Learning with Precise Spike Times: A New Decoding Algorithm for Liquid State Machines
There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid...
        Saved in:
      
    
          | Published in | Neural computation Vol. 31; no. 9; pp. 1825 - 1852 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        One Rogers Street, Cambridge, MA 02142-1209, USA
          MIT Press
    
        01.09.2019
     MIT Press Journals, The  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0899-7667 1530-888X 1530-888X  | 
| DOI | 10.1162/neco_a_01218 | 
Cover
| Abstract | There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods. | 
    
|---|---|
| AbstractList | There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods. There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.  | 
    
| Author | Florescu, Dorian Coca, Daniel  | 
    
| Author_xml | – sequence: 1 givenname: Dorian surname: Florescu fullname: Florescu, Dorian email: fdorian@sheffield.ac.uk organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K. fdorian@sheffield.ac.uk – sequence: 2 givenname: Daniel surname: Coca fullname: Coca, Daniel email: d.coca@sheffield.ac.uk organization: Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K. d.coca@sheffield.ac.uk  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31335291$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp10ctLHDEYAPAgFl23vfVcAl48dNo8JpnEk4v2BdsHuIK3kEkyGjuTrMlMpf3rm8UVrNTTd_l97wOwG2JwALzG6B3GnLwPzkSlFcIEix0ww4yiSghxuQtmSEhZNZw3--Ag5xuEEMeI7YF9iillROIZuFg6nYIPV_DOj9fwR3LGZwfP1_6ngys_uHwMF_Cbu4NnpY_dwEV_FVPBA-xigkt_O3kLz0c9OvhVm2sfXH4JXnS6z-7VNs7B6uOH1ennavn905fTxbIyNZJjZU0nmxZpja3FHeMtMrzmjlPDGmGwIaKz0oi6q6VkpG2MaFttGautbDCydA6O7suuU7ydXB7V4LNxfa-Di1NWhHBKMUclzMHhE3oTpxTKcIpQwsqlSLNRb7Zqagdn1Tr5Qaff6uFeBZB7YFLMOblOGV829zGMSfteYaQ2T1GPn1KS3j5Jeqj7DN9uNfhHUz5DT_5DN-QXxV4qiggTtSKI4JKtkFR__PrfEn8B3F2vjA | 
    
| CitedBy_id | crossref_primary_10_1109_TNNLS_2021_3055421 crossref_primary_10_1016_j_chaos_2024_115940 crossref_primary_10_1155_2022_8369368 crossref_primary_10_3390_jlpea13040063 crossref_primary_10_1109_TSP_2022_3210748 crossref_primary_10_1016_j_asoc_2022_109645 crossref_primary_10_3390_math10111844  | 
    
| Cites_doi | 10.1093/cercor/12.9.936 10.1126/science.1149639 10.1080/00207178908953472 10.1016/j.neuron.2014.03.026 10.1162/neco_a_01051 10.1109/IJCNN.2003.1224019 10.1038/s41467-017-01827-3 10.1126/science.278.5345.1950 10.1162/NECO_a_00764 10.1016/j.conb.2010.03.006 10.1016/j.ipl.2005.05.019 10.1126/science.1097779 10.1016/S0925-2312(01)00658-0 10.1162/089976602760407955 10.1162/neco.2009.11-08-901 10.1097/00001756-199801260-00023 10.1080/00207178908559767 10.1016/j.neunet.2013.02.003 10.1016/j.cub.2014.12.043 10.1016/j.jneumeth.2008.05.004 10.1016/j.cosrev.2009.03.005 10.1162/neco.2006.18.6.1318 10.1109/MSPEC.1981.6369809 10.1016/j.neuron.2009.01.008 10.1523/JNEUROSCI.2929-08.2008 10.1371/journal.pone.0040233 10.1371/journal.pone.0161335 10.1007/s10827-014-0522-8 10.1109/TAMD.2012.2182765 10.1162/089976606775093882 10.1073/pnas.1611734114 10.1093/cercor/bhl152 10.1007/978-3-319-57081-5 10.1126/science.7770778 10.1073/pnas.95.9.5323 10.1162/neco.2007.19.6.1468 10.1126/science.1117593 10.1093/cercor/bhj132 10.1038/nature06447 10.1080/02664763.2017.1305331 10.1007/s10827-009-0208-9 10.1007/978-1-4615-1079-6_9 10.1109/ICASSP.1982.1171644 10.1016/j.neunet.2007.04.003 10.1016/j.conb.2014.01.004 10.1038/nature06445 10.1162/neco.2008.06-07-559  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright MIT Press Journals, The Sep 2019 | 
    
| Copyright_xml | – notice: Copyright MIT Press Journals, The Sep 2019 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1162/neco_a_01218 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1530-888X | 
    
| EndPage | 1852 | 
    
| ExternalDocumentID | 31335291 10_1162_neco_a_01218 neco_a_01218.pdf  | 
    
| Genre | Letter Research Support, Non-U.S. Gov't Correspondence  | 
    
| GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M025527/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H013849/1  | 
    
| GroupedDBID | --- -~X .4S .DC 0R~ 123 36B 4.4 6IK AAJGR AALMD ABDBF ABDNZ ABIVO ABJNI ACGFO AEGXH AENEX AFHIN AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EMOBN EPL EPS EST ESX F5P FEDTE FNEHJ HZ~ I-F IPLJI JAVBF MCG MINIK MKJ O9- OCL P2P PK0 PQQKQ RMI SV3 TUS WG8 WH7 XJE ZWS 41~ 53G AAFWJ AAYXX ABAZT ABEFU ABVLG ACUHS ACYGS ADIYS ADMLS AMVHM CAG CITATION COF HVGLF H~9 AEILP CGR CUY CVF ECM EIF NPM 7SC 8FD JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-c409t-dcf97b0aa1dd1f56b0c646e63c578c1c28fd9c84f49952b7c8bbad554d9710d3 | 
    
| ISSN | 0899-7667 1530-888X  | 
    
| IngestDate | Thu Sep 04 17:22:25 EDT 2025 Mon Jun 30 08:05:36 EDT 2025 Mon Jul 21 06:03:01 EDT 2025 Wed Oct 01 02:03:11 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 Tue Mar 01 17:18:23 EST 2022 Thu Mar 28 07:29:36 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c409t-dcf97b0aa1dd1f56b0c646e63c578c1c28fd9c84f49952b7c8bbad554d9710d3 | 
    
| Notes | September, 2019 SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PMID | 31335291 | 
    
| PQID | 2325089276 | 
    
| PQPubID | 37252 | 
    
| PageCount | 28 | 
    
| ParticipantIDs | crossref_citationtrail_10_1162_neco_a_01218 proquest_miscellaneous_2263316026 crossref_primary_10_1162_neco_a_01218 mit_journals_10_1162_neco_a_01218 mit_journals_necov31i9_302584_2021_11_09_zip_neco_a_01218 proquest_journals_2325089276 pubmed_primary_31335291  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-09-01 2019-09-00 20190901  | 
    
| PublicationDateYYYYMMDD | 2019-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA | 
    
| PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge  | 
    
| PublicationTitle | Neural computation | 
    
| PublicationTitleAlternate | Neural Comput | 
    
| PublicationYear | 2019 | 
    
| Publisher | MIT Press MIT Press Journals, The  | 
    
| Publisher_xml | – name: MIT Press – name: MIT Press Journals, The  | 
    
| References | B20 B21 B22 B23 B24 B26 B27 B28 Bishop C. M. (B2) 2006 Carnell A. (B4) 2005 Schalk T. B. (B43) 1982 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B3 B5 B6 B7 B8 B9 B40 B41 B42 B44 B45 B46 B47 B48 B49 Häusler S. (B18) 2002; 14 Jaeger H. (B25) 2001 B50 B51 B52 B53 B10 B11 B12 B13 B14 B15 B16 B17 B19  | 
    
| References_xml | – ident: B48 doi: 10.1093/cercor/12.9.936 – ident: B15 doi: 10.1126/science.1149639 – ident: B5 doi: 10.1080/00207178908953472 – ident: B37 doi: 10.1016/j.neuron.2014.03.026 – ident: B11 doi: 10.1162/neco_a_01051 – ident: B44 doi: 10.1109/IJCNN.2003.1224019 – ident: B39 doi: 10.1038/s41467-017-01827-3 – ident: B42 doi: 10.1126/science.278.5345.1950 – ident: B10 doi: 10.1162/NECO_a_00764 – ident: B51 doi: 10.1016/j.conb.2010.03.006 – start-page: 211 year: 1982 ident: B43 publication-title: Proceedings of the Workshop on Standardization for Speech I/O Technology – ident: B50 doi: 10.1016/j.ipl.2005.05.019 – ident: B26 doi: 10.1126/science.1097779 – ident: B3 doi: 10.1016/S0925-2312(01)00658-0 – ident: B34 doi: 10.1162/089976602760407955 – ident: B41 doi: 10.1162/neco.2009.11-08-901 – ident: B8 doi: 10.1097/00001756-199801260-00023 – ident: B1 doi: 10.1080/00207178908559767 – ident: B52 doi: 10.1016/j.neunet.2013.02.003 – ident: B45 doi: 10.1016/j.cub.2014.12.043 – ident: B19 doi: 10.1016/j.jneumeth.2008.05.004 – ident: B32 doi: 10.1016/j.cosrev.2009.03.005 – ident: B40 doi: 10.1162/neco.2006.18.6.1318 – ident: B6 doi: 10.1109/MSPEC.1981.6369809 – ident: B27 doi: 10.1016/j.neuron.2009.01.008 – ident: B46 doi: 10.1523/JNEUROSCI.2929-08.2008 – ident: B13 doi: 10.1371/journal.pone.0040233 – volume-title: Pattern recognition and machine learning. year: 2006 ident: B2 – ident: B14 doi: 10.1371/journal.pone.0161335 – ident: B31 doi: 10.1007/s10827-014-0522-8 – ident: B53 doi: 10.1109/TAMD.2012.2182765 – ident: B23 doi: 10.1162/089976606775093882 – ident: B47 doi: 10.1073/pnas.1611734114 – ident: B24 doi: 10.1093/cercor/bhl152 – ident: B9 doi: 10.1007/978-3-319-57081-5 – ident: B35 doi: 10.1126/science.7770778 – ident: B36 doi: 10.1073/pnas.95.9.5323 – ident: B12 doi: 10.1162/neco.2007.19.6.1468 – ident: B22 doi: 10.1126/science.1117593 – ident: B17 doi: 10.1093/cercor/bhj132 – ident: B20 doi: 10.1038/nature06447 – ident: B7 doi: 10.1080/02664763.2017.1305331 – ident: B28 doi: 10.1007/s10827-009-0208-9 – ident: B38 doi: 10.1007/978-1-4615-1079-6_9 – volume: 14 start-page: 2531 issue: 11 year: 2002 ident: B18 publication-title: Neural Computation doi: 10.1162/089976602760407955 – volume-title: Proc. European Symp. on Artificial Neural Networks year: 2005 ident: B4 – volume-title: The echo state approach to analysing and training recurrent neural networks year: 2001 ident: B25 – ident: B33 doi: 10.1109/ICASSP.1982.1171644 – ident: B49 doi: 10.1016/j.neunet.2007.04.003 – ident: B16 doi: 10.1016/j.conb.2014.01.004 – ident: B21 doi: 10.1038/nature06445 – ident: B30 doi: 10.1162/neco.2008.06-07-559  | 
    
| SSID | ssj0006105 | 
    
| Score | 2.3588393 | 
    
| Snippet | There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which... | 
    
| SourceID | proquest pubmed crossref mit  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1825 | 
    
| SubjectTerms | Action Potentials - physiology Algorithms Cognitive tasks Decoding Humans Machine learning Machine Learning - trends Mapping Models, Neurological Neural networks Neural Networks, Computer Neurons Speech recognition Speech Recognition Software - trends Spikes State machines  | 
    
| Title | Learning with Precise Spike Times: A New Decoding Algorithm for Liquid State Machines | 
    
| URI | https://direct.mit.edu/neco/article/doi/10.1162/neco_a_01218 https://www.ncbi.nlm.nih.gov/pubmed/31335291 https://www.proquest.com/docview/2325089276 https://www.proquest.com/docview/2263316026  | 
    
| Volume | 31 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-888X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: ABDBF dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1530-888X dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: AMVHM dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1530-888X dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0006105 issn: 0899-7667 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbNBkoufT-2TYsK7Sm4tSRba_e2JA2hbEohG9ibsB5uTbOP7COH_PqOZMn2liy03YNZrJGN9Y1H38iaGYTeF8zIoiQkypiWUUITE2WJBkCSQVrCDF0ql0vv_Bs_u0y-TtJJqCXvo0vW8qO6vTOu5H9QhXOAq42S_Qdkm4vCCfgP-MIREIbjX2E8CusabjX1u01UsTJHF4vqV12wZ1XHnds9jCfgZrr4leHVj_kSxKdug-Gout5UnnLaIkQ_7S74LmG1yTtcChFb_GHrq_0pePpmpTY1DV921OwY5sc2fL27rkDajVMwLQRbGEfgIE-6xtKb7Fop8o7lAz8lvdskc5fiFZ5SFMJmkMu6YjAOi6mDhxEb_pWTdmJqtguGpj20T8F4xz20Pzw5H100Uy5wwDRENXD6qXuzA3Q_dN-iHnvTar3bq3DsYvwIPfBuAR7WGD9G98zsCXoYSm5gb4GfossAObaQYw85dpBjB_lnPMQAOA6A4wZwDIDjGnDsAMcB8GdofPplfHwW-coYkQJ_fB1pVeYDGRcF0ZqUKZex4gk3nCkwwIoompU6V1lSgj-bUjlQmZSFBuaoc2CUmj1Hvdl8Zl4inBqeyZjBz-YJMqZITVlSzSQ1ZJBp3UdHYcyE8lnjbfGSK-G8R05Fd7D76EMjvaizpeyQewfDL_yrtNohk2_J2LYbRqpcMODpWSIo0FPoJuJc3FaLP_oeBmDbC4DvAN5IDhoEt2-awZraT2TFzMw3IEM5Y8SWZeujF7VCNA8S1OjVzpbX6KB9kw5Rb73cmDfAWdfyrdfY32KXlfc | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+with+Precise+Spike+Times%3A+A+New+Decoding+Algorithm+for+Liquid+State+Machines&rft.jtitle=Neural+computation&rft.au=Florescu%2C+Dorian&rft.au=Coca%2C+Daniel&rft.date=2019-09-01&rft.eissn=1530-888X&rft.volume=31&rft.issue=9&rft.spage=1825&rft_id=info:doi/10.1162%2Fneco_a_01218&rft_id=info%3Apmid%2F31335291&rft.externalDocID=31335291 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon |