Learning with Precise Spike Times: A New Decoding Algorithm for Liquid State Machines

There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid...

Full description

Saved in:
Bibliographic Details
Published inNeural computation Vol. 31; no. 9; pp. 1825 - 1852
Main Authors Florescu, Dorian, Coca, Daniel
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.09.2019
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN0899-7667
1530-888X
1530-888X
DOI10.1162/neco_a_01218

Cover

Abstract There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.
AbstractList There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.
There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.
Author Florescu, Dorian
Coca, Daniel
Author_xml – sequence: 1
  givenname: Dorian
  surname: Florescu
  fullname: Florescu, Dorian
  email: fdorian@sheffield.ac.uk
  organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K. fdorian@sheffield.ac.uk
– sequence: 2
  givenname: Daniel
  surname: Coca
  fullname: Coca, Daniel
  email: d.coca@sheffield.ac.uk
  organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K. d.coca@sheffield.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31335291$$D View this record in MEDLINE/PubMed
BookMark eNp10ctLHDEYAPAgFl23vfVcAl48dNo8JpnEk4v2BdsHuIK3kEkyGjuTrMlMpf3rm8UVrNTTd_l97wOwG2JwALzG6B3GnLwPzkSlFcIEix0ww4yiSghxuQtmSEhZNZw3--Ag5xuEEMeI7YF9iillROIZuFg6nYIPV_DOj9fwR3LGZwfP1_6ngys_uHwMF_Cbu4NnpY_dwEV_FVPBA-xigkt_O3kLz0c9OvhVm2sfXH4JXnS6z-7VNs7B6uOH1ennavn905fTxbIyNZJjZU0nmxZpja3FHeMtMrzmjlPDGmGwIaKz0oi6q6VkpG2MaFttGautbDCydA6O7suuU7ydXB7V4LNxfa-Di1NWhHBKMUclzMHhE3oTpxTKcIpQwsqlSLNRb7Zqagdn1Tr5Qaff6uFeBZB7YFLMOblOGV829zGMSfteYaQ2T1GPn1KS3j5Jeqj7DN9uNfhHUz5DT_5DN-QXxV4qiggTtSKI4JKtkFR__PrfEn8B3F2vjA
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3055421
crossref_primary_10_1016_j_chaos_2024_115940
crossref_primary_10_1155_2022_8369368
crossref_primary_10_3390_jlpea13040063
crossref_primary_10_1109_TSP_2022_3210748
crossref_primary_10_1016_j_asoc_2022_109645
crossref_primary_10_3390_math10111844
Cites_doi 10.1093/cercor/12.9.936
10.1126/science.1149639
10.1080/00207178908953472
10.1016/j.neuron.2014.03.026
10.1162/neco_a_01051
10.1109/IJCNN.2003.1224019
10.1038/s41467-017-01827-3
10.1126/science.278.5345.1950
10.1162/NECO_a_00764
10.1016/j.conb.2010.03.006
10.1016/j.ipl.2005.05.019
10.1126/science.1097779
10.1016/S0925-2312(01)00658-0
10.1162/089976602760407955
10.1162/neco.2009.11-08-901
10.1097/00001756-199801260-00023
10.1080/00207178908559767
10.1016/j.neunet.2013.02.003
10.1016/j.cub.2014.12.043
10.1016/j.jneumeth.2008.05.004
10.1016/j.cosrev.2009.03.005
10.1162/neco.2006.18.6.1318
10.1109/MSPEC.1981.6369809
10.1016/j.neuron.2009.01.008
10.1523/JNEUROSCI.2929-08.2008
10.1371/journal.pone.0040233
10.1371/journal.pone.0161335
10.1007/s10827-014-0522-8
10.1109/TAMD.2012.2182765
10.1162/089976606775093882
10.1073/pnas.1611734114
10.1093/cercor/bhl152
10.1007/978-3-319-57081-5
10.1126/science.7770778
10.1073/pnas.95.9.5323
10.1162/neco.2007.19.6.1468
10.1126/science.1117593
10.1093/cercor/bhj132
10.1038/nature06447
10.1080/02664763.2017.1305331
10.1007/s10827-009-0208-9
10.1007/978-1-4615-1079-6_9
10.1109/ICASSP.1982.1171644
10.1016/j.neunet.2007.04.003
10.1016/j.conb.2014.01.004
10.1038/nature06445
10.1162/neco.2008.06-07-559
ContentType Journal Article
Copyright Copyright MIT Press Journals, The Sep 2019
Copyright_xml – notice: Copyright MIT Press Journals, The Sep 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1162/neco_a_01218
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
EndPage 1852
ExternalDocumentID 31335291
10_1162_neco_a_01218
neco_a_01218.pdf
Genre Letter
Research Support, Non-U.S. Gov't
Correspondence
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M025527/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H013849/1
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
6IK
AAJGR
AALMD
ABDBF
ABDNZ
ABIVO
ABJNI
ACGFO
AEGXH
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HZ~
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
41~
53G
AAFWJ
AAYXX
ABAZT
ABEFU
ABVLG
ACUHS
ACYGS
ADIYS
ADMLS
AMVHM
CAG
CITATION
COF
HVGLF
H~9
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c409t-dcf97b0aa1dd1f56b0c646e63c578c1c28fd9c84f49952b7c8bbad554d9710d3
ISSN 0899-7667
1530-888X
IngestDate Thu Sep 04 17:22:25 EDT 2025
Mon Jun 30 08:05:36 EDT 2025
Mon Jul 21 06:03:01 EDT 2025
Wed Oct 01 02:03:11 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
Tue Mar 01 17:18:23 EST 2022
Thu Mar 28 07:29:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-dcf97b0aa1dd1f56b0c646e63c578c1c28fd9c84f49952b7c8bbad554d9710d3
Notes September, 2019
SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
ObjectType-Article-2
content type line 23
PMID 31335291
PQID 2325089276
PQPubID 37252
PageCount 28
ParticipantIDs crossref_citationtrail_10_1162_neco_a_01218
proquest_miscellaneous_2263316026
crossref_primary_10_1162_neco_a_01218
mit_journals_10_1162_neco_a_01218
mit_journals_necov31i9_302584_2021_11_09_zip_neco_a_01218
proquest_journals_2325089276
pubmed_primary_31335291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2019
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B20
B21
B22
B23
B24
B26
B27
B28
Bishop C. M. (B2) 2006
Carnell A. (B4) 2005
Schalk T. B. (B43) 1982
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B3
B5
B6
B7
B8
B9
B40
B41
B42
B44
B45
B46
B47
B48
B49
Häusler S. (B18) 2002; 14
Jaeger H. (B25) 2001
B50
B51
B52
B53
B10
B11
B12
B13
B14
B15
B16
B17
B19
References_xml – ident: B48
  doi: 10.1093/cercor/12.9.936
– ident: B15
  doi: 10.1126/science.1149639
– ident: B5
  doi: 10.1080/00207178908953472
– ident: B37
  doi: 10.1016/j.neuron.2014.03.026
– ident: B11
  doi: 10.1162/neco_a_01051
– ident: B44
  doi: 10.1109/IJCNN.2003.1224019
– ident: B39
  doi: 10.1038/s41467-017-01827-3
– ident: B42
  doi: 10.1126/science.278.5345.1950
– ident: B10
  doi: 10.1162/NECO_a_00764
– ident: B51
  doi: 10.1016/j.conb.2010.03.006
– start-page: 211
  year: 1982
  ident: B43
  publication-title: Proceedings of the Workshop on Standardization for Speech I/O Technology
– ident: B50
  doi: 10.1016/j.ipl.2005.05.019
– ident: B26
  doi: 10.1126/science.1097779
– ident: B3
  doi: 10.1016/S0925-2312(01)00658-0
– ident: B34
  doi: 10.1162/089976602760407955
– ident: B41
  doi: 10.1162/neco.2009.11-08-901
– ident: B8
  doi: 10.1097/00001756-199801260-00023
– ident: B1
  doi: 10.1080/00207178908559767
– ident: B52
  doi: 10.1016/j.neunet.2013.02.003
– ident: B45
  doi: 10.1016/j.cub.2014.12.043
– ident: B19
  doi: 10.1016/j.jneumeth.2008.05.004
– ident: B32
  doi: 10.1016/j.cosrev.2009.03.005
– ident: B40
  doi: 10.1162/neco.2006.18.6.1318
– ident: B6
  doi: 10.1109/MSPEC.1981.6369809
– ident: B27
  doi: 10.1016/j.neuron.2009.01.008
– ident: B46
  doi: 10.1523/JNEUROSCI.2929-08.2008
– ident: B13
  doi: 10.1371/journal.pone.0040233
– volume-title: Pattern recognition and machine learning.
  year: 2006
  ident: B2
– ident: B14
  doi: 10.1371/journal.pone.0161335
– ident: B31
  doi: 10.1007/s10827-014-0522-8
– ident: B53
  doi: 10.1109/TAMD.2012.2182765
– ident: B23
  doi: 10.1162/089976606775093882
– ident: B47
  doi: 10.1073/pnas.1611734114
– ident: B24
  doi: 10.1093/cercor/bhl152
– ident: B9
  doi: 10.1007/978-3-319-57081-5
– ident: B35
  doi: 10.1126/science.7770778
– ident: B36
  doi: 10.1073/pnas.95.9.5323
– ident: B12
  doi: 10.1162/neco.2007.19.6.1468
– ident: B22
  doi: 10.1126/science.1117593
– ident: B17
  doi: 10.1093/cercor/bhj132
– ident: B20
  doi: 10.1038/nature06447
– ident: B7
  doi: 10.1080/02664763.2017.1305331
– ident: B28
  doi: 10.1007/s10827-009-0208-9
– ident: B38
  doi: 10.1007/978-1-4615-1079-6_9
– volume: 14
  start-page: 2531
  issue: 11
  year: 2002
  ident: B18
  publication-title: Neural Computation
  doi: 10.1162/089976602760407955
– volume-title: Proc. European Symp. on Artificial Neural Networks
  year: 2005
  ident: B4
– volume-title: The echo state approach to analysing and training recurrent neural networks
  year: 2001
  ident: B25
– ident: B33
  doi: 10.1109/ICASSP.1982.1171644
– ident: B49
  doi: 10.1016/j.neunet.2007.04.003
– ident: B16
  doi: 10.1016/j.conb.2014.01.004
– ident: B21
  doi: 10.1038/nature06445
– ident: B30
  doi: 10.1162/neco.2008.06-07-559
SSID ssj0006105
Score 2.3588393
Snippet There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which...
SourceID proquest
pubmed
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1825
SubjectTerms Action Potentials - physiology
Algorithms
Cognitive tasks
Decoding
Humans
Machine learning
Machine Learning - trends
Mapping
Models, Neurological
Neural networks
Neural Networks, Computer
Neurons
Speech recognition
Speech Recognition Software - trends
Spikes
State machines
Title Learning with Precise Spike Times: A New Decoding Algorithm for Liquid State Machines
URI https://direct.mit.edu/neco/article/doi/10.1162/neco_a_01218
https://www.ncbi.nlm.nih.gov/pubmed/31335291
https://www.proquest.com/docview/2325089276
https://www.proquest.com/docview/2263316026
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-888X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ABDBF
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: AMVHM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1530-888X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0006105
  issn: 0899-7667
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbNBkoufT-2TYsK7Sm4tSRba_e2JA2hbEohG9ibsB5uTbOP7COH_PqOZMn2liy03YNZrJGN9Y1H38iaGYTeF8zIoiQkypiWUUITE2WJBkCSQVrCDF0ql0vv_Bs_u0y-TtJJqCXvo0vW8qO6vTOu5H9QhXOAq42S_Qdkm4vCCfgP-MIREIbjX2E8CusabjX1u01UsTJHF4vqV12wZ1XHnds9jCfgZrr4leHVj_kSxKdug-Gout5UnnLaIkQ_7S74LmG1yTtcChFb_GHrq_0pePpmpTY1DV921OwY5sc2fL27rkDajVMwLQRbGEfgIE-6xtKb7Fop8o7lAz8lvdskc5fiFZ5SFMJmkMu6YjAOi6mDhxEb_pWTdmJqtguGpj20T8F4xz20Pzw5H100Uy5wwDRENXD6qXuzA3Q_dN-iHnvTar3bq3DsYvwIPfBuAR7WGD9G98zsCXoYSm5gb4GfossAObaQYw85dpBjB_lnPMQAOA6A4wZwDIDjGnDsAMcB8GdofPplfHwW-coYkQJ_fB1pVeYDGRcF0ZqUKZex4gk3nCkwwIoompU6V1lSgj-bUjlQmZSFBuaoc2CUmj1Hvdl8Zl4inBqeyZjBz-YJMqZITVlSzSQ1ZJBp3UdHYcyE8lnjbfGSK-G8R05Fd7D76EMjvaizpeyQewfDL_yrtNohk2_J2LYbRqpcMODpWSIo0FPoJuJc3FaLP_oeBmDbC4DvAN5IDhoEt2-awZraT2TFzMw3IEM5Y8SWZeujF7VCNA8S1OjVzpbX6KB9kw5Rb73cmDfAWdfyrdfY32KXlfc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+with+Precise+Spike+Times%3A+A+New+Decoding+Algorithm+for+Liquid+State+Machines&rft.jtitle=Neural+computation&rft.au=Florescu%2C+Dorian&rft.au=Coca%2C+Daniel&rft.date=2019-09-01&rft.eissn=1530-888X&rft.volume=31&rft.issue=9&rft.spage=1825&rft_id=info:doi/10.1162%2Fneco_a_01218&rft_id=info%3Apmid%2F31335291&rft.externalDocID=31335291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon