcRMdJRN9LH5I5rnpAHPR7Bp-TXGNb2D7eic_AqN8jmvcYoF_oR7ME6JlpS3dQUqThCX7d_D2gXcEwBvNJpcxYCAugYQ9VbOsGjDX3n2hCw1dBlQz-vYc7ottzIJQ1bihbDZSyAV_p12Z7BDTHmc_kTmmbIV6HxZCRz_U6nt-l1h2Qxm36ZzJNYlSGx4Au2iQMMxuqaeYCSHmZZOeELJ5XghnGlmJW549JZWOka5MatkE5DmwFs4m2p-DNy0Jw37jmh3Ka-KCyYgNwLkdWlrF3KDWAYpY0y5YBkWwFVNlKWY-WMVRVcl7SsOqlWKNUqSnVA3uxuuugYO_5--Rglv7sU6bZDAyhhFZWw-pcSDsgh6k3veXlalBl0frRVpCrahsuKY740cgKJAUl2yvXHWHUomLk31hf_Y6wvyX3ss9tGOiIH7ebKvQJg1ZphWEPDkAM5JHcXJ59G334DrX0kAA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nc9MwENUw5VA48FkGQwEdOOJgW_LXsQnJBGjDgXbozSPJqzZD4nZSB4b-Nf4cu7KSJjAw3BzFsqXR8_qtvPuWsddJopXBlQ21iCGUSohQ1yBCMBlYkOj6ZJScfDTJxifyw2l66pPVXS4MALjgM-jRofuWX1-YJW2V4ROeRlmZoMW9nUop0y5da72lQjUkyjT32kJxVL49GAxwGugFJrInkAmkebL1_nEy_b6uyhbF3F02l-rHdzWbbbxtRvfZZDXOLsjka2_Z6p65_k3C8b8n8oDd87yTH3RAechuQfOI3d1QI3zMfvbRQnyDGR-jb7ogTfA5xcrwT2hV5j5dk6um5iTo4a518w2Cd2HLHCkwHzbnLqyA9yngveUD-rXg76B1YV8Nnzb88xwhy1dFS66425g0FHRjkALzL9P2HDv4yNHpNTaNSPVC0Z9eEvaMD2-S9PbYyWh4PBiHvrZDaNCjbENAJhfXdWyRkFpctgKkzSAvpNCxKIrY5CmIHAzaC5VmVhiZg8I2jQzHmrIQT9hOc9HAU8aFiWyWGTQkqZUyqcu8hkhoZEKF0oUuA5asVrwyXvic6m_MKucARWXVwaQimFQeJgF7s-502el-_Pv0PkFpfSqJdrsGXPbK24AqVhZqnExNOnVxHiuR5VrFwmoodC5twPYIKhv361ASsP0VMitvYa4qQVnXpCwkAxau0frHWJUru7k11md_uc0rtjs-PjqsDt9PPj5nd6hLt9e0z3baxRJeIPtq9Uv3zP0CzNAt0A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FxElgX5wJG0Tew4ybEtrSokFiSoWE6W7Yx3K9qw6qYL7F_jzzF23G4LEhLcUtdJHOV5_CaeeUPIyzTVyuCbjTVLIOaKsVhXwGIwAixwdH2ES05-eyKmM_7mNDsNH9x8LgwA-OAz6LpDv5c_h8X3vCdSJ55W9gQu8egk4HTP-qJM0S-s7G1yIDLk4h1yMDt5P_jsKsolooyZ35t8FoQ1e8rXIESnMOVdhsQgy9O95cir9ocyK3uM8866vlA_vqnFYmfxmdwncjPsNubkS3fd6K65_k3R8f-f6wG5F3gpHbRAekhuQf2I3N1RK3xMfg7RglzBgk7Rd105zfCli6Wh79DqLEM6J1V1RZ3gh7_WzR4FbcOaKVJkOq7PfdgBHbqA-IaO3K8VfQ2NDwur6bymH5YIabopanJJ_YdL44JyDFJk-mnenOMJIbJ0fo1NE6eKodyfQTL2jI5vkvgOyWwy_jiaxqH2Q2zQ42xiQKaXVFVikbBafJUFcCsgLzjTCSuKxOQZsBwM2hOVCcsMz0Fhm0YGZE1ZsCekU3-t4SmhzPStEAYNTWY5T6syr6DPNDKlQulClxFJNxCQJgiju_ocC-kdpH4pB6MRzgbpcCMDbiLyanvSRasL8vfuQ4etbVcn6u0bEAcy2AiZKAsVPkzldOySPFFM5FolzGoodM5tRA4ddnbu1yIlIscbqMpggS4lc1nZTnmIRyTewvePsbZTYm-sR__Y_5h0mtUaniM5a_SLMAN_AX2cODU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bilevel+Hyperparameter+Optimization+and+Neural+Architecture+Search+for+Enhanced+Breast+Cancer+Detection+in+Smart+Hospitals+Interconnected+With+Decentralized+Federated+Learning+Environment&rft.jtitle=IEEE+access&rft.au=Khan%2C+Salabat&rft.au=Nosheen%2C+Fariha&rft.au=Naqvi%2C+Syed+Shehryar+Ali&rft.au=Jamil%2C+Harun&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=63618&rft.epage=63628&rft_id=info:doi/10.1109%2FACCESS.2024.3392572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3392572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon