Robust and fast estimation of equivalent circuit model from noisy electrochemical impedance spectra
•Robust and fast ECM fitting algorithm has been developed and tested on noisy impedance spectra, with source code available at github.com/leehangyue/EISART.•Accurate Complex Nonlinear Least Square (CNLS) fit has been realized with DRT-based initialization of ECM parameters.•Robust DRT analysis and E...
Saved in:
Published in | Electrochimica acta Vol. 422; p. 140474 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.08.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0013-4686 1873-3859 |
DOI | 10.1016/j.electacta.2022.140474 |
Cover
Abstract | •Robust and fast ECM fitting algorithm has been developed and tested on noisy impedance spectra, with source code available at github.com/leehangyue/EISART.•Accurate Complex Nonlinear Least Square (CNLS) fit has been realized with DRT-based initialization of ECM parameters.•Robust DRT analysis and ECM fitting has been enabled by data screening and weighing.•The estimation error of resistances in ECM from 1% to 26% were obtained for various noise levels and the factors affecting accuracy were revealed.•Time consumption fitting an ECM has been shortened to within 1 s on a typical personal laptop.
The Equivalent Circuit Model (ECM) is a powerful technique to quantitatively analyze and compare Electrochemical Impedance Spectroscopy (EIS) data. In practice, noise is prevalent in EIS data, due to fuel cell system fluctuations, limited measuring time, and instruments, challenging the accuracy of ECM. There are algorithms that work well on noisy data, yet in many cases, either run time or robustness remains a problem. In this paper, we proposed a robust and fast algorithm that detects outliers, weighs the EIS data, and automatically fits an ECM within a second. For both experimentally measured and simulated noisy EIS data, the new algorithm reduced the impact of noise drastically. The algorithm is demonstrated in Python as part of the open-source software EISART at github.com/leehangyue/EISART.
[Display omitted] |
---|---|
AbstractList | •Robust and fast ECM fitting algorithm has been developed and tested on noisy impedance spectra, with source code available at github.com/leehangyue/EISART.•Accurate Complex Nonlinear Least Square (CNLS) fit has been realized with DRT-based initialization of ECM parameters.•Robust DRT analysis and ECM fitting has been enabled by data screening and weighing.•The estimation error of resistances in ECM from 1% to 26% were obtained for various noise levels and the factors affecting accuracy were revealed.•Time consumption fitting an ECM has been shortened to within 1 s on a typical personal laptop.
The Equivalent Circuit Model (ECM) is a powerful technique to quantitatively analyze and compare Electrochemical Impedance Spectroscopy (EIS) data. In practice, noise is prevalent in EIS data, due to fuel cell system fluctuations, limited measuring time, and instruments, challenging the accuracy of ECM. There are algorithms that work well on noisy data, yet in many cases, either run time or robustness remains a problem. In this paper, we proposed a robust and fast algorithm that detects outliers, weighs the EIS data, and automatically fits an ECM within a second. For both experimentally measured and simulated noisy EIS data, the new algorithm reduced the impact of noise drastically. The algorithm is demonstrated in Python as part of the open-source software EISART at github.com/leehangyue/EISART.
[Display omitted] The Equivalent Circuit Model (ECM) is a powerful technique to quantitatively analyze and compare Electrochemical Impedance Spectroscopy (EIS) data. In practice, noise is prevalent in EIS data, due to fuel cell system fluctuations, limited measuring time, and instruments, challenging the accuracy of ECM. There are algorithms that work well on noisy data, yet in many cases, either run time or robustness remains a problem. In this paper, we proposed a robust and fast algorithm that detects outliers, weighs the EIS data, and automatically fits an ECM within a second. For both experimentally measured and simulated noisy EIS data, the new algorithm reduced the impact of noise drastically. The algorithm is demonstrated in Python as part of the open-source software EISART at github.com/leehangyue/EISART. |
ArticleNumber | 140474 |
Author | Li, Hangyue Lyu, Zewei Han, Minfang |
Author_xml | – sequence: 1 givenname: Hangyue surname: Li fullname: Li, Hangyue – sequence: 2 givenname: Zewei surname: Lyu fullname: Lyu, Zewei – sequence: 3 givenname: Minfang surname: Han fullname: Han, Minfang email: hanminfang@tsinghua.edu.cn |
BookMark | eNqNkEtLxDAUhYOM4MzobzDgumOaPpIsXAyDLxAE0XVI88CUtukk7cD8e9OpuHCjELiBe86993wrsOhcpwG4TtEmRWl5W290o-Ug4ttghPEmzVFO8jOwTCnJkowWbAGWCKVZkpe0vACrEGqEECkJWgL55qoxDFB0ChoRPzoMthWDdR10Bur9aA-i0d0ApfVytANsndINNN61sHM2HOFpvXfyU7dWigbattdKdFLD0E8dcQnOjWiCvvqua_DxcP--e0peXh-fd9uXROaIDYmSZSmwwYwYhCqlqVFYkKIimBpRKiorxrKYSVSFJJKkFZPKCGVwzhRjOMvW4Gae23u3H2MQXrvRd3ElxyUtCloQNKnuZpX0LgSvDZd2OAWOp9qGp4hPXHnNf7jyiSufuUY_-eXvfSTmj_9wbmenjhAOVnsepNURlLI-6rly9s8ZX6KNnF4 |
CitedBy_id | crossref_primary_10_1149_1945_7111_ad6bc2 crossref_primary_10_1021_acsami_4c22501 crossref_primary_10_1149_1945_7111_ad6c0c crossref_primary_10_1016_j_jpowsour_2025_236202 crossref_primary_10_1021_acs_chemmater_4c02386 crossref_primary_10_1016_j_jpowsour_2024_235354 crossref_primary_10_1016_j_ijhydene_2025_02_329 crossref_primary_10_1016_j_electacta_2024_145227 crossref_primary_10_1016_j_ijhydene_2024_10_206 crossref_primary_10_1016_j_seppur_2024_129534 crossref_primary_10_1016_j_apenergy_2024_124762 crossref_primary_10_1016_j_ceramint_2024_07_147 crossref_primary_10_1038_s41467_025_56932_5 crossref_primary_10_1016_j_ceramint_2025_01_497 crossref_primary_10_1016_j_jpowsour_2025_236537 crossref_primary_10_1016_j_ijhydene_2023_08_292 crossref_primary_10_3390_en15239251 crossref_primary_10_1016_j_biortech_2024_131763 crossref_primary_10_1016_j_ijhydene_2024_08_194 crossref_primary_10_1016_j_ijhydene_2023_05_144 crossref_primary_10_1016_j_apenergy_2025_125543 crossref_primary_10_1021_acsami_3c08019 crossref_primary_10_1021_acs_analchem_2c03325 crossref_primary_10_1016_j_enconman_2022_116621 crossref_primary_10_1021_acsami_4c10821 crossref_primary_10_1016_j_cej_2024_156255 crossref_primary_10_1007_s11426_024_2314_9 crossref_primary_10_1016_j_apenergy_2024_125187 crossref_primary_10_1016_j_est_2024_111770 crossref_primary_10_1016_j_jpowsour_2023_233952 crossref_primary_10_1016_j_ijhydene_2023_12_086 crossref_primary_10_1016_j_jechem_2023_08_028 crossref_primary_10_1016_j_jpowsour_2024_234448 crossref_primary_10_1016_j_cej_2024_153521 crossref_primary_10_1016_j_ijhydene_2023_06_277 crossref_primary_10_1002_aenm_202403869 crossref_primary_10_1016_j_ijhydene_2023_06_276 crossref_primary_10_1016_j_electacta_2023_141879 crossref_primary_10_1016_j_est_2023_109895 crossref_primary_10_1016_j_ceramint_2024_07_173 crossref_primary_10_1007_s44291_024_00031_0 crossref_primary_10_1002_smll_202411136 crossref_primary_10_1155_2024_9657360 |
Cites_doi | 10.1016/j.electacta.2012.02.021 10.1016/j.jpowsour.2021.230678 10.1016/j.jpowsour.2015.02.107 10.1016/j.jpowsour.2021.230432 10.1149/1.2801372 10.1149/1.2908860 10.1016/j.electacta.2020.137493 10.1016/j.electacta.2019.134853 10.1016/j.jpowsour.2020.229237 10.1016/j.ijnonlinmec.2004.03.004 10.1016/j.electacta.2017.10.052 10.1103/PhysRev.104.1760 10.1016/j.ijhydene.2019.03.048 10.1149/1.3692958 10.1016/j.electacta.2015.09.097 10.1109/TPEL.2019.2924286 10.1007/BF01170953 10.1109/TPEL.2017.2780184 10.1016/j.electacta.2020.136764 10.1016/j.electacta.2021.138340 10.1016/j.ssi.2017.11.021 10.1016/j.est.2017.07.029 10.1016/j.measurement.2013.07.025 10.1007/BF02591962 10.1016/j.electacta.2020.136683 10.1023/A:1020599525160 10.3866/PKU.WHXB202011009 10.1016/j.jpowsour.2016.01.067 10.1016/S0013-4686(02)00187-1 10.1016/j.electacta.2020.136864 10.1016/j.aca.2012.06.055 10.1016/j.electacta.2014.01.034 10.1016/j.electacta.2021.137858 10.1016/j.electacta.2017.08.154 10.1016/j.electacta.2017.07.050 10.1016/j.jpowsour.2016.01.073 10.1016/j.jpowsour.2018.07.015 |
ContentType | Journal Article |
Copyright | 2022 Copyright Elsevier BV Aug 1, 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Aug 1, 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2022.140474 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2022_140474 S0013468622006363 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 L7M SSH |
ID | FETCH-LOGICAL-c409t-dc66a2f297f00bde8fd2a75b728fa6d8cb993187ab5c7c71b9cdfadf249d99233 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Fri Jul 25 04:47:41 EDT 2025 Wed Oct 01 05:20:10 EDT 2025 Thu Apr 24 23:16:20 EDT 2025 Fri Feb 23 02:41:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Impedance spectroscopy Fast Algorithm Robust Equivalent circuit |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-dc66a2f297f00bde8fd2a75b728fa6d8cb993187ab5c7c71b9cdfadf249d99233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2685585703 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2685585703 crossref_citationtrail_10_1016_j_electacta_2022_140474 crossref_primary_10_1016_j_electacta_2022_140474 elsevier_sciencedirect_doi_10_1016_j_electacta_2022_140474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Sihvo, Stroe, Messo, Roinila (bib0001) 2020; 35 Leonide (bib0039) 2010 Sgura, Bozzini (bib0021) 2005; 40 Schönleber, Klotz, Ivers-Tiffée (bib0037) 2014; 131 Lyu, Li, Han (bib0030) 2019; 44 Waag, Käbitz, Sauer (bib0019) 2013; 46 Sumi, Yamaguchi, Hamamoto, Suzuki, Fujishiro, Matsui, Eguchi (bib0025) 2012; 67 Dierickx, Weber, Ivers-Tiffée (bib0026) 2020; 355 Boukamp, Rolle (bib0013) 2018; 314 Vladikova, Zoltowski, Makowska, Stoynov (bib0020) 2002; 47 Wang, He, Shen, Hu, Ma (bib0024) 2018; 33 Zhang, Chen, Yan, Chen (bib0008) 2015; 283 Effat, Ciucci (bib0011) 2017; 247 Mertens, Granwehr (bib0028) 2017; 13 Shelembe, Barendse (bib0002) 2021 Huang, Papac, O'Hayre (bib0018) 2021; 367 Wan, Saccoccio, Chen, Ciucci (bib0009) 2015; 184 Papurello, Menichini, Lanzini (bib0029) 2017; 258 Toll (bib0036) 1956; 104 Goldfarb, Idnani (bib0038) 1983; 271 Bondarenko (bib0022) 2012; 743 Leonide, Sonn, Weber, Ivers-Tiffée (bib0004) 2008; 155 Lyu, Liu, Wang, Li, Liu, Sun, Sun, Zhang, Han (bib0031) 2021; 510 Boukamp (bib0040) 2017; 252 Zhang, Chen, Li, Yan, Ni, Xia (bib0010) 2016; 308 Honerkamp, Weese (bib0005) 1990; 21 Sonn, Leonide, Ivers-Tiffée (bib0007) 2008; 155 Klotz, Schmidt, Kromp, Weber, Ivers-Tiffée (bib0027) 2012; 41 Schichlein, Müller, Voigts, Krügel, Ivers-Tiffée (bib0006) 2002; 328 Zhang, Lei, Li, Sun, Sun, Han (bib0035) 2021; 516 Lyu, Li, Wang, Han (bib0033) 2021; 485 Huang, Li, Liaw, Zhang (bib0023) 2016; 309 Cui, Li, Lyu, Wang, Han, Sun, Sun (bib0032) 2020 Gavrilyuk, Osinkin, Bronin (bib0012) 2020; 354 Liu, Ciucci (bib0015) 2020; 167 Zhang, Lei, Li, Chen, Han (bib0034) 2021; 384 Moya (bib0014) 2018; 397 Quattrocchi, Wan, Curcio, Pepe, Effat, Ciucci (bib0017) 2019; 324 Liu, Wan, Ciucci (bib0016) 2020; 357 Osinkin (bib0003) 2021; 372 Wang (10.1016/j.electacta.2022.140474_bib0024) 2018; 33 Schichlein (10.1016/j.electacta.2022.140474_bib0006) 2002; 328 Effat (10.1016/j.electacta.2022.140474_bib0011) 2017; 247 Honerkamp (10.1016/j.electacta.2022.140474_bib0005) 1990; 21 Dierickx (10.1016/j.electacta.2022.140474_bib0026) 2020; 355 Sgura (10.1016/j.electacta.2022.140474_bib0021) 2005; 40 Boukamp (10.1016/j.electacta.2022.140474_bib0013) 2018; 314 Lyu (10.1016/j.electacta.2022.140474_bib0031) 2021; 510 Lyu (10.1016/j.electacta.2022.140474_bib0030) 2019; 44 Vladikova (10.1016/j.electacta.2022.140474_bib0020) 2002; 47 Leonide (10.1016/j.electacta.2022.140474_bib0039) 2010 Quattrocchi (10.1016/j.electacta.2022.140474_bib0017) 2019; 324 Boukamp (10.1016/j.electacta.2022.140474_bib0040) 2017; 252 Zhang (10.1016/j.electacta.2022.140474_bib0008) 2015; 283 Schönleber (10.1016/j.electacta.2022.140474_bib0037) 2014; 131 Huang (10.1016/j.electacta.2022.140474_bib0018) 2021; 367 Mertens (10.1016/j.electacta.2022.140474_bib0028) 2017; 13 Sihvo (10.1016/j.electacta.2022.140474_bib0001) 2020; 35 Moya (10.1016/j.electacta.2022.140474_bib0014) 2018; 397 Klotz (10.1016/j.electacta.2022.140474_bib0027) 2012; 41 Shelembe (10.1016/j.electacta.2022.140474_bib0002) 2021 Goldfarb (10.1016/j.electacta.2022.140474_bib0038) 1983; 271 Liu (10.1016/j.electacta.2022.140474_bib0015) 2020; 167 Osinkin (10.1016/j.electacta.2022.140474_bib0003) 2021; 372 Lyu (10.1016/j.electacta.2022.140474_bib0033) 2021; 485 Papurello (10.1016/j.electacta.2022.140474_bib0029) 2017; 258 Sonn (10.1016/j.electacta.2022.140474_bib0007) 2008; 155 Waag (10.1016/j.electacta.2022.140474_bib0019) 2013; 46 Huang (10.1016/j.electacta.2022.140474_bib0023) 2016; 309 Toll (10.1016/j.electacta.2022.140474_bib0036) 1956; 104 Sumi (10.1016/j.electacta.2022.140474_bib0025) 2012; 67 Zhang (10.1016/j.electacta.2022.140474_bib0034) 2021; 384 Wan (10.1016/j.electacta.2022.140474_bib0009) 2015; 184 Gavrilyuk (10.1016/j.electacta.2022.140474_bib0012) 2020; 354 Cui (10.1016/j.electacta.2022.140474_bib0032) 2020 Leonide (10.1016/j.electacta.2022.140474_bib0004) 2008; 155 Bondarenko (10.1016/j.electacta.2022.140474_bib0022) 2012; 743 Zhang (10.1016/j.electacta.2022.140474_bib0035) 2021; 516 Zhang (10.1016/j.electacta.2022.140474_bib0010) 2016; 308 Liu (10.1016/j.electacta.2022.140474_bib0016) 2020; 357 |
References_xml | – volume: 67 start-page: 159 year: 2012 end-page: 165 ident: bib0025 article-title: AC impedance characteristics for anode-supported microtubular solid oxide fuel cells publication-title: Electrochim. Acta – volume: 357 year: 2020 ident: bib0016 article-title: A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: probabilistic estimates and quality scores publication-title: Electrochim. Acta – volume: 41 start-page: 25 year: 2012 end-page: 33 ident: bib0027 article-title: The distribution of relaxation times as beneficial tool for equivalent circuit modeling of fuel cells and batteries publication-title: ECS Trans. – volume: 258 start-page: 98 year: 2017 end-page: 109 ident: bib0029 article-title: Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes publication-title: Electrochim. Acta – volume: 283 start-page: 464 year: 2015 end-page: 477 ident: bib0008 article-title: Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy publication-title: J. Power Sources – volume: 367 year: 2021 ident: bib0018 article-title: Towards robust autonomous impedance spectroscopy analysis: a calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion publication-title: Electrochim. Acta – volume: 328 start-page: 875 year: 2002 end-page: 882 ident: bib0006 article-title: Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells publication-title: J. Appl. Electrochem. – volume: 485 year: 2021 ident: bib0033 article-title: Performance degradation of solid oxide fuel cells analyzed by evolution of electrode processes under polarization publication-title: J. Power Sources – volume: 271 start-page: 1 year: 1983 end-page: 33 ident: bib0038 article-title: A numerically stable dual method for solving strictly convex quadratic programs publication-title: Math. Program. – year: 2020 ident: bib0032 article-title: Identification of electrode process in large-size solid oxide fuel cell publication-title: Acta Phys. Chim. Sin. – volume: 35 start-page: 2548 year: 2020 end-page: 2557 ident: bib0001 article-title: Fast approach for battery impedance identification using pseudo-random sequence signals publication-title: IEEE Trans. Power Electron. – volume: 40 start-page: 557 year: 2005 end-page: 570 ident: bib0021 article-title: Numerical issues related to the modelling of electrochemical impedance data by non-linear least-squares publication-title: Int. J. Non Linear Mech. – volume: 384 year: 2021 ident: bib0034 article-title: A practical approach for identifying various polarization behaviors of redox-stable electrodes in symmetrical solid oxide fuel cells publication-title: Electrochim. Acta – start-page: 443 year: 2021 end-page: 450 ident: bib0002 article-title: An amplitude-modulated pseudo-random binary sequence approach to broadband impedance spectroscopy for photovoltaic module system identification publication-title: IEEE Energy Conversion Congress and Exposition (ECCE) – volume: 33 start-page: 8449 year: 2018 end-page: 8460 ident: bib0024 article-title: State of charge-dependent polynomial equivalent circuit modeling for electrochemical impedance spectroscopy of lithium-ion batteries publication-title: IEEE Trans. Power Electron. – volume: 324 year: 2019 ident: bib0017 article-title: A general model for the impedance of batteries and supercapacitors: the non-linear distribution of diffusion times publication-title: Electrochim. Acta – volume: 131 start-page: 20 year: 2014 end-page: 27 ident: bib0037 article-title: A method for improving the robustness of linear Kramers-Kronig validity tests publication-title: Electrochim. Acta – volume: 314 start-page: 103 year: 2018 end-page: 111 ident: bib0013 article-title: Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes publication-title: Solid State Ion. – volume: 743 start-page: 41 year: 2012 end-page: 50 ident: bib0022 article-title: Analysis of large experimental datasets in electrochemical impedance spectroscopy publication-title: Anal. Chim. Acta – volume: 155 start-page: B36 year: 2008 ident: bib0004 article-title: Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells publication-title: J. Electrochem. Soc. – volume: 397 start-page: 124 year: 2018 end-page: 133 ident: bib0014 article-title: Identification of characteristic time constants in the initial dynamic response of electric double layer capacitors from high-frequency electrochemical impedance publication-title: J. Power Sources – volume: 354 year: 2020 ident: bib0012 article-title: On a variation of the Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy publication-title: Electrochim. Acta – volume: 372 year: 2021 ident: bib0003 article-title: An approach to the analysis of the impedance spectra of solid oxide fuel cell using the DRT technique publication-title: Electrochim. Acta – volume: 355 year: 2020 ident: bib0026 article-title: How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells publication-title: Electrochim. Acta – volume: 309 start-page: 82 year: 2016 end-page: 98 ident: bib0023 article-title: Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations publication-title: J. Power Sources – volume: 104 start-page: 1760 year: 1956 ident: bib0036 article-title: Causality and the dispersion relation: logical foundations publication-title: Phys. Rev. – volume: 247 start-page: 1117 year: 2017 end-page: 1129 ident: bib0011 article-title: Bayesian and hierarchical bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data publication-title: Electrochim. Acta – volume: 167 year: 2020 ident: bib0015 article-title: The deep-prior distribution of relaxation times publication-title: J. Electrochem. Soc. – volume: 46 start-page: 4085 year: 2013 end-page: 4093 ident: bib0019 article-title: Application-specific parameterization of reduced order equivalent circuit battery models for improved accuracy at dynamic load publication-title: Measurement – volume: 13 start-page: 401 year: 2017 end-page: 408 ident: bib0028 article-title: Two-dimensional impedance data analysis by the distribution of relaxation times publication-title: J. Energy Storage – volume: 21 start-page: 17 year: 1990 end-page: 30 ident: bib0005 article-title: Tikhonovs regularization method for ill-posed problems publication-title: Contin. Mech. Thermodyn. – volume: 252 start-page: 154 year: 2017 end-page: 163 ident: bib0040 article-title: Derivation of a distribution function of relaxation times for the (fractal) finite length warburg publication-title: Electrochim. Acta – volume: 184 start-page: 483 year: 2015 end-page: 499 ident: bib0009 article-title: Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools publication-title: Electrochim. Acta – volume: 308 start-page: 1 year: 2016 end-page: 6 ident: bib0010 article-title: A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy publication-title: J. Power Sources – volume: 510 year: 2021 ident: bib0031 article-title: Quantifying the performance evolution of solid oxide fuel cells during initial aging process publication-title: J. Power Sources – year: 2010 ident: bib0039 article-title: SOFC Modelling and Parameter Identification by Means of Impedance Spectroscopy – volume: 44 start-page: 12151 year: 2019 end-page: 12162 ident: bib0030 article-title: Electrochemical properties and thermal neutral state of solid oxide fuel cells with direct internal reforming of methane publication-title: Int. J. Hydrog. Energy – volume: 516 year: 2021 ident: bib0035 article-title: Experimental investigations of cell resistances to characterize the concentration polarization behavior of 10 ×10 cm2 solid oxide fuel cells publication-title: J. Power Sources – volume: 47 start-page: 2943 year: 2002 end-page: 2951 ident: bib0020 article-title: Selectivity study of the differential impedance analysis—comparison with the complex non-linear least-squares method publication-title: Electrochim. Acta – volume: 155 start-page: B675 year: 2008 ident: bib0007 article-title: Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni∕8YSZ cermet electrodes publication-title: J. Electrochem. Soc. – volume: 167 year: 2020 ident: 10.1016/j.electacta.2022.140474_bib0015 article-title: The deep-prior distribution of relaxation times publication-title: J. Electrochem. Soc. – volume: 67 start-page: 159 year: 2012 ident: 10.1016/j.electacta.2022.140474_bib0025 article-title: AC impedance characteristics for anode-supported microtubular solid oxide fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.02.021 – volume: 516 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0035 article-title: Experimental investigations of cell resistances to characterize the concentration polarization behavior of 10 ×10 cm2 solid oxide fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230678 – volume: 283 start-page: 464 year: 2015 ident: 10.1016/j.electacta.2022.140474_bib0008 article-title: Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.107 – volume: 510 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0031 article-title: Quantifying the performance evolution of solid oxide fuel cells during initial aging process publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230432 – volume: 155 start-page: B36 year: 2008 ident: 10.1016/j.electacta.2022.140474_bib0004 article-title: Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.2801372 – volume: 155 start-page: B675 year: 2008 ident: 10.1016/j.electacta.2022.140474_bib0007 article-title: Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni∕8YSZ cermet electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.2908860 – volume: 367 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0018 article-title: Towards robust autonomous impedance spectroscopy analysis: a calibrated hierarchical Bayesian approach for electrochemical impedance spectroscopy (EIS) inversion publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137493 – volume: 324 year: 2019 ident: 10.1016/j.electacta.2022.140474_bib0017 article-title: A general model for the impedance of batteries and supercapacitors: the non-linear distribution of diffusion times publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134853 – volume: 485 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0033 article-title: Performance degradation of solid oxide fuel cells analyzed by evolution of electrode processes under polarization publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229237 – year: 2010 ident: 10.1016/j.electacta.2022.140474_bib0039 – volume: 40 start-page: 557 year: 2005 ident: 10.1016/j.electacta.2022.140474_bib0021 article-title: Numerical issues related to the modelling of electrochemical impedance data by non-linear least-squares publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2004.03.004 – volume: 258 start-page: 98 year: 2017 ident: 10.1016/j.electacta.2022.140474_bib0029 article-title: Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.052 – volume: 104 start-page: 1760 year: 1956 ident: 10.1016/j.electacta.2022.140474_bib0036 article-title: Causality and the dispersion relation: logical foundations publication-title: Phys. Rev. doi: 10.1103/PhysRev.104.1760 – volume: 44 start-page: 12151 year: 2019 ident: 10.1016/j.electacta.2022.140474_bib0030 article-title: Electrochemical properties and thermal neutral state of solid oxide fuel cells with direct internal reforming of methane publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.03.048 – volume: 41 start-page: 25 year: 2012 ident: 10.1016/j.electacta.2022.140474_bib0027 article-title: The distribution of relaxation times as beneficial tool for equivalent circuit modeling of fuel cells and batteries publication-title: ECS Trans. doi: 10.1149/1.3692958 – volume: 184 start-page: 483 year: 2015 ident: 10.1016/j.electacta.2022.140474_bib0009 article-title: Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.09.097 – volume: 35 start-page: 2548 year: 2020 ident: 10.1016/j.electacta.2022.140474_bib0001 article-title: Fast approach for battery impedance identification using pseudo-random sequence signals publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2019.2924286 – volume: 21 start-page: 17 issue: 2 year: 1990 ident: 10.1016/j.electacta.2022.140474_bib0005 article-title: Tikhonovs regularization method for ill-posed problems publication-title: Contin. Mech. Thermodyn. doi: 10.1007/BF01170953 – volume: 33 start-page: 8449 year: 2018 ident: 10.1016/j.electacta.2022.140474_bib0024 article-title: State of charge-dependent polynomial equivalent circuit modeling for electrochemical impedance spectroscopy of lithium-ion batteries publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2017.2780184 – volume: 355 year: 2020 ident: 10.1016/j.electacta.2022.140474_bib0026 article-title: How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136764 – volume: 384 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0034 article-title: A practical approach for identifying various polarization behaviors of redox-stable electrodes in symmetrical solid oxide fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138340 – volume: 314 start-page: 103 year: 2018 ident: 10.1016/j.electacta.2022.140474_bib0013 article-title: Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes publication-title: Solid State Ion. doi: 10.1016/j.ssi.2017.11.021 – volume: 13 start-page: 401 year: 2017 ident: 10.1016/j.electacta.2022.140474_bib0028 article-title: Two-dimensional impedance data analysis by the distribution of relaxation times publication-title: J. Energy Storage doi: 10.1016/j.est.2017.07.029 – volume: 46 start-page: 4085 year: 2013 ident: 10.1016/j.electacta.2022.140474_bib0019 article-title: Application-specific parameterization of reduced order equivalent circuit battery models for improved accuracy at dynamic load publication-title: Measurement doi: 10.1016/j.measurement.2013.07.025 – volume: 271 start-page: 1 issue: 27 year: 1983 ident: 10.1016/j.electacta.2022.140474_bib0038 article-title: A numerically stable dual method for solving strictly convex quadratic programs publication-title: Math. Program. doi: 10.1007/BF02591962 – volume: 354 year: 2020 ident: 10.1016/j.electacta.2022.140474_bib0012 article-title: On a variation of the Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136683 – volume: 328 start-page: 875 issue: 32 year: 2002 ident: 10.1016/j.electacta.2022.140474_bib0006 article-title: Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells publication-title: J. Appl. Electrochem. doi: 10.1023/A:1020599525160 – year: 2020 ident: 10.1016/j.electacta.2022.140474_bib0032 article-title: Identification of electrode process in large-size solid oxide fuel cell publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB202011009 – volume: 308 start-page: 1 year: 2016 ident: 10.1016/j.electacta.2022.140474_bib0010 article-title: A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.067 – volume: 47 start-page: 2943 year: 2002 ident: 10.1016/j.electacta.2022.140474_bib0020 article-title: Selectivity study of the differential impedance analysis—comparison with the complex non-linear least-squares method publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00187-1 – start-page: 443 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0002 article-title: An amplitude-modulated pseudo-random binary sequence approach to broadband impedance spectroscopy for photovoltaic module system identification – volume: 357 year: 2020 ident: 10.1016/j.electacta.2022.140474_bib0016 article-title: A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: probabilistic estimates and quality scores publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136864 – volume: 743 start-page: 41 year: 2012 ident: 10.1016/j.electacta.2022.140474_bib0022 article-title: Analysis of large experimental datasets in electrochemical impedance spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.06.055 – volume: 131 start-page: 20 year: 2014 ident: 10.1016/j.electacta.2022.140474_bib0037 article-title: A method for improving the robustness of linear Kramers-Kronig validity tests publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.01.034 – volume: 372 year: 2021 ident: 10.1016/j.electacta.2022.140474_bib0003 article-title: An approach to the analysis of the impedance spectra of solid oxide fuel cell using the DRT technique publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.137858 – volume: 252 start-page: 154 year: 2017 ident: 10.1016/j.electacta.2022.140474_bib0040 article-title: Derivation of a distribution function of relaxation times for the (fractal) finite length warburg publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.154 – volume: 247 start-page: 1117 year: 2017 ident: 10.1016/j.electacta.2022.140474_bib0011 article-title: Bayesian and hierarchical bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.050 – volume: 309 start-page: 82 year: 2016 ident: 10.1016/j.electacta.2022.140474_bib0023 article-title: Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.073 – volume: 397 start-page: 124 year: 2018 ident: 10.1016/j.electacta.2022.140474_bib0014 article-title: Identification of characteristic time constants in the initial dynamic response of electric double layer capacitors from high-frequency electrochemical impedance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.015 |
SSID | ssj0007670 |
Score | 2.609312 |
Snippet | •Robust and fast ECM fitting algorithm has been developed and tested on noisy impedance spectra, with source code available at... The Equivalent Circuit Model (ECM) is a powerful technique to quantitatively analyze and compare Electrochemical Impedance Spectroscopy (EIS) data. In... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 140474 |
SubjectTerms | Algorithm Algorithms Electrochemical impedance spectroscopy Equivalent circuit Equivalent circuits Fast Fuel cells Impedance spectroscopy Measuring instruments Outliers (statistics) Robust Robustness Run time (computers) Time measurement |
Title | Robust and fast estimation of equivalent circuit model from noisy electrochemical impedance spectra |
URI | https://dx.doi.org/10.1016/j.electacta.2022.140474 https://www.proquest.com/docview/2685585703 |
Volume | 422 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3859 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KHtSDaFWsVtmD12gezW7irRSlKvYgFrwt-8hCRNLapgcv_nZnkk21gvQg5JCEbAizk3nAfN9HyEXGFUt44sMvbqFBYYH1FHRCnoLqNVA-T5VGcPLjiA3HvfuX-KVFBg0WBscqXeyvY3oVrd2dK2fNq2meI8Y3iHoIcMCuOGLI-InsX-DTl5_fYx6ccb9RMcCnV2a8KqkZCQc0imF4iVQzvPdXhvoVq6sEdLtHdl3lSPv1x-2TVla0ydagEWxrk50f3IIHRD9N1GJeUlkYaiWcIJ1GjVOkE0uz90UOTgYph-p8phd5SStRHIp4E1pM8vkHdRI52nEK0BxKbINeQit85kwekvHtzfNg6DlFBU9DH1d6RjMmQxum3Pq-MlliTSh5rHiYWMlMohWUK0HCpYo11zxQqTZWGgs9mkmhFIyOyEYxKbJjQgMVhdr3szjjssdtogyXXBuZGiQNk6ZDWGNFoR3dOKpevIlmruxVLM0v0PyiNn-H-MuF05pxY_2S62abxIrzCMgL6xd3m40V7v-di5AlcYzc_9HJf959Srbxqh4Y7JKNcrbIzqCIKdV55aXnZLN_9zAcfQEYs_Qn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qPagH8Yn1uQev0Tx3E2-lKFVrD6LgbdlHFiKS1jY9-O-dTTZFBfEg5BASJoTZ2dkZmO_7AM5zJmnKUh-3uMEGhQbGk9gJeRKr10D6LJPKgpMfxnT4HN-9JC8dGLRYGDtW6XJ_k9PrbO2eXDpvXk6LwmJ8gyi2AAfbFUc0WoHVOMGc3IXV_u39cLxMyIwyvxUysAbfxrxqtRmBF_aKYXhh2WZY_Nsh9SNd12fQzRZsuuKR9Jv_24ZOXu7A2qDVbNuBjS_0grugHidyMa-IKDUxAm8so0YDVSQTQ_L3RYFxhqcOUcVMLYqK1Lo4xEJOSDkp5h_EqeQoRytACqyytQ0UUkM0Z2IPnm-unwZDz4kqeApbucrTilIRmjBjxvelzlOjQ8ESycLUCKpTJbFiCVImZKKYYoHMlDZCG2zTdIbVYLQP3XJS5gdAAhmFyvfzJGciZiaVmgmmtMi05Q0Tuge09SJXjnHcCl-88Xa07JUv3c-t-3nj_h74S8NpQ7rxt8lVu0z8W_xwPBr-Nj5uF5a7LTznIU2TxNL_R4f_-fYZrA2fHkZ8dDu-P4J1-6aZHzyGbjVb5CdY01Ty1MXsJ1499tI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+fast+estimation+of+equivalent+circuit+model+from+noisy+electrochemical+impedance+spectra&rft.jtitle=Electrochimica+acta&rft.au=Li%2C+Hangyue&rft.au=Lyu%2C+Zewei&rft.au=Han%2C+Minfang&rft.date=2022-08-01&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=422&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2022.140474&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |